
Informatica 34 (2010) 353–367 353

An LPGM Method: Platform Independent Modeling and
Development of Graphical User Interface

Jan Kryštof
Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
E-mail: jan.krystof@mendelu.cz

Keywords: GUI, HCI modeling, MB-UID, UML, adaptive modeling tool

Received: September 12, 2009

This paper introduces a new method in the area of platform independent modeling and the development
of graphical user interfaces. The method bridges the gap between traditional MB-UIDEs and the
modern web methodologies by enabling the modeling and development of both traditional and web user
interfaces. The method is based on a proposed Presentation model and a Task Action Model which drive
the development process. The modeling notation in both models is done with use of UML, and the
development process is supported by a UML-compliant adaptive modeling tool. Descriptions of both the
model and the method of application are included. An evaluation done using a JavaEE and a Swing
widget toolkit is also mentioned.

Povzetek: Predstavljena je nova metoda za izdelavo platform za razvoj grafičnih vmesnikov.

1 Introduction
In the course of developing software for a user

interface (UI), a developer frequently recognises that a
similar UI has been created previously, perhaps in a
different context and with different visual aspects, but
nearly identical in concept. This research investigates the
possibilities of reusing UIs.

UIs can be made more readily reusable by
elaborating the specifications for them in a form that is
independent of platform. Such platform-independent
tools and methodologies have been developed, but,
unfortunately, the results have never achieved
widespread adoption and successful application in
industry [12, 38, 17].

UI development is a difficult and time-consuming
procedure [37] that involves a collection of different
activities. UI development deals with the interaction
between humans and computer and specifies how
software will function across this i.e. the tasks of the user
and the system. The physical user interface is
subsequently assembled with respect to the tasks
identified for the user and the system. The UI should
have appropriate ergonomics and appearance and it must
communicate with the underlying application layer. The
process of UI development is not properly described in
traditional software development methodologies
(Waterfall, Spiral). For example, the Unified Process
provides advice for UI development only by
recommending the build-up of a prototype [19]. The UI
prototype in the Unified Process serves only as a tool for
better understanding the particular use-case and its
functionality. The methodological framework Rational
Unified Process [28] goes a step further, extends the

number of artifacts used for UI modeling, and introduces
the UI storyboards [43]. However, neither the UP nor the
RUP adds methodological guidelines for UI
development.

The lack of development guidelines for the UI
development was partially covered in traditional
methodologies by the concept of Model-Based User
Interface Development (MB-UID), which unified
development of applications using a traditional UI. The
development is based on intensive modeling of the
different aspects of all part of the application, including
aspects of UIs. With the emergence of web-based
development, a number of new web methodologies have
been proposed [23, 7, 55, 50]. These define the entire
development process for web applications, including
issues of UI development. However, these modern web
methodologies and MB-UID represent disparate
branches, which can be used for either traditional or web
user-interface development.

In this paper a new approach for UI modelling will
be presented along with the architecture of development
environment for this approach. The approach aims to
provide a method for producing platform-independent
modelling and development of graphical user interfaces
using pure UML. The following section will deal with
the current state of MB-UID and some of the drawbacks
which led to this new approach. The section three
describes the approach and later in section four, steps for
applying the approach will be presented. Some examples
will be included in the section five.

354 Informatica 34 (2010) 353–367 J. Krystof

2 Current state

2.1 Model based user interface
development

Systematizing of UI development is a challenging
and important prerequisite for the quality of
development, and the concept of MB-UID supports it.
MB-UID is characterized by a set of declarative models
and a way of interpretating them [48]. The MB-UID
approach is supported by software environments which
are called MB-UIDEs (Model-Based User Interface
Development Environments).

The UI development process is focused purely on
constructing models which describe different areas of
application. Models are built incrementally, describing
“what” without explaining “how”, thus hiding the
method of implementation. However, approaches within
MB-UIDs are not yet mature, and proposals for the range
and nature of the models supported differs significantly
[17]. The development process varies with environment,
since each particular MB-UIDE defines its own set of
models. Thanks to this diversity, the models mostly
commonly encountered are [53, 48]: the domain model,
the application model, the task model, the user model and
the presentation model.

Many different notations are used for MB-UID,
because no uniform standard for all MB-UIDEs exists. In
general, notation has been developed specially for each
the MB-UIDE [53] which makes it difficult for
developers to get oriented in other forms of notations and
causes compatibility problems: a model created using a
particular tool can not be processed using a different tool.
Silva divided MB-UIDEs into two generations [53].
Second generation environments are oriented more
towards industrial standards and are more receptive to
new user-interface features. Despite enhancements,
interoperability remains rather low, and the MB-UIDEs
are not in widespread use among developers. There are
also addressed two more drawbacks of the MB-UID
approach [38]. Firstly, the generated UIs are often not as
good as those that could be created using conventional
programming techniques. Secondly, heuristics are often
involved and the connection between the specification
and the final result can be quite difficult to understand
and control. This makes the results unpredictable. We
assume that efforts to generate ”final” and “ready to run”
products cannot succeed and make extension of any
particular MB-UIDE to support a new platform very
hard. The reusability of models is associated with the
whole application of MB-UIDEs, so it is not possible to
make use of a single model. With regard to the
specification of a presentation model in MB-UIDEs, we
can address one significant drawback which is connected
with the separation of concerns [39, 15, 26]. Concerns
are often merged together with visual appearance, layout
or content specified within a single presentation model,
which makes such a form useful only for the original
requirements. Furthermore, the layout of UIOs is

sometimes specified in terms of the absolute positioning
[34]; this is the possibility, that constraints of screen and
resolution will prevent the proper display of the user
interface.

2.2 Modern web methodologies
A similar approach to the generation of applications

in development is driven by modern web methodologies
such as OOHDM [50], WebML [7], UWE [23, 24] or
OOWS [14]. These also provide methodological
guidelines for specifying sets of declarative models
which drive subsequent development. Therefore they fit
the concept of MB-UID. In order to make a clear
distinction between web and traditional development, we
will use the terms “web MB-UID”, and “traditional MB-
UID” respectively. Some of these methodologies (UWE,
WebML, OOHDM) also provide software environments
(ArgoUWE [22], WebRatio [58] and OOHDM-Web
[49]) in order to support the modeling approach by
means of a set of frequently used functions in the context
of model construction or code generation. Thus we can
classify them as web MB-UIDEs.

Like traditional MB-UIDEs, web MB-UIDEs suffer
from low interoperability since they also use their own
modeling notation, which makes the interchange of
model data between different environments impossible.
On the other hand, some web methodologies have
already employed UML for modeling notation. UML is
the de-facto industrial standard object-oriented modeling
language [13]. The notation is familiar to many
developers, and there are a lot of resources such as
documentation and software support in the form of
modeling and CASE tools. The UML profiles
mechanism [40] is also used sometimes to provide new
modeling facilities. Since UML profiles are based on
UML, it is not difficult for any software designer with a
background in UML to understand a model based on a
UML profile [24]. Regarding the summary of the
modeling notations employed in web methodologies
published in [11], the UML notation is fully employed in
OOWS while some other methodologies (e.g. OOHDM,
UWE, WebMl) combine UML with other forms of
notation (e.g. OO, OMT, ERDs, DFD), and the rest do
not use UML notation at all. The set of declarative
models is nearly the same in web methodologies
compared to the model sets in MB-UIDs, except for the
navigation model which is tightly connected with the
hypertext paradigm. The MDA (Model Driven
Architecture) [16] concept is used in some environments
(ArgoUWE, WebRatio) in order to interpret models and
support code generation.

2.3 Characteristics of traditional and MB-
UID in summary

From the overview that has been carried out the
preceding sections, we want to point out several positive
and negative characteristics of current MB-UID.

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 355

Model-based development. The UI development in
MB-UIDEs and web methodologies is based on the
construction of different models. Employing modeling
approaches in UI development has proved that modeling
represents a good way to support user-interface
development.

Development environment. MB-UID is supported
by graphical software environments which enable rapid
model construction and utilization of models. Using
graphical environments also reduces the cognitive burden
on human programmers [47].

Diversity of modeling notations. Many varied
notations employed in different approaches do not
support interoperability, since data obtained from the
model can be read and modified only in the original
environment.

Heavy-weight solutions. Solutions produced in MB-
UID tend to provide “ready to run” software. Attempts to
cover the presentation, application and data layer which
result in the great complexity of traditional MB-UIDEs
and make any extension of such environments difficult.

Low separation of concerns. The separation of
concerns in presentation models is very low both at the
model and source code levels, which impacts the
reusability. Thus models can hardly be used on different
platforms.

Disjunction of development of web and
traditional user interfaces. Modern web methodologies
and traditional MB-UID have built two disjoint branches
that focus on either web or traditional UI. There is no
middle ground where both scopes can be developed.

3 Modeling approach
The summary mentioned in the previous section has

contributed to forming our approach to the scope of MB-
UID: our approach is built with the respect to the pros
and cons of the current state of MB-UID. In this section,
our modeling approach is introduced and described along
with an argument for chosen methods which are
involved.

The goal of our approach is to provide facilities
enabling the modeling and development of platform-
independent user interfaces. In order to provide
appropriate facilities for modeling user interfaces and
user-computer interaction, we need to choose a modeling
notation which enables us to model these domains.
Basically, we can design our own notation and create a
domain-specific language (DSL) [1, 54]. This approach
is recommended for cases where the modeling domain is
large, the modeling area is well charted, and there is only
a small probability of further evolution. The main
disadvantage of the DSL approach is that in setting up a
new notation we might be considered to adding another
stone to the tower of Babel of modeling languages.
Furthermore, we want to have a language that is easily
extensible, since the field of user interfaces is constantly
evolving. Therefore we chose an approach employing
UML profiles – a light-weight extension of UML [47]
which preserves compatibility with UML. The UML

profiles mechanism is currently the most utilized
approach thanks to the large number of CASE tools [1]
and other support (UML-compliant tools, extensive
documentation, and a wide base of users) available for it.
Many projects [20, 23, 9] have employed UML profiles
to model diverse domains and benefited from the high
level of interoperability, thanks to the XMI (XML
Metadata Interchange) data format [41]. For these
reasons, we chose the UML and its profiles to define and
provide modeling facilities, and we created a UML
profile called “LPGM“ (Lightened Profile for GUI
Modeling), which gave its name to our approach. This
profile is presented in fig. 3 and fig. 4.

Our profile provides facilities for building two kinds
of models: the task-action model focused on aspects of
the interaction and the presentation model focused on the
structure of the user interface.

3.1 Task-action model
Since all user interfaces are associated with an

underlying application layer that performs a particular
business [36], we wanted to link the user-interface to it
and express the business in terms of the user-interface
interaction.

The functionality conveying associated business is
usually specified in the form of a use-case model and its
documents. The user-interface interaction is also
recorded here in the text form of scenarios. Scenarios
often include references to particular interaction objects
of the relevant user interface [43], as is common in use-
case in the Rational Unified Process [28].

Many styles of writing scenarios (common narrative
style, partitioned narratives, pseudo-code, interaction
diagrams, etc.) are summarized in [10]. The most
comprehensive style was formed by Wirfs [59]; in it the
scenario is captured in a two-column dialog between the
system and the user. This style of interaction capture is
very natural, since the user-interface interaction is a kind
of dialog consisting of the user's action and the system's
reaction.

class Task-Action_metamodel

UserActionSubTask

UseCase

Task

UserActionInfo Control lUnit

Trigger

ControllUnit

Input

SystemAction

Container

TopLev elContainer

SystemActionInfo

ActionProcessor

+receives1

+isReceivedBy

1

1

«Present»

1

1

1..*

+isReceivedBy

1

+receives
1

«realize»

+isRealizedBy

1

+consistsOf 1..*

1

«Realize»

+isReal izedBy 1..*

1

«Supply»

0..*
1

«ActionTrigger»

1

1

+consistsOf

1..*

1 1

1

+consistsOf

1

Figure 1: Task-Action Meta-model.

In order to specify the user-interface interaction, we
synthesized a two-column dialog scenario capture with a

356 Informatica 34 (2010) 353–367 J. Krystof

behavioral diagram and formed the Task-Action Model
(TAM) [31]. The goal of TAM is to convey the user-
interface interaction by capturing 1) the goal of the user,
2) the user's responsibility to the interface and 3) the
system's responsibility to the interface.
We chose the UML Activity diagram as modeling
facility because of its simple notation compared with
common interaction diagrams. A UML activity diagram
is normally used to represent the dynamic view of a
system as control and data flow from activity to activity
[6]. In our case we have used it to depict the flow of
actions performed by the user and the system. The
Activity diagram has also been successfully employed in
user-interface storyboarding in RUP [43] and it has been
proposed as a suitable diagram for CTT (Concur Task
Trees) [3, 42], a widely used notation for task modeling.
However, we want to model tasks in the context of the
user and the system to show how these tasks should be
performed in terms of elementary actions as well as to
show which data are transferred during the steps of
interaction. The TAM, specified in the meta-model

shown in fig. 1, is based on our proposed meta-model for
the presentation layer [32]. All of the meta-model
elements are described in the table 1. The TAM is
commonly constructed after analysis of a particular use-
case where at least one task having a goal has been
identified. We consider the terms “task” and “goal” as
they are defined in Hierarchical Task Analysis (HTA): a
task is an activity that a user does to reach a goal, while
the goal is a desired state of the system [21]. Each task
can be broken down into several subtasks. Each subtask
has associated with it a particular container which
represents a set of user interface objects (UIO). The
subtask is a composition of one or more atomic actions
which are associated with particular interaction objects
(IO). An action associated with a subtask is called a User
action and denotes a user responsibility with the respect
to one or more IOs. We model two kinds of interaction:
1) Supply interaction, which represents providing input
data for a current task and 2) Trigger interaction, which
causes termination of a current subtask and transition to a
connected System action. The System action is

Table 1: Description of the Task-Action Meta-model.

Meta-model
object

Description UML Location

UseCase Use-case associated with one or more task. Original Use-case model
Task The task is bound to a particular use-case through a dependency «Realize».

The task has one or more SubTasks.
Activity, stereotype
«Task».

Task Action
Model

SubTask The Subtask represents one or more steps which belongs together within a
task. It has an input (SystemActionInfo) which holds a reference of UI
displayed within this subtask. It has one or more UserActions.

Activity, stereotype
«SubTask».

Task Action
Model

UserAction The UserAction represents a user-interface interaction which has one
UserActionInfo.

Action, stereotype
«UserAction».

Task Action
Model

UserActionInfo The UserActionInfo is the specification of a particular UserAction and
conveys more information about the interaction. The UserActionInfo can
have one or more UIOs of the ControlUnit (from LPGM structural model)
type associated through «ActionTrigger» or «Supply» dependency. The
UserActionInfo. This object is received by a SystemAction which
processes the UserAction.

ActionPin, stereotype
«UserActionInfo».

Task Action
Model

Input An input object (TextField, CheckBox, etc. from LPGM structural profile)
used during a user-interface interaction for obtaining data from a user. It is
connected with the UserActionInfo through the «Supply» dependency.

Class, stereotype «Input»
and its descendants.

Presentation
model

Trigger The object (from the LPGM structural model) used during a user-interface
interaction for triggering a SystemAction. It is connected with a
UserActionInfo through the «ActionTrigger» dependency.

Class, stereotype
«Trigger» and its
descendants.

Task Action
Model

Supply The dependency between a user and UserActionInfo and a particular Input
object (e.g. TextField, CheckBox). It denotes the user's responsibility for
providing data to the current SubTask.

Dependency, stereotype
«Supply».

Task Action
Model

ActionTrigger The Dependency between a UserActionInfo and a particular Trigger object
(e.g., Button, MenuItem). It denotes a user operation which terminates the
current SubTask.

Dependency, stereotype
«ActionTrigger».

Task Action
Model

SystemAction The SystemAction represents an abstraction of the system action
responsible for processing the previous SubTasks. It is responsible for
processing the previous SubTask and providing a UI as a response.

Action, stereotype
«SystemAction».

Task Action
Model

SystemActionInfo The SystemActionInfo is a specification of a particular SystemAction. It
holds a reference to a method ActionProcessor and TopLevelContainer that
is generated and displayed in the subsequent task.

ActionPin, stereotype
«SystemActionInfo».

Task Action
Model

ActionProcessor The ActionProcessor is a method which represents a physical
implementation of the SystemAction. It is responsible for processing the
data provided by the previous SubTask.

Operation, stereotype
«ActionProcessor».

Application
model

TopLevelContain
er

TopLevelContainer is a UIO which is generated as a response and passed
to the subsequent SubTask.

Class, stereotype
«TopLevelContainer».

Presentation
model

Presents The dependency between SystemActionInfo and generated UIO. The
dependency between the user and UserActionInfo and a particular Input
object (e.g., TextField, CheckBox). It denotes the user's responsibility for
providing data to the current SubTask.

Dependency, stereotype
«Presents».

Task Action
Model

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 357

responsible for processing the finished subtask
through a delegated method denoted as the Action
processor. This method generates a user interface
which is represented by a container. One interaction
step is finished at this point and a new one begins by

sending the generated container to the following
subtask. The whole process is repeated until the last
subtask is finished and the goal associated with the
current task has been achieved. Example of the TAM
is presented in the fig. 2.

class Choose how to contact

«SubTask»
Choose how to contact

«SystemActi...

Show Contact
Options

SCO_Pin

«UserAction»

ChooseEmailOrSMS

ChooseEmail_Pin

«SystemAction»

DisplayEmailOrSMS

Email_Pin

SMS_Pin

«SystemAction»

LoadPrev iousSubtask

«SubTask»
Type E-mail

«SubTask»
Type SMS

«UserAction»

Cancel

Cancel_Pin ... Omitted ...
 ... Omitted ...

... Omitted ...
 ... Omitted ...

Figure 2: Example of Task-Action Model, showing the subtask “Choose how to contact”.

3.2 Presentation model
The goal of the Presentation model (PM) in our

approach is to describe the structure of the user
interface. By structure we mean a set of widget types
(i.e., buttons, icons, forms, etc.) and the specification
of the containment hierarchy [2].

Rules for the construction of the PM are based on
the meta-model for the presentation layer presented in
[32] and have been included in the LPGM profile. The
profile for the PM contains a hierarchy of stereotypes
representing concrete and abstract interface objects.
The hierarchy has a root in GElement which is a
stereotype extending the UML meta-class and serves
as a common parent for all inherited stereotypes that
form a hierarchical tree. Tree leafs represent concrete
interface objects (CIO) while tree nodes may represent
abstract interface objects (AIO).

In the tree, three basic classes of UIOs are
defined: containers, presentation units, and control
units. These are the AIO and the parents of, e.g.,
Form, Label and ComboBox, respectively. Both AIOs
and CIOs can be found in other approaches, such as
[8, 17, 51] but we offer a richer set of UIOs: The
UMLi approach (focused on both web and traditional
UI) [51] provides three UIOs; the TEALLACH
approach (focused on traditional UI) provides five
UIOs [52], and the UWE approach (focused on web
UI) provides ten UIOs [25]. If we need to eliminate a
particular CIO, we can replace it by using the most
appropriate AIO, which can be the nearest parent of
the node in the hierarchical tree. Since all UIOs are
defined in a UML profile, extension of to the set of
UIOs is possible and easy.

We consider that the PM is a platform independent
and reusable component that cannot include any
information other than a structure. Specifying any of
the geometrical aspects of the UIOs (location, width,
height) or their appearance (color, font, alignment) a
premature commitment to a specific look and feel.
Therefore we decided to consider our PM as an artifact
capturing the structure of the UI and nothing more.
For us a structure means a set of UIOs and the logical
relations among them. We have proposed in [29] a
hypothesis, with which we can model the structure of
a UI using hierarchical and neighborhood relations. In
order to formalize a the description of the UI structure,
we have formulated definitions that contribute to the
definition of the UI structure.

Definition 1.
Let g denote a sorted couple (id, t) where the id is an
indentifier and the t is a data type.

Definition 2.
Let G be a set containing all g elements.

Definition 3.
Let C be a set of containers:

}),(),{(containertGtidtidC

Definition 4.
Let VN denote a Vertical Neighborhood relation

2GVN . This VN relation must satisfy Constraint
1.

Constraint 1.

358 Informatica 34 (2010) 353–367 J. Krystof

)),(:(

)),(:((),(:,

jll

kikjiji

ggVNilg

ggVNjkgggVNgg

If a gi is in VN relation with a gj then gi cannot be in a
VN relation with any other element.

Definition 5.
Let VN denote a Horizontal Neighborhood relation

2GHN . This VN relation must satisfy Constraint
2.

Constraint 2.

)),(:(

)),(:((),(:,

jll

kikjiji

ggHNilg

ggHNjkgggHNgg

If a gi is in an HN relation with a gj then this gi cannot
be in HN relation with any other element.

Relations of Horizontal Neighborhood and Vertical
Neighborhood have additional constraint 3.

Constraint 3.

 HNVN

Definition 6.

Let H denote a relation HNVNH .

Definition 7.
Let ParentOf denote a relation GCParentOf .

The ParentOf relation must satisfy the Constraints 4
and 5.

Constraint 4.

),(

,),(

gdParentOf

cddParentOfgc

No element g can have more then one parent c.

Constraint 5.
),(),(),(gcHNgcVNgcParentOf

Neither c nor g can take part in any VH or HN
relation.

We have expressed all defined relations in terms
of UML and created stereotypes «ParentOf»,
«Neighbour», «H_Neighbour» and «V_Neighbour» as
extensions of the UML Associaton meta-class. In our
PM, we use the «ParentOf» stereotype to denote the
first owned element of a container. The «Neighbour»
stereotype denotes an ordered pair of elements.
«H_Neighbour» and «V_Neighbour» are
specializations of the «Neighbour» and correspond to
the Horizontal and Vertical Neighborhood relations.
We bind two UIOs by «H_Neighbour» or
«V_Neighbour» when we want our model to represent
these elements laid out horizontally or vertically,
respectively, within a common container. With the use
of these relations, we can model the containment
hierarchy and the relations contributing to the UI
layout.

class lpgm-layout

ParentOf

QuickLink A
V_Neighbor H_Neighbor

Neighbor

«metaclass»
Association

«extends»
«extends»

Figure 3: Stereotyped associations of the UML profile
for the Presentation model.

3.3 Development environment
As we have mentioned, MB-UID is usually

supported by a software tool that provides a graphical
environment. Since we are focused on UML, we have
explored several UML compliant modeling tools [30],
[33] focusing on the level of their extension in order to
support our modeling approach. These tools, which we
have called adaptive, can be extended and adapted to
specific purposes different from the original. In [33]
we set forth the following requirements which must be
satisfied in adaptive UML compliant modeling tools.
 The tool must support UML profiles and

stereotypes as specified in [46]. We want to
emphasize support for features enabling the
application of alternative icons to stereotypes
because appropriate icons can better convey the
modeling domain thus and make the modeling
more intuitive and clear.

 The tool must provide an API (Application
Programming Interface) which enables access to
the UML repository and manipulation of the data
of the model.

 The API must provide a mechanism for
establishing a channel of communication to show
which action is being performed on the model
data, e.g., element creation or model deletion.
Such interactive observations enable keeping
track of a development process and better
controlling it.

 If there exists an adaptive modeling tool, we
recommend implementing an environment that
provides such functions as model transformations,
generation of unique internal identifiers for new
model elements and checking the names of
elements according to naming conventions. The
environment should also behave as a container for
storing approach-compliant resources
(transformation rules, type mapping, UML
profiles, etc.).

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 359

Figure 4: Stereotyped classes of the UML profile for
the Presentation model.

4 Method application
The application of our approach consists of

constructing models and generating source code for a
particular platform. Models are built using the LPGM
profile and are created without including any platform-
specific information. The models created are
considered as PIM models (Platform Independent
Model) in the MDA. We will illustrate in this section
how these models are constructed and utilized.

4.1 Model construction
Our approach to the process of modeling a user

interface is based on the existing use-case model.
After the functionality of the entire application has
been specified, we identify all the goals of the given
use-case for which the TAM is being constructed.
Each goal is associated with a particular task, which is
modeled as a «Task» activity. This activity is
connected to the original use-case through «Realize»
dependency. The task is broken down into
«SubTasks» activities which contain «UserAction»
actions. The first IOs are identified at this point: the
PM is constructed in parallel, to enable it to
immediately bind action pins «UserActionInfo» to UIs
through «Supply» or «ActionTrigger» dependencies.
A «SystemAction» action is constructed for each
«SubTask», and a «SystemActionInfo» action pin is
added to the action through «Present» dependency, the
«SystemActionInfo» is associated with a container
which is generated and displayed for the user in the
next subtask. The container is produced by the
«ActionProcessor» method, which represents physical
implementation of the method used to generate the UI
for the following task. The method is connected to the
«SystemAction» through «Realize» dependency.

When the TAM is finished, the PM is completed
by adding additional UIOs (images, icons, labels) to
the IOs which were created during the construction of
the TAM. All UIOs must be connected to their
neighbors and parents through «ParentOf»,
«H_Neighbour», and «V_Neighbour» dependencies
until the specification of the structure is finished. The
PM is then done.

The system action "Show Contact Options"
provides the “Controlls_Cont” container of the
«Form» stereotype which is bound to the output action
pin “SCO_Pin” through the «Present» association.
This container is subsequently displayed in the
“Choose how to contact” subtask, wherein the user can
use two radio buttons “Email_RBtn” and
“SMS_RBtn” in order to choose the way of
communication or cancel the subtask. These two
options are performed within “ChooseEmailOrSMS”
and “Cancel” user actions, respectively. Thus the
“ChooseEmailOrSMS” user action has the “CES_Pin”
action pin, which is associated by means of two
«Supply» associations with the “Email_RBtn” and
“SMS_RBtn” radio buttons. Furthermore, the

360 Informatica 34 (2010) 353–367 J. Krystof

“CES_Pin” has an «ActionTrigger» association
connected with the “Next_Btn” button. The “Cancel”
user actions its “Cancel_pin” action pin connected
with the “Dismiss_Btn” button through
«ActionTrigger» association. After using the
“Next_Btn”, the user action “DisplayEmailOrSMS” is
executed and one the “Type E-mail” or “Type SMS”
subtasks is displayed according to the user’s choice.

4.2 Model transformations
The TAM and PM do not contain any information

related to implementation since the target platform is
not yet known. After the platform is specified we
should transform current models in order to get new
and richer models having a form optimal for the
straightforward and effective generation of code. We
have proposed several transformations which will be
depicted in the next sections. The transformations are
model-to-model and model-to-text and are applicable
for both web and traditional UI.

4.2.1 Layout normalization of presentation
model

After finishing the PM, we have the ideal model
from the point of view of a developer. The developer
need not focus on any implementation issues and the
PM is thus created with respect its function and not
technical issues. However, such a form of model is
hard to interpret in the context of code generation. The
problem is represented by so-called “corner
elements”. Corner elements are UIOs which take part
in both V_Neighborhood and H_Neighborhood
relations. Corner elements “Controlls_Cont”,
“Next_Btn”, “Email_RBtn” and “SMS_RBtn” are
seen in the fig. 5. Common containers of user
interfaces can hold and arrange objects in only one
direction, i.e., either horizontally or vertically:
QT/C++ (HorizontalLayout and VerticalLayout),
Swing/Java (BoxLayout.X_AXIS and
BoxLayout.Y_AXIS), HTML/Web (div and span).
Therefore we need to eliminate all corner elements in
order to shift the model a bit towards an
implementation form. We have proposed and
implemented an algorithm [29] which breaks every
corner element into one element and one new
wrapping container. The element is later removed
from the H_Neighborhood or V_Neighborhood
relation and the relation is inherited by the new
container (see fig. 6). This process is called “layout
normalization“ and after it is done all
H_Neighborhood and V_Neighborhood relations must
satisfy the constraints 6 and 7.

Constraint 6.

),(:

),(::

kik

jiji

ggHNGg

ggVNGgGg

No element gi can be in both VN and HN relations.

Constraint 7.

),(:

),(::

kik

jiji

ggVNGg

ggHNGgGg

No element gi can be in both VN and HN relations.

4.2.2 Model enrichment
The PM contains no additional information beside

that information regarding the structure of the UI, so
we need to add information through a transformation
step which we call “model enrichment”. Model
enrichment is performed partly on the PIM level and
causes the transition of the PIM to a PSM (Platform
Specific Model), when the process of model
enrichment begins to add platform-specific
information. This enrichment is based on mapping
“key - new information”, where the key is a unique
identifier of the model element being processed. New
information can be added to the model in the form of
tagged values, as has been demonstrated in [27].
Transformation at PIM level. Since no information
related to appearance or content has been specified, we
propose to add this through use of the tagged values
appearance, text and resource. The tagged
value appearance contains a link to the definition
of appearance. It is not necessary to generate the
appearance tagged value for all UIOs. It is enough
to generate this for the top-level containers and
distribute appearance information to their descendants
at the run time (as we show in the next section). The
tagged valued text contains either a text which will
be displayed at the run time or a key referring to a
resource that has a corresponding text value. The later
approach enables flexible management of the content
(e.g. localization) in future. This tagged value can be
presented only by a UIO with the stereotypes Text and
Label. The tagged value resource is generated for
all types of Presentation units (i.e., Media, Image, etc.)
and defines the location of an associated resource
(e.g., multimedia file, image file).

Transformation at PSM level. Once the target
platform has been chosen, we recommend enriching it
immediately with additional, implementation-related
information. This can typically be the data type for
each UIO. For this purpose, we propose to set a
tptype (target platform type) tagged value that
refers to the fully qualified name of a data type for a
UIO of a particular stereotype. Other tagged values
can specify a namespace (C#) or package (Java) for
top-level containers which are considered to be
transformed into a class. We also propose to perform
another enrichment which adds a new tagged value
containing a text value that corresponds to an
identifier suited to the target platform to prevent
problems during source code compilation. The
alternative name may be derived from the original one
and can conform to a particular naming convention.

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 361

Figure 5: Depiction of the Container “ChooseContact_Form”, an example of a PM. (A mock-up of it is shown in the
upper right-hand corner.)

Figure 6: Normalized layout of the “ChooseContact_Form” container, which contains no corner-elements.

362 Informatica 34 (2010) 353–367 J. Krystof

4.2.3 Source code generation
When the last model-model transformation has been

completed, we can proceed to generate source code,
remembering that one of our goals is to separate concerns
as much as possible.

Based on the TAM, we propose to generate an XML
file named Task-Action Descriptor, see fig. 10. This file
provides information which can drive the application
flow without the need to hard-code such information into
the application logic or the presentation logic. By
keeping track of both the last action triggered by the user
(e.g., button press) and the TAD we can determine the
corresponding action of the system and launch it
dynamically.

We use the PM to generate source code for the user
interface. Since we have not included any spatial
information regarding the layout within the PM, we need
to reconstruct this from the definition of the UI structure
and place UIOs at the right positions within the top-level
container. In traditional MB-UID, the UI layout is
sometimes generated from a task model [35, 52, 5] or
based on some grouping relations [24, 57, 52]. Some of
these approaches use particular strategies that give a
solution for automated placement. Techniques like the
double-column strategy or right-bottom strategy [5], [56]
provide good results under certain circumstances and
only partially, so they cannot be employed widely
without corrections [44]. The problem with these
strategies comes from the endeavor to solve this issue
complex and in their own hook. Therefore we decided to
avoid generating source-code, including the command
for the automated placement of UIOs. On the other hand,
we propose to generate a UI layout with the use of
containers which control the placement of UIOs on their
own. This strategy can be applied in a variety of widget
toolkits which support the concept of Layout Managers
[18]. The great advantage of using layout managers is
that they can adjust layout dynamically, e.g., during
changes in the size of the screen.

5 Evaluation
We have already done some experimental evaluation

of our method in the areas of traditional and web
development. The first tests focused on generating a
traditional UI for the Swing platform, where we
employed our PM. The second test focused on web
applications, particularly on the J2EE platform, where we
employed both models with emphasis on the TAM. We
used the reflection mechanism [45] intensively during
this evaluation because our method is heavily dependent
on it.

5.1 Development environment
In order to provide software support for our

approach, we have implemented the software
environment LPGM4EA, see fig. 7. We focused on
contemporary UML-compliant modeling tools used in
the commercial sphere because we wanted to explore the

possibility that our approach could be adopted without
forcing anybody to abandon a tool currently in use. After
comparing the modeling tools Visual Paradigm,
Enterprise Architect and Rational Rose, we have
implemented our environment in the Enterprise Architect
modeling tool. The EA is widely used in the community
of software developers and provides some important
features which put it into the class of adaptive modeling
tools.

The LPGM4EA environment is written in the .NET,
has its own presentation layer, and runs in its own
window outside the EA graphical environment. The
LPGM4EA is connected to the running instance of the
EA through a bidirectional communication channel
which is based on listener which propagates user actions
performed in the LPGM4EA to and from the EA. The
application layer of the LPGM4EA is also able to access
the UML repository of the EA without the running
instance of the EA. This offline access mode is also
supported in Rational Rose, but it is not supported in
Visual Paradigm. This lack of offline UML data
processing precludes processing data non-interactively
which can cause the development process to break down:
there can be a lot of models in the UML repository, and
thus it should be possible to process data automatically
without user intervention, as a batch.

The LPGM4EA provides functionality which
enables the running model-model and model-text
transformations. These transformations are template-
based [4] for both model-model and model-text
transformations. It also watches the UML repository and
manages newly added or deleted model elements. Thus
we are able to decorate new elements with an lpgmid
tagged value which holds our internal identifier,
generated uniquely for PM and TAM elements and to
provide some assistance in correctly naming model
elements.

Figure 7: Scheme of the LPGM4EA modeling and
development environment.

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 363

5.2 UI generation of Swing components
and HTML tags

The application logic responsible for UI code
generation is realized through the
IWireframe2CodeTransformation interface, see
fig. 8. A note on naming of our classes and interfaces: we
think of the PM as a sort of (UML) wireframe and
therefore we use the term “wireframe” within our
implementation. The implementation of the interface is
quite simple, and it is necessary to implement it on every
platform we want to support. This interface is used by the
interface ITransformation2CodeController
which is able to read the normalized model. It drives the
generation and calls methods placed in implementations
of the IWireframe2CodeTransformation. At
this moment, we have two implementations:
Wireframe2HtmlTransformationImpl and
Wireframe2SwingTransformationImpl. Each
implementation has a template for the StringTemplate1

library. Templates are designed with respect to the target
platforms and provide parameterized generation of code.

5.2.1 Swing
User Interfaces for the Swing library were generated

against top-level containers. A new java class was
generated for each top-level container in the form of a
file. This file (class) contains common sections such as a
package name, an imports section, a class skeleton,
attribute declarations and a constructor.

The import section is generated from the tagged
value tptype of all the nodes and leafs in containment
hierarchy of the top-level container. The class skeleton is
generated for the top-level container and extends the
platform type of the container (e.g. class Foo
extends JFrame).

The section attribute declarations contains
declaration expressions for all nodes and leafs (UIOs) in
the containment hierarchy of the top-level container.

The constructor contains three blocks of commands.
The first block contains commands for the initialization
of all UIOs. The second block contains the commands
responsible for building the containment hierarchy and
setting the proper layout. We use BoxLayout with
constants BoxLayout.X_AXIS and
BoxLayout.Y_AXIS to lay out UIOs horizontally and
vertically, respectively. The third block contains
commands responsible for setting texts and resources for
textual and multimedia UIOs. Figure 9 shows the part of
the generated code that is relevant to figure 6.

The appearance of the components generated is set
separately. It is achieved by creating a simple text file for
each top-level container where in the appearance
properties are specified for the particular UIO or group of
objects. This definition is parsed and processed at run
time. Then we proceed to set the appearance values of
objects of the hierarchy of top-level containers. We get a
reference to the top-level container object and traverse

1 http://www.stringtemplate.org/

Figure 8: Depiction of the infrastructure of class and
interface in the transformation process

364 Informatica 34 (2010) 353–367 J. Krystof

Figure 9: Example of the code generated to set up the
containment hierarchy for the diagram shown in figure 6.

the entire tree from the root to the bottom at the leafs
level. Along the way we set all appearance properties to
objects which are selected by a selector in the
appearance-definition file. Each processed object is
inspected via the reflection mechanism by checking for
the existence of a method conforming to the name of the
property and having an appropriate set of formal
parameters. For instance, if there is a property “font-
style: courier, italic, 12”, we seek a
method void setFontStyle(String, String,
int). If such a method exists, we perform its execution
and supply the specified values.

In the generated file, the appearance is separated
from the structure definition which makes the source
code more modular and readable and easier to maintain.
Furthermore, we claim that this strategy keeps up a
unified appearance, thanks to the selector mechanism:
JLabel font: Font.BOLD will apply the bold font
style to all labels in the user interface. This prevents us
from forgetting to set it, as we might if we were using the
common manual approach.

5.2.2 HTML
During the PM evaluation, we also tested the

generation of tags for HTML. This generation is easier
thanks to the fact that HTML is a declarative language.
In order to generate the structure of a UI in HTML, we
used the DIV and SPAN tags to lay out UIOs vertically
and horizontally, respectively. We were able to generate
common HTML forms or menus for a content
management system, where in the TAM was also
utilized. The appearance was set in common way by
using CSS (Cascade Style Sheet documents).

5.3 Dynamic flow control in web JavaEE
applications

The TAM was tested during the development of a
content management system on a JavaEE platform by
using servlet and JSP technologies. We have designed a
format for the XML file to hold information from the

TAM. This document is called the Task-action
descriptor.

The format of the document is self explanatory and
corresponds to the TAM. Information in the document
helps us to control the flow of applications. The
descriptor contains records corresponding to the actions
of a user and system which are bound via the lpgmid
identifier. The utilization of the descriptor is performed
according to the following scenario.

The user performs an action using a particular IO
with associated lpgmid. The web browser generates an
HTTP request and the lpgmid value is sent to the server
as a parameter. The HTTP request is processed by a
servlet, which extracts the lpgmid value and seeks the
corresponding record in the TAD using userAction.
The userAction found contains an attribute
actionTrigger referencing a systemAction. The
systemAction has a method name and the fully
qualified name of the parent class. The method
(ActionProcessor) is executed by the servlet via a
reflection mechanism, and the
HttpServletRequest is passed on as an argument.
The method performs common steps such as extracting
parameters, and calling application logic, and it generates
an HTTP response (HttpServletResponse). The
response contains a UI within the JSP specified as a view
attribute. The UI is generated from the PM.

This way of processing an HTTP request replaces
common techniques, where in long blocks of “if-
elseIf-...” are used within the servlet code.
Furthermore, if we need to change a flow order or UI
generated for a particular subtask, we can do it manually
by editing the TAD, without needing to compile
compilation the servlet source code.

Figure 10: Depiction of the Task-action descriptor
for the “Choose how to contact” subtask.

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 365

6 Future work
Our research and development within the LPGM

approach is not finished. Our future activities will focus
on more extensive utilization of the TAM with emphasis
on generating the source code of event handlers in the
scope of traditional UI or automating the extraction of
parameters from an HTTP request and validating them.
The models will also be used to generate technical and
user documentation for the interface.

We also want to use the TAM to generate tasks for
collaborative user interface agents [12]. We believe this
is a good way of providing assistance to help users and
support the user experience.

7 Conclusion
In this paper, we have introduced our approach for

modeling and development of user interfaces. The
approach can be classified as MB-UID since it is based
on a set of models which are interpreted and used for
transformations. The approach is suited to the field of
traditional and web user interfaces. The constructed
models can be used with a particular platform. The
modeling approach focuses on task modeling in the
context of a user and a system. Furthermore, it provides
facilities to model the UI structure with the use of a PM.
The TAM and PM have been formalized with the use of
meta-model and algebraic formulas. These models can be
processed automatically in order to perform a series of
transformations resulting in the source code of the user
interface for a particular platform. Processing of the
models is supported by a software environment which
provides assistance during the construction of the model
and the generation of source code. Therefore the
environment can be classified as MB-UIDE.

Our approach differs from other MB-UID
approaches in several ways. Firstly, we use UML
modeling notation in both our models, so they can be
read and processed in other environments. This is a step
towards interoperability and compatibility with industry
standards. Secondly, our models can be considered as
reusable components and can be used for the
development of both web and traditional interfaces. It is
not our goal to generate “ready to run applications” but
just reasonable and useful fragments for the development
of user interfaces.

We have demonstrated the utilization of our models
with the support of our developing environment, which
we have integrated into an adaptive modeling tool EA.
The way we generate source code and integrate it into
other source codes supports the separation of concerns.
Such code is modular and easily maintained.

Acknowledgment
The paper is written as a part of solution of a

research plan PEF MZLU MSM 6215648904/03/03/02.

References
[1] Abouzahra, A.; Bézivin, J.; Fabro, M. D. D. &

Jouault, F. (2005), A Practical Approach to
Bridging Domain Specific Languages with UML
profiles, in 'In Proceedings of the Best Practices for
Model Driven Software Development at
OOPSLA’05'.

[2] Batory, D.; Sarvela, J. N. & Rauschmayer, A.
(2003), Scaling step-wise refinement, in 'ICSE '03:
Proceedings of the 25th International Conference on
Software Engineering', IEEE Computer Society,
Washington, DC, USA, pp. 187--197.

[3] den Bergh, J. V. & Coninx, K. (2007), From Task
to Dialog Model in the UML, in 'TAMODIA', pp.
98-111.

[4] Boas, G. E. (2004), 'Template Programming for
Model-Driven Code Generation',
http://www.softmetaware.com/oopsla2004/emdeboa
s.pdf.

[5] Bodart, F.; Hennebert, A.-M.; Leheureux, J.-M. &
Vanderdonckt, J. (1994), Towards a dynamic
strategy for computer-aided visual placement, in
'AVI '94: Proceedings of the workshop on
Advanced visual interfaces', ACM, New York, NY,
USA, pp. 78--87.

[6] Booch, G.; Rumbaugh, J. & Jacobson, I. (2005),
Unified Modeling Language User Guide, The (2nd
Edition) (Addison-Wesley Object Technology
Series), Addison-Wesley Professional.

[7] Ceri, S.; Fraternali, P. & Bongio, A. (2000), 'Web
Modeling Language (WebML): a modeling
language for designing Web sites', Comput. Netw.
33(1-6), 137--157.

[8] Chesta, C.; Patern?, F. & Santoro, C. (2004),
'Methods and Tools for Designing and Developing
Usable Multi-Platform Interactive Applications',
PsychNology Journal 2(1), 123-139.

[9] Conallen, J. (2000), Building Web applications with
UML, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[10] Constantine, L. L. & Lockwood, L. A. D. (2001),
'Structure and style in use cases for user interface
design', 245--279.

[11] Domingues, A. L.; Bianchini, S. L.; Costa, M. L.;
Ferrari, F. C. & Maldonado, J. C. (2007), eb
application development methods: a comparison, in
'Workshop on Business Process Management'.

[12] Eisenstein, J. & Rich, C. (2002), Agents and GUIs
from task models, in 'IUI '02: Proceedings of the
7th international conference on Intelligent user
interfaces', ACM, New York, NY, USA, pp. 47--54.

[13] Engels, G.; Heckel, R. & Sauer, S. (2000), UML --
A Universal Modeling Language?, in M. Nielsen &
D. Simpson, ed.,'Proc. Application and Theory of
Petri Nets 2000, 21st International Conference,
ICATPN 2000, Aarhus, Denmark, June 2000.',
Springer, , pp. 24--38.

[14] Fons, J.; Pelechano, V.; Albert, M. & Pastor, O.
(2003), Development of Web Applications from

366 Informatica 34 (2010) 353–367 J. Krystof

Web Enhanced Conceptual Schemas, in 'ER', pp.
232-245.

[15] Fowler, M. (2001), 'Separating User Interface
Code', IEEE Software 18, 96-97.

[16] Frankel, D. (2002), Model Driven Architecture:
Applying MDA to Enterprise Computing, John
Wiley & Sons, Inc., New York, NY, USA.

[17] Griffiths, T.; McKirdy, J.; Paton, N. W.; Kennedy,
J. B.; Cooper, R.; Barclay, P. J.; Goble, C. A.; Gray,
P. D.; Smyth, M.; West, A. & Dinn, A. (1998), An
Open-Model-Based Interface Development System:
The Teallach Approach, in 'DSV-IS (2)', pp. 34-50.

[18] Haraty, M.; Nobarany, S.; DiPaola, S. & Fisher, B.
(2009), AdWiL: adaptive windows layout manager,
in 'CHI EA '09: Proceedings of the 27th
international conference extended abstracts on
Human factors in computing systems', ACM, New
York, NY, USA, pp. 4177--4182.

[19] Jacobson, I.; Booch, G. & Rumbaugh, J. (1999),
The unified software development process,
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[20] Karwaczyńnski, P. & Maciejewski, L. (2004), UML
Proile for Analysis and Design of Jakarta Struts
Framework Based Web Applications, in
'Proceedings of NWUML', pp. 185--196.

[21] Kirwan, B. & Ainsworth, L. K. (1992), A Guide to
Task Analysis, Taylor & Francis.

[22] Knapp, A.; Koch, N.; Moser, F. & Zhang, G.
(2003), ArgoUWE: A CASE Tool for Web
Applications, in 'First Int. Workshop on
Engineering Methods to Support Information
Systems Evolution (EMSISE 2003)'.

[23] Koch, N. (2001), 'Software Engineering for
Adaptive Hypermedia Applications', PhD thesis,
Ludwig-Maximilians-Universit?t M?nchen.

[24] Koch, N. & Kraus, A. (2002), The expressive
Power of UML-based Web Engineering, in
'Proceedings Second Internatioanl Workshop on
Web-Oriented Software Technology
(IWWOST’02)'.

[25] Koch, N. & Mandel, L. (1999), 'Extending UML for
Modeling Navigation and Presentation in Web
Applications', online.

[26] Kong, X.; Liu, L. & Lowe, D. (2005), 'Separation
of concerns: a web application architecture
framework', Journal of Digital Information 6.

[27] Kozaczynski, W. & Thario, J. (2002), Transforming
User Experience Models To Presentation Layer
Implementations, in 'Second Workshop on Domain
Specific Visual Languages'.

[28] Kruchten, P.; Ahlqvist, S. & Bylund, S. (2001),
'User interface design in the rational unified
process', Object modeling and user interface design:
designing interactive systems, 161--196.

[29] Kryštof, J. (2009): Formální popis rozložení prvků
grafického uživatelského rozhraní, in 'The 11th
nternational Conference MEKON'.

[30] Kryštof, J. & Chalupová, N. (2008), Prerekvizity
pro novou koncepci modelování GUI v

modelovacích nástrojích, in 'Objekty 2008', pp.
127-–136.

[31] Kryštof, J. & Motyčka, A. (2009), Extrakce scénářů
do modelu úloh a akcí., in 'Objekty 2009'.

[32] Kryštof, J. & Motyčka, A. (2008), Metamodel for
presentation layer, in 'Information Society', pp. 270-
-273.

[33] Kryštof, J. & Procházka, D. (2009), Rozšíření UML
modelovacích nástrojů pro potřeby vývoje
grafických uživatelských rozhraní, in 'Objekty
2009', pp. 264-–272.

[34] Lutteroth, C. (2008), Automated reverse
engineering of hard-coded GUI layouts, in 'AUIC
'08: Proceedings of the ninth conference on
Australasian user interface', Australian Computer
Society, Inc., Darlinghurst, Australia, Australia, pp.
65--73.

[35] Martínez-Ruiz, F. J.; Vanderdonckt, J. & Arteaga, J.
M. (2009), Web User Interface Generation for
Multiple Platforms, in 'Proceedings of the 7th
International Workshop on Web-Oriented Software
Technologies (IWWOST'2008) in conjunction with
the 8th International Conference on Web
Engineering (ICWE'2008)', pp. 63--68.

[36] Mišovič, M. & Turčínek, J. (2008), 'Teoretický
přístup k tvorbě uživatelského rozhraní
softwarových systémů', Acta Universitatis
agriculturae et silviculturae Mendelianae Brunensis
: Acta of Mendel University of agriculture and
forestry Brno 6, 180--189.

[37] Myers, B. A. & Rosson, M. B. (1992), Survey on
user interface programming, in 'CHI '92:
Proceedings of the SIGCHI conference on Human
factors in computing systems', ACM, New York,
NY, USA, pp. 195--202.

[38] Myers, B.; Hudson, S. E. & Pausch, R. (2000),
'Past, present, and future of user interface software
tools', ACM Trans. Comput.-Hum. Interact. 7(1), 3-
-28.

[39] Nierstrasz, O. & Achermann, F. (2000), Separation
of Concerns through Unification of Concepts, in 'In
ECOOP 2000 Workshop on Aspects & Dimensions
of Concerns'.

[40] OMG (2010), 'UML Infrastructure specification',
http://www.omg.org/spec/UML/2.1.2/.

[41] OMG (2007), 'XMI specification',
http://www.omg.org/spec/XMI/2.1.1/.

[42] Paterno, F. (1999), Model-Based Design and
Evaluation of Interactive Applications, Springer-
Verlag, London, UK.

[43] Phillips, C. & Kemp, E. (2002), In support of user
interface design in the rational unified process, in
'AUIC '02: Proceedings of the Third Australasian
conference on User interfaces', Australian
Computer Society, Inc., Darlinghurst, Australia,
Australia, pp. 21--27.

[44] Puerta, A. & Eisenstein, J. (1999), Towards a
general computational framework for model-based
interface development systems, in 'IUI '99:
Proceedings of the 4th international conference on

AN LPGM METHOD: PLATFORM… Informatica 34 (2010) 353–367 367

Intelligent user interfaces', ACM, New York, NY,
USA, pp. 171--178.

[45] Rehak, M.; Tozicka, J.; Pěchouček, M.; Zelezny, F.
& Rollo, M. (2005), An Abstract Architecture for
Computational Re.ection in Multi-Agent Systems,
in 'IAT '05: Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent
Technology', IEEE Computer Society, Washington,
DC, USA, pp. 128--131.

[46] Riesco, D.; Martellotto, P. & Montejano, G. (2003),
'Extension to UML using stereotypes', UML and the
unified process, 273--293.

[47] Ryder, B. G.; Soffa, M. L. & Burnett, M. (2005),
'The impact of software engineering research on
modern progamming languages', ACM Trans.
Softw. Eng. Methodol. 14(4), 431--477.

[48] Schlungbaum, E. (1996), 'Model-based User
Interface Software Tools - Current state of
declarative models', Technical report, Graphics,
Visualization and Usability Centre, Georgia
Institute of Technology, GVU Tech Report.

[49] Schwabe, D.; de Almeida Pontes, R. & Moura, I.
(1999), 'OOHDM-Web: an environment for
implementation of hypermedia applications in the
WWW', SIGWEB Newsl. 8(2), 18--34.

[50] Schwabe, D. & Gustavo, R. (1998), 'An object
oriented approach to Web-based applications
design', Theor. Pract. Object Syst. 4(4), 207--225.

[51] da Silva, P. & Paton, N. W. (2003), 'User Interface
Modeling in UMLi', IEEE Softw. 20(4), 62--69.

[52] da Silva, P.; Paulo; Griffiths; Tony & Paton, N. W.
(2000), Generating user interface code in a model

based user interface development environment, in
'AVI '00: Proceedings of the working conference on
Advanced visual interfaces', ACM, New York, NY,
USA, pp. 155--160.

[53] da Silva, P. P. (2000), User Interface Declarative
Models and Development Environments: A Survey,
in 'DSV-IS', pp. 207-226.

[54] Tolvanen, J.-P. & Kelly, S. (2005), Defining
Domain-Specific Modeling Languages to Automate
Product Derivation: Collected Experiences, in
'Proceedings of the 9th International Conference on
Software Product Lines, SPLC 2005', Springer, ,
pp. 198-209.

[55] Troyer, O. M. F. D. & Leune, C. J. (1998), 'WSDM:
a user centered design method for Web sites',
Comput. Netw. ISDN Syst. 30(1-7), 85--94.

[56] Vanderdonckt, J.; Ouedraogo, M. & Ygueitengar,
B. (1994), A comparison of placement strategies for
effective visual design, in 'HCI '94: Proceedings of
the conference on People and computers IX',
Cambridge University Press, New York, NY, USA,
pp. 125--143.

[57] Viana, W. & Andrade, R. M. C. (2008), 'XMobile:
A MB-UID environment for semi-automatic
generation of adaptive applications for mobile
devices', J. Syst. Softw. 81(3), 382--394.

[58] WebRatioGroup (2010), 'WebRatio', online,
http://www.webratio.com.

[59] Wirfs-Brock, R. (1993), 'Designing Scenarios:
Making the Case for a Use Case Framework', The
Smalltalk Report 3(3).

368 Informatica 34 (2010) 353–367 J. Krystof

