
Informatica 34 (2010) 369-376 369

A Fast Convex Hull Algorithm for Binary Image

Xianquan Zhang and Zhenjun Tang

Department of Computer Science, Guangxi Normal University, Guilin 541004, P.R. China
E-mail: {zxq6622, tangzj230}@163.com

Jinhui Yu
State Key Lab. of CAD&CG, Zhejiang University, Hangzhou 310027, P.R. China

Mingming Guo
Department of Computer Science, Guangxi Normal University, Guilin 541004, P.R. China

Keywords: convex hull, extreme point, point set, monotone segment, computational geometry

Received: May 28, 2009

Convex hull is widely used in computer graphic, image processing, CAD/CAM and pattern recognition.
In this work, we derive some new convex hull properties and then propose a fast algorithm based on
these new properties to extract convex hull of the object in binary image. It is achieved by computing the
extreme points, dividing the binary image into several regions, scanning the regions existing vertices
dynamically, calculating the monotone segments, and merging these calculated segments. Theoretical
analyses show that the proposed algorithm has low complexities of time and space.

Povzetek: Predstavljen je nov algoritem za obdelavo binarnih slik.

 Corresponding author. E-mail: tangzj230@163.com (Zhenjun Tang PhD). Address: Department of Computer Science, Guangxi
Normal University, 15 Yucai Road, Guilin 541004, P. R. China

1 Introduction
Convex hull is a central problem in various

applications of computational geometry, such as Vornoi
diagrams constructing, triangulation computing, etc. It is
widely applied to computer graphic [1], image
processing [2-3], CAD/CAM and pattern recognition [4-
6]. Convex hull of a planar point set S is defined as the
intersection of all the half-planes containing S. The shape
of convex hull is a convex polygon whose vertices
belong to S. For an edge pq, all other points lie on one
side of the line running through p and q.

Many research efforts have been devoted to develop
algorithms for 2-D convex hull computation. In 1970,
Chand et al. [7] initially proposed a convex hull
algorithm with O(n2) time by constructing the borders of
convex hull according to the geometric properties of S.
Another algorithm with O(mn) time was give by Jarvis
[8] ,where m is the number of convex hull vertices. Both
of them have a high time complexity. Graham [9]
provided a solution to compute the convex hull of a
plane. Determine the point with minimal y-coordinate
and calculate the angles between the horizontal line and
the lines connecting the determined point and other
points. According to the sorted angles, vertices are
obtained. The divide-and-conquer method [10] was also
applied to solve the problem. Point set was divided into
two roughly equal-sized subsets. Their convex hulls were
recursively computed, respectively. And the entire
convex hull was determined by merging the two convex

hulls. In another study, Chan [11] used point pairs to
calculate the slopes of lines and determine the median
values of these slopes, then divided the point set into two
parts by median values and recursively computed the
convex hull. He gave another algorithm which
partitioned the point set and then computed the convex
hull of each group, respectively. The entire convex hull
was finally obtained by computing the union of the
polygons. Exploiting the parallel computational model
EREW PRAM, Chen et al. [12] proposed a parallel
robust method for constructing convex hull. Brönnimann
et al. [13] investigated the storage space of planar convex
hull algorithms. As for dynamic planar convex hull,
Overmars et al. [14] provided a solution that used
O(log2n) time per update operation and maintained a
leaf-linked balanced search tree of the vertices on the
convex hull in clockwise order. Chan [15] gave a
construction for the fully dynamic problem with
O(log1+εn) amortized time for updates (for any constant
ε>0), and O(logn) time for extreme point queries. In
another work, Brodal and Jacob [16] presented a data
structure that maintained a finite set of n points in the
plane under insertion and deletion of points in amortized
O(logn) time per operation. In [17], Ye considered the
convex hull extraction in binary image and proposed a
scheme with two procedures. In the first procedure, the
image is scanned and a non-self-intersecting polygon is
extracted; in the second procedure, the convex hull is

370 Informatica 34 (2010) 369–376 Z. Tang et al.

extracted from the polygon through checking the
convexity of the polygon.

In this work, we firstly investigate the convex hull
properties and then derive some new properties, e.g.,
monotonicity. Finally, we use these new properties to
design convex hull algorithm for binary image. The
proposed algorithm extracts eight extreme points on the
boundary of binary image, and then partitions the image
into 5 regions by using the extreme points. During the
vertex computation, only these points in 4 regions need
to be processed. By orderly scanning, the temporary
convex hull is extracted. The entire convex hull is finally
obtained by continuously updating the temporary convex
hull. As the scanned areas are few and only the vertices
of temporary convex hull require storage, the proposed
algorithm has low complexities of time and space.

The rest of the paper is organized as follows. In
Section 2, new convex hull properties are derived. The
convex hull algorithm for binary image and the
complexity analysis are then described in Section 3 and
Section 4, respectively. Conclusions are drawn in Section
5.

2 Convex hull properties
Convex hull is a convex polygon having the

following properties. For an edge pq, all other points lie
on one side of the line running through p and q. Any line
segment connecting two arbitrary nonadjacent points is
in the interior of the polygon. And the interior angle is
less than 180 degrees, etc. In this section, we will
investigate the convex hull structure and then derive new
convex hull properties, which will be applied to improve
the efficiency of convex hull algorithm.

2.1 Extreme points

Let Q = {q1, q2, , qM} be a planar point set. In the
subset whose points’ x-coordinate are minimal among Q,
Qxy and QxY denote the points with minimal and maximal
y-coordinate, respectively. In the subset whose points’ x-
coordinate are maximal among Q, QXy and QXY represent
the points with minimal and maximal y-coordinate,
respectively. Likewise, in the subset whose points’ y-
coordinate are minimal among Q, Qyx and QyX denote the
points with minimal and maximal x-coordinate,
respectively. In the subset whose points’ y-coordinate are
maximal among Q, QYx and QYX represent the points with
minimal and maximal x-coordinate, respectively. In the
above variables, the first subscript denotes the extremum
of coordinate and the second subscript denotes the
extremum of the other coordinate under the first
coordinate. Subscripts of capitalization and minuscule
mean maximum and minimum, respectively, as shown in
Fig.1. The definition of these points is given below.
Definition 1. In the planar point set Q, Qxy, QxY, QXy, QXY,
Qyx, QyX ,QYx and QYX are the extreme points of the
convex hull, where Qxy and QxY, QXy,and QXY, Qyx and
QyX, QYx and QYX are the homogeneous extreme points,
respectively.

Theorem 1. The extreme points in the planar point set Q
are the convex hull vertices.
Proof. Assume that points q1, q2, , qM are convex hull
vertices, and make a line l parallel to y-axis through Qxy

and QxY. Suppose Qxy and QxY are not the convex hull
vertices, as shown in Fig.1 (a). According to their
definition, points are all on l or on the right side of l. For
any vertex qi, if qi is on l, it must locate between Qxy and
QxY. This means that it can’t be a convex hull vertex. So
these vertices are all on the right side of l. Thus Qxy and
QxY fall in the left side of the convex hull instead of its
interior. This contradicts the convex hull definition.
Therefore Qxy and QxY are vertices. Similar proofs can be
given to other extreme points.

(a) Four monotone segments

(b) Three monotone segments

(c) Two monotone segments

Figure 1: Extreme points and monotone segments of
the convex hull

YX XY XyQ Q Q YxQ

yXQ
xY xy yxQ Q Q 

YX XY XyQ Q Q 

yXQ

YxQ

yxQ

xYQ

xyQ

yxQ yXQ

XYQ

XyQ

YXQ

xYQ

YxQ

xyQ

A FAST CONVEX HULL ALGORITHM FOR… Informatica 34 (2010) 369–376 371

2.2 Convex hull monotonicity and its
construction

For segment QxYQYx of convex hull, let its points be
numbered in a clockwise order, namely qm, qm+1, …, qn (n
> m), where qi’s coordinate is (xi, yi), qm = QxY and qn =
QYx. Then qm, qm+1, …, qn-1 should be on the same side of

straight line m nq q and the x-coordinate and y-coordinate

of qm+1 should both increase. Suppose that both the x-
coordinates and y-coordinates of qm+1, qm+2, …, qi

monotone increase while those of qi+1 decrease (either or
both of them decrease). Since qm, qi+1, qn are on the same

side of straight line 1i iq q , thus qi+1 should lie beneath

the line y = yi, as shown in Fig.2 (a). Hence qi-1 and qn are

on the different sides of the line 1i iq q  . This contradicts

the fact that qm, qm+1, …, qn (n > m) are all the convex
hull vertices. Therefore both the x-coordinates and y-
coordinates of points on segment QxYQYx monotone
increase. Similarly, the x-coordinates of points on
segment QYXQXY monotonically increase while the y-
coordinates of them decrease. The x-coordinates of
points on segment QyxQxy monotonically decrease while
the y-coordinates of them increase. Both two coordinates
of points on segment QXyQyX monotonically decrease.
The monotonicity of these segments is defined as
follows.

Figure 2: Convex hull monotonicity

Definition 2. If QxY  QYx, the convex hull segment
consisting of vertices from QxY to QYx is called monotone
increasing top segment. Likewise, if QYX  QXY, the
convex hull segment consisting of vertices from QYX to
QXY is named monotone decreasing top segment. If QXy
QyX, the convex hull segment consisting of vertices from
QXy to QyX is called monotone decreasing bottom
segment. If Qyx  Qxy, the convex hull segment consisting
of vertices from Qyx to Qxy is named monotone increasing
bottom segment.
Definition 3. All the monotone (both increasing and
decreasing) top and bottom segments are called
monotone segment.

If the monotone segments of a given convex hull are
already determined, utilizing the definition 2 and the 8
extreme vertices can determine whether a specific
monotone segment exists or not. The detailed theorem is
as follow.

Theorem 2. The monotone increasing top segment exists
if and only if QxY  QYx. The monotone decreasing top
segment exists if and only if QYX  QXY. The monotone
increasing bottom segment exists if and only if QXy  QyX.
The monotone decreasing bottom segment exists if and
only if Qyx  Qxy.

Similarly, according to the definition of convex hull
monotonicity, the type of monotone segments can be
determined by its vertices. Let f(P, A, B) = 0 represent
the line equation, where the line runs through points A
and B, P is a dynamic point on the line. There is a
theorem about the type of monotone segments as follows.

Theorem 3. Let qm, qm+1, …, qn (n - m > 1) be the
vertices on a specific monotone segment of convex hull,
and the coordinate of qi be (xi, yi). For arbitrary i, j (m ≤
i< j, m ≤ j < n, j  i, j  i + 1), the sufficient and
necessary conditions for that this monotone segment is a
monotone increasing top segment are that












1

1 0),,f(

ii

iij

yy

qqq
. Likewise, as for the monotone

decreasing top segment, the monotone decreasing bottom
segment, monotone increasing bottom segment, their
sufficient and necessary conditions are












1

1 0),,f(

ii

iij

yy

qqq
,












1

1 0),,f(

ii

iij

yy

qqq
,












1

1 0),,f(

ii

iij

yy

qqq
, respectively.

According to the convex hull definition, it has 4
monotone segments at most. Since convex hull is a
closed shape, it has two monotone segments at least. The
number of monotone segments can be determined by the
extreme points. According to the number of monotone
segments, convex hulls are classified into three types, as
shown in Fig.1. Fig.1 (a) shows the convex hull with 4
monotone segments, Fig.1 (b) and Fig.1 (c) show the
convex hull with 3 and 2 monotone segments,
respectively.

3 Convex hull algorithm for binary
image

3.1 Algorithm of monotone segment
Since the extreme points are convex hull vertices, the

convex hull can be obtained by determining the vertices
on the monotone segments between each pair of extreme
points. In this work, a dynamic computation method is
applied to determine the convex hull. Calculate the
extreme points and determine the monotone segments.
By dynamic scanning the boundary of image, the
temporal convex hull of the scanned image is obtained.
Scan the image boundary pixel by pixel until
encountering the last boundary pixel. Thus, the monotone
segments are obtained and the convex hull is extracted.
The theorem of convex hull computation is as follows.

iy y

1iq 

iq

1iq 

n Yxq Q

m xYq Q

372 Informatica 34 (2010) 369–376 Z. Tang et al.

Theorem 4. Let Q = {qm, qm+1, …, qn} (n > m) be the
vertices of a monotone segment of a specific convex hull,
the coordinate of qi and p be (xi, yi) and (x, y),

respectively, Q = {p}Q and min{yn1,yn} < y <

max{yn1, yn}. If p and qk (k < n) are both the points in a
specific monotone segment of Q, then qm, qm+1, …, qk, p,
qn are all vertices on the monotone segment.
Proof: Suppose that qm, qm+1, …, qn (n > m) are the
vertices of monotone increasing top segment of a specific
convex hull. Since p(x, y) belonging to {p}Q is a point
on the monotone increasing top segment and yn 1 < y <
yn, then f(p, qn1, qn) > 0 according to theorem 3. The
location of p is shown in Fig.4. If qk (k < n) belonging to
{p}Q is a vertex with maximum subscript on the
monotone increasing top segment, then qk and p are
adjacent vertices on the new monotone increasing top
segment. So for all qi (i  k), f(p, q n 1, qn)<0. If qj (j < k)
isn’t the vertex of new convex hull, then f(p, qj-1, qj)>0.
But f(qk, qj 1, qj)<0. It means that qk and p are on the

different side of line 1j jq q . So f(qk, p, qj)<0. Therefore

qk isn’t the vertex of new convex hull. This contradicts
the precondition. Hence qm, qm+1, …, qk, p, qn are vertices
on the monotone segment. Likewise, similar proofs of
other monotone segments can be easily given.

Figure 3: Monotone algorithm

Whether or not a pixel or a boundary point is a
convex hull vertex depends on the relation about its
position and the line. Take the monotone increasing top
segment qm, qm+1, …, qn (n > m) for example. Theorem 3
shows that f(qj, qi, qi+1) < 0 for arbitrary i, j (m ≤ i < j, m
≤ j < n, j  i, j  i + 1). If a point p of image boundary
satisfies f(p, qn-1, qn) > 0, then p is outside of the
temporary convex hull. Thus p must be a new vertex of
convex hull. Start from k = n1 and decrease k by 1 each
time. If f(p, qk, qk 1) < 0, then for arbitrary point A (A 
qk1, A  qk), f(A, qk, qk 1) < 0. According to theorem 3,
qk is a new vertex of convex hull. By applying theorem 4,
all vertices on this segment can be obtained.

3.2 Convex hull algorithm for binary
image

Convex hull of binary image can be determined by
its boundary pixel set. In fact, the convex hull of
boundary pixel set is equal to the convex hull of binary

image. So obtaining the boundary is an important step.
Generally, boundary extraction by scanning the whole
image requires storing all pixels. However, only few
pixels are the convex hull vertices. Reducing the number
of scanned pixels can both improve the time and space
efficiency of algorithm. In this section, the method
scanning from outside to inner is applied to extract the
extreme points, as shown in Fig.4. The scanned regions
are determined by the extreme points. By dynamic
scanning the image boundary, temporary convex hull of
the scanned boundary pixel set is computed. Finally,
convex hull of binary image is available.

Figure 4: Extreme points of image convex hull

3.2.1 Collect the extreme points

In order to avoid repeated scanning, the method
scanning from outside to inner is utilized to collect the
extreme points on the image boundary. The detailed steps
are as follows.

STEP 1: Begin at the top left of image and scan
image from top to bottom until encountering the image
boundary. Each row scan starts from left to right. If the
scanned row has boundary points, QYx and QYX represent
the leftmost and rightmost boundary points, respectively.
Thus two extreme points on the image boundary, QYx and
QYX, are obtained.

STEP 2: Begin at the line l1 running through QYx and
QYX and scan image from right to left until encountering
the image boundary. Each column scan starts from top to
bottom. For the column having boundary pixels, let QXY

and QXy represent the topmost and bottommost boundary
pixels, respectively. Thus two extreme points on the
image boundary, QXY and QXy, are obtained.

STEP 3: Begin at the line l2 running through QXY and
QXy and scan image from bottom to top until
encountering the image boundary. Each row scan starts
from right to left. For the row having boundary pixels, let
QyX and Qyx represent the rightmost and leftmost
boundary pixels, respectively. Thus two extreme points
on the image boundary, QyX and Qyx, are obtained.

STEP 4: Start from the line l3 which is through Qyx

and QyX to the line l1 and scan image from left to right
until encountering the image boundary. Each column
scan starts from bottom to top. For the column having
boundary points, let QxY and Qxy represent the topmost

YxQ YXQ

xYQ

xyQ

yXQyxQ

XyQ

XYQ

mq

nq

jq

1nq 
kq

1jq 

p

A FAST CONVEX HULL ALGORITHM FOR… Informatica 34 (2010) 369–376 373

and bottommost boundary pixels, respectively. Thus two
extreme points on the image boundary, QxY and Qxy, are
obtained.

By the above steps, 8 extreme points of image
convex hull are extracted.

3.2.2 Determine the scanned regions

Theorem 1 shows that the 8 extreme points are
convex hull vertices. The lines connecting adjacent
extreme points divide image into several regions, as
shown in Fig.5. There are no boundary pixels outside of
the rectangle formed by l1, l2, l3 and l4. If the boundary
pixels are on the edges of the rectangle, then they aren’t
convex hull vertices. In the interior of the rectangle,
pixels in region 0 aren’t vertices either. Only those in
regions 1, 2, 3 and 4 are likely to be vertices. Hence we
just need to scan region 1~4 to obtain the boundary
pixels and compute the convex hull by applying theorem
4. Since the vertices are numbered in a clockwise order,
pixels extracted by scanning the four regions should
satisfy theorem 4. The detailed method is as follows.

Figure 5: Scanned regions of image

Region 1: Begin at the right side of l4 and scan the region
1 horizontally from left to right. Each column in region 1
is scanned vertically from top to bottom. If there is no
boundary pixel on the scanned line, then scan next
column until encountering a boundary point p on the
scanned line. Then p is a vertex of temporary convex hull
in the scanned image. Compute the monotone increasing
top segment of temporary convex hull by theorem 4. To
improve the efficiency of algorithm and guarantee that
the next scanned boundary pixels must be the vertices of
temporary convex hull, the next column scan should stop
once reaching the line pQYx, as shown in Fig.6 (a).
Continue to scan and compute the vertices of temporary
convex hull until QYx is encountered.
Region 2: Begin at the down side of l1 and scan region 2
vertically from top to bottom. Each row in region 2 is
scanned from right to left. Utilize the similar method
introduced in region 1 to determine whether the boundary
pixels are vertices or not. Continue to scan until QXY is
encountered, as shown in Fig.6 (b).

Region 3: Begin at the left side of l2 and scan region 3
horizontally from right to left. Each column in region 3 is
scanned from bottom to top. Utilize the similar method
introduced in region 1 to determine whether the boundary
pixels are vertices or not. Continue to scan until QyX is
encountered, as shown in Fig.6 (c).
Region 4: Begin at the left side of l3 and scan region 4
vertically from bottom to top. Each row in region 4 is
scanned from left to right. Utilize the similar method
introduced in region 1 to determine whether the
boundary pixels are vertices or not. Continue to scan
until Qyx is encountered, as shown in Fig.6 (d).

The extracted boundary pixels in the above steps
both satisfy the monotone condition and the sequence
required by theorem 4. Applying theorem 4 can extract
the convex hull of image.

(a) Scan in region 1

(b) Scan in region 2

xYQ

xyQ XYQ

XyQ

YXQYxQ

yXQyxQ

XYQ

XyQ

YXQYxQ

yXQ

p

yxQ
0

1
2

3
4

l1

l2

l3

l4

QYXQYx

Qxy

QxY

QyXQyx

QXy

QXY

xYQ

xyQ

374 Informatica 34 (2010) 369–376 Z. Tang et al.

(c) Scan in region 3

(d) Scan in region 4
Figure 6: Scanned areas in each region

3.2.3 Compute convex hull vertices in
scanned areas

Whether or not the pixel in scanned area is a convex
hull vertex is just relative to other pixels in this region.
By scanning the boundary pixels in each region, convex
hull vertices in the corresponding region can be
determined, respectively. Take region 1 for example. Let
(xm1, ym1) and (xm2, ym2) be the coordinates of QxY and
QYx, respectively, f(p, A, B) = 0 be the equation of line
running through A and B (p is a dynamic point), v[i][j]
and c[i][j] be the pixel value and coordinate of p in the
ith row and the jth column of the image, respectively. If
v[i][j] > 0, p is a boundary pixel, or less a background
pixel. Begin at (xm1 + 1, ym1 + 1) and scan region 1
horizontally from left to right. In region 1, column is
scanned from top to bottom. If there is no boundary pixel
in the current column, scan next column in its right. If
pixel p is a boundary pixel, then it must be a vertex of
temporary convex hull. Apply theorem 4 to compute all
vertices of temporary convex hull. Scan next column in
the right. At this time, the scanned line is above the line
pQYx, as shown in Fig.6 (a). Stop scanning when the line
x = xm2 is encountered. Then the monotone segment of
convex hull in region 1 is extracted. The detailed
algorithm is as follows.

STEP 1: i=xm1+1, j = ym2 -1, q1= QxY, A=QxY, n=2;

STEP 2: IF (i  xm2) goto STEP 8;

//no boundary pixel on the scanned line
IF (f(p, A, QYx)  0) goto STEP 3;
//p is a vertex of temporary convex hull

IF (v[i][j] > 0) //p is the foreground pixel.
k = n  1, A = c[i][j], goto STEP 4;

ELSE goto STEP 5; //scan next pixel

STEP 3: i = i +1, j = ym2-1, goto STEP 2;
//scan next vertical line in the right

STEP 4: IF (k >1) goto STEP 6;

ELSE n = n +1，goto STEP 2;
STEP 5: j = j + 1, goto STEP 2;
STEP 6: IF (f(p,qk 1,qk)  0) // backtrack again.

goto STEP 7;
ELSE // finish backtracking

n = k+1, qn =c[i][j], n =n +1, goto STEP
2;

STEP 7: IF (k>2) //backtrack and process next pixel
k = k  1, goto STEP 6;

ELSE //backtrack to the extreme point
n = 2, qn = c[i][j], n = n + 1, goto STEP 2;

STEP 8: qn= QYx,q1, q2,…,qn are convex hull vertices.

3.2.4 Convex hull algorithm for binary
image

For the convex hull of binary image, compute the 8
extreme points Qxy, QxY, QXy, QXY, Qyx, QyX, QYx and QYX.
According to these extreme points, determine the
scanned regions of image, as shown in Fig.5. Then,
convex hull vertices locate the regions 1~4, which are
divided by the lines connecting the adjacent extreme
points, as shown in Fig.5. Therefore, only the boundary
pixels in these regions require computation. Utilize the
monotone properties of convex hull and scan each region
dynamically. Then, apply theorem 4 to compute each
monotone segment of convex hull. The entire convex
hull is obtained by merging these monotone segments.
The detailed algorithm is as follows.

STEP 1: Scan the binary image and compute the 8
extreme points, Qxy, QxY, QXy, QXY, Qyx, QyX, QYx and QYX.

STEP 2: Utilize the 8 extreme points to determine
the four regions where the convex hull vertices may exist.

STEP 3: Scan each region dynamically and obtain
convex hull vertices on each monotone segment
respectively.

STEP 4: Extract convex hull vertices on each
monotone segment according to the following order,
QxYQYx, QYXQXY, QXyQyX, QyxQxy. Each extreme
point is extracted only one time. Then convex hull is
obtained.

4 Complexity analysis

4.1 Time complexity
The time complexity is analyzed in the following

ways. Suppose that the size of binary image is NN.
(1) If the image consists of a single pixel, then no

convex hull exists. The time complexity is N 2.

xYQ

xyQ XYQ

XyQ

YXQYxQ

yXQ
yxQ

XYQ

XyQ

YXQYxQ

yXQyxQ

xYQ

xyQ

A FAST CONVEX HULL ALGORITHM FOR… Informatica 34 (2010) 369–376 375

(2) If the image consists of two pixels or all pixels
are on a line, then no convex hull exists, either. The time
complexity is also N 2.

(3) The binary image has a convex hull if and only if
three boundary pixels at least aren’t on a line. Suppose
that there are S pixels in the polygon whose vertices are
the adjacent and inhomogeneous extreme points. The
proposed method scans N 2  S pixels at most. And only
2N pixels at most should be computed when it
determines whether or not a boundary pixel is a convex
vertex. So the time complexity is O(N 2  S) + O(N).

The above analyses show that the bigger the convex
hull of binary image, the less the time complexity of the
proposed algorithm. The time complexity of convex hull
algorithm mainly depends on the size of scanned area. To
show the efficiency of time complexity, we compare the
proposed algorithm with the algorithm presented in [17].
A typical example is given in Fig.7. Fig.7 (a) is a binary
image containing an object whose boundary has 10
vertices. Both algorithms are exploited to extract convex
hull of the object in the binary image. Fig.7 (b) and Fig.7
(c) show the scanned areas of the algorithm [17] and the
proposed algorithm respectively, where the gray grids
denote their scanned areas. It is observed that our
algorithm scans less area than the algorithm [17]. In
general, if the object’s boundary isn’t a convex polygon,
the scanned areas of the proposed algorithm are less than
those of the algorithm [17]. Otherwise, the scanned areas
of two algorithms are equivalent. Hence, the proposed
algorithm needs less time than the algorithm [17] on
average.

(a) Binary image containing an object with 10 vertices

(b) Scanned areas of the algorithm [17]

(c) Scanned areas of the proposed algorithm

Figure 7: A binary image and its scanned areas using
different algorithms

4.2 Space complexity
The boundary pixels scanned by the proposed

algorithm are the vertices of temporary convex hull.
During the convex hull computation, only these vertices
require storage. Therefore, the proposed algorithm has a
low space complexity. Take Fig.7 for example. The
algorithm [17] must store all 10 points from p0 to p9.
Since p2 and p6 aren’t scanned, the proposed algorithm
doesn’t need to compute and store them. So the space
complexity of the proposed algorithm is lower than that
of the algorithm [17].

5 Conclusions
In this paper, we derive some new convex hull

properties, such as monotonicity, and use them to design
algorithm for extracting convex hull of object in binary
image. The proposed algorithm has a high efficiency by
reducing computational cost in the following ways. (1)
Divide the binary image into several regions by using the
extreme points. Only those boundary pixels in a few
regions require computation. (2) To determine a vertex in
a given region doesn’t need to compute those pixels in
other regions. (3) Since the boundary pixels obtained by

p0

p1

p2

p3

p4

p5

p6

p7

p9

p8

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

376 Informatica 34 (2010) 369–376 Z. Tang et al.

scanning are computed dynamically, only these vertices
of temporary convex hull require storage. Theoretical
analyses show that the proposed algorithm has lower
complexities of time and space than the algorithm [17]
on average.

Acknowledgement
This work was partially supported by the Natural

Science Foundation of China (60963008, 60763011), the
Natural Science Foundation of Guangxi (0832104,
0447035), the project of the education administration of
Guangxi (200911MS55, 200607MS135), and the
Scientific and Technological Research Projects of
Chongqing’s Education Commission (KJ081309). The
authors would like to thank the anonymous referees for
their valuable comments and suggestions.

References
[1] Bhaniramka P., Wenger, R., and Crawfis, R. (2004)

Isosurface construction in any dimension using
convex hulls. IEEE Transactions on Visualization
and Computer Graphics, vol.10, no.2, pp.130–141.

[2] Yuan B., and Tan C. L. (2007). Convex hull based
skew estimation. Pattern Recognition, vol.40, no.2,
pp.456-475.

[3] Nikolay M. Sirakov et al. (2004). Search space
partitioning using convex hull and concavity
features for fast medical image retrieval. In: Proc.
of the IEEE International Symposium on
Biomedical Imaging, Arlington, USA, pp.796–799.

[4] Yu X., Sun H., and Chen J. (2005). Points matching
via iterative convex hull vertices paring. in: Proc. of
the fourth International Conference on Machine
Learning and Cybernetics, Guangzhou, China, pp.
5350–5354.

[5] Gope C., and Kehtarnavaz N. (2007). Affine
invariant comparison of point-sets using convex
hulls and hausdorff distances. Pattern Recognition,
vol.40, no.1, pp.309–320.

[6] Yu M. P., and Lo K. C. (2001). Object recognition
by combining viewpoint invariant Fourier
descriptor and convex hull. in: Proc. of the 2001
International Symposium on Intelligent Multimedia,
Video and Speech Processing, Hong Kong, China,
pp.401–404.

[7] Chand D. R., and Kapur S. S. (1970). An algorithm
for convex polytopes. JACM, vol.17, no.1, pp.78–
86.

[8] Jarvis R. A. (1973). On the identification of the
convex hull of a finite set of points in the plane.
Information Processing Letters, vol.2, no.1, pp.18–
21.

[9] Graham R. L. (1972). An efficient algorithm for
determine the convex hull of a finite linear set.
Information Processing Letters, vol.1, no.1,
pp.132–133.

[10] Preparata F. P. and Hong S. J. (1977). Convex hulls
of finite sets of points in two and three dimensions.
CACM, vol.20, no.2, pp.87–93.

[11] Chan T. (1996). Optimal output-sensitive convex
hull algorithms in two and three dimensions.
Discrete Comput. Geom, vol.16, no.3, pp.361–368.

[12] Chen W., Wada K., and Kawaguchi K. (2002).
Robust algorithms for constructing strongly convex
hulls in parallel. Theoretical Computer Science,
vol.289, no.1, pp. 277–295.

[13] Brönnimann H. et al. (2004). Space-efficient planar
convex hull algorithms. Theoretical Computer
Science, vol.321, no.1, pp.25–40.

[14] Overmars M. H., and Leeuwen J. V. (1981).
Maintenance of configurations in the plane. J.
Comput. System Sci., vol.23, no.2, pp.166–204.

[15] Chan T. M. (2001). Dynamic planar convex hull
operations in near-logarithmic amortized time.
Journal of the ACM, vol.48, no.1, pp.1–12.

[16] Brodal, G. S., and Jacob R. (2002). Dynamic planar
convex hull. in: Proc. of the 43rd Annual IEEE
Symposium on Foundations of Computer Science,
Vancouver, Canada, pp.617–626.

[17] Ye Q. (1995). A fast algorithm for convex hull
extraction in 2D image. Pattern Recognition
Letters, vol.16, no.5, pp.531–537.

