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In this paper, we develop some new operational laws and their corresponding aggregation operators for
picture fuzzy sets (PFSs). The PFS is a powerful tool to deal with vagueness, which is a generalization of a
fuzzy set and an intuitionistic fuzzy set (IFS). PFSs can model uncertainty in situations that consist of more
than two answers like yes, refusal, neutral, and no. The operations of t-norm and t-conorm, developed
by Frank, are usually a better application with its flexibility. From that point of view, the concepts of
Frank t-norm and t-conorm are introduced to aggregate picture fuzzy information. We propose some new
operational laws of picture fuzzy numbers (PFNs) based on Frank t-norm and t-conorm. Further, with the
assistance of these operational laws, we have introduced picture fuzzy Frank weighted averaging (PFFWA)
operator, picture fuzzy Frank order weighted averaging (PFFOWA) operator, picture fuzzy Frank hybrid
averaging (PFFHA) operator, picture fuzzy Frank weighted geometric (PFFWG) operator, picture fuzzy
Frank order weighted geometric (PFFOWG) operator, picture fuzzy Frank hybrid geometric (PFFHG)
operator and discussed with their suitable properties. Then, with the help of PFFWA and PFFWG operators,
we have presented an algorithm to solve multiple-attribute decision making (MADM) problems under the
picture fuzzy environment. Finally, we have used a numerical example to illustrate the flexibility and
validity of the proposed method and compared the results with other existing methods.

Povzetek: Prispevek se ukvarja z operatorji mehkih množic na osnovi Frankove t-norme in t-konorme.

1 Introduction

In real-life situations, the fuzzy set theory [48] plays a vital
role in handling the vagueness of human choices. Then
continuous efforts are paid for further generalization of
fuzzy set theory. The IFS theory is one of such general-
izations, introduced by Atanssov [2]. IFS is characterized
by a degree of membership and degree of non-membership
such that their sum does not exceed one. However, IFSs are
insufficient to handle the possibility with more than two an-
swers as just yes-no type. Consider the case of usual voting
where one has the choices like a vote for, vote against, ab-
stain from voting, and refusal. To deal with such situations
with high accuracy, Cuong and Krienovich [8] conveyed a
novel concept of picture fuzzy set (PFS). PFS is character-
ized by a membership degree, a non-membership degree,
and a neutrality degree such that their sum is less than or
equal to one. Cuong [9] examined few properties of PFSs
and introduced distance measures between PFSs.

Recently, some research models have been developed on
the picture fuzzy (PF) environment. Dinh and Thao [10]
introduced some distance measures and dissimilarity mea-
sures between PFSs and applied them to MADM problems.
Wang and Li [33] proposed a hesitant fuzzy set in the PF
environment and developed picture hesitant fuzzy aggre-
gation operators. Wei [39] extended the TODIM method

to MADM problems under the PF environment. Wei [40]
developed some similarity measures between PFSs such
as cosine measure, set-theoretic cosine similarity measure,
grey similarity measure and applied these to building ma-
terial recognition and mineral field recognition. Dutta and
Ganju [11] introduced decomposition theorems of PFSs
and defined the extension principle for PFSs. Wei [35]
introduced PF cross-entropy as an extension of the cross-
entropy of fuzzy sets. Xu et al. [45] developed some aggre-
gation operators for fusing PF information. Dutta [12] ap-
plied distance measure between PFSs in medical diagnosis.
Singh [27] proposed correlation coefficients for PFSs and
gave the geometrical interpretation for PFSs. Son [28] and
Thong [29] introduced several clustering algorithms with
PFSs. Le et al. [21] proposed some dissimilarity measures
under PF information and applied them to decision-making
problems. Wei et al. [36] introduced the projection mod-
els for the MADM problem with PF information. Wei and
Gao [42] developed the generalized dice similarity mea-
sure under PF environment and applied them to building
material recognition. Zeng et al. [50] proposed the ex-
ponential Jensen PF divergence measure and applied it in
multi-criteria group decision making. Several researchers
proposed information aggregation operators under the PF
environment [3, 16, 17, 22, 30, 32, 43, 51]. Garg [14] pre-
sented some PF aggregation operators and applied them to
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multi-criteria decision making. Wei [38] presented cosine
similarity measures for PFS and applied them to strategic
decision making. Wei [41] proposed PF Hamacher aggre-
gation operators and applied them to the MADM process.
Khan et al. [18] investigated the information aggregation
operators method under the PF environment with the help
of Einstein norm operations. Khan et al. [19] introduced
a series of logarithmic aggregation operators under the PF
environment. Wang et al. [34] proposed Muirhead mean
operators under PF environment and applied them to eval-
uate the financial investment risk.

A fascinating generalization of probabilistic and
Lukasiewicz t-norm and t-conorm [23] are Frank t-norm
and t-conorm [13], which form an ordinary and adequately
flexible family of the continuous triangular norm. The
employment of a specific parameter makes the Frank t-
norm and t-conorm more resilient along with the proce-
dure of fusion of information. Several works [1, 20] can
be found in the literature related to Frank t-norm and t-
conorm. The functional equations of Frank and Alsina are
thoroughly studied by Calvo et al. [4] for two classes con-
taining commutative, associative, and increasing binary op-
erators. Exploring the additive generating function (AGF)
of Frank t-norms, Yager [46] launched a framework in ap-
proximate reasoning with Frank t-norms. Casasnovas and
Torrens [5] introduced a novel axiomatic approach to the
scalar cardinality of Frank t-norms, and they further estab-
lished the properties of other standard t-norms. Compar-
ing between the Frank t-norms and the Hamacher t-norms
up to an extent, Sarkoci [26] concluded that two different
t-norms belong to the same family. Xing et al. [44] in-
troduced aggregation operators for Pythagorean fuzzy set
based on Frank t-norm and t-conorm and then applied them
to solve MADM problems. Zhou et al. [52] investigated
some Frank aggregation operators of interval-valued neu-
trosophic numbers and analyzed a case study of select-
ing agriculture socialization. Qin and Liu [24] introduced
Frank aggregation operators for a triangular interval type-
2 fuzzy set and applied it to solve multiple attribute group
decision making (MAGDM) problems. Qin et al. [25] de-
veloped some hesitant fuzzy aggregation operators based
on Frank t-norm operations.

Evidently, a general t-norm and t-conorm can be used
for shaping both the intersection and union of PFS. The
PFS is compatible to reveal uncertain information. Since
the Frank aggregation operators involve a parameter so the
operators make the information process more flexible and
strong. The investigation on the applications of Frank op-
erators is rare, specifically in the area of information ag-
gregation and decision making. Keeping this in mind, it
is worthy to prolong Frank t-norm and t-conorm to handle
the PF environment. With such motivation of aforemen-
tioned analysis, we have introduced new operational rules
of PFNs based on Frank operators and exhibited their char-
acteristics.

In this paper, we have introduced some new opera-
tional laws for PFNs based on Frank t-norm and Frank t-

conorm. Then using these operational laws, we have devel-
oped Frank t-norm and t-conorm based PFFWA, PFFOWA,
PFHWA, PFFWG, PFFOWG, and PFFHG aggregation op-
erators. We have also investigated some of their desirable
properties. Utilizing PFFWA and PFFWG operators, we
have developed an algorithm to solve an MADM problem
under the PF environment. To illustrate the validity and su-
periority of the proposed method, a numerical example is
considered, solved, and the obtained results are compared
with other existing well-known methods.

The rest of the paper is organized as follows.
In Section 2, some basic definitions and preliminaries

are recalled, which help us to make the concept about the
present article. In Section 3, some new operational laws
for PFNs based on Frank t-norm and t-conorm have been
proposed, and using those operational laws, some new ag-
gregation operators are defined in the PF environment. An
algorithm to solve the decision-making problems based on
Frank aggregation operators is presented in Section 4. In
Section 5, we have checked the validity of the proposed
method through a real-life example. Section 6 analyze the
effect of the parameters on the decision-making result. Sec-
tion 7 presents a useful comparison between the results of
our proposed method and other significant models. Finally,
the conclusion is made in Section 8.

2 Preliminaries
In this section, we recall some basic definitions and prelim-
inaries.

Definition 2.1. [6, 7] Let us consider X as a universal set.
The PFS P̃ over the universal set X is interpreted as

P̃ = {〈x, µP̃ (x), ηP̃ (x), νP̃ (x)〉|x ∈ X}
where µP̃ : X → [0, 1], ηP̃ : X → [0, 1] and νP̃ :

X → [0, 1] are called the positive degree of membership,
neutral degree of membership and the negative degree of
membership to the set P̃ respectively, with the condition
0 ≤ µP̃ (x) + ηP̃ (x) + νP̃ (x) ≤ 1 for every x ∈ X . Also
the degree of hesitancy for x ∈ X is defined as πP̃ (x) =
1−µP̃ (x)−ηP̃ (x)−νP̃ (x). For our convenience, we denote
p = (µp, ηp, νp) as a picture fuzzy number (PFN).

Definition 2.2. [6, 37] Let p = (µp, ηp, νp) and q =
(µq, ηq, νq) be two PFNs over the universal set X and
ξ > 0 be any real number, then the corresponding oper-
ations are defined as follows:
1. p ≤ q, if µp ≤ µq, ηp ≤ ηq and νp ≥ νq
2. p

∨
q=(max{µp, µq},min{ηp, ηq},min{νp, νq}).

3. p
∧
q=(min{µp, µq},max{ηp, ηq},max{νp, νq}).

4. pc = (νp, ηp, µp).
5. p ∧ q=(min{µp, µq},max{ηp, ηq},max{νp, νq}).
6. p ∨ q=(max{µp, µq},min{ηp, ηq},min{νp, νq}).
7. p⊕ q = (µp + µq − µpµq, ηpηq, νpνq).
8. p⊗ q = (µpµq, ηp + ηq − ηpηq, νp + νq − νpνq).
9. ξp = (1− (1− µp)ξ, ηξp, νξp).

10.pξ = (µξp, 1− (1− ηp)ξ, 1− (1− νp)ξ).
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Definition 2.3. [16] The score function of the PFN p =
(µp, ηp, νp) is defined by

∆(p) =
1 + µp − νp

2

where ∆(p) ∈ [0, 1].

Definition 2.4. [16] The accuracy function of the PFN p =
(µp, ηp, νp) is defined by

∇(p) = µp + νp

where Ψ(p) ∈ [−1, 1].

According to Definitions 2.3 and 2.4, if p = (µp, ηp, νp)
and q = (µq, ηq, νq) be any two PFNs then

1. If ∆(p) > ∆(q) then p > q,

2. If ∆(p) < ∆(q) then p < q,

3. If ∆(p) = ∆(q), then

– If ∇(p) > ∇(q), then p > q,

– If ∇(p) = ∇(q), then p = q.

Wei [37] introduced the PF aggregation operators depicted
in the upcoming definitions.

Definition 2.5. Let pi = (µpi , ηpi , νpi) (i = 1, 2, . . . , n)
be a number of PFNs. Then the aggregated value of
them using PF weighted averaging (PFWA) operator is

also a PFN and PFWA(p1, p2, . . . , pn) =
n⊕
i=1

(wipi) =(
1 −

n∏
i=1

(1 − µpi)
wi ,

n∏
i=1

ηpi
wi ,

n∏
i=1

νpi
wi
)
, where w =

(w1, w2, . . . , wn)t be the weight vector of pi(i =

1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi = 1.

Definition 2.6. Let pi = (µpi , ηpi , νpi) (i = 1, 2, . . . , n)
be a number of PFNs. The PF order weighted averaging
(PFOWA) operator of dimension n is a function pn → p

such that, PFOWA(p1, p2, . . . , pn) =
n⊕
i=1

(wipρ(i)) =(
1 −

n∏
i=1

(1 − µpρ(i))
wi ,

n∏
i=1

ηpρ(i)
wi ,

n∏
i=1

νpρ(i)
wi
)
, where

w = (w1, w2, . . . , wn)t be the weight vector of

pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi =

1, (ρ(1), ρ(2), . . . , ρ(n)) is the permutation of (i =
1, 2, . . . , n), for which pρ(i−1) ≥ pρ(i) for all i =
1, 2, . . . , n.

In the following, we recall the definition of Frank t-norm
and t-conorm.

Definition 2.7. [13] Let us assume that a and b be two
real numbers. Then, Frank t-norm and Frank t-conorm are
defined by,

Fra(a, b)=logr

(
1 +

(ra − 1)(rb − 1)

r − 1

)
Fra′(a, b)=1− logr

(
1 +

(r1−a − 1)(r1−b − 1)

r − 1

)
respectively, where (a, b) ∈ [0, 1]× [0, 1] and r 6= 1.

Based on limit theory, we observe some interesting re-
sults [31]:

1. If r → 1, then Fra′(a, b) → a + b − ab and
Fra(a, b) → ab. Therefore, if r tends to 1 the the
Frank sum and Frank product reduced to the proba-
bilistic sum and probabilistic product.

2. If r → ∞, then Fra′(a, b) → min{a + b, 1} and
Fra(a, b) → max{0, a + b − 1}. So, for r tends to
infinity the Frank sum and the Frank product reduced
to the Lukasiewicz sum and Lukasiewicz product.

EXAMPLE 1. Let a = 0.29, b = 0.56 and r = 4, then,
Fra(0.29, 0.56) = log4

(
1 + (40.29−1)(40.56−1)

4−1

)
=0.1276.
Fra′(0.29, 0.56)=
1− log4

(
1 + (41−0.29−1)(41−0.56−1)

4−1

)
=0.8723.

3 Picture fuzzy Frank aggregation
operators

In this section, we develop some operational rules under
the PF environment with the assistance of Frank t-norm
and t-conorm. Further, we propose the PFFWA, PFFOWA,
PFFHWA, PFFWG, PFFOWG and PFFHWG aggregation
operators using our developed operational rules.

Definition 3.1. Let p = (µp, ηp, νp), p1 = (µp1 , ηp1 , νp1)
and p2 = (µp2 , ηp2 , νp2) be any three PFNs, r > 1 and
ξ > 0 be any real number. Then Frank t-norm and t-conorm
operations of PFNs are defined as:

1. p1 ⊕ p2 =(
1− logr

(
1 +

(r1−µp1 − 1)(r1−µp2 − 1)

r − 1

)
,

logr

(
1 +

(rηp1 − 1)(rηp2 − 1)

r − 1

)
,

logr

(
1 +

(rνp1 − 1)(rνp2 − 1)

r − 1

))
.

2. p1 ⊗ p2 =

(
logr

(
1 +

(rµp1 − 1)(rµp2 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−ηp1 − 1)(r1−ηp2 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−νp1 − 1)(r1−νp2 − 1)

r − 1

))
.

3. ξp =

(
1− logr

(
1 +

(r1−µp − 1)ξ

(r − 1)ξ−1

)
, logr

(
1 +

(rηp − 1)ξ

(r − 1)ξ−1

)
, logr

(
1 +

(rνp − 1)ξ

(r − 1)ξ−1

))
.
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4. pξ=

(
logr

(
1 +

(rµp − 1)ξ

(r − 1)ξ−1

)
,

1− logr

(
1 +

(r1−ηp − 1)ξ

(r − 1)ξ−1

)
,

1− logr

(
1 +

(r1−νp − 1)ξ

(r − 1)ξ−1

))
.

EXAMPLE 2. Let p1 = (0.60, 0.20, 0.08) and p2 =
(0.50, 0.20, 0.15) be two PFNs, then by using Frank op-
erations on PFNs as defined in Definition 3.1, for r = 3
and ξ = 4 we have

1. p1 ⊕ p2=(0.7325, 0.0270, 0.0074).

2. p1 ⊗ p2=(0.2674, 0.9729, 0.9925).

3. 4p1=(0.9947, 0.0002, 0).

4. p1
4=(0.0421, 0.7999, 0.5819).

THEOREM 3.1. Let p = (µp, ηp, νp), p1 = (µp1 , ηp1 , νp1)
and p2 = (µp2 , ηp2 , νp2) be any three PFNs, r > 1 and
ξ, ξ1, ξ2 be any three positive real numbers, then we have

1. p1 ⊕ p2 = p2 ⊕ p1;

2. p1 ⊗ p2 = p2 ⊗ p1;

3. ξ(p1 ⊕ p2) = ξp1 ⊕ ξp2;

4. ξ1p⊕ ξ2p = (ξ1 + ξ2)p;

5. (p1 ⊗ p2)ξ = p1
ξ ⊗ p2

ξ;

6. pξ1 ⊗ pξ2 = pξ1+ξ2 .

Proof: For three PFNs p = (µp, ηp, νp), p1 =
(µp1 , ηp1 , νp1) and p2 = (µp2 , ηp2 , νp2) and ξ, ξ1, ξ2 > 0,
according to Definition 3.1, we can obtain

1. p1 ⊕ p2 =(
1− logr

(
1 +

(r1−µp1 − 1)(r1−µp2 − 1)

r − 1

)
,

logr

(
1 +

(rηp1 − 1)(rηp2 − 1)

r − 1

)
,

logr

(
1 +

(rνp1 − 1)(rνp2 − 1)

r − 1

))

=

(
1− logr

(
1 +

(r1−µp2 − 1)(r1−µp1 − 1)

r − 1

)
,

logr

(
1 +

(rηp2 − 1)(rηp1 − 1)

r − 1

)
,

logr

(
1 +

(rνp2 − 1)(rνp1 − 1)

r − 1

))
= p2 ⊕ p1.

2. p1 ⊗ p2 =

(
logr

(
1 +

(rµp1 − 1)(rµp2 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−ηp1 − 1)(r1−ηp2 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−νp1 − 1)(r1−νp2 − 1)

r − 1

))

=

(
logr

(
1 +

(rµp2 − 1)(rµp1 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−ηp2 − 1)(r1−ηp1 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−νp2 − 1)(r1−νp1 − 1)

r − 1

))
= p2 ⊗ p1.

3. ξ(p1 ⊕ p2)=

ξ

(
1− logr

(
1 +

(r1−µp1 − 1)(r1−µp2 − 1)

r − 1

)
,

logr

(
1 +

(rηp1 − 1)(rηp2 − 1)

r − 1

)
,

logr

(
1 +

(rνp1 − 1)(rνp2 − 1)

r − 1

))

=

(
1− logr

(
1 +

(r1−µp1 − 1)ξ(r1−µp2 − 1)

(r − 1)2ξ−1

ξ)
,

logr

(
1 +

(rηp1 − 1)ξ(rηp2 − 1)ξ

(r − 1)2ξ−1

)
,

logr

(
1 +

(rνp1 − 1)ξ(rνp2 − 1)ξ

(r − 1)2ξ−1

))
.

Now,

ξp1 ⊕ ξp2 =

(
1− logr

(
1 +

(r1−µp1 − 1)ξ

(r − 1)ξ

)
,

logr

(
1 +

(rηp1 − 1)ξ

(r − 1)ξ

)
, logr

(
1 +

(rνp1 − 1)ξ

(r − 1)ξ

))
⊕(

1− logr

(
1 +

(r1−µp2 − 1)ξ

(r − 1)ξ

)
,

logr

(
1 +

(rηp2 − 1)ξ

(r − 1)ξ

)
, logr

(
1 +

(rνp2 − 1)ξ

(r − 1)ξ

))

=

(
1− logr

(
1 +

(r1−µp1 − 1)ξ(r1−µp2 − 1)

(r − 1)2ξ−1

ξ)
,

logr

(
1 +

(rηp1 − 1)ξ(rηp2 − 1)ξ

(r − 1)2ξ−1

)
,

logr

(
1 +

(rνp1 − 1)ξ(rνp2 − 1)ξ

(r − 1)2ξ−1

))
.

Therefore, ξ(p1 ⊕ p2) = ξp1 ⊕ ξp2.

4. ξ1p⊕ ξ2p =(
1− logr

(
1 +

(r1−µp − 1)ξ1

(r − 1)ξ1

)
,

logr

(
1 +

(rηp − 1)ξ1

(r − 1)ξ

)
,

logr

(
1 +

(rνp − 1)ξ1

(r − 1)ξ

))
⊕(

1− logr

(
1 +

(r1−µp − 1)ξ2

(r − 1)ξ2

)
,
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logr

(
1 +

(rηp − 1)ξ2

(r − 1)ξ2

)
, logr

(
1 +

(rνp − 1)ξ2

(r − 1)ξ2

))

=

(
1− logr

(
1 +

(r1−µp − 1)ξ1+ξ2

(r − 1)ξ1+ξ2

)
,

logr

(
1 +

(rηp − 1)ξ1+ξ2

(r − 1)ξ1+ξ2

)
,

logr

(
1 +

(rνp − 1)ξ1+ξ2

(r − 1)ξ1+ξ2

))
= (ξ1 + ξ2)p.

5. (p1 ⊗ p2)ξ =(
logr

(
1 +

(rµp1 − 1)(rµp2 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−ηp1 − 1)(r1−ηp2 − 1)

r − 1

)
,

1− logr

(
1 +

(r1−νp1 − 1)(r1−νp2 − 1)

r − 1

))ξ
=

(
logr

(
1 +

((rµp1 − 1)(rµp2 − 1))ξ

(r − 1)2ξ−1

)
,

1− logr

(
1 +

((r1−ηp1 − 1)(r1−ηp2 − 1))ξ

(r − 1)2ξ−1

)
,

1− logr

(
1 +

((r1−νp1 − 1)(r1−νp2 − 1))ξ

(r − 1)2ξ−1

))

=

(
logr

(
1 +

(rµp1 − 1)ξ

(r − 1)ξ

)
,

1− logr

(
1 +

(r1−ηp1 − 1)ξ

(r − 1)ξ

)
,

1− logr

(
1 +

(r1−νp1 − 1)ξ

(r − 1)ξ

))
⊗(

logr

(
1 +

(rµp2 − 1)ξ

(r − 1)ξ

)
,

1− logr

(
1 +

(r1−ηp2 − 1)ξ

(r − 1)ξ

)
,

1− logr

(
1 +

(r1−νp2 − 1)ξ

(r − 1)ξ

))
= p1

ξ ⊗ p2
ξ.

6. pξ1 ⊗ pξ2 =(
logr

(
1 +

(rµp − 1)ξ1

(r − 1)ξ1−1

)
,

1− logr

(
1 +

(r1−ηp − 1)ξ1

(r − 1)ξ1−1

)
,

1− logr

(
1 +

(r1−νp − 1)ξ1

(r − 1)ξ1−1

))
⊗(

logr

(
1 +

(rµp − 1)ξ2

(r − 1)ξ2−1

)
,

1− logr

(
1 +

(r1−ηp − 1)ξ2

(r − 1)ξ2−1

)
,

1− logr

(
1 +

(r1−νp − 1)ξ2

(r − 1)ξ2−1

))

=

(
logr

(
1 +

(rµp − 1)ξ1+ξ2

(r − 1)ξ1+ξ2−1

)
,

1− logr

(
1 +

(r1−ηp − 1)ξ1+ξ2

(r − 1)ξ1+ξ2−1

)
,

1− logr

(
1 +

(r1−νp − 1)ξ1+ξ2

(r − 1)ξ1+ξ2−1

))
= pξ1+ξ2 . �

3.1 Picture fuzzy Frank arithmetic
aggregation operators

Definition 3.2. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs. Then PFFWA operator is a function
pn → p such that,

PFFWA(p1, p2, . . . , pn) =

n⊕
i=1

wipi

where w = (w1, w2, . . . , wn)t be the weight vector of

pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi = 1.

Hence, we get consequential theorem that follows the
Frank operations on PFNs.

THEOREM 3.2. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs, then aggregated value of them using
PFFWA operator is also a PFN, and

PFFWA(p1, p2, . . . , pn) =
n⊕
i=1

wipi

=

(
1− logr

(
1 +

n∏
i=1

(r1−µpi − 1)wi
)
,

logr

(
1 +

n∏
i=1

(rηpi − 1)wi
)
,

logr

(
1 +

n∏
i=1

(rνpi − 1)wi
))

.

Proof: We prove this theorem by the method of mathe-
matical induction.

For n = 2, based on Frank operations of PFNs we get
the corresponding result

PFFWA(p1, p2) =
2⊕
i=1

wi = w1p1 ⊕ w2p2

=

(
1− logr

(
1 +

(r1−µp1 − 1)w1

(r − 1)w1−1

)
,

logr

(
1 +

(rηp1 − 1)w1

(r − 1)w1−1

)
, logr

(
1 +

(rνp1 − 1)w1

(r − 1)w1−1

))
⊕(

1− logr

(
1 +

(r1−µp2 − 1)w2

(r − 1)w2−1

)
,

logr

(
1 +

(rηp2 − 1)w2

(r − 1)w2−1

)
, logr

(
1 +

(rνp2 − 1)w2

(r − 1)w2−1

))
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=

(
1− logr

(
1 +

2∏
i=1

(r1−µpi − 1)wi
)
,

logr

(
1 +

2∏
i=1

(rηpi − 1)wi
)
,

logr

(
1 +

2∏
i=1

(rνpi − 1)wi
))

[∵
2∑
i=1

wi = 1]

Hence, the result is valid for n = 2.
Let us assume that, the given result is true for n = s.

Therefore, we have,

PFFWA(p1, p2, . . . , ps) =
s⊕
i=1

wipi

=

(
1− logr

(
1 +

s∏
i=1

(r1−µpi − 1)wi
)
,

logr

(
1 +

s∏
i=1

(rηpi − 1)wi
)
,

logr

(
1 +

s∏
i=1

(rνpi − 1)wi
))

Now, for n = s+ 1
PFFWA(p1, p2, . . . , ps, ps+1) =
s+1⊕
i=1

wipi =
s⊕
i=1

wipi
⊕
ws+1ps+1

=

(
1− logr

(
1 +

s∏
i=1

(r1−µpi − 1)wi

(r − 1)

s∑
i=1

wi−1

)
,

logr

(
1 +

s∏
i=1

(rηpi − 1)wi

(r − 1)

s∑
i=1

wi−1

)
,

logr

(
1 +

s∏
i=1

(rνpi − 1)wi

(r − 1)

s∑
i=1

wi−1

))⊕
(

1− logr

(
1 +

(r1−µps+1 − 1)ws+1

(r − 1)ws+1−1

)
,

logr

(
1 +

(rηps+1 − 1)ws+1

(r − 1)ws+1−1

)
,

logr

(
1 +

(rνps+1 − 1)ws+1

(r − 1)ws+1−1

))

=

(
1− logr

(
1 +

s+1∏
i=1

(r1−µpi − 1)wi
)
,

logr

(
1 +

s+1∏
i=1

(rηpi − 1)wi
)
,

logr

(
1 +

s+1∏
i=1

(rνpi − 1)wi
))

[as
s+1∑
i=1

wi = 1]

Therefore, the result is true for n = s+ 1 if it is true for
n = s. Also it is true for n = 2. Hence, by the method of
induction the given result is true for any natural number n.
�

THEOREM 3.3. (Idempotency Property). If pi =
(µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a number of identical
PFNs, i.e., pi = p for all i, where p = (µp, ηp, νp), then

PFFWA(p1, p2, . . . , pn) = p.

Proof: Since pi = p for all i then, we have
PFFWA(p1, p2, . . . , pn)

=

(
1− logr

(
1 +

n∏
i=1

(r1−µpi − 1)wi
)
,

logr

(
1 +

n∏
i=1

(rηpi − 1)wi
)
,

logr

(
1 +

n∏
i=1

(rνpi − 1)wi
))

=

(
1− logr

(
1 +

n∏
i=1

(r1−µp − 1)wi
)
,

logr

(
1 +

n∏
i=1

(rηp − 1)wi
)
,

logr

(
1 +

n∏
i=1

(rνp − 1)wi
))

=

(
1− logr

(
1 + (r1−µp − 1)

n∑
i=1

wi
)
,

logr

(
1 + (rηp − 1)

n∑
i=1

wi
)
,

logr

(
1 + (rνp − 1)

n∑
i=1

wi
))

=

(
1− logr

(
1 + (r1−µp − 1)

)
,

logr

(
1 + (rηp − 1)

)
,

logr

(
1 + (rνp − 1)

))
=
(
µp, ηp, νp

)
= p.

Hence the result follows. �

THEOREM 3.4. (Boundedness property). Let
pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a num-
ber of PFNs. Let p− = min{p1, p2, . . . , pn}
and p+ = max{p1, p2, . . . , pn}. Then, p− ≤
PFFWA(p1, p2, . . . , pn) ≤ p+.

Proof: Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a
number of PFNs. Let p− = min{p1, p2, . . . , pn} =
(µ−, η−, ν−) and p+ = max{p1, p2, . . . , pn} =
(µ+, η+, ν+). We have µ− = min

k
{µpk},η− =

max
k
{ηpk},ν− = max

k
{νpk}, µ+ = max

k
{µpk}, η+ =

min
k
{ηpk} and ν+ = min

k
{νpk}.

Now,

1− logr

(
1 +

n∏
i=1

(r1−(µ−) − 1)wi
)
≤

1− logr

(
1 +

n∏
i=1

(r1−µpi − 1)wi
)
≤

1− logr

(
1 +

n∏
i=1

(r1−(µ+) − 1)wi
)
,

logr

(
1 +

n∏
i=1

(r(η+) − 1)wi
))
≤

logr

(
1 +

n∏
i=1

(rηpi − 1)wi
))
≤
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logr

(
1 +

n∏
i=1

(r(η−) − 1)wi
))
,

logr

(
1 +

n∏
i=1

(r(ν+) − 1)wi
))
≤

logr

(
1 +

n∏
i=1

(rνpi − 1)wi
))
≤

logr

(
1 +

n∏
i=1

(r(ν−) − 1)wi
))
.

Therefore, p− ≤ PFFWA(p1, p2, . . . , pn) ≤ p+. �

THEOREM 3.5. (Monotonicity property) Let pi and p′i(i=1,
2,. . . , n) be two sets of PFNs, if pi ≤ p′i for all i, then
PFFWA(p1, p2, . . . , pn) ≤ PFFWA(p′1, p

′
2, . . . , p

′
n).

Proof: Since pi ≤ p′i for all i = 1, 2, ..., n, then, we have
µpi ≤ µ′pi , ηpi ≤ η′pi and νpi ≥ ν′pi for all i = 1, 2, . . . , n.

Now, (r1−µpi − 1)wi ≥ (r1−µ′pi − 1)wi

⇒ logr

(
1 +

n∏
i=1

(r1−µpi − 1)wi
)
≥

logr

(
1 +

n∏
i=1

(r1−µ′pi − 1)wi
)

⇒ 1− logr

(
1 +

n∏
i=1

(r1−µpi − 1)wi
)
≤

1− logr

(
1 +

n∏
i=1

(r1−µ′pi − 1)wi
)
.

Similarly, it can be shown that

logr

(
1 +

n∏
i=1

(rηpi − 1)wi
)
≤

logr

(
1 +

n∏
i=1

(rη
′
pi − 1)wi

)
and
logr

(
1 +

n∏
i=1

(rνpi − 1)wi
)
≥

logr

(
1 +

n∏
i=1

(rν
′
pi − 1)wi

)
.

Therefore, PFFWA(p1, p2, . . . , pn) ≤
PFFWA(p′1, p

′
2, . . . , p

′
n). �

Now, we would like to introduce PFFOWA operator.

Definition 3.3. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be
a number of PFNs. The PFFOWA operator of dimension n
is a function pn → p such that,

PFFOWA(p1, p2, . . . pn) =

n⊕
i=1

wipρ(i)

where w = (w1, w2, . . . , wn)t be the weight vec-

tor of pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi =

1, (ρ(1), ρ(2), . . . , ρ(n)) is the permutation of (i =
1, 2, . . . , n), for which pρ(i−1) ≥ pρ(i) for all i =
1, 2, . . . , n.

Based on Frank product of PFNs the following theorem
is developed.

THEOREM 3.6. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs. The PFFOWA operator of dimen-
sion n is a function pn → p with the corresponding weight
vector w = (w1, w2, . . . , wn)t such that wi ∈ [0, 1] and

n∑
i=1

wi = 1. Then,

PFFOWA(p1, p2, . . . , pn) =
n⊕
i=1

wipρ(i)

=

(
1− logr

(
1 +

n∏
i=1

(r
1−µpρ(i) − 1)wi

)
,

logr

(
1 +

n∏
i=1

(r
ηpρ(i) − 1)wi

)
,

logr

(
1 +

n∏
i=1

(r
νpρ(i) − 1)wi

))
where (ρ(1), ρ(2), . . . , ρ(n)) are the permutation of (i =
1, 2, . . . , n) for which pρ(i−1) ≥ pρ(i) for all i =
1, 2, . . . , n.

With the help of PFFOWA operator we can easily prove
the following properties.

THEOREM 3.7. (Idempotency property). If pi =
(µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a number of PFNs
all are identical, i.e., pi = p for all i. Then,
PFFOWA(p1, p2, . . . , pn) = p.

THEOREM 3.8. (Boundedness Property). Let
pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a num-
ber of PFNs. Let p− = min{p1, p2, . . . , pn}
and p+ = max{p1, p2, . . . , pn}. Then, p− ≤
PFFOWA(p1, p2, . . . , pn) ≤ p+.

THEOREM 3.9. (Monotonicity Property). Let pi and
p′i(i=1, 2,. . . , n) be two sets of PFNs, if pi ≤
p′i for all i, then PFFOWA(p1, p2, . . . , pn) ≤
PFFOWA(p′1, p

′
2, . . . , p

′
n).

THEOREM 3.10. (Commutative Property).
Let pi and p′i(i=1, 2,. . . , n) be two sets of
PFNs, then PFFOWA(p1, p2, . . . , pn) =
PFFOWA(p′1, p

′
2, . . . , p

′
n) where p′i is any permu-

tation of pi(i = 1, 2, . . . , n).

In Definition 3.2, we find that the weights associated
with the PFFWA operator are the simplest form of PF value
and in Definition 3.3 the weights associated with the PF-
FOWA operator is the original form of the ordered posi-
tions of the PF values. In this way, the weights disclosed
in the PFFWA and PFFOWA operators, present various per-
spectives which are conflicting with one another. But, these
perspectives are deliberated to be the same in a general ap-
proach. Only to be rescued of such drawback, we now in-
troduce PFFHA operator.

Definition 3.4. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs. The PFFHA operator of dimension
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n is a function pn → p such that,

PFFHA(p1, p2, . . . , pn)

=

n⊕
i=1

w̄iṗρ(i)

=

(
1− logr

(
1 +

n∏
i=1

(r
1−µ̇pρ(i) − 1)w̄i

)
,

logr

(
1 +

n∏
i=1

(r
η̇pρ(i) − 1)

w̄i
)
,

logr

(
1 +

n∏
i=1

(r
ν̇pρ(i) − 1)

w̄i
))

where w̄ = (w̄1, w̄2, . . . , w̄n)t is the aggregation associ-

ated weight vector,
n∑
i=1

w̄i = 1, w = (w1, w2, . . . , wn)t be

the weight vector of pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi = 1. ṗρ(i) is the ith biggest weighted PF values of

ṗi(ṗi = nwipi, i = 1, 2, . . . , n), n is the balancing coeffi-
cient.

Deduction 3.1. When w = ( 1
n ,

1
n , . . . ,

1
n )t, then ṗi =

n × 1
n × pi = pi for i = 1, 2, ..., n. Then the PFFHA

operator degenerates into PFFOWA operator. If w̄ =
( 1
n ,

1
n , . . . ,

1
n )t, then PFFHA operator reduces to PFFWA

operator. Hence, PFFWA and PFFOWA operators are a
specific type of PFFHA operator. Thus, PFFHA operator
is a generalization of both the PFFWA and PFFOWA oper-
ators, which reflects the degrees of the stated disagreements
and their organized situations.

3.2 Picture fuzzy Frank geometric
aggregation operators

Definition 3.5. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs. Then PFFWG operator is a function
pn → p such that,

PFFWG(p1, p2, . . . , pn) =

n⊗
i=1

(pi)
wi

where w = (w1, w2, . . . , wn)t be the weight vector of

pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi = 1.

Hence, we get consequential theorem that follows the
Frank operations on PFNs.

THEOREM 3.11. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs, then aggregated value of them using
PFFWG operator is also a PFN, and

PFFWG(p1, p2, . . . , pn) =
n⊗
i=1

(pi)
wi

=

(
logr

(
1 +

n∏
i=1

(rµpi − 1)wi
)
,

1− logr

(
1 +

n∏
i=1

(r1−ηpi − 1)wi
)
,

1− logr

(
1 +

n∏
i=1

(r1−νpi − 1)wi
))

.

Proof: The proof of this theorem emulates from Theorem
3.2. �

The following properties may be easily proved by PF-
FWG operator.

THEOREM 3.12. (Idempotency Property). If pi =
(µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a number of iden-
tical PFNs, i.e., pi = p for all i. Then,
PFFWG(p1, p2, . . . , pn) = p.

THEOREM 3.13. (Boundedness Property). Let
pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a num-
ber of PFNs. Let p− = min{p1, p2, . . . , pn}
and p+ = max{p1, p2, . . . , pn}. Then, p− ≤
PFFWG(p1, p2, . . . , pn) ≤ p+.

THEOREM 3.14. (Monotonicity Property). Let pi
and p′i(i=1, 2,. . . , n) be two sets of PFNs, if
pi ≤ p′i for all i, then PFFWG(p1, p2, . . . , pn) ≤
PFFWG(p′1, p

′
2, . . . , p

′
n).

Now, we would like to introduce PFFOWG operator.

Definition 3.6. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be
a number of PFNs. The PFFOWG operator of dimension n
is a function pn → p such that,

PFFOWG(p1, p2, . . . pn) =

n⊗
i=1

(pρ(i))
wi

where w = (w1, w2, . . . , wn)t be the weight vec-

tor of pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi =

1, (ρ(1), ρ(2), . . . , ρ(n)) are the permutation of (i =
1, 2, . . . , n), for which pρ(i−1) ≥ pρ(i) for all i =
1, 2, . . . , n.
The following theorem is developed based on Frank prod-
uct operation on PFNs using PFFOWG operator.

THEOREM 3.15. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs. The PFFOWG operator of dimen-
sion n is a function pn → p with the corresponding weight
vector w = (w1, w2, . . . , wn)t such that wi ∈ [0, 1] and
n∑
i=1

wi = 1. Then,

PFFOWG(p1, p2, . . . pn) =
n⊗
i=1

(pρ(i))
wi

=

(
logr

(
1 +

n∏
i=1

(r
µpρ(i) − 1)wi

)
,

1− logr

(
1 +

n∏
i=1

(r
1−ηpρ(i) − 1)wi

)
,

1− logr

(
1 +

n∏
i=1

(r
1−νpρ(i) − 1)wi

))
where (ρ(1), ρ(2), . . . , ρ(n)) are the permutation of (i =
1, 2, . . . , n) for which pρ(i−1) ≥ pρ(i) for all i =
1, 2, . . . , n.
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The following properties can be investigated by using
PFFOWG operator.

THEOREM 3.16. (Idempotency property). If pi =
(µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a number of PFNs
all are identical, i.e., pi = p for all i. Then,
PFFOWG(p1, p2, . . . , pn) = p.

THEOREM 3.17. (Boundedness Property). Let
pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n) be a num-
ber of PFNs. Let p− = min{p1, p2, . . . , pn}
and p+ = max{p1, p2, . . . , pn}. Then, p− ≤
PFFOWG(p1, p2, . . . , pn) ≤ p+.

THEOREM 3.18. (Monotonicity Property). Let pi and
p′i(i=1, 2,. . . , n) be two sets of PFNs, if pi ≤
p′i for all i, then PFFOWG(p1, p2, . . . , pn) ≤
PFFOWG(p′1, p

′
2, . . . , p

′
n).

THEOREM 3.19. (Commutative Property).
Let pi and p′i(i=1, 2,. . . , n) be two sets of
PFNs, then PFFOWG(p1, p2, . . . , pn) =
PFFOWG(p′1, p

′
2, . . . , p

′
n) where p′i is any permu-

tation of pi(i = 1, 2, . . . , n).

In Definition 3.5, we find that the weights associated
with the PFFWG operator are in the simplest form of PF
value and in Definition 3.6 the weights associated with the
PFFOWG operator are in the actual form of the ordered po-
sitions of the PF values. In this way, the weights disclosed
in the PFFWG and PFFOWG operators, present various
perspectives which are conflicting with one another. But,
these perspectives are deliberated to be the same in a gen-
eral approach. Only to be rescued of such drawback, we at
this moment introduce PFFHG operator.

Definition 3.7. Let pi = (µpi , ηpi , νpi)(i = 1, 2, . . . , n)
be a number of PFNs. The PFFHG operator of dimension
n is a function pn → p such that,

PFFHG(p1, p2, . . . , pn) =
n⊗
i=1

(ṗρ(i))
w̄i

=

(
logr

(
1 +

n∏
i=1

(r
µ̇pρ(i) − 1)w̄i

)
,

1− logr

(
1 +

n∏
i=1

(r
1−η̇pρ(i) − 1)w̄i

)
,

1− logr

(
1 +

n∏
i=1

(r
1−ν̇pρ(i) − 1)w̄i

))
where w̄ = (w̄1, w̄2, . . . , w̄n)t is the aggregation associ-

ated weight vector,
n∑
i=1

w̄i = 1, w = (w1, w2, . . . , wn)t be

the weight vector of pi(i = 1, 2, . . . , n), wi ∈ [0, 1] and
n∑
i=1

wi = 1. ṗρ(i) is the ith biggest weighted PF values of

ṗi(ṗi = nwipi, i = 1, 2, . . . , n), n is the balancing coeffi-
cient.

Deduction 3.2. When w = ( 1
n ,

1
n , . . . ,

1
n )t, then ṗi =

n × 1
n × pi = pi for i = 1, 2, . . . , n. Then the PFFHG

operator degenerates into PFFOWG operator. If w̄ =

( 1
n ,

1
n , . . . ,

1
n )t, then PFFHG operator reduces to PFFWG

operator. Hence, PFFWG and PFFOWG operators are
specific types of PFFHG operator. Thus, PFFHG opera-
tor is a generalization of both the PFFWG and PFFOWG
operators, which reflects the degrees of the stated disagree-
ments and their organized situations.

4 Model for MADM using picture
fuzzy data

In this section, we introduce a novel approach for decision-
making problems using PF information manipulating PF-
FWA and PFFWG operators, where attribute values are
PFNs and attribute weights are real numbers. For an
MADM problem, let F = {F1, F2, . . . , Fm} be a dis-
crete set of m alternatives to be selected and H =
{H1, H2, . . . ,Hn} be the arrangement of attributes to be
assessed. Let w = {w1, w2, . . . , wn} be the weight vec-
tor of the attributes Hj(j = 1, 2, . . . , n) where wk(k =
1, 2, 3, . . . , n) are all real numbers such that wk > 0

and
n∑
k=1

wk = 1. Assume that P = (γij)m×n =

((µij , ηij , νij))m×n is the PF decision matrix, where γij
is the possible value for which the alternative Fi satis-
fies the attribute Hj where µij + ηij + νij ≤ 1 and
µij , ηij , νij ∈ [0, 1].

To achieve the final ranking of the alternatives, we pro-
pose an algorithm which is shown in the following.

4.1 Algorithm
The proposed MADM problem with PF data based on the
proposed PFFWA and PFFWG operators is now presented
as follows:

Step I: Construct the PF decision matrix P =
(γij)m×n = ((µij , ηij , νij))m×n.

Step II: Transform the matrix P = (γij)m×n =
((µij , ηij , νij))m×n into a normalize PF matrix P ′ =
(γ′ij)m×n = ((µ′ij , η

′
ij , ν

′
ij))m×n by Equation (1).

γ′ij =

{
(µij , ηij , νij), if Hj is benefit attribute;
(νij , ηij , µij), if Hj is cost attribute. (1)

Step III: Calculate the collective information σk of the al-
ternative Fk by Equations (2) and (3).

σk = PFFWA(γ′k1, γ
′
k2, . . . , γ

′
kn)

=
n⊕
j=1

(wjγkj)

=

(
1− logr

(
1 +

n∏
i=1

(r
1−µ′pkj − 1)wj

)
,

logr

(
1 +

n∏
i=1

(r
η′pkj − 1)wj

)
,

logr

(
1 +

n∏
i=1

(r
ν′pkj − 1)wj

))
. (2)
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and
σk = PFFWG(γ′k1, γ

′
k2, . . . , γ

′
kn)

=

n⊗
j=1

(γkj)
wj

=

(
logr

(
1 +

n∏
i=1

(r
µ′pkj − 1)wj

)
,

1− logr

(
1 +

n∏
i=1

(r
1−η′pkj − 1)wj

)
,

1− logr

(
1 +

n∏
i=1

(r
1−ν′pkj − 1)wj

))
. (3)

Step IV: Compute the score function ∆(σi) for each alter-
native using Definition 2.3.

Step V: The optimal decision is to select Fk if ∆(σk) =
max
l
{∆(σl)}.

5 Numerical illustration
In this section, we are willing to sketch a numerical prob-
lem to illustrate the possible assessment of commercializa-
tion with the help of PF data.

Suppose a renowned multi-tasking company has decided
to utilize a part of its total annual profit in some improve-
ment of the company’s good-will. The managing board has
selected some alternative choices to invest the fund, such
as

1. F1 : Air conditioning and furnishing the whole floor.

2. F2 : Purchasing of some advanced gadgets.

3. F3 : Constructing a parking zone.

4. F4 : Advertising.

5. F5 : Security facility.

Now, since each alternative satisfies different requirements
so, confusion arises to make a decision. Thereby, the man-
aging board has determined the following considerable at-
tributes,

– H1 : Enhancement of profit.

– H2 : Customer’s benefit.

– H3 : Maintenance cost.

– H4 : Ecofriendliness.

Now the decision making in this case is difficult be-
cause each alternative promises to maximize a different at-
tribute. The managing board defines the weight vector of
the attribute Hj(j = 1, 2, 3, 4) as (0.30, 0.25, 0.20, 0.25).
Meanwhile, H1, H2, H4 are benefit attributes and H3 is
a cost attribute. Assume that the alternative Fi with re-
spect to the attribute Hj is expressed as PF matrix P =
(γij)m×n = ((µij , νij))m×n. The assessment for the al-
ternatives are shown in the Table 1.

In order to select the most preferable alternative Fi(i =
1, 2, 3, 4, 5) we exploit the PFFWA and PFFWG operators
to develop an MADM theory with PF data, which can be
evaluated as follows:

Step 1: We input the PF decision matrix given in Table 1.

Step 2: By normalizing of PF decision matrix with the
help of Equation (1) we get the matrix N .

Step 3: We take r = 2 and use PFFWA operator to com-
pute overall performance values σi(i = 1, 2, 3, 4, 5)
of alternatives Fi’s using Equation (2)

– σ1 = (0.6188, 0.1800, 0.0879)

– σ2 = (0.6517, 0.1827, 0.1214)

– σ3 = (0.5441, 0.2861, 0.0559)

– σ4 = (0.6006, 0.2100, 0.0713)

– σ5 = (0.5823, 0.1456, 0.1478).

Step 4: We compute the values of the score functions us-
ing Definition 2.3, ∆(σi)(k = 1, 2, 3, 4, 5) of the
overall PFNs σi(i = 1, 2, 3, 4, 5) as

– ∆(σ1) = 0.7654

– ∆(σ2) = 0.7651

– ∆(σ3) = 0.7441

– ∆(σ4) = 0.7646

– ∆(σ5) = 0.7172.

Therefore, with respect to the score values, we rank
all the alternatives as F1 > F2 > F4 > F3 > F5.

Step 5: Therefore, F1 should be selected as the most
preferable alternative by the company.

Again, if PFFWG operator is used instead of PFFWA
operator, then the problem can be solved similarly as above.

Step 1: We input the PF decision matrix given in Table 1.

Step 2: The normalized matrix is same as the matrix N.

Step 3: We take r = 2 and use PFFWG operator to com-
pute overall performance values σi(i = 1, 2, 3, 4, 5)
by Equation 3 of the alternatives Fi’s.

– σ1 = (0.4210, 0.2959, 0.1067)

– σ2 = (0.5968, 0.2118, 0.1277)

– σ3 = (0.2922, 0.4242, 0.0580)

– σ4 = (0.3057, 0.3727, 0.0778)

– σ5 = (0.4545, 0.2031, 0.1600).

Step 4: We compute the values of the score function using
Definition 2.3, ∆(σi)(i = 1, 2, 3, 4, 5) of the overall
PFNs σi(i = 1, 2, 3, 4, 5) as

– ∆(σ1) = 0.6571

– ∆(σ2) = 0.7345

– ∆(σ3) = 0.6170

– ∆(σ4) = 0.6139

– ∆(σ5) = 0.6472.



Some Picture Fuzzy Aggregation Operators Based on. . . Informatica 45 (2021) 447–461 457

H1 H2 H3 H4

F1 (0.60,0.25,0.12) (0.91,0.03,0.05) (0.22,0.20,0.38) (0.12,0.59,0.05)
F2 (0.72,0.15,0.10) (0.32,0.40,0.20) (0.11,0.15,0.70) (0.75,0.12,0.10)
F3 (0.80,0.10,0.04) (0.09,0.70,0.05) (0.08,0.60,0.07) (0.70,0.20,0.07)
F4 (0.85,0.05,0.04) (0.76,0.15,0.07) (0.09,0.70,0.07) (0.09,0.53,0.12)
F5 (0.71,0.10,0.11) (0.56,0.20,0.19) (0.09,0.50,0.09) (0.69,0.03,0.24)

Table 1: Picture fuzzy decision matrix

Therefore, with respect to the score values, we rank
all the alternatives as F2 > F1 > F5 > F3 > F4.

Step 5: Therefore, F2 should be selected as the most
preferable alternative by the company.

As we have demonstrated above, the score values of the
alternatives are different from each other. But the ranking
orders corresponding to various alternatives are the same,
and the preferable alternative is always F2.

N =


(0.60, 0.25, 0.12) (0.91, 0.03, 0.05) (0.38, 0.20, 0.22) (0.12, 0.59, 0.05)
(0.72, 0.15, 0.10) (0.32, 0.40, 0.20) (0.70, 0.15, 0.11) (0.75, 0.12, 0.10)
(0.80, 0.10, 0.04) (0.09, 0.70, 0.05) (0.07, 0.60, 0.08) (0.70, 0.20, 0.07)
(0.85, 0.05, 0.04) (0.76, 0.15, 0.07) (0.07, 0.70, 0.09) (0.09, 0.53, 0.12)
(0.71, 0.10, 0.11) (0.56, 0.20, 0.19) (0.09, 0.50, 0.09) (0.69, 0.03, 0.24)



Next, we will show how the parameter r affects the rank-
ing results obtained by utilizing PFFWA and PFFWG op-
erators.

6 Analysis of the effect of the
parameter r on decision making

We can utilize different values of the operational param-
eter r, for ranking the given alternatives in our proposed
method.

For exploring the flexibility and sensitivity of the param-
eter r, we fix different values of r to categorize the novel
numerical MADM example. Depending on PFFWA opera-
tor and PFFWG operator, the consequences of ranking or-
ders of the alternatives F1, F2, F3, F4, F5 for different val-
ues of the parameter r are shown in the Table 2 and Table
3.

To provide a better view of the aggregation results, we
show the results of the rankings of the alternatives by the
proposed PFFWA and PFFWG operators in Figure 1(a) and
Figure 1(b) respectively.

From Table 2 and Figure 1(a) we can easily see that
when 3 ≤ r ≤ 10, r = 15, 20, 25, 50 the aggregation
score values using PFFWA operator with different param-
eter r are different, but the ranking orders of the alterna-
tives Fi(i = 1, 2, 3, 4, 5) are same and the ranking order is
F2 > F1 > F4 > F3 > F5. However, when r = 2, we
obtain F1 > F2 > F4 > F3 > F5 and in that case the
optimal alternative is F1.

From Table 3 and Figure 1(b), we can see that the ag-
gregation score values using PFFWG operator with dif-
ferent parameter r are different, but the optimal alter-
native is always F2. When 2 ≤ r ≤ 9, we obtained

F2 > F1 > F5 > F3 > F4, when r = 10, we get
F2 > F1 > F5 > F3 ∼ F4 and for r = 15, 20, 25, 50,
we obtained F2 > F1 > F5 > F4 > F3. Hence, the over-
all best alternative is F2.

In general, different decision-makers can set different
values of the parameter r based on their preferences.

In this MADM problem based on PFFWA and PFFWG
operators, we can notice that for PFFWG operator the rank-
ing orders of the alternatives can be changed by the varia-
tion of values of the parameter r. Therefore, the PFFWG
operator has responded more to r in this MADM method.
At the same time, in correspondence with PFFWA opera-
tor according to different values of working parameter r,
ranking forms can be changed. So PFFWA operator is less
responsive to r in this case of the MADM procedure.

7 Comparison analysis
In order to verify the utility of the proposed method and to
pursue its advantages, we compare our proposed Frank ag-
gregation operators with other existing well-known aggre-
gation operators under the PF environment. The compara-
tive results are shown in Table 4. We compare our proposed
method with PFWA operator [37] and PFWG operator [37].

Making a comparison with PFWA or PFWG operators
introduced by Wei [37], we can find that PFWA or PFWG
operator is only a particular case of our proposed opera-
tors when the parameter r → 1. Therefore, indeed, our
introduced procedures are more generalized. Moreover,
our proposed operators, based on Frank t-norm and Frank
t-conorm are more nourished and can adopt the relation-
ship between various arguments. Also, our proposed op-
erators present the Lukasiewicz product and Lukasiewicz
sum when the parameter r → ∞. Therefore, we have ar-
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r ∆(σ1) ∆(σ2) ∆(σ3) ∆(σ4) ∆(σ5) Ranking order Optimal alternative

2 0.7654 0.7651 0.7441 0.7646 0.7172 F1 > F2 > F4 > F3 > F5 F1

3 0.7610 0.7640 0.7396 0.7594 0.7153 F2 > F1 > F4 > F3 > F5 F2

4 0.7581 0.7632 0.7365 0.7559 0.7140 F2 > F1 > F4 > F3 > F5 F2

5 0.7558 0.7626 0.7342 0.7532 0.7130 F2 > F1 > F4 > F3 > F5 F2

6 0.7541 0.7622 0.7324 0.7511 0.7122 F2 > F1 > F4 > F3 > F5 F2

7 0.7526 0.7618 0.7309 0.7493 0.7115 F2 > F1 > F4 > F3 > F5 F2

8 0.7514 0.7614 0.7297 0.7478 0.7110 F2 > F1 > F4 > F3 > F5 F2

9 0.7503 0.7611 0.7286 0.7465 0.7105 F2 > F1 > F4 > F3 > F5 F2

10 0.7494 0.7609 0.7277 0.7454 0.7101 F2 > F1 > F4 > F3 > F5 F2

15 0.7459 0.7599 0.7243 0.7412 0.7085 F2 > F1 > F4 > F3 > F5 F2

20 0.7436 0.7593 0.7221 0.7385 0.7075 F2 > F1 > F4 > F3 > F5 F2

25 0.7419 0.7588 0.7204 0.7364 0.7068 F2 > F1 > F4 > F3 > F5 F2

50 0.7370 0.7575 0.7160 0.7308 0.7046 F2 > F1 > F4 > F3 > F5 F2

Table 2: Effect of the parameter r on decision making result using PFFWA operator

r ∆(σ1) ∆(σ2) ∆(σ3) ∆(σ4) ∆(σ5) Ranking order Optimal alternative

2 0.6571 0.7345 0.6170 0.6139 0.6472 F2 > F1 > F5 > F3 > F4 F2

3 0.6613 0.7361 0.6220 0.6197 0.6514 F2 > F1 > F5 > F3 > F4 F2

4 0.6641 0.7372 0.6255 0.6238 0.6541 F2 > F1 > F5 > F3 > F4 F2

5 0.6663 0.7380 0.6282 0.6269 0.6562 F2 > F1 > F5 > F3 > F4 F2

6 0.6679 0.7386 0.6304 0.6294 0.6577 F2 > F1 > F5 > F3 > F4 F2

7 0.6693 0.7391 0.6322 0.6315 0.6590 F2 > F1 > F5 > F3 > F4 F2

8 0.6704 0.7395 0.6337 0.6333 0.6601 F2 > F1 > F5 > F3 > F4 F2

9 0.6714 0.7398 0.6351 0.6349 0.6611 F2 > F1 > F5 > F3 > F4 F2

10 0.6732 0.7401 0.6363 0.6363 0.6619 F2 > F1 > F5 > F3 ∼ F4 F2

15 0.6755 0.7412 0.6408 0.6415 0.6648 F2 > F1 > F5 > F4 > F3 F2

20 0.6776 0.7419 0.6438 0.6450 0.6668 F2 > F1 > F5 > F4 > F3 F2

25 0.6791 0.7424 0.6461 0.6476 0.6682 F2 > F1 > F5 > F4 > F3 F2

50 0.6833 0.7437 0.6528 0.6551 0.6720 F2 > F1 > F5 > F4 > F3 F2

Table 3: Effect of the parameter r on decision making result using PFFWG operator

rived at the decision that all of the arithmetic and geometric
aggregation operators for PFNs are contained in PF Frank
aggregation operators, concerning the different values of r.

If we modify the value of the parameter r in the problem,
we get different ranking results for the alternatives. For ex-
ample, if we modify the value of the parameter r from 2
to 50, then using PFFWG operator we get the score values
of the alternatives as ∆(σ1) = 0.6833, ∆(σ2) = 0.7437,
∆(σ3) = 0.6528, ∆(σ4) = 0.6551 and ∆(σ5) = 0.6720.
Obviously, it can be obtained that the ranking position of
the alternative F4 changed from a bad position to a good
position. But the PFWA and the PFWG operators are inde-
pendent of the parameter r. So, the ranking order obtained
with the help of those operators remains the same.

Based on the above comparison analysis, the approach in
the present study is proved to be more flexible, compatible,
and reliable than other existing procedures to control PF
environment based MADM problems.

8 Conclusions
In this paper, we have studied MADM problems using
PF information. We have developed Frank operations for
PFSs and proposed a series of new aggregation operators,
like, PFFWA operator, PFFOWA operator, PFFHA opera-
tor, PFFWG operator, PFFOWG operator, and PFFHG op-

erator. Then, we have proposed an algorithm to deal with
the MADM problem under the PF environment by using
the PFFWA operator and the PFFWG operator. Finally, we
have compared our proposed method with the existing ap-
proaches to exhibit its benefits and applicability.

In further research, we can study some new extensions
of PFS, such as complex PFS, rough PFS. We can also
extend them to other decision-making methods, such as
COPRAS method [49], TOPSIS method [15], VIKOR [47]
method, and so on, and apply them to deal with some real-
life decision-making problems. We shall continue to in-
vestigate PF aggregation operators with the help of various
t-norms and t-conorms.
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(a) Score of alternatives when r ∈ [2, 50] based on PF-
FWA operator

(b) Score of alternatives when r ∈ [2, 50] based on PF-
FWG operator

Figure 1: Pictorial representation of the ranking of the alternatives with different values of r

Aggregation Operators ∆(σ1) ∆(σ2) ∆(σ3) ∆(σ4) ∆(σ5) Ranking order Optimal alternative

PFWA [37] 0.7731 0.7671 0.7522 0.7737 0.7206 F4 > F1 > F2 > F3 > F5 F4

PFWG [37] 0.6494 0.7312 0.6085 0.6040 0.6394 F2 > F1 > F5 > F3 > F4 F2

Proposed method 0.6571 0.7345 0.6170 0.6139 0.6472 F2 > F1 > F5 > F3 > F4 F2

Table 4: Comparison table
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