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Convex hull is widely used in computer graphic, image processing, CAD/CAM and pattern recognition. 
In this work, we derive some new convex hull properties and then propose a fast algorithm based on 
these new properties to extract convex hull of the object in binary image. It is achieved by computing the 
extreme points, dividing the binary image into several regions, scanning the regions existing vertices 
dynamically, calculating the monotone segments, and merging these calculated segments. Theoretical 
analyses show that the proposed algorithm has low complexities of time and space.
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1 Introduction
Convex hull is a central problem in various 

applications of computational geometry, such as Vornoi 
diagrams constructing, triangulation computing, etc. It is 
widely applied to computer graphic [1], image 
processing [2-3], CAD/CAM and pattern recognition [4-
6]. Convex hull of a planar point set S is defined as the 
intersection of all the half-planes containing S. The shape 
of convex hull is a convex polygon whose vertices
belong to S. For an edge pq, all other points lie on one 
side of the line running through p and q.

Many research efforts have been devoted to develop 
algorithms for 2-D convex hull computation. In 1970, 
Chand et al. [7] initially proposed a convex hull 
algorithm with O(n2) time by constructing the borders of 
convex hull according to the geometric properties of S.
Another algorithm with O(mn) time was give by Jarvis
[8] ,where m is the number of convex hull vertices. Both 
of them have a high time complexity. Graham [9]
provided a solution to compute the convex hull of a 
plane. Determine the point with minimal y-coordinate 
and calculate the angles between the horizontal line and 
the lines connecting the determined point and other 
points. According to the sorted angles, vertices are 
obtained. The divide-and-conquer method [10] was also 
applied to solve the problem. Point set was divided into 
two roughly equal-sized subsets. Their convex hulls were 
recursively computed, respectively. And the entire 
convex hull was determined by merging the two convex 

hulls. In another study, Chan [11] used point pairs to 
calculate the slopes of lines and determine the median 
values of these slopes, then divided the point set into two 
parts by median values and recursively computed the 
convex hull. He gave another algorithm which 
partitioned the point set and then computed the convex 
hull of each group, respectively. The entire convex hull 
was finally obtained by computing the union of the 
polygons. Exploiting the parallel computational model 
EREW PRAM, Chen et al. [12] proposed a parallel 
robust method for constructing convex hull. Brönnimann
et al. [13] investigated the storage space of planar convex 
hull algorithms. As for dynamic planar convex hull, 
Overmars et al. [14] provided a solution that used
O(log2n) time per update operation and maintained a 
leaf-linked balanced search tree of the vertices on the 
convex hull in clockwise order. Chan [15] gave a 
construction for the fully dynamic problem with 
O(log1+εn) amortized time for updates (for any constant
ε>0), and O(logn) time for extreme point queries. In 
another work, Brodal and Jacob [16] presented a data 
structure that maintained a finite set of n points in the 
plane under insertion and deletion of points in amortized 
O(logn) time per operation. In [17], Ye considered the 
convex hull extraction in binary image and proposed a 
scheme with two procedures. In the first procedure, the 
image is scanned and a non-self-intersecting polygon is 
extracted; in the second procedure, the convex hull is 
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extracted from the polygon through checking the 
convexity of the polygon.

In this work, we firstly investigate the convex hull 
properties and then derive some new properties, e.g., 
monotonicity. Finally, we use these new properties to 
design convex hull algorithm for binary image. The 
proposed algorithm extracts eight extreme points on the 
boundary of binary image, and then partitions the image
into 5 regions by using the extreme points. During the 
vertex computation, only these points in 4 regions need 
to be processed. By orderly scanning, the temporary 
convex hull is extracted. The entire convex hull is finally
obtained by continuously updating the temporary convex 
hull. As the scanned areas are few and only the vertices
of temporary convex hull require storage, the proposed 
algorithm has low complexities of time and space.

The rest of the paper is organized as follows. In 
Section 2, new convex hull properties are derived. The 
convex hull algorithm for binary image and the 
complexity analysis are then described in Section 3 and 
Section 4, respectively. Conclusions are drawn in Section 
5.

2 Convex hull properties
Convex hull is a convex polygon having the 

following properties. For an edge pq, all other points lie
on one side of the line running through p and q. Any line 
segment connecting two arbitrary nonadjacent points is 
in the interior of the polygon. And the interior angle is 
less than 180 degrees, etc. In this section, we will 
investigate the convex hull structure and then derive new 
convex hull properties, which will be applied to improve 
the efficiency of convex hull algorithm.

2.1 Extreme points

Let Q = {q1, q2, , qM} be a planar point set. In the 
subset whose points’ x-coordinate are minimal among Q, 
Qxy and QxY denote the points with minimal and maximal 
y-coordinate, respectively. In the subset whose points’ x-
coordinate are maximal among Q, QXy and QXY represent 
the points with minimal and maximal y-coordinate, 
respectively. Likewise, in the subset whose points’ y-
coordinate are minimal among Q, Qyx and QyX denote the 
points with minimal and maximal x-coordinate, 
respectively. In the subset whose points’ y-coordinate are 
maximal among Q, QYx and QYX represent the points with 
minimal and maximal x-coordinate, respectively. In the 
above variables, the first subscript denotes the extremum 
of coordinate and the second subscript denotes the 
extremum of the other coordinate under the first 
coordinate. Subscripts of capitalization and minuscule 
mean maximum and minimum, respectively, as shown in 
Fig.1. The definition of these points is given below.
Definition 1. In the planar point set Q, Qxy, QxY, QXy, QXY, 
Qyx, QyX ,QYx and QYX are the extreme points of the 
convex hull, where Qxy and QxY, QXy,and QXY, Qyx and
QyX, QYx and QYX are the homogeneous extreme points, 
respectively.

Theorem 1. The extreme points in the planar point set Q
are the convex hull vertices.
Proof. Assume that points q1, q2, , qM are convex hull
vertices, and make a line l parallel to y-axis through Qxy 

and QxY. Suppose Qxy and QxY are not the convex hull
vertices, as shown in Fig.1 (a). According to their 
definition, points are all on l or on the right side of l. For 
any vertex qi, if qi is on l, it must locate between Qxy and 
QxY. This means that it can’t be a convex hull vertex. So
these vertices are all on the right side of l. Thus Qxy and 
QxY fall in the left side of the convex hull instead of its 
interior. This contradicts the convex hull definition. 
Therefore Qxy and QxY are vertices. Similar proofs can be
given to other extreme points.

(a) Four monotone segments 

(b) Three monotone segments 

(c) Two monotone segments

Figure 1: Extreme points and monotone segments of 
the convex hull
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2.2 Convex hull monotonicity and its 
construction

For segment QxYQYx of convex hull, let its points be 
numbered in a clockwise order, namely qm, qm+1, …, qn (n
> m), where qi’s coordinate is (xi, yi), qm = QxY and qn =
QYx. Then qm, qm+1, …, qn-1 should be on the same side of 

straight line m nq q and the x-coordinate and y-coordinate 

of qm+1 should both increase. Suppose that both the x-
coordinates and y-coordinates of qm+1, qm+2, …, qi 

monotone increase while those of qi+1 decrease (either or 
both of them decrease). Since qm, qi+1, qn are on the same 

side of straight line 1i iq q , thus qi+1 should lie beneath 

the line y = yi, as shown in Fig.2 (a). Hence qi-1 and qn are

on the different sides of the line 1i iq q  . This contradicts 

the fact that qm, qm+1, …, qn (n > m) are all the convex 
hull vertices. Therefore both the x-coordinates and y-
coordinates of points on segment QxYQYx monotone
increase. Similarly, the x-coordinates of points on 
segment QYXQXY monotonically increase while the y-
coordinates of them decrease. The x-coordinates of 
points on segment QyxQxy monotonically decrease while 
the y-coordinates of them increase. Both two coordinates 
of points on segment QXyQyX monotonically decrease. 
The monotonicity of these segments is defined as 
follows.

Figure 2: Convex hull monotonicity

Definition 2. If QxY  QYx, the convex hull segment 
consisting of vertices from QxY to QYx is called monotone 
increasing top segment. Likewise, if QYX  QXY, the 
convex hull segment consisting of vertices from QYX to 
QXY is named monotone decreasing top segment. If QXy
QyX, the convex hull segment consisting of vertices from 
QXy to QyX is called monotone decreasing bottom
segment. If Qyx  Qxy, the convex hull segment consisting 
of vertices from Qyx to Qxy is named monotone increasing 
bottom segment.
Definition 3. All the monotone (both increasing and 
decreasing) top and bottom segments are called 
monotone segment.

If the monotone segments of a given convex hull are 
already determined, utilizing the definition 2 and the 8 
extreme vertices can determine whether a specific
monotone segment exists or not. The detailed theorem is 
as follow.

Theorem 2. The monotone increasing top segment exists 
if and only if QxY  QYx. The monotone decreasing top 
segment exists if and only if QYX  QXY. The monotone 
increasing bottom segment exists if and only if QXy  QyX.
The monotone decreasing bottom segment exists if and 
only if Qyx  Qxy.

Similarly, according to the definition of convex hull
monotonicity, the type of monotone segments can be 
determined by its vertices. Let f(P, A, B) = 0 represent 
the line equation, where the line runs through points A
and B, P is a dynamic point on the line. There is a 
theorem about the type of monotone segments as follows.

Theorem 3. Let qm, qm+1, …, qn (n - m > 1) be the 
vertices on a specific monotone segment of convex hull, 
and the coordinate of qi be (xi, yi). For arbitrary i, j (m ≤
i< j, m ≤ j < n, j  i, j  i + 1), the sufficient and 
necessary conditions for that this monotone segment is a 
monotone increasing top segment are that 
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According to the convex hull definition, it has 4 
monotone segments at most. Since convex hull is a 
closed shape, it has two monotone segments at least. The 
number of monotone segments can be determined by the 
extreme points. According to the number of monotone 
segments, convex hulls are classified into three types, as 
shown in Fig.1. Fig.1 (a) shows the convex hull with 4 
monotone segments, Fig.1 (b) and Fig.1 (c) show the 
convex hull with 3 and 2 monotone segments, 
respectively.

3 Convex hull algorithm for binary 
image

3.1 Algorithm of monotone segment
Since the extreme points are convex hull vertices, the 

convex hull can be obtained by determining the vertices
on the monotone segments between each pair of extreme 
points. In this work, a dynamic computation method is 
applied to determine the convex hull. Calculate the 
extreme points and determine the monotone segments. 
By dynamic scanning the boundary of image, the 
temporal convex hull of the scanned image is obtained. 
Scan the image boundary pixel by pixel until 
encountering the last boundary pixel. Thus, the monotone 
segments are obtained and the convex hull is extracted. 
The theorem of convex hull computation is as follows.
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Theorem 4. Let Q = {qm, qm+1, …, qn} (n > m) be the 
vertices of a monotone segment of a specific convex hull, 
the coordinate of qi and p be (xi, yi) and (x, y), 

respectively, Q = {p}Q and min{yn1,yn} < y <

max{yn1, yn}. If p and qk (k < n) are both the points in a 
specific monotone segment of Q, then qm, qm+1, …, qk, p, 
qn are all vertices on the monotone segment.
Proof: Suppose that qm, qm+1, …, qn (n > m) are the 
vertices of monotone increasing top segment of a specific 
convex hull. Since p(x, y) belonging to {p}Q is a point 
on the monotone increasing top segment and yn 1 < y <
yn, then f(p, qn1, qn) > 0 according to theorem 3. The 
location of p is shown in Fig.4. If qk (k < n) belonging to 
{p}Q is a vertex with maximum subscript on the
monotone increasing top segment, then qk and p are 
adjacent vertices on the new monotone increasing top 
segment. So for all qi (i  k), f(p, q n 1, qn)<0. If qj (j < k) 
isn’t the vertex of new convex hull, then f(p, qj-1, qj)>0. 
But f(qk, qj 1, qj)<0. It means that qk and p are on the 

different side of line 1j jq q . So f(qk, p, qj)<0. Therefore 

qk isn’t the vertex of new convex hull. This contradicts 
the precondition. Hence qm, qm+1, …, qk, p, qn are vertices 
on the monotone segment. Likewise, similar proofs of 
other monotone segments can be easily given.

Figure 3: Monotone algorithm

Whether or not a pixel or a boundary point is a 
convex hull vertex depends on the relation about its 
position and the line. Take the monotone increasing top 
segment qm, qm+1, …, qn (n > m) for example. Theorem 3 
shows that f(qj, qi, qi+1) < 0 for arbitrary i, j (m ≤ i < j, m
≤ j < n, j  i, j  i + 1). If a point p of image boundary 
satisfies f(p, qn-1, qn) > 0, then p is outside of the 
temporary convex hull. Thus p must be a new vertex of 
convex hull. Start from k = n1 and decrease k by 1 each 
time. If f(p, qk, qk 1) < 0, then for arbitrary point A (A 
qk1, A  qk), f(A, qk, qk 1) < 0. According to theorem 3,
qk is a new vertex of convex hull. By applying theorem 4, 
all vertices on this segment can be obtained.

3.2 Convex hull algorithm for binary 
image

Convex hull of binary image can be determined by 
its boundary pixel set. In fact, the convex hull of 
boundary pixel set is equal to the convex hull of binary 

image. So obtaining the boundary is an important step. 
Generally, boundary extraction by scanning the whole 
image requires storing all pixels. However, only few 
pixels are the convex hull vertices. Reducing the number 
of scanned pixels can both improve the time and space
efficiency of algorithm. In this section, the method 
scanning from outside to inner is applied to extract the 
extreme points, as shown in Fig.4. The scanned regions 
are determined by the extreme points. By dynamic 
scanning the image boundary, temporary convex hull of 
the scanned boundary pixel set is computed. Finally,
convex hull of binary image is available.

Figure 4: Extreme points of image convex hull

3.2.1 Collect the extreme points

In order to avoid repeated scanning, the method 
scanning from outside to inner is utilized to collect the 
extreme points on the image boundary. The detailed steps 
are as follows.

STEP 1: Begin at the top left of image and scan 
image from top to bottom until encountering the image 
boundary. Each row scan starts from left to right. If the 
scanned row has boundary points, QYx and QYX represent 
the leftmost and rightmost boundary points, respectively. 
Thus two extreme points on the image boundary, QYx and 
QYX, are obtained.

STEP 2: Begin at the line l1 running through QYx and 
QYX and scan image from right to left until encountering 
the image boundary. Each column scan starts from top to 
bottom. For the column having boundary pixels, let QXY

and QXy represent the topmost and bottommost boundary 
pixels, respectively. Thus two extreme points on the 
image boundary, QXY and QXy, are obtained.

STEP 3: Begin at the line l2 running through QXY and 
QXy and scan image from bottom to top until 
encountering the image boundary. Each row scan starts 
from right to left. For the row having boundary pixels, let 
QyX and Qyx represent the rightmost and leftmost 
boundary pixels, respectively. Thus two extreme points 
on the image boundary, QyX and Qyx, are obtained.

STEP 4: Start from the line l3 which is through Qyx 

and QyX to the line l1 and scan image from left to right 
until encountering the image boundary. Each column 
scan starts from bottom to top. For the column having
boundary points, let QxY and Qxy represent the topmost 
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and bottommost boundary pixels, respectively. Thus two 
extreme points on the image boundary, QxY and Qxy, are 
obtained.

By the above steps, 8 extreme points of image 
convex hull are extracted.

3.2.2 Determine the scanned regions

Theorem 1 shows that the 8 extreme points are 
convex hull vertices. The lines connecting adjacent 
extreme points divide image into several regions, as 
shown in Fig.5. There are no boundary pixels outside of 
the rectangle formed by l1, l2, l3 and l4. If the boundary 
pixels are on the edges of the rectangle, then they aren’t 
convex hull vertices. In the interior of the rectangle, 
pixels in region 0 aren’t vertices either. Only those in 
regions 1, 2, 3 and 4 are likely to be vertices. Hence we 
just need to scan region 1~4 to obtain the boundary 
pixels and compute the convex hull by applying theorem
4. Since the vertices are numbered in a clockwise order, 
pixels extracted by scanning the four regions should 
satisfy theorem 4. The detailed method is as follows.

Figure 5: Scanned regions of image

Region 1: Begin at the right side of l4 and scan the region 
1 horizontally from left to right. Each column in region 1 
is scanned vertically from top to bottom. If there is no 
boundary pixel on the scanned line, then scan next 
column until encountering a boundary point p on the 
scanned line. Then p is a vertex of temporary convex hull 
in the scanned image. Compute the monotone increasing 
top segment of temporary convex hull by theorem 4. To 
improve the efficiency of algorithm and guarantee that 
the next scanned boundary pixels must be the vertices of 
temporary convex hull, the next column scan should stop 
once reaching the line pQYx, as shown in Fig.6 (a).
Continue to scan and compute the vertices of temporary
convex hull until QYx is encountered.
Region 2: Begin at the down side of l1 and scan region 2 
vertically from top to bottom. Each row in region 2 is 
scanned from right to left. Utilize the similar method 
introduced in region 1 to determine whether the boundary 
pixels are vertices or not. Continue to scan until QXY is 
encountered, as shown in Fig.6 (b).

Region 3: Begin at the left side of l2 and scan region 3 
horizontally from right to left. Each column in region 3 is 
scanned from bottom to top. Utilize the similar method 
introduced in region 1 to determine whether the boundary 
pixels are vertices or not. Continue to scan until QyX is 
encountered, as shown in Fig.6 (c).
Region 4: Begin at the left side of l3 and scan region 4 
vertically from bottom to top. Each row in region 4 is 
scanned from left to right. Utilize the similar method 
introduced in region 1 to determine whether the 
boundary pixels are vertices or not. Continue to scan 
until Qyx is encountered, as shown in Fig.6 (d).

The extracted boundary pixels in the above steps 
both satisfy the monotone condition and the sequence 
required by theorem 4. Applying theorem 4 can extract 
the convex hull of image.

(a) Scan in region 1

(b) Scan in region 2

xYQ

xyQ XYQ

XyQ

YXQYxQ

yXQyxQ

XYQ

XyQ

YXQYxQ

yXQ

p

yxQ
0

1
2

3
4

l1

l2

l3

l4

QYXQYx

Qxy

QxY

QyXQyx

QXy

QXY

xYQ

xyQ



374 Informatica 34 (2010) 369–376 Z. Tang et al.

(c) Scan in region 3

(d) Scan in region 4
Figure 6: Scanned areas in each region

3.2.3 Compute convex hull vertices in 
scanned areas

Whether or not the pixel in scanned area is a convex 
hull vertex is just relative to other pixels in this region. 
By scanning the boundary pixels in each region, convex 
hull vertices in the corresponding region can be 
determined, respectively. Take region 1 for example. Let 
(xm1, ym1) and (xm2, ym2) be the coordinates of QxY and 
QYx, respectively, f(p, A, B) = 0 be the equation of line 
running through A and B (p is a dynamic point), v[i][j] 
and c[i][j] be the pixel value and coordinate of p in the 
ith row and the jth column of the image, respectively. If 
v[i][j] > 0, p is a boundary pixel, or less a background
pixel. Begin at (xm1 + 1, ym1 + 1) and scan region 1 
horizontally from left to right. In region 1, column is 
scanned from top to bottom. If there is no boundary pixel
in the current column, scan next column in its right. If 
pixel p is a boundary pixel, then it must be a vertex of 
temporary convex hull. Apply theorem 4 to compute all
vertices of temporary convex hull. Scan next column in 
the right. At this time, the scanned line is above the line 
pQYx, as shown in Fig.6 (a). Stop scanning when the line
x = xm2 is encountered. Then the monotone segment of 
convex hull in region 1 is extracted. The detailed 
algorithm is as follows.

STEP 1: i=xm1+1, j = ym2 -1, q1= QxY, A=QxY, n=2;

STEP 2: IF (i  xm2) goto STEP 8;

//no boundary pixel on the scanned line
IF (f(p, A, QYx)  0) goto STEP 3; 
//p is a vertex of temporary convex hull

IF (v[i][j] > 0) //p is the foreground pixel.
k = n  1, A = c[i][j], goto STEP 4; 

ELSE goto STEP 5; //scan next pixel

STEP 3: i = i +1, j = ym2-1, goto STEP 2; 
//scan next vertical line in the right

STEP 4: IF (k >1) goto STEP 6;

ELSE n = n +1，goto STEP 2;
STEP 5: j = j + 1, goto STEP 2;
STEP 6: IF (f(p,qk 1,qk)  0) // backtrack again.

goto STEP 7; 
ELSE // finish backtracking

n = k+1, qn =c[i][j], n =n +1, goto STEP 
2;

STEP 7: IF (k>2) //backtrack and process next pixel
k = k  1, goto STEP 6;

ELSE //backtrack to the extreme point
n = 2, qn = c[i][j], n = n + 1, goto STEP 2;

STEP 8: qn= QYx,q1, q2,…,qn are convex hull vertices.

3.2.4 Convex hull algorithm for binary 
image

For the convex hull of binary image, compute the 8 
extreme points Qxy, QxY, QXy, QXY, Qyx, QyX, QYx and QYX. 
According to these extreme points, determine the 
scanned regions of image, as shown in Fig.5. Then, 
convex hull vertices locate the regions 1~4, which are 
divided by the lines connecting the adjacent extreme 
points, as shown in Fig.5. Therefore, only the boundary 
pixels in these regions require computation. Utilize the 
monotone properties of convex hull and scan each region 
dynamically. Then, apply theorem 4 to compute each 
monotone segment of convex hull. The entire convex 
hull is obtained by merging these monotone segments. 
The detailed algorithm is as follows.

STEP 1: Scan the binary image and compute the 8 
extreme points, Qxy, QxY, QXy, QXY, Qyx, QyX, QYx and QYX.

STEP 2: Utilize the 8 extreme points to determine 
the four regions where the convex hull vertices may exist.

STEP 3: Scan each region dynamically and obtain 
convex hull vertices on each monotone segment 
respectively.

STEP 4: Extract convex hull vertices on each 
monotone segment according to the following order, 
QxYQYx, QYXQXY, QXyQyX, QyxQxy. Each extreme 
point is extracted only one time. Then convex hull is 
obtained.

4 Complexity analysis

4.1 Time complexity
The time complexity is analyzed in the following 

ways. Suppose that the size of binary image is NN.
(1) If the image consists of a single pixel, then no 

convex hull exists. The time complexity is N 2.
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(2) If the image consists of two pixels or all pixels 
are on a line, then no convex hull exists, either. The time 
complexity is also N 2.

(3) The binary image has a convex hull if and only if 
three boundary pixels at least aren’t on a line. Suppose 
that there are S pixels in the polygon whose vertices are 
the adjacent and inhomogeneous extreme points. The 
proposed method scans N 2  S pixels at most. And only 
2N pixels at most should be computed when it 
determines whether or not a boundary pixel is a convex 
vertex. So the time complexity is O(N 2  S) + O(N).

The above analyses show that the bigger the convex 
hull of binary image, the less the time complexity of the 
proposed algorithm. The time complexity of convex hull 
algorithm mainly depends on the size of scanned area. To 
show the efficiency of time complexity, we compare the 
proposed algorithm with the algorithm presented in [17]. 
A typical example is given in Fig.7. Fig.7 (a) is a binary 
image containing an object whose boundary has 10 
vertices. Both algorithms are exploited to extract convex 
hull of the object in the binary image. Fig.7 (b) and Fig.7 
(c) show the scanned areas of the algorithm [17] and the 
proposed algorithm respectively, where the gray grids 
denote their scanned areas. It is observed that our 
algorithm scans less area than the algorithm [17]. In 
general, if the object’s boundary isn’t a convex polygon, 
the scanned areas of the proposed algorithm are less than 
those of the algorithm [17]. Otherwise, the scanned areas 
of two algorithms are equivalent. Hence, the proposed 
algorithm needs less time than the algorithm [17] on 
average.

(a) Binary image containing an object with 10 vertices

(b) Scanned areas of the algorithm [17]

(c) Scanned areas of the proposed algorithm

Figure 7: A binary image and its scanned areas using 
different algorithms

4.2 Space complexity
The boundary pixels scanned by the proposed 

algorithm are the vertices of temporary convex hull. 
During the convex hull computation, only these vertices
require storage. Therefore, the proposed algorithm has a 
low space complexity. Take Fig.7 for example. The 
algorithm [17] must store all 10 points from p0 to p9. 
Since p2 and p6 aren’t scanned, the proposed algorithm 
doesn’t need to compute and store them. So the space 
complexity of the proposed algorithm is lower than that 
of the algorithm [17].

5 Conclusions
In this paper, we derive some new convex hull 

properties, such as monotonicity, and use them to design 
algorithm for extracting convex hull of object in binary 
image. The proposed algorithm has a high efficiency by 
reducing computational cost in the following ways. (1) 
Divide the binary image into several regions by using the 
extreme points. Only those boundary pixels in a few 
regions require computation. (2) To determine a vertex in 
a given region doesn’t need to compute those pixels in 
other regions. (3) Since the boundary pixels obtained by 
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scanning are computed dynamically, only these vertices 
of temporary convex hull require storage. Theoretical 
analyses show that the proposed algorithm has lower
complexities of time and space than the algorithm [17] 
on average.
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