
https://doi.org/10.31449/inf.v45i2.3110 Informatica 45 (2021) 205–212 205

Statistics-Based Chain Code Compression with Decreased Sensitivity to

Shape Artefacts

David Podgorelec, Andrej Nerat and Borut Žalik

University of Maribor, Faculty of Electrical Engineering and Computer Science

Koroška cesta 46, SI-2000, Maribor, Slovenia

E-mail: david.podgorelec@um.si

Keywords: chain code, data compression, dynamic programming, pseudo-statistical model, shape artefact

Received: April 3, 2020

Chain codes compactly represent raster curves, but there is still a lot of room for improvement by means

of data compression. Several statistics-based chain code compression techniques assign shorter extra

codes to frequent pairs of consecutive symbols. Here we systematically extend this concept to patterns of

up to k > 2 symbols. A curve may be represented by any of the exponentially many overlapped chains of

codes, and the dynamic programming approach is proposed to determine the optimal chain. We also

propose utilization of multiple averaged hard coded pseudo-statistical models, since the exact statistical

models of individual curves are often huge, and they can also significantly differ from each other. A

competitive compression efficiency is assured in this manner and, as a pleasant side effect, this

efficiency is less affected by the curve’s shape, rasterization algorithm, noise, and image resolution,

than in other contemporary methods, which surprisingly do not pay any attention to this problem at all.

Povzetek: V članku predstavimo novo metodo za statistično stiskanje verižnih kod, ki dodeli posebne

kode pogostim nizom do k simbolov. Optimalno izmed eksponentno mnogo rešitev izbere z dinamičnim

programiranjem. Uporablja več povprečenih psevdo-statističnih modelov, ki jih ne shranjuje skupaj s

krivuljo. V primerjavi z drugimi sodobnimi metodami doseže konkurenčno stopnjo stiskanja, hkrati pa je

manj občutljiva na obliko krivulje, posebnosti rasterizacijskega algoritma, šum in ločljivost slike.

1 Introduction
Chain codes compactly represent curves in raster images.

More than half a century ago, Freeman [3] used symbols

i [0 .. 7] to represent each curve pixel pi with the

azimuth direction (i 45) from its predecessor pi–1

measured anticlockwise from the positive x-axis (Fig.

1a). Each symbol is then coded with 3 bits. Alternatively,

only 2 bits per pixel are required if the representation

relies on 4-connectivity, i.e. the azimuth pi – pi–1 is (i

90), where i [0 .. 3] (Fig. 1b). Several alternative

chain code representations were later introduced, but the

concept remains the same as in the pioneering Freeman

chain codes in eight (F8) or four (F4) directions:

symbols from a relatively small alphabet are assigned to

subsequent primitives along a curve. In different

representations, a primitive may refer to a curve pixel (as

in F8 or F4), a vertex between the considered curve pixel

and adjacent pixels (Vertex Chain Code – VCC [2] or

Three-Orthogonal chain code – 3OT [10]), an edge

separating the curve pixel from a background pixel

(Differential Chain Code – DCC [9]), or a rectangular

cell of pixels (in quasi-lossless representation from [9]).

Meanwhile, a symbol models some local geometric

relation e.g. relative position of the observed primitive

with respect to the previous one. With other words, it

represents a command how to navigate from one

primitive to the adjacent one along the curve. All these

basic chain code representations describe a raster curve

efficiently, as they use only 2 or 3 bits per primitive

instead of coding grid coordinates with, for example,

2 16 bits per pixel. Nevertheless, numerous successful

methods have been proposed to additionally compress

raster curves.

Figure 1: Freeman chain codes in 8 and 4 directions.

Statistical (Huffman or arithmetic) coding is often

utilized when the symbols’ probability distribution is

significantly non-uniform. Further advances in statistics-

206 Informatica 45 (2021) 205–212 D. Podgorelec et al.

based approaches were achieved by introducing extra

codes for frequent pairs of primitives [7, 8], or by

utilization of multiple statistical models in so-called

context-based approaches [1], where the statistical model

for coding a considered symbol is conditioned on the

context of M (typically 1 or 2) previous symbols. On

the other hand, non-statistical approaches perform

various string transformations [11, 12], e.g. Burrows-

Wheeler Transform (BWT) and/or Move-To-Front

Transform (MTFT) to increase the number of 0’s and

prepare the data for efficient run-length encoding (RLE)

and/or binary arithmetic coding (BAC). BWT rearranges

the sequence into runs of equal symbols, while MTFT

utilizes local correlations to replace the data values with

their indices from typically smaller repertoire.

In this paper, we introduce a new statistics-based

approach where extra codes may represent patterns of up

to k = O(1) symbols. Our aim was to achieve a

competitive compression efficiency, but an interesting

pleasant side effect was encountered and brought into

focus during the method development and testing.

Namely, impacts of the curve shape, image resolution,

rasterization algorithm, noise, and geometric

transformations on the compression ratio are

significantly reduced in comparison to other

contemporary methods. This topic has been so far

addressed indirectly within the context-based approaches

and, partially, in the non-statistical approaches, while it

was completely neglected in other related works. Section

2 illustrates the overall idea of the proposed approach.

Section 3 describes the preparation and utilization of

multiple averaged hard coded pseudo-statistical models,

crucial for the minimization of the mentioned impacts.

Section 4 experimentally confirms the compression

efficiency and the reduced dependence on curve’s

artefacts. Finally, Section 5 summarizes the presented

work, and discusses future research challenges.

Figure 2: Freeman’s chain difference coding.

2 New statistics-based method
Some years after F8 and F4, Freeman also proposed the

chain-difference coding (CDC) [6]. A pixel pi is encoded

with the angle difference ∠(pi – pi–1, pi–1 – pi–2). Unlike

F8 where all 8 symbols have practically the same

probabilities, the 0° angle difference is usually much

more frequent than other 7 symbols (Fig. 2). All 8

symbols in Fig. 1a have probabilities either 6/43

13.95% or 7/43 16.28%, and the probabilities of four

symbols in Fig. 1b are either 16/63 25.40% or 15/63

23.81%. On the other hand, the probability of symbol 0

in Fig. 2 is 32/42 76.19% while the probabilities of

other 7 symbols are all below 10%. Such non-uniform

distribution provides a good basis for statistical coding.

However, some tens of bits must be spent to store the

best-fitted statistical model (BFSM) for an individual

curve, which is, particularly with shorter curves, not

negligible. Liu and Žalik [6] presented the directional

difference chain coding (DDCC), where CDC BFSMs of

over 1000 training curves are averaged into a suboptimal

hard-coded statistical model (HCSM), which is then used

for compression in non-training use cases. Some years

later, the compressed DDCC (C_DDCC) [7] was

introduced, where three extra codes for usually frequent

pairs 45°, 45° and for patterns of 12 to 27 zeros were

added into the HCSM. The two pairs were intuitively

identified, as they periodically interrupt sequences of 0°

symbols along oblique line segments (except those with

slopes 45° or -45°).

Here we take a step forward by systematically

extending the DDCC coding scheme with extra codes for

patterns of up to k = O(1) symbols, k 2. Furthermore,

we group “similar” training curves into classes and

derive HCSMs separately for each class. Although this

concept looks straightforward, several non-trivial issues

must be considered to achieve a feasible implementation

and a competitive compression efficiency. These issues

can be structured into two separate phases.

1. The training phase is performed by an

expert/developer in order to calibrate the algorithm

for future use. A representative repertoire of training

curves is first provided, and the BFSM for each

curve is extracted. Features for multicriteria

classification of training curves are selected

(intuitively in the current implementation), and the

training curves are then assigned to the classes.

HCSMs are derived afterwards by separately

averaging BFSMs within the classes. The detailed

description follows in Section 3.

2. The exploitation phase is run by end-users in order

to compress non-training curves from concrete use

cases. An input curve is first analysed to determine

the feature values needed to heuristically select the

most appropriate of the stored HCSMs. The chosen

HCSM is then utilized to compress the curve with

Huffman coding. The main challenge in designing

this phase is the strategy for determination of the

optimal sequence (chain) of codes, which is

emphasized after the definitions.

Statistics-Based Chain Code Compression with... Informatica 45 (2021) 205–212 207

2.1 Definitions

Trail Ti, j = vi, ..., vj, i ≤ j, is a sequence of adjacent

pixels (or corresponding graph vertices) along a raster

curve. The length of the trail (in pixels) is h(i, j) = j – i +

1. The trail T1, n = v1, ..., vn corresponds to the entire

raster curve of length n.

Trail decomposition splits the trail into one or more

nested trails, whose concatenation reassembles the

original trail. A trail Tu, v is nested in Ti, j if i ≤ u ≤ v ≤ j.

Symbol is a chain-code command aimed to be assigned

to a single pixel along a raster curve.

Pattern (of symbols) i, j = i, ..., j, i ≤ j, is a

sequence of symbols aimed to be assigned to pixels of a

trail of the same length h(i, j).

Dynamic programming graph is an edge-weighted

graph (G, w), where G = (V, E) is a directed graph, V =

{v1, ..., vn+1} is a vertex set, E = {ei,j} is an edge set,

given by pairs of vertices ei,j = (vi, vj), i < j, and w : E →

ℕ is a weight function. Vertices v1, ..., vn correspond to

pixels along the raster curve, edge ei,j represents a trail

vi, ..., vj–1, and weight wi,j of an edge ei,j is the bit length

of the corresponding Huffman code.

An auxiliary end vertex vn+1 does not represent any

curve pixel and, thus, there is no need to assign a symbol

to it. However, this vertex enables introduction of edges

ei,n+1, i ≤ n, corresponding to trails Ti, n = vi, ..., vn.

IN(i) is the set of start vertices of all graph edges with

the end vertex vi. vj IN(i) ej,i E. Vertex vj is a

predecessor of vj and the latter is a successor of vj.

OUT(i) is the set of end vertices of all graph edges with

the start vertex vi. vj OUT(i) ei,j E.

Extra code is a Huffman code which replaces a pattern

of two or more symbols in order to save some bits.

p(i, j) is the probability of a pattern i, j = i, ..., j in a

considered statistical model. If the latter corresponds to

the BFSM of a curve described with T1, n = v1, ..., vn,

then we get equation (1):

p(i, j) = f(i, j) / (n – h(i, j) + 1), (1)

where f(i, j) be the number of appearances of i, j in the

pattern assigned to v1, ..., vn. However, p(i, j) in some

HCSM is obtained by averaging the corresponding

probabilities from all participating BFSMs.

Note that an edge ei,j, i < j – 1, is added into the

graph only if an extra code exists for the corresponding

pattern assigned to Ti, j–1. On the other hand, edges ei, i+1 =

(vi, vi+1) correspond to single-pixel trails Ti, i = vi and

they are unconditionally added to the graph. This assures

that the algorithm of parsing the curve pixels will always

reach the end vertex vn+1, as any other vertex has at least

one successor, i.e. i ≤ n |OUT(i)| 1.

2.2 Exploitation phase

The existing chain code techniques construct the chain of

codes by a greedy algorithm. A raster curve is parsed

primitive by primitive, and each of them is immediately

coded either alone or as a member of some longer

pattern. If different possibilities for coding a primitive

exist, the predefined priority is decisive. In C_DDCC, for

example, extra codes for 45°, 45° pairs have higher

priority than the corresponding single-pixel codes.

However, such priority-based greedy algorithms cannot

be simply adjusted to efficiently handle higher number of

extra codes for longer patterns of symbols. In the

proposed approach, each pixel can be coded with its own

code or, theoretically, with one of k codes of longer

trails. For k = 6 as used in the current implementation

and tests (the decision for this value will be explained at

the end of Section 3.2), these trails include two pairs,

three triplets and so on till six sextets. A longer context

of patterns before and behind the considered symbol

determines which of the 1 + 2 + … + k = k (k + 1) / 2

possibilities (21 for k = 6) shall be used to code the pixel.

We therefore have a combinatorial optimization problem

where we look for an optimal chain from a large set of

multiply overlapped chains. Unlike greedy algorithms,

we found dynamic programming capable to provide an

optimal choice. Its utilization also facilitates the so-called

context dilution problem [1, 7]. Namely, introduction of

extra codes for longer patterns of symbols usually

extends codes of several symbols and other patterns. For

example, introduction of four extra C_DDCC codes for

patterns 0°, 45° and 45°, 0 prolongs by 1 bit the

codes for 90°, 180°, RLE of zeros, 135° and/or –135°.

Furthermore, examples of chains can be found where

individual extra codes do not save any bits.

The proposed dynamic programming approach is

adaptation of the so-called exon chaining algorithm from

the field of bioinformatics, the simplest of the so-called

similarity-based gene prediction approaches [5].

The dynamic programming optimizes the Bellman

equation (2), where si represents the total bit length of the

optimal chain from v1 to vi–1, 1 < i ≤ n + 1. Additionally,

s0 is set to 0 to enable the recursive calculation of s1.

si = minvj IN(i)(sj + wj,i) (2)

The vertex predi IN(i), which indeed participates

to the minimum si, is also memorized for each vi. The

sn+1 represents the total bit length of the overall solution,

and the optimal chain itself is then reconstructed by

following the vertices predi from vn+1 backwards to v1.

Bold edges in Fig. 3 represent the optimal chain for the

given example. Trails T1, 2, T3, 5, and T6, 9 are coded with

4 + 6 + 8 = 18 bits. Note that an equivalent solution with

sn = 18 exists, where the first trail terminates with v3, as

demonstrated with a pair of dashed edges in Fig. 3.

Figure 3: Dynamic programming graph.

208 Informatica 45 (2021) 205–212 D. Podgorelec et al.

The remarkable performance of the dynamic

programming-based optimization is highlighted with

Theorems 1 and 2. Although the growth of the number of

solution candidates is exponential in curve length, the

algorithm runs in linear time.

Theorem 1. The number of possible decompositions of a

trail grows exponentially with the trail length (in pixels)

if extra codes for patterns of up to k > 1 symbols are

used.

Proof. Let ci(k) be the number of possible

decompositions of T1, i, where the lengths of nested trails

obtained by the decomposition do not exceed k. Each of

these decompositions ends with the trail Ti–l+1, i of l

vertices, 1 ≤ l ≤ min(i, k), preceded with one of ci–l(k)

possible decompositions of T1, i–l. Note that for i < k,

there are less than k symbols available and, thus, the

upper bound for the length of the ending trail is min(i, k).

The ending trail Ti–l+1, i can span through the entire

T1, i (when i = l), resulting in an empty preceding T1, 0.

Unlike the definition of trail in Section 2.1, we

exceptionally allow i > j here. This situation is indicated

by c0(k) = 1.

Equation (3) defines the calculation of ci(k), i > 0.

(3)

Obviously, c1(k) = c0(k) = 1 as the first pixel of T1, i

can be preceded by an empty trail only in a single way.

Similarly, ci(1) = 1 since T1, i can be decomposed into

single-pixel trails only in a single way. For k = 2, i > 1,

equation (4) is obtained.

ci(2) = ci–1(2) + ci–2(2), i > 1 (4)

Let Fi represent the i-th Fibonacci number. The

Fibonacci sequence is defined by F0 = 0, F1 = 1, and Fi =

Fi–2 + Fi–1 for i > 1. This recursive formula gives F2 = 1

and we may thus match c0(k) = F1 and c1(k) = F2. The

equation (4) then gives: c2(2) = F2 + F1 = F3, c3(2) = F3 +

F2 = F4, and ci(2) = Fi + Fi–1 = Fi+1. As Fi+1 > Fi, i > 1, we

thus get the inequality (5).

ci(2) > Fi, i > 1 (5)

This result can be generalized to k > 2 by using the

relation (6), which must be proved beforehand.

ci(k + m) > ci(k), m 1, i > 1 (6)

The proof is actually trivial. Due to the transitivity of

“Is greater than”, it suffices to consider m = 1. The key

observation is that all the decompositions counted by

ci(k) are also counted by ci(k + 1) which, however,

additionally counts the decompositions with at least one

nested trail of length k + 1. The relation (5) may thus be

generalized to the relation (7).

ci(k) > Fi, k > 1 i > 1 (7)

As the Fibonacci sequence Fi has the proven

exponential growth, we may confirm that the sequence

ci(k) also grows (at least) exponentially for k > 1.

Theorem 1 is thus proved. □

Note that we assumed in the theorem, that all the

trails of up to k pixels are represented by edges of the

dynamic programming graph, but this is usually not a

case due to the statistical model reduction (Section 3.2).

The proved exponential growth therefore represents only

the theoretical worst case. However, as BFSMs and

particularly HCSMs typically contain the majority of the

patterns of length 2 (k = 2 suffices for the exponential

growth) and also quite a few longer patterns, the

expected growth may also be considered exponential.

An interesting finding is that the recursion in

equation (3) can be solved easily for k i. Namely,

substitution ci–2(k) + … + c0(k) = ci–1(k) transforms ci(k)

= ci–1(k) + … + c0(k) into ci(k) = 2 ci–1(k). We may then

recursively progress with such substitutions, i.e. 2 ci–1(k)

= 22 ci–2(k) = … = 2i–1 c1(k), towards the equation (8).

ci(k) = 2i–1, k i > 0 (8)

The result in equation (8) is expected, as any

decomposition is obtained by breaking apart the trail in

some interruption points between successive pixels.

Since k i, there are no limitations in the length of

nested trails obtained by the decomposition. All the

combinations from i single-pixel trails to a single trail

spanning through entire T1, i are valid. There are i – 1

interruption points in a trail with i symbols and thus 2i–1

possible decompositions.

Theorem 2. Optimal chain detection, based on the

dynamic programming and utilization of extra codes for

patterns of up to k = O(1) symbols, runs in (n) time,

where n is the curve length in pixels.

Proof. The cardinality |IN(i)|, 1 < i ≤ n, cannot exceed k,

as each vi may only represent the end of a trail (edge) of

length between 1 and k. The upper bound for time

complexity of calculating si, 1 < i ≤ n, is thus O(k n) =

O(n) time if k = O(1). The lower bound however is

achieved if the statistical model contains only single-

pixel symbols. But even in this case, the linear time is

needed to parse the dynamic programming graph. The

 (n) time complexity is thus proved. □

3 Training phase
Linear performance proved in Theorem 2 is not the only

reason for limiting the length of patterns with attached

extra codes to k = O(1) symbols. This also reduces the

size of the statistical model, which has a mitigating effect

on the context dilution problem. In the proposed study, k

= 6 have been chosen among different considered values.

The reasons for this decision shall be explained in

Section 3.2. Even in this way, the statistical model

derived from the basic DDCC scheme can theoretically

contain 8 + 82 + ... + 86 = 299,592 entries. Although

many of these patterns never appear in practice, and even

Statistics-Based Chain Code Compression with... Informatica 45 (2021) 205–212 209

if we manage to further reduce the size of the statistical

model (to some tens entries in practice), there is the only

practical possibility to use an averaged statistical model

(or more of them). Its derivation requires a careful

consideration of the following important issues.

3.1 Training set

In the reported C_DDCC tests [7], relative compression

ratio to F8 only slightly varies (between 0.46 and 0.55).

This may lead to a conclusion that the derived HCSM

serves well for all use cases. Furthermore, similar

conclusions can be adopted for practically all existing

methods, no matter whether they belong to statistics-

based or non-statistical approaches, and whether, in the

first case, they use a HCSM or BFSMs. However, we

must be aware that the training sets and testing use cases

in presentations of these methods usually follow some

curve creation and rasterization methodology and, thus,

they share some evident common artefacts. In C_DDCC

tests, for example, there were a huge probability of

shorter sequences of 0 symbols, relatively high

probabilities of 45°, 45° pairs, and rather low

probabilities of 90 symbols. In our method, we may

expect even bigger impact of the curve’s shape on the

compression efficiency, as the distributions of longer

patterns from a bigger repertoire can vary considerably

from curve to curve. An averaged statistical model can

thus deviate significantly from both, the BFSMs of

individual training curves used to construct it in the

training phase, and the distributions of patterns used to

code testing curves in the exploitation phase. Since the

latter directly affects the compression efficiency, we

decided to use multiple averaged statistical models and,

consequently, to classify the training curves and testing

use cases regarding some chosen measurable artefacts. In

this manner, the method gains generality, as the

compression efficiency becomes less dependent on the

curve creation and rasterization methodology.

Figure 4: Different levels of forcing the 4-connectivity.

To provide an adequate training set and a relevant

mixture of testing use cases, we have implemented a tool

with functionalities of image rotation and scaling,

manual inversions of binary values of selected pixels,

and extraction of the boundary chain of a presented

binary object. In this last operation, the parameter Force-

4-connectivity controls the amount of 90° symbols

along oblique edges and, thus, simulates different

rasterization methodologies. Value 0% (Fig. 4a) means

that the boundary chain consists only of pixels which

share edges with the object’s exterior. On the other hand,

value 100% (Fig. 4b) adds into the chain all the pixels

which are vertex-connected with the object’s exterior.

Such pixel is 4-connected with both adjacent chain

pixels. In Fig. 4c, half of possible pixels of this kind

(coloured grey) are randomly chosen and inserted into

the chain. Finally, a special scenario is supported (Fig.

4d) where a 4-connected pixel is only inserted if it

represents a concave vertex between a horizontal and

vertical edge (each at least two pixels long).

Figure 5: Examples of training and testing objects.

Basic shapes from the training set and use cases are

shown in Fig. 5. They were mostly inherited from the

tests made in [7, 11, 12]. Objects from the first two rows

were used for testing (see Table 1), while the others

belong to the training set. All together we used 50 basic

shapes, i.e., 30 in the training set and 20 test cases. A

variety of instances of these shapes in different

orientations and scales, ranging between 150 and 20,000

boundary curve pixels, and with different levels of

forcing the 4-connectivity were utilized in the

experiments. There are 500 shapes in the training set.

3.2 Statistical model reduction

The first step towards reducing huge amount of data in

each BFSM and mitigation of the context dilution effect

was already made by limiting k to O(1) symbols. We also

do not have to consider patterns with probability 0.

Furthermore, we may set even stronger conditions for the

probability p(i, j) of a pattern to be accepted in a BFSM.

Namely, a pattern i, j = i, ..., j is inserted in the

statistical model only if p(i, j) is higher than the product

of probabilities (weighted with w2) of any sequence of

shorter patterns whose concatenation forms i, j. To

prevent insertion of too low probabilities, we use

additional threshold w1. The following statement

considers patterns of length l = 3.

210 Informatica 45 (2021) 205–212 D. Podgorelec et al.

if (p(1, 3) > max(w1, w2 * max(p(1, 1)p(2, 2)p(3, 3),

p(1, 1)p(2, 3) , p(1, 2)p(3, 3))))

then insert ((1, 3, w3 * 3 * p(1, 3)) into BFSM.

As the patterns of lengths 2, 4, 5 and 6 must also be

considered, as well as eventual future extensions, we

generate all the concatenations algorithmically. A

concatenation is obtained by breaking apart the pattern in

some interruption points between successive symbols.

There are l – 1 possible interruption points in a pattern of

l symbols and thus 2l–1 – 1 possible concatenations. Here

the subtracted 1 represents the non-interrupted pattern.

For patterns of lengths 2 to 6, we thus must test 1 + 3 + 7

+ 15 + 31 = 57 products. Obviously, the method must

first evaluate shorter patterns, as their probabilities are

used in acceptance criteria for longer ones. As we

mentioned at the end of Section 2.1, single-pixel symbols

are unconditionally included in a BFSM.

Note that the weights w1, w2, and w3 offer a lot of

possibilities for experimentation. They were also crucial

for decision to use patterns of up to k = 6 symbols in our

tests. As the probabilities are usually decreasing with the

pattern length (with possible exceptions), the value of w1

must be decreased if k = 7 is used instead of k = 6.

However, this causes that additional shorter patterns of

lengths 6, 5, 4 etc. are also accepted into a BFSM,

increasing the size of the BFSM and emphasizing the

context dilution effect in a negative way. On the other

hand, this problem appears less evident when comparing

k = 5 and k = 6. Although we have not performed a

complete sensitivity analysis yet, the decision for k = 6

seems a reasonably good choice confirmed by the results

in Section 4.

3.3 Statistical vs. pseudo-statistical model

We do not wish (and neither we are able) to split

probabilities of symbols and patterns among some longer

patterns, as this would lead to the priority-based greedy

approach, which we intentionally try to avoid. Each

symbol consequently participates to probabilities of all

the patterns, which include it. Strictly speaking, we use

weighted probabilities (multiplied with w3 * l) to reward

longer patterns by assigning shorter codes to them. The

sum of such weighted probabilities in a model may be as

high as (1 + 2 + 3 + 4 + 5 + 6) * w3 = 21w3. It is however

lower because the patterns are added selectively, but it

still exceeds 1. We apparently do not deal with true

statistical models but with pseudo-statistical models

instead. We shall use the acronyms BFPSM and HCPSM

instead of BFSM and HCSM from this point on.

Nevertheless, all weighted “pseudo-probabilities” are

involved in a single Huffman tree construction.

3.4 Averaging pseudo-statistical models

Averaging is a two-stage process. During the extraction

and reduction of the BFPSM of a considered training

curve, several simply assessed curve artefacts are

computed. These are then utilized for multicriteria

classification, which assigns the curve into one of the

pre-defined classes. From all the assessed features that

will be used in future to algorithmically select optimal

classification criteria, we currently use three intuitively

chosen criteria listed below, each with a single threshold.

• Average turn per pixel. Each 45° symbol

participates 1 to this value, 90° symbols 2, 135°

symbols 3, and 180° symbols 4. The sum is then

divided with the curve length in pixels. This feature

separates smooth curves from more winding and

noisy ones. It is negatively correlated with the

probabilities of 0° symbols and their longer runs.

• Probability of 45°, 45° pairs is higher in curves

with oblique segments than in those with mostly

axis-aligned and/or ideally diagonal segments.

• Probability of 90° symbols is usually higher in

images of man-made objects than in natural objects.

Three single-threshold criteria result in 8 classes

with binary indices from 000 to 111, where the first bit

represents the first criterion, and the third bit refers to the

last criterion. 0’s signify values below the thresholds, and

1’s those above the thresholds. In the current setting, the

thresholds were computed by averaging the described

quantities over the BFPSMs of all training curves.

It turns out that the classes with indices 010(2) and

101(2) are nearly twice more populated than others. In our

training set with 500 shapes, there are 112 shapes in the

class 101(2) and 99 shapes in the class 010(2), while the

remaining six classes contain between 37 and 55 shapes.

The testing use cases are also distributed in a similar

way. This deviation can be explained by suboptimal

training set, suboptimal thresholds selection and

suboptimal classification criteria, which are all among

the most important challenges for our future work.

However, we may immediately establish that the

currently used criteria are all correlated with the Force-4-

connectivity value. Firstly, all additional 4-connected

pixels are coded with 90° symbols and thus increase the

third criterion value. Secondly, such pixels are often

inserted in the middle of 45°, 45° pairs, changing

them into 90°, 90°, 0° triplets. Finally, a pair 45°,

45° participates 2 to the first criterion (1 per pixel),

while a 90°, 90°, 0° triplet participates 4 (1.33 per

pixel). The first and the last criterion are thus positively

correlated, and there is a negative correlation between

them and the second one. The indices 010(2) and 101(2) of

above-average populated classes also confirm this

finding, as the second bit is in both cases the inverse of

the other two.

In the second stage, after the training curves are

classified (into 8 classes in the current setting), HCSMs

are derived by separately averaging BFSMs within each

class. However, the BFSMs in a particular class may still

significantly differ from each other, although expectedly

(and confirmed by the testing results) not as much as the

BFSMs from different classes. Consequently, the

HCSMs must also be reduced by using the same

acceptance criteria as in the BFPSM reduction (Section

3.2).

Statistics-Based Chain Code Compression with... Informatica 45 (2021) 205–212 211

As we are aware, that the current classification is not

optimal, we try to mitigate impacts of wrongly classified

training curves by using soft borders between the classes.

This means that averaging in an observed class also

considers weighted probabilities from BFPSMs of all

"adjacent" classes, distinct in one criterion from the

considered one. For example, classes 001, 010, 100 are

adjacent to the class 000, while, e.g., 011 is not. In the

tests presented in Section 4, the probabilities are

weighted in a manner that BFPSMs from an observed

class contribute two thirds to the corresponding HCPSM,

and those from the three adjacent classes contribute a

third (a ninth each).

4 Results
In this section, we compare some typical results of the

proposed method and some state-of-the-art (SOTA)

chain code compression methods. 3OT, VCC, C_DDCC,

and three variants of MTFT+ARLE (Move-To-Front

Transform + Adaptive Run-Length Encoding) [11], i.e.,

MTFT+ARLE VCC, MTFT+ARLE 3OT, and

MTFT+ARLE NAD (four-symbol Normalised Angle-

Difference chain code) [11] were used in the tests.

The training set and use cases from Section 3.1 were

used, and the weights w1, w2 and w3 for the pseudo-

statistical models reduction (see Section 3.2) were set to

0.02, 1.0 and 1.0, respectively. As we already stressed

and explained, the length of patterns to be considered is

limited to k = 6. The classification thresholds (Section

3.4) computed for the utilized training set were initialized

to 0.92 for the average turn, 0.12 for p(45°, 45°), and

0.295 for p(90°).

 Object Transform Pixels bpp

(SOTA)

bpp (new

method)

Basic (“user friendly”) shapes

 Bird 100, 0, 0 4080 1.11(1) 1.03

 Butterfly 100, 0, 0 1122 1.45(1) 1.33

 Car 100, 0, 0 541 1.48(1) 1.25

 Circle 100, 0, 0 1831 1.13(2) 0.99

 Horse 100, 0, 0 2143 1.51(3) 1.39

 Shuttle 100, 0, 0 969 1.19(1) 1.08

 Spider 100, 0, 0 1770 1.20(2) 1.04

 Square 100, 0, 0 1088 0.30(2) 0.35

Sophisticated instances

 Bird 10, 50, 70 671 1.60(3) 1.31

 Butterfly 140, 45, 100 2681 1.68(3) 1.21

 Car 200, 33, 50 1472 1.84(3) 1.49

 Circle 20, 0, 0 308 1.39(2) 1.06

 Horse 50, 15, 20 1284 1.93(1) 1.51

 Shuttle 100, 30, 0 980 1.31(1) 0.94

 Spider 120, 45, 25 2218 1.31(1) 1.08

 Square 100, 70, 30 1228 0.75(3) 0.62

Table 1: Test cases and compression results [bpp].

The listed best SOTA results were obtained by

C_DDCC(1), MTFT+ARLE NAD(2), or MTFT+ARLE

VCC(3).

Table 1 shows the results for pairs of different

instances of eight objects from the top two rows in Fig 5.

Basic "user friendly" shapes refer to smooth, noiseless

instances as being usually employed in testing the state-

of-the-art (SOTA) chain code compression methods. The

“sophisticated” instances were generated by transforming

the basic ones with the scaling factor, rotation angle,

and/or amount of additional 4-connectivity pixels

different from 100%, 0°, 0%, respectively (see column

Transform). The column bpp (SOTA) shows efficiency in

bits per pixel (bpp) of the best of the compared SOTA

methods. Comparison of the last two columns reveals

that the new method is superior in most cases. The only

exception is the basic axis-aligned square where all three

MTFT-ARLE variants and also C_DDCC substantially

benefit from long runs of 0’s.

Ratios between the efficiencies of the new and best

SOTA method are given in columns A and B of Table 2,

separately for the basic and transformed instances. The

new algorithm is mostly for 10 to 15% more efficient

than SOTA in the basic configurations, and for additional

10% in the sophisticated cases. Columns C and D show

ratios between the efficiencies for sophisticated and

adequate basic configurations. SOTA is considered in

column C, and the new method in column D. The results

confirm that sophisticated curve artefacts much more

affect SOTA methods (average ratio 1.22 means lower

efficiency for 22%, compared to basic shapes) than the

new method (average ratio 1.06). The latter even

achieves better compression of some transformed shapes

(butterfly and shuttle) in comparison to the basic ones. It

also surpasses SOTA in the transformed square example,

where all the considered methods achieve significantly

worse results (omitted in the above average ratios) than

in the axis-aligned instance.

Object A B C D

 Bird 0.93 0.82 1.44 1.27

 Butterfly 0.92 0.72 1.16 0.91

 Car 0.84 0.81 1.24 1.19

 Circle 0.88 0.76 1.23 1.07

 Horse 0.92 0.78 1.28 1.08

 Shuttle 0.91 0.72 1.10 0.87

 Spider 0.87 0.82 1.09 1.04

 Square 1.17 0.83 2.50 1.77

Table 2: Analysis of the compression results.

5 Conclusions
In this paper, we introduce a new statistics-based chain

code compression methodology by using multiple

averaged pseudo-statistical models correlated with some

measurable curve artefacts, and by heuristically selecting

the most appropriate of these models prior to the

compression. Furthermore, the introduced models

contain extra codes for systematically selected patterns of

up to k symbols (k = 6 in the presented tests), and the

dynamic programming approach replaces the common

greedy method in order to determine the optimal chain of

patterns. The early results are promising, but there is a

https://sl.pons.com/prevod/angle%C5%A1%C4%8Dina-sloven%C5%A1%C4%8Dina/substantially
https://sl.pons.com/prevod/angle%C5%A1%C4%8Dina-sloven%C5%A1%C4%8Dina/substantially

212 Informatica 45 (2021) 205–212 D. Podgorelec et al.

plenty of work left to ultimately affirm the proposed

methodology.

The methodology incorporates the training phase and

the exploitation phase. The former obviously associates

this research with machine learning, but classification of

the training curves with respect to three intuitively pre-

selected and even mutually correlated criteria is quite far

from this paradigm. However, one of our future goals is

to adapt the introduced methodology to other basic chain

code representations (VCC, 3OT, F4, F8, and NAD),

which shall certainly require more advanced and

adjustable feature extraction, learning and selection,

leading into optimized classification algorithms. This

goal also requires an extensive sensitivity analysis by

varying the number and values of classification

thresholds, weights in the pattern acceptance criteria, etc.

Other future goals include:

• comparison to modern non-statistical methods on

both, "standard" and less "user-friendly" cases,

• improving the training set and preparation of rich

repertoire of benchmarks,

• utilization of arithmetic coding instead of Huffman

codes, and

• inclusion of RLE codes for longer patterns of 0’s.

6 Acknowledgements
The authors acknowledge the financial support from the

Slovenian Research Agency (Research Core Funding No.

P2-0041). We are also grateful to our former colleague

Denis Špelič for his contribution to the implementation.

7 References
[1] Akimov A.; Kolesnikov A.; Fränti P. (2007).

Lossless compression of map contours by context

tree modeling of chain codes, Pattern Recognition,

Elsevier Science, vol. 40, iss. 3, pp. 944-952.

https://doi.org/10.1007/11499145_33

[2] Bribiesca E. (1999). A new chain code. Pattern

Recognition, Elsevier Sci., vol. 32, iss. 2, pp. 235-

251. https://doi.org/10.1016/s0031-3203(98)00132-0

[3] Freeman H. (1961). On the encoding of arbitrary

geometric configurations. IRE Transactions on

Electronic Computers, IEEE, vol. EC10, iss. 2, pp.

260-268. https://doi.org/10.1109/tec.1961.5219197

[4] Freeman H. (1974). Computer processing of line

drawing images. ACM Computing Surveys, ACM,

vol. 6, iss. 1, pp. 57-97.

https://doi.org/10.1145/356625.356627

[5] Jones N. C.; Pevzner P. A. (2004). An Introduction

to Bioinformatics Algorithms. The MIT Press.

[6] Liu Y. K.; Žalik B. (2005). An efficient chain code

with Huffman coding. Pattern Recognition, Elsevier

Science, vol. 38, iss. 4, pp. 553-557.

https://doi.org/10.1016/j.patcog.2004.08.017

[7] Liu Y. K.; Žalik B.; Wang P.-J.; Podgorelec D.

(2012). Directional difference chain codes with

quasi-lossless compression and run-length encoding.

Signal Processing: Image Commun., Elsevier

Science, vol. 27, iss. 9, pp. 973-984.

https://doi.org/10.1016/j.image.2012.07.008

[8] Liu Y. K.; Wei W.; Wang P.-J.; Žalik B. (2007).

Compressed vertex chain codes. Pattern Recogn.,

Elsevier Science, vol. 40, iss. 11, pp. 2908-2913.

https://doi.org/10.1016/j.patcog.2007.03.001

[9] Nunes P.; Marqués F.; Pereira F.; Gasull A. (2000).

A contour based approach to binary shape coding

using multiple grid chain code. Signal Processing:

Image Communication, Elsevier Science, vol. 15,

iss. 7-8, pp. 585-599.

https://doi.org/10.1016/s0923-5965(99)00041-7

[10] Sánchez-Cruz H.; Bribiesca E.; Rodríguez-Dagnino

R. M. (2007). Efficiency of chain codes to represent

binary objects. Pattern Recognition, Elsevier

Science, vol. 40, iss. 6, pp. 1660-1674.

https://doi.org/10.1016/j.patcog.2006.10.013

[11] Žalik B.; Lukač N. (2014). Chain code lossless

compression using Move-To-Front transform and

adaptive Run-Length Encoding. Signal Processing:

Image Commun., Elsevier Science, vol. 29, iss.1, pp.

96-106. https://doi.org/10.1016/j.image.2013.09.002

[12] Žalik B.; Mongus D.; Lukač N.; Rizman Žalik K.

(2018). Efficient chain code compression with

interpolative coding. Information Sciences, Elsevier

Science, vol. 439-440, pp. 39-49.

https://doi.org/10.1016/j.ins.2018.01.045

