
https://doi.org/10.31449/inf.v44i3.2962 Informatica 44 (2020) 373–386 373

Smart Design for Resources Allocation in IoT Application Service

Based on Multi-agent System and DCSP

Mouadh Bali

LIMED Laboratory, Faculty of Exact Sciences, University of Bejaia, Algeria

Dept. Computer Science, Faculty of Exact Sciences, University of El Oued, Algeria

E-mail: bali-mouadh@univ-eloued.dz

Abdelkamel Tari

LIMED Laboratory, Faculty of Exact Sciences, University of Bejaia, Algeria

E-mail: tarikamel59@gmail.com

Abdallah Almutawakel and Okba Kazar

LINFI laboratory, Computer science department, University of Biskra, Algeria

E-mail: aboud.aboud2012@gmail.com, o.kazar@univ-biskra.dz

Keywords: IoT, IoT service, resource allocation, cloud computing, distributed constraints satisfaction problems, multi

agent system

Received: September 21, 2019

In the present paper, we aim at solving two problems; the first problem occurring in the transformation

of the IoT devices (sensors, actuators, …) to cloud service. Therefore, we work on maintaining a smooth

and efficient data transmission for the cloud and support customer applications like: data sharing, storage

and processing. The second problem has two dimensions. In the first dimension, the problem is arisen in

the submission of cloudlets (customer requested jobs) to Virtual Machines (VMs) in the hosts. To solve

this problem, we propose scheduling algorithm for resource allocation according to the lowest cost and

load. In the second dimension, the problem lies in the hosting of new VMs in the hosts. To overcome this

problem, we need take into account the loads when housing new VMs in different datacenters. In this

work, we suggest a resource allocation approach for services oriented IoT applications. The architecture

of this approach is based on two technics: Multi Agent System (MAS) and Distributed Constraint

Satisfaction Problems (DCSP). The MAS manages the physical resources, making decision and the

communication between datacenters, while DCSP used to simplify the policy of the resources provisioning

in Datacenters. Variables and constraints are distributed among multiple agents in different layers. The

experimental results show that the efficiency of our approach is manifested in: Average System Load, Cost

augmentation Rate and Available Mips.

Povzetek: Predlagan je način dodeljevanja virov za storitve v IoT aplikacijah na osnovi večagentnih

sistemov (MAS) in zadovoljevanja porazdeljenih omejitev (DCSP).

1 Introduction
Internet of Things (IoT) and Cloud Computing are two

paradigm technologies utilized for a wide range of

application in our life. IoT is a smart system to connect

physical objects with sensors to enable them to collect and

share the data via the internet [18].

The cloud is type of parallel and distributed systems.

It is described as a model for application execution and

data storage [19],[2] Cloud infrastructure allows

customers using a large number of resources such as:

network, storage and applications [1]. The data centers

have a large number of resources commonly known as RA

[20]. In cloud computing, RA is an issue due several

challenges such as complexity, heterogeneity of resource

that resides in the datacenter, scheduling, virtualization,

migration [2],[3].

The motivation for studying this problem comes from

IoT limited properties including: limited storage capacity

and complicated processes (data analysis and a lot of

heterogeneity in the devices) [18]. As result, we work on

satisfying users' needs by providing resources allocation

with lower cost. This cost is computed on the basis of

smart solutions in datacenters (best host) according the

resource constraints [8]. We provide a distributed resource

allocation approach based on two technics: multi agent

system (MAS) [17] and distributed constraint satisfaction

problems (DCSP) [5], [10], [11], [23]. Overall, our main

goal is to provide high performance services and minimize

the costs of resources operating.

In this paper, we study two problems related to IoT

applications deployment in cloud computing. The first

problem (Service Providing) occurring in the

transformation of the IoT devices (sensors, actuators, …)

to cloud service. Therefore, we work on a smooth and

efficient data transmission for the cloud and support

customer applications like data sharing, storage and

processing. We suggest a number of functionalities for

service providing: service creation, service publishing and

mailto:aboud.aboud2012@gmail.com

374 Informatica 44 (2020) 373–386 M. Bali et al.

service search. The second problem (Service

Consumption) lies in the selection and execution of the

service of resources allocation in the infrastructure of

cloud computing. It occurs in two levels. In the first level,

the problem is arisen in the scheduling of tasks (service

cloudlet) to assign (submit) the cloudlets to the

appropriate VMs taking into consideration the service’s

functional requirements and minimization of resources

exploitation cost. In the second level, the problem lies in

the hosting of new VMs in the hosts of the different

datacenters according to their loads. The hosting of virtual

machines has become a difficult issue in the resource

allocation systems because each virtual machine is

associated to a physical host according its available

resources [6]. In order to solve the problem in both levels;

we suggest smart solutions that depend on two techniques:

The Multi Agent System (MAS) and CSP. The MAS

manages the physical resources, making decision and the

communication between datacenters. On the other hand,

DCSP is used to simplify the policy of the resources

provisioning in Datacenters.

We organize the rest of the article as follows: Section

2 presents research works as related to the subject of this

paper. Section 3 offers background and basic concepts.

The developed mechanism and system architecture are

defined in 4 section. Section 5 presents the main scenarios

of interactions in the proposed system. Section 6 provides

an illustrative example to clarify our approach. The

experimental results are shown in section 7, the last

section concludes the paper and presents the future

perspectives.

2 Related works
Because of the increasing demand of customers in the field

of IoT in cloud infrastructure, many researchers have

developed a number of methods to meet customers'

demands by taking into account the efficiency of resources

and operating expenses. Here, we mention some of the

work done in this regard.

Ghanbari et al. [9] proposed an analytics study for

resource allocation mechanisms for IoT. The Authors of

this paper seek to provide a model in the IoT resource

allocation which aims at reducing load balancing,

minimizing operational cost and power consuming. By

reviewed and discussed the advantages and disadvantages

of this mechanisms, they compared several parameters in

different articles such as: availability, performance,

bandwidth, cost, energy, QoS, SLA, throughput, etc.

Besides, there are more service quality parameters to be

studied such as: self-allocation features, self-adapting,

modeling and earning from studies past and current

behaviour.

Ma et al. [13] suggest a model for task scheduling of

the workflow in the IoT infrastructure as a service (IaaS)

based on deadline constraints and cost-aware genetic

optimization algorithm. To their approach is distributed at

different levels according to the characteristics of cloud

infrastructure due to the important features of the cloud

(on-demand acquisition, heterogeneous dynamics and

performance variation of VMs) so that no dependency

exists between tasks at the same level. To demonstrate the

feasibility of this approach, authors used the HEFT to

generate individuals with the minimum completion time

and cost.

Fayazi et al. [7] focus on two factors for resource

allocation: the reliability and rapid implementation of the

work. Therefore, they suggested cloud resource allocation

based on auction mechanism. The increase and the

decrease in the reliability are determined by the success or

failure of the implementation. These solutions are checked

by using imperialist competitive algorithm and cost

function which is calculated by make span and reliability

values. Beside of the diversity of the techniques used in

this work, it needs more flexibility for the heterogeneous

resources.

The work of Lu et al. [12] present a model to allocate

the resources based on fairness evaluation framework by

using two sub-models (Dynamic Demand Model (DDM)

and Dynamic Node Model (DNM)) to describe the

resource demand. The authors employ several typical

algorithms in resource allocation like utility-based

algorithm to prove their effectiveness. As strong point,

this model supports the dynamic resources demands, but

it does not take into account of the response time.

Mezache et al. [15] suggest a genetic algorithm for

resource allocation with energy constraint in cloud

computing. They focus on two levels of resource

allocation: cloudlets to virtual machines and virtual

machines to hosts. These levels allow adapting the

resource allocation system and keeping the cloud

resources updated by taking into account the current

submitted cloudlets.

3 Background and basic concepts

for IoT and cloud
In this section, we introduce some basic definitions and

concepts as a background for our study.

3.1 Visions on integration internet of

things and cloud computing

The hybridization (combination) between IoT and Cloud

Computing generates synergy for both technologies and

bring many benefits. Cloud infrastructure offers a clear

advantage to IoT systems since its datacenters are able to

calculate the users' needs of resources allocation

efficiently. It ,thus, shortens the execution time, reduces

cost and speeds big data processing [16]. This

combination between IoT and Cloud Computing allows to

provide a number of technical benefits to users (for

example, storage, optimization of resource utilization and

energy efficiency) [4], [22]. Figure 1 describes the

combination between IoT and Cloud Computing.

Smart Design for Resources Allocation in IoT... Informatica 44 (2020) 373–386 375

Figure 1: The combination between IoT and Cloud

Computing.

Figure 2: Architecture of IoT service-oriented.

3.2 IoT service-oriented architecture

The aim of service oriented architecture (Figure 2) is to

take advantage of the infrastructure of things and the cloud

resources for obtaining a better quality of service (reduce

the computing costs and improve the overall performance)

[24]. The IoT services and devices are usually

heterogeneous, and its resources are limited (e.g.,

memory, processing, bandwidth and energy). To manage

such constrained environments, we need to build up a

flexible architecture that is capable of managing these

resources.

3.3 Components of IoT system

In Figure 3, we present four fundamental components of

IoT system (function and mechanism).

• IoT devices and sensors:

Sensor is one of IoT devices that has the capability to

detect, measure and collect data from the physical

environment such as: light, motion, heat, pressure or

similar entities [9], [21].

• IoT gateways:

The IoT gateway is a bridge between sensor networks and

cloud services. The role of gateway is processing the

collected data from sensors, then send it the cloud

computing [21].

• Cloud function:

Cloud function facilitates the advanced analytics and the

monitoring of IoT devices in order to shortening the

execution time, reducing costs and reducing energy

consumption.

• User interfaces:

User interfaces are the visible and tangible part of the IoT

system. They enable users to contact and monitor their

activities in services that they have already subscribed

using IoT system.

3.4 IoT deployed applications

In 0 The deployment of IoT devices encounters number of

challenges such as: heterogeneity, storage, bandwidth,

implementation of management protocols. To overcome

these challenges, researchers turn to the combination

between IoT and Cloud Computing. This type of

combination contributes in the deployment of high,

smarter applications for smarter homes and offices,

smarter transportation systems, smarter hospitals, smarter

enterprises and factories [4], [25].

3.5 The internet of things and multi agent

systems

Thanks its characteristics (intelligence, reactivity,

autonomy, mobility and the ability to perform making

decision). The MAS allows an efficient management for

IoT applications in the physical cloud infrastructure such

as: the heterogeneity, distribution and the data

management In IoT applications. Briefly, MAS provides a

decentralized smart solution to frame the new problems

and their solutions in the resource allocation approach for

services oriented IoT applications [22].

3.6 Cloud infrastructure and constraint

satisfaction problem

The Constraint Satisfaction Problem technique is used to

formulate and solve several artificial intelligence related

problems such as: Scheduling and Optimization [14]. In

the cloud Infrastructure, we use DCSP to simplify the

policy of the resources provisioning in Datacenters. DCSP

problem is formulated as a distributed Variables and

Figure 3: Components of IoT System.

376 Informatica 44 (2020) 373–386 M. Bali et al.

constraints to multiple agents. In MAS, each agent makes

its proposal plan (solution) by using the distributed

negotiation and satisfying its constraints. The various

variables and constraints are identified, and the scenario

of computing is painted accordingly.

4 Developing a new approach for RA

in IoT
At this stage, we proposed a new RA in IoT service. Then,

we discuss its System Objectives, architecture, layers,

DCSP modelling and system scenario.

4.1 System objectives

This paper is interested mainly in the field of cloud of

things. Particularly, it shows the importance of resource

allocation in data centers. The aim of our approach is to

ensure optimal management of resource allocation for

service-oriented IoT applications based on decentralized

intelligence in distributed computing. To achieve the

stated goals i.e. load balancing (minimizing power

consumption), efficiently exploiting resources and

minimizing the execution time, we suggest:

1. Designing a system to manage the cloud

infrastructure based on a multi-agent system for the

allocation of resources in the cloud of things.

 2. Developing a system to manage these resources by

using two techniques: Multi-Agent System (SMA),

Distributed Constraint Satisfaction Problems (DCSP).

3. Implementing and simulating the proposed system

through a scenario that demonstrates the effectiveness of

the proposed approach for the management of resources in

the cloud of things.

 In this concern, we introduce a number of concepts

and rules for IoT service delivery system specifications

and the resource allocation process in cloud computing as

shown below:

-Concepts:

1- Cloud service contains a set of parameters

(called nonfunctional parameters) such as:

Latency Cost Data-format Availability

Real number Real number Real number Real number

2- To execute cloud service, it requires a set of

cloudlet’s resources (called functional

parameters). The cloudlet is represented in

term of (Ram, Storage, Cpu and Bandwidth).

RAM (MB) Storage (GB) CPU (mips) Bandwidth (Gbit/s)

Real number Real number Real number Real number

3- Submission of Cloudlet to VM: is the

selection of the Virtual machines (VMs) that

have enough available resources to run

cloudlet according to its resource

requirements.

4- The hosting of VMs in hosts: is the process

of selecting the host that provides the least

price, low load and the best resources

available for this VM.

-Rules:

1- Every object can be linked to many services.

2- Each service has one cloudlet request.

3- Every Cloudlet should submitted to one VM.

4- Every VM can submit more than one

cloudlet.

5- Every Host can host more than one VM.

6- Every Datacenter has two types of hosts: ON

hosts and OFF hosts

7- Every host has special price.

8- The relationship between the price and the

load of the host has a direct impact, where

the augmentation in the load causes the

increment of the price.

4.2 Smart design for resources allocation

in IoT applications

In this section, we are mainly interested in introducing a

System Architecture for IoT Resource Allocation, its

functional aspect and various layers to provide a better

understanding to: how it works, how it stores and how to

access to the cloud. Figure 4 describes the proposal smart

design.

Layer1 (customer): In this layer, the system focuses on

customers and their requests.

The customer requests are presented in term of service

name and characteristics.

Layer2 (IoT Service): This layer has a significant the role

as mediator between Customer Layer and Broker Layer. It

contains two agents:

1. Object agent (OA): is reactive agent that

represents an IoT object (physical device). It

enables to control exchange and collect data from

this device in order to provide a set of services to

customers.

2. Mediator agent (MA): is cognitive agent; its role

is to manage the customers’ requests and the

provided services. The main components of this

agent are given below:

• Service registry: aims to allow the OA agents to

publish the information about their services in term of

performance and functionalities.

• Service selection: searches for a set of selected

services in the registry that meet the customer request.

• Service transfer MA creates a list of requested

cloudlets from the performance characteristics of the

selected services. Then, it sends this list of cloudlets to

Broker Agent in the next layer. Broker Agent, in turn,

arranges this list of cloudlets and send it to Resources layer

Smart Design for Resources Allocation in IoT... Informatica 44 (2020) 373–386 377

for the selection of the best cloudlet from this list by taking

into account the resource allocation strategy in this layer.

•Service Bind: after the selection of the best cloudlet,

the MA connects the customer with the provider of the

service that is associated by selected cloudlet. It also

allows the OA to execute this service through this cloudlet.

Layer3 (Broker Layer): The role of this layer is to

manage the resources between IoT service and Resources

layer. The broker agent (BA) manages the list of cloudlet

requests, free VMs list, performance and delivery of cloud

resources. The main role of this agent is to arrange a list

of cloudlets, then send to Resources layer.

Figure 4: Smart Design for Resources Allocation in IoT Applications.

budget CL ID

$

CPU, RAM,

Bandwidth,

Storage

1

$

CPU, RAM,

Bandwidth,

Storage

2

…… …….. …

Vm id Size RAM Bandwidth Mips/pe
Number

of Pe

ID GB MB Gbit/s Mips
Real

Number

….. …… …… …… …… ……

Table 1: Example of Broker Agent components.

378 Informatica 44 (2020) 373–386 M. Bali et al.

Layer4 (Resources layer): is the most important layer in

the system due to its role in the managing, processing and

selecting the best RA for the cloudlet in two levels: local

level (between HA agents in the same datacenter) and the

global level (between DCA agents of the cloud). This layer

contains three types of agents. We introduce these agents

and clarify the relationship between them by Figure 5.

Datacenter agent (DCA): communicates with BA

and hosts agents in the same datacenter. It also negotiates

with other DCA.

Host agent (HA): controls a host in state ON.

Host off agent HOffA: controls a host in state OFF.

Figure 5: Relationships between DCA and HA agents.

4.3 Relationships between DCA and HA

agents

DCSP problem is formulated as a distributed Variables

and constraints to multiple agents. In MAS, each agent

makes its proposal plan (solution) by using the distributed

negotiation and satisfying its constraints. The various

variables and constraints are identified, and the scenario

of computing is painted accordingly.

4.3.1 Defining of the variables

In this section, we show the most important variables and

their definitions Table 2.

4.3.2 Constraints

The aim of this section is to select the best solution for any

task in DCSP systems. We thus need to define a set of

constraints by using the previous defined variables that

correspond to system requirements.

Constraint 1 (Service Usability): verifies a service S that

meets customer request R; it should satisfy the

nonfunctional characteristics of the customer request

according to the following constraint:

S meet R : {
𝑅(𝐴𝑣) ≤ 𝑆(𝐴𝑣)

𝑎𝑛𝑑
 𝑅(𝑅𝑒𝑝) ≤ 𝑆(𝑅𝑒𝑝)

 (1)

Constraint 2 (Service Capacity): allows the service to

handle new customer request. Before representing

customer request in term of cloudlet, it should respect its

capacity limitation:

𝑆(ℎ𝑟) + 1 ≤ 𝑆(𝐶𝑎𝑝) (2)

Constraint 3 (Cloudlet Submission ability): virtual

machine 𝑽𝑴𝒍 has already a set of M cloudlets. In order to

submit more cloudlet m', this condition must be satisfied:

 𝐶𝑙𝑚′(𝑙𝑒𝑛𝑔𝑡ℎ) +∑ (𝐶𝑙𝑚(𝑙𝑒𝑛𝑔𝑡ℎ) +
𝑀

𝑚=1

𝐶𝑙𝑚(𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒)) ≤ 𝑉𝑀𝑙(𝑟𝑎𝑚) (3)

 𝐶𝑙𝑚′(𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒) + ∑ 𝐶𝑙𝑚(𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒)
𝑀
𝑚=1 ≤

 𝑉𝑀𝑙(𝑠𝑡𝑜𝑟𝑎𝑔𝑒) (4)

 𝐶𝑙𝑚′(𝑏𝑤) + ∑ 𝐶𝑙𝑚(𝑏𝑤)
𝑀
𝑚=1 ≤ 𝑉𝑀𝑙(𝑏𝑤) (5)

 𝐶𝑙𝑚′(𝑚𝑖𝑝𝑠) + ∑ 𝐶𝑙𝑚(𝑚𝑖𝑝𝑠)
𝑀
𝑚=1 ≤ 𝑉𝑀𝑙(𝑚𝑖𝑝𝑠) (6)

Where:

𝐶𝑙𝑚(𝑚𝑖𝑝𝑠) = 𝐶𝐿(𝑙𝑒𝑛𝑔𝑡ℎ) ∗ 𝐶𝐿(𝑛𝑏𝑟_𝑝𝑒) (7)

𝑉𝑀𝑙(𝑚𝑖𝑝𝑠) = ∑ 𝑃𝐸𝑘𝑙(𝑚𝑖𝑝𝑠)
𝑃
𝑘=1 (8)

𝑎𝑛𝑑 𝒎′ ¬𝜖 [1,𝑴] (9)

Constraint 4 (VM Hosting ability): To allow a Host J

hosting a new virtual machine l’ (free or migrated VM),

we must verify these conditions:

 𝑉𝑀𝒍′(𝑟𝑎𝑚) + ∑ 𝑉𝑀𝑙(𝑟𝑎𝑚)
𝑉
𝑙=1 ≤ 𝐻𝑜𝑠𝑡𝑗(𝑟𝑎𝑚) (10)

 𝑉𝑀𝒍′(𝑠𝑡𝑜𝑟𝑎𝑔𝑒) + ∑ 𝑉𝑀𝑙(𝑠𝑡𝑜𝑟𝑎𝑔𝑒)
𝑉
𝑙=1 ≤

 𝐻𝑜𝑠𝑡𝑗(𝑠𝑡𝑜𝑟𝑎𝑔𝑒) (11)

 𝑉𝑀𝒍′(𝑏𝑤) + ∑ 𝑉𝑀𝑙(𝑏𝑤)
𝑉
𝑙=1 ≤ 𝐻𝑜𝑠𝑡𝑗(𝑏𝑤) (12)

𝑉𝑀𝒍′(𝑚𝑖𝑝𝑠) + ∑ 𝑉𝑀𝑙(𝑚𝑖𝑝𝑠)
𝑉
𝑙=1 ≤ 𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠) (13)

Where:

𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠) = ∑ 𝑃𝐸𝑘𝑗(𝑚𝑖𝑝𝑠)
𝑃

𝑘=1
 (14)

𝑎𝑛𝑑 𝒍′ ∉ [1, 𝑽] (15)

Constraint 5 (Ranking of Host Agents): The ranking

Algorithm is based on mipsPrice. In case of finding two

Hosts with the same price, then we must use mipsLoad:

𝐵𝑒𝑠𝑡 𝐻𝑜𝑠𝑡 =

{

 𝑚𝑖𝑛 (𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠𝑃𝑟𝑖𝑐𝑒) , 𝐻𝑜𝑠𝑡𝑗`(𝑚𝑖𝑝𝑠𝑃𝑟𝑖𝑐𝑒))

𝑎𝑛𝑑

𝑚𝑖𝑛 (𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠𝐿𝑜𝑎𝑑) , 𝐻𝑜𝑠𝑡𝑗`(𝑚𝑖𝑝𝑠𝐿𝑜𝑎𝑑)) ,

𝑖𝑛 𝑐𝑎𝑠𝑒 ∶ 𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠𝑃𝑟𝑖𝑐𝑒) ≡ 𝐻𝑜𝑠𝑡𝑗`(𝑚𝑖𝑝𝑠𝑃𝑟𝑖𝑐𝑒)

 (16)
Where:

𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠𝐿𝑜𝑎𝑑) =
𝐻𝑜𝑠𝑡𝑗(𝑢𝑠𝑒𝑑𝑀𝑖𝑝𝑠)

𝐻𝑜𝑠𝑡𝑗(𝑚𝑖𝑝𝑠)
 (17)

𝐻𝑜𝑠𝑡𝑗(𝑢𝑠𝑒𝑑𝑀𝑖𝑝𝑠) = ∑ 𝑉𝑀𝑗 𝑙(𝑚𝑖𝑝𝑠)
𝑁

𝑙=1
 (18)

Constraint 6 (Best VM Hosting Selection): The

selection of the best host between different hosts j and j’

for hosting VM, it is organized on the basis of Hosting

Cost:

Smart Design for Resources Allocation in IoT... Informatica 44 (2020) 373–386 379

𝐵𝑒𝑠𝑡 𝑉𝑚 𝐻𝑜𝑠𝑡𝑖𝑛𝑔 = 𝑚𝑖𝑛 (𝑉𝑚(𝐶𝑜𝑠𝑡𝑗) , 𝑉𝑚(𝐶𝑜𝑠𝑡𝑗′))

 (19)

Constraint 7(Best Cloudlet Selection): selection of the

best Cloudlet (service) for customer request is based on

resources exploitation Cost:

𝐵𝑒𝑠𝑡 𝐶𝐿 = 𝑚𝑖𝑛 (𝐶𝑙(𝐶𝑜𝑠𝑡𝑙 𝑗) , 𝐶𝑙(𝐶𝑜𝑠𝑡𝑙′𝑗′)) (20)

Where:

𝐶𝑙(𝐶𝑜𝑠𝑡𝑙 𝑗) : is the cost of resource exploitation of the

submitted Cl in the VMl which is hosted in the host j.

𝐶𝑙(𝐶𝑜𝑠𝑡𝑙′𝑗′) : is the cost of resource exploitation of

the submitted Cl in the VMl’ which is hosted in the host j’.

Variable Description Domain

R The request of the customer {R1, … , Rv,… Rs}

O
The abstract object, each object is connected to

physical device (gateway, sensor, actuator…).
{O1, … , Ow,… Ot}

S Sxw: The offered service x by the object w. {S11, … , Sx w,… Sut}

CL Clm x w: Cloudlet of the service x from the object w {cl111, … , clm x w,… clc u t}

R(Av) The requested Availability. Rate value (%)

R(Rep) The requested Reputation. Naturel number

S(Av) The Availability of the service. Rate value (%)

S(Cap)
The Capacity of the service: it is the number of

requests can be handled per unit of time.
Naturel number/time

S(Rep) The Reputation of the service. Naturel number

S(hr) The sum of current handled requests by the service. Real number

Host Physical host { Host1, … , Hostj,… Hosth}

VM Virtual machine {vm1, … , vml,… vmv}

Host(pe) Processor in the host { Pe11, … , pekj,… peph}

Host (ram) Size of host’s ram Naturel Number

Host(bw) Bandwidth of the host Real number

Host(Storage) Size of the host’s storage Naturel Number

Host(mips) Sum of Capacities of Processors in the host Real number

Host(used_mips)
Sum of Capacities of the Processors used by virtual

machines hosted in the host
Real number

Host(mips_load)

The energy of the host, the Capacity of Processors

used in accordance to the total capacity of Processors

in the host.

Real number (%)

Host(mips_price) Unit price of mips in the host
Real number, obtained from

proposed model for every host

Pe(mips) Capacity of the Processor Real number

VM(size) VM’s hard disc Size Naturel Number

VM(ram) Size of the ram Naturel Number

VM(bw) Bandwidth of the VM Real number

VM(mips) Sum of Capacities of the Processors of the VM Real number

VM(Costj) The hosting Cost of the VM in the host J Real number (DA)

CL(length) Size of the of CL. Real number

CL(file size) Total size of files of CL Real number

CL(output size) Size of the result of the execution of CL Real number

CL(nbr_pe) Max number of Processors of CL Naturel Number

CL(mips) Capacity of the Processors of Cl Real number

Cl(Costlj) it is the cost of resource exploitation of the submitted

Cl in the VM l which is hosted in the host j
Real number (DA)

Table 2: Defining of the Variables.

380 Informatica 44 (2020) 373–386 M. Bali et al.

5 Scenario of interactions in the

proposed system
In this section, we present the main scenarios to provide

and select RA for IoT service in the proposed system.

Also, we illustrate the interactions between Agents by

sequence diagrams where there are two object agents

(OA1, OA2) and two datacenters agents (DCA1, DCA2).

Every datacenter has two Host Agents (HA1, HA2).

5.1 Global interaction

In this section, we explain the global interactions in the

proposed system on three main levels: IoT Service

request, Cloudlets Submission and Hosting Virtual

Machines. The Search Algorithm and diagram in Figure 6

present the detailed descriptions for these interactions.

5.1.1 Search algorithm

1

2

3

4

5

6

7

Search Algorithm

Input

Request: customer request

contains the nonfunctional

characteristics (Av and Rep).

SR: Service Registry contains

the services list and their

Characteristics.

Output

 SL: List of found Services

 SL = ∅
 for all S in SR do

8

9

10

11

12

13

14

15

 if (Request, S) verify C1) then

 if (S verifies C2) then

 add S to SL

 end if

 end if

 end for

 Return SL

end.

Algorithm 1: Search Algorithm.

5.2 Cloudlets submission

The process of cloudlets submission in datacenter and

their hosts is illustrated in Figure 7. In addition, the

Planning Algorithm (Algorithm1) illustrates the process

of cloudlets submission inside the Hots.

5.2.1 Planning algorithm

1

2

3

4

5

6

7

8

9

10

11

12

Algorithm Planning

Input

R: List of requested Cloudlets

Output

 BCL: Best Cloudlet

 BCL = 0

 For all VM in this host do

 While ∃ CL ∈ R and (VM, CL)
verify C3 do

 remove CL from R

 if (BCL=0 or (CL(cost),

BCL(cost)) verify C7) then

 BCL = CL //the new CL is

the best cloudlet

 end if

 end while

 end for

Figure 6: The global interactions in the system.

Smart Design for Resources Allocation in IoT... Informatica 44 (2020) 373–386 381

13

14

15

 Return BCL

end.

Algorithm 2: Planning Algorithm.

5.3 Hosting virtual machines

In a case where there is no VM resource available, we

launch the Hosting Virtual Machines to submit the

requested Cloudlets. The BA starts the process of hosting

free virtual machines as illustrated in Figure.8.

6 Illustrative example
To illustrate our approach, we consider an example and

discuss a case study of an IoT Application for smart

transport system. We discuss this case study from two

dimensions:

1. IoT service deployment

First dimension: we focus on the aspect of the

defining, publishing and searching services in addition to

the different characteristics of these services and the

customers' requests. We show a scenario of using this

dimension by the following steps:

Step 1: A company has IoT application for smart taxi. It

provides the service of reservation of autonomous cars and

tracking (monitoring program to be executed in the cloud)

the car during the trip.

Step 2: Each autonomous car (physical IoT) is connected

to an agent (object agent) in the cloud (IoT layer). This

agent publishes information about his service in MA

services registry. The Table 3 illustrates some

characteristics of the service in term of functional and

nonfunctional.

Figure 7: Cloudlets submission between datacenter and their hosts.

382 Informatica 44 (2020) 373–386 M. Bali et al.

ID Nonfunctional Functional

Agent id Availability Reputation RAM(mb)
Storage

(mb)
Cpu

OA1 80% ***** 300 500 2

OA2 65% ** 500 1024 3

…. … … …. …. …

Table 3: Services characteristics.

Step 3: The customer requests a car (service) via

introducing the nonfunctional characteristics: availability,

reputation and the type of desired trip.

Step 4: First, the MA searches in the registry the available

services that meet the customer request. In order to select

the best service from the found services, the MA converts

these services into cloudlets by using resources

requirements (from functional characteristics), and sends

them to BA in the next layer.

2. Service selection in cloud computing (Planning

procedure)

After obtaining the output (convert services to cloudlets)

of the first dimension. We discuss how to the execution of

the planning procedure in the second dimension in the

cloud system functionality. We propose the cloud

infrastructure that has two imaginary datacenters: where

datacenter 1 has four hosts and three hosts for datacenter

2. In addition, there are eleven (11) Virtual machines

(VMs) hosted in these different hosts. These VMs has

already hosted thirty (30) Cloudlets, and BA needs to host

seven (07) other requested cloudlets (CL31 … CL37) in

these Vms. In this case, the system looks forward to check

the best resource allocation process for these cloudlets

according to the cost and energy consumption as shown in

the following steps.

Figure 8: Hosting free virtual machines.

Smart Design for Resources Allocation in IoT... Informatica 44 (2020) 373–386 383

Step 1 (requests):

BA distributes the received list of cloudlets to all DCA.

As result, every DCA informs his HA agents who are in

ON state to start the ranking process.

Cloudlet

id
Length

File

size

Outputs

size

Number

of Pe

31 10MB 2 MB 1MB 2

DCA1 32 13MB 1 MB 1MB 1

33 5MB 3 MB 2MB 1

34 10MB 1 MB 1MB 1

35 5MB 1 MB 1MB 2

DCA2 36 2MB 3 MB 3MB 1

37 4MB 2MB 1MB 2

Table 4: Cloudlets List Distribute.

Step 2 (Interne Negotiation 1 “Ranking process”):

After, the HA agents (in ON state) share their prices and

rank themselves into ascending order by the price. As

illustrated in Table 5 the ranking in Datacenter I is: H2,

H1, H4 where H2 has the price (1.5 $) which is the lowest

price. And for Datacenter II: H1, H2 where H1 has the

lowest price (1.4 $).

At the end of the ranking, every first HA informs his

DCA by the result of the ranking and asks him to send

back the list of cloudlets.

DCA1

 rank Host id price

 1 H2 1.5 $

 2 H1 4 $

 3 H4 7.8 $

DCA2
 1 H1 1.4 $

 2 H2 5.5 $

Table 5: Hosts ranking

Step 3 (Interne Negotiation 2 “Planning”):

After the ranking process, the first HA in the each DCA

gets the list of cloudlets from his DCA, and starts the

planning procedure by checking available resources in the

hosted VMs of his Host and verifies the constraint C1. If

there are Cloudlets and VMs that verify C1, then the first

HA selects the best cloudlet that satisfies the constraint

C7. The first HA sends the selected cloudlet to the DCA

in the term of (cloudlet, VM, host, cost) as reply. At the

end of his procedure, it sends the rest of cloudlets (they do

not satisfy C1) to the next HA in the ranking list to

consider them in his planning procedure. This process is

repeated continuously until the last HA in the ranking list

or there is no rest cloudlet.

Otherwise, in case of there is no Cloudlet that satisfies

C1 in any HA, this HA retransmits the whole of the list of

cloudlets to the next HA in the ranking list to consider his

planning procedure.

Step 4 (Local solution building):

After the planning, every DCA receives the solution from

HA agents and selects the best solution, which satisfies

C7, and consider it as his local solution. Table 6 illustrates

the local solutions in DC1 and DC2 for CL31 and CL37.

Step 5 (External Negotiation) :

The DCA agents share their solutions and negotiate to

select the best solution using the best price (to satisfy C7).

The DCA that is the owner of the best solution sends his

solution to BA to build the global solution as illustrated in

Table7.

Cloudlet

id
price

DCA

id

Host

id
Vm Id

33 37$ DCA2 H1 Vm8

Table 7: Global solution for the Broker Agent

Step 6 (Show solutions and confirmation):

After building the global solution, BA agent sends the

cloudlet to MA. As result, MA sends the associated

service of the cloudlet as response for customer request,

enables (confirms) OA to launch the tracking device of the

car and allows the customer to use the car with the lowest

cost.

7 Simulation experiments
To evaluate the performance of our approach, we used

CloudSim [15] which is a Java based and extensible

simulation framework for resource allocation algorithms.

In this section, we discuss the experimental configuration

and the results obtained by using our approach.

7.1 Experimental configuration

We define the different parameters in our experiments as

follows: datacenters, hosts, virtual machines, Processors

and cloudlet as shown in Table 8.

7.2 Simulation results

In this section, we present the experimental results and

show the efficiency of our proposed approach by making

a comparison between three solutions (First Fit algorithm

(FF), the proposed Genetic Algorithm (GA) of Mezache

et al. [15] and our algorithm (MD)). MD is built on MAS

 Local solution of DCA1 Local solution of DCA2

Cl id cost Host ID Vm ID Cl id cost Host ID Vm ID

31 39$ H2 Vm6 31 80$

H1

Vm10

32 43$

H1

Vm3 32 72$ Vm10

33 41$ Vm1 33 37$ Vm8

34 78$ Vm2 34 44$

H2

Vm7

35 78$ Vm11 35 54$ Vm7

36 46$ Vm3 36 50$ Vm8

37 40$ Vm2 37 93$ Vm7

Table 6: Local solution for every Datacenter

384 Informatica 44 (2020) 373–386 M. Bali et al.

with DCSP. In addition, we have defined performance

metrics for the evaluation of the three proposed solutions.

These solutions have common characteristics (Average

System Load (ASL), Cost augmentation Rate (CR) and

Available Mips (AM)). In the experiments, the customer

request (Service Request) will be submitted to the IoT

system for processing this request. In this case, the

proposed system converts this request to a list of cloudlets

(network bandwidth, Storage, CUP and load consumed) in

order to fulfill this request with lowest cost by using our

algorithm (MD). The main goal of our algorithm (MD) is

to balance between the cost and energy of Datacenters

hosts. The obtained results show that this goal is achieved

through the common characteristics (metrics) that are

shown as follow:

a) Average System Load (ASL) This metric represents the

energy consumption. The importance of this metric lies in

specifying the datacenters status and reducing energy

consumption in their hosts. Usually, the ideal system

average load gives us a balance between the different hosts

inside their datacenters. Figure 9 presents Average Load

by the number of requested cloudlets (FF, GA, MD). The

obtained results show the efficiency of our algorithms

(MD) in getting a lower values of Average System Load

(ASL) compared to FF and GA algorithms. The obtained

(ASL) values after using our algorithm (MD) improves

over the in terms of Average System Load, so that it does

not exceed 50%.

b) Cost augmentation Rate (CR) This metric represents

the Cost augmentation rate by cloudlets number. The

importance of this metric is manifested in reduce the costs

of resources exploitation. The values of (CR) in Figure 10

demonstrate the positive contribution of our algorithm

(MD) on reducing cost with almost of all groups. Our

algorithm (MD) maintains the augmentation rate (CR)

between (105% - 190%) except for the first groups (500

and 1000) where the GA has lower values in (CR). This

due to the efficiency of our algorithm (MD) with groups

which have an important number of cloudlets (more than

1000).

c) Available Mips (AM) This metric represents the

Available Mips by Cloudlets. The importance of this

metric lies in measuring the computing performance and

increasing Available Mips in datacenters. The more MIPS

available for the datacenter, the lower cost of the resources

exploitation. In Figure 11, we observe that the values of

AM obtained by GA are bigger than the values of other

algorithms in groups that have less than 1000 cloudlets.

While, our algorithm (MD) has better values of AM when

the number of cloudlets increases over 1000.

8 Conclusions and future work
In this paper, we addressed a new approach for Resource

Allocation (RA) in Internet of Things. Our approach is

based to decentralized intelligence into distributed

computing by using two technics: MAS and DCSP. In this

hybridization, variables are used to present the resources.

While the rules and policies are presented by constraints.

They are distributed among multiple agents in the

different layers of the system. The experiments show that

the use of DCSP beside MAS pave the way for new

efficient paradigms in solving problems related not only

to Resource Allocation but also to provide smart solutions

which are helpful to synchronize the IoT application

services with computing devices. The obtained results

show that the efficiency of our approach is manifested in:

(1) reducing energy consumption in datacenters by about

Figure 9: Average Load by number of requested cloudlets.

100 500 1000 2000 4000 6000

Load FF 15% 22% 39% 52% 63% 70%

Load GA 11% 19% 35% 50% 54% 61%

Load MD 7% 12% 29% 41% 46% 49%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Load FF Load GA Load MD

Parameters Values

Max Length of cloudlet

Total number of cloudlets

Total number of VMs

VM memory (RAM)

Number of PEs requirements

 Number of datacenters

 Number of hosts

50

500 –3000

530

100 –1000

500 –1500

3

47

Table 8: Values of experiments Parameters.

Smart Design for Resources Allocation in IoT... Informatica 44 (2020) 373–386 385

50 %, (2) reducing cost augmentation Rate between

(105% - 190%) and (3) increasing Available Mips in

datacenters.

Despite the provided advantages of our approach, we

highlight the need of extending in its architecture to

support other specific cases for IoT applications. Big data

are generated day-to-day from the system, causing many

challenges such as, the heterogeneity, scalability and

simultaneous accessibility.

In future research, we are looking for enhancing our

approach by using more techniques of resources in IoT

application services and extending the procedures by

exploiting other approaches as: Search Approximation

Algorithms, Artificial Intelligence and Fog environments.

References
[1] Anithakumari, S., Chandrasekaran, K., (2017).

Interoperability based resource management in cloud

computing by adaptive dimensional search, in: IEEE

International Conference on Cloud Computing in

Emerging Markets, CCEM. pp. 77-84.

https://doi.org/10.1109/CCEM.2017.23

[2] Artan, M., Minarolli, D., Bernd, F., (2017).

Distributed Resource Allocation in Cloud

Computing Using Multi-Agent Systems. Telfor 9,

110-115.

https://doi.org/10.5937/telfor1702110M

[3] Bajo, J., De la Prieta, F., Corchado, J.M., Rodríguez,

S., (2016). A low-level resource allocation in an

agent-based Cloud Computing platform. Appl. Soft

Comput. 48, 716-728.

https://doi.org/10.1016/j.asoc.2016.05.056

[4] Botta, A., De Donato, W., Persico, V., Pescapé, A.,

(2016). Integration of Cloud computing and Internet

of Things: A survey. Futur. Gener. Comput. Syst. 56,

684-700.

https://doi.org/10.1016/j.future.2015.09.021

[5] Chen, J., Han, X., Jiang, G., (2014). A Negotiation

Model Based on Multi-agent System under Cloud

Figure 11: Cost augmentation rate by cloudlets number.

500 1000 2000 4000 6000

FF 198% 230% 320% 290% 167%

GA 155% 185% 250% 210% 146%

MD 184% 190% 150% 120% 105%

0%

50%

100%

150%

200%

250%

300%

350%

FF GA MD

Figure 10: Available Mips by Cloudlet.

s.

100 500 1000 2000 4000 6000

FF 175350,76 160800,43 159800,11 125040,24 90800,54 62800,34

GA 195600,00 185100,00 169560,00 135333,33 101411,88 70291,26

MD 187350,23 174800,15 162800,01 149900,67 117800,4 90800,11

0

50000

100000

150000

200000

250000

FF GA MD

https://doi.org/10.1109/CCEM.2017.23
https://doi.org/10.1016/j.asoc.2016.05.056
https://doi.org/10.1016/j.future.2015.09.021

386 Informatica 44 (2020) 373–386 M. Bali et al.

Computing, in: In The Ninth International Multi-

Conference on Computing in the Global Information

Technology. pp. 157-164.

[6] Ezugwu, A.E., Buhari, S.M., Junaidu, S.B., (2013).

Virtual Machine Allocation in Cloud Computing

Environment. Int. J. Cloud Appl. Comput. 3, 47-60.

https://doi.org/10.4018/ijcac.2013040105

[7] Fayazi, M., Reza, M., Enayatollah, S., (2016).

Resource Allocation in Cloud Computing Using

Imperialist Competitive Algorithm with Reliability

Approach. Int. J. Adv. Comput. Sci. Appl. 7, 323-

331.

https://doi.org/10.14569/IJACSA.2016.070346

[8] Gawanmeh, A., April, A., (2016). A Novel

Algorithm for Optimizing Multiple Services

Resource Allocation. Int. J. Adv. Comput. Sci. Appl.

7, 428-434.

https://doi.org/10.14569/IJACSA.2016.070655

[9] Ghanbari, Z., Jafari Navimipour, N., Hosseinzadeh,

M., Darwesh, A., (2019). Resource allocation

mechanisms and approaches on the Internet of

Things. Cluster Comput. 22, 1253-1282.

https://doi.org/10.1007/s10586-019-02910-8

[10] Gutierrez-Garcia, J.O., Sim, K.M., (2011). Agents

for cloud resource allocation: An amazon EC2 case

study. Commun. Comput. Inf. Sci. 261 CCIS, 544-

553.

https://doi.org/10.1007/978-3-642-27180-9_66

[11] Jing, L., Weicai, Z., Licheng, J., (2006). A

multiagent evolutionary algorithm for constraint

satisfaction problems. IEEE Trans. Syst. Man

Cybern. Part B 36, 54-73.

https://doi.org/10.1109/TSMCB.2005.852980

[12] Lu, D., Ma, J., Xi, N., (2015). A universal fairness

evaluation framework for resource allocation in

cloud computing. China Commun. 12, 113-122.

https://doi.org/10.1109/CC.2015.7112034

[13] Ma, X., Gao, H., Xu, H., Bian, M., (2019). An IoT-

based task scheduling optimization scheme

considering the deadline and cost-aware scientific

workflow for cloud computing. Eurasip J. Wirel.

Commun. Netw. 2019.

https://doi.org/10.1186/s13638-019-1557-3

[14] Mataoui, M., Sebbak, F., Beghdad Bey, K.,

Benhammadi, F., (2015). CSP formulation for

scheduling independent jobs in cloud computing.

CLOSER 2015 - 5th Int. Conf. Cloud Comput. Serv.

Sci. Proc. 105-112.

https://doi.org/10.5220/0005438801050112

[15] Mezache, C., Kazar, O., Bourekkache, S., (2016). A

Genetic Algorithm for Resource Allocation with

Energy Constraint in Cloud Computing, in:

International Conference on Image Processing,

Production and Computer Science (ICIPCS'2016)

London (UK), March 26-27, 2016 Pp.62-69 A. pp.

62-69.

https://doi.org/10.17758/UR.U0316020

[16] Mora, H., Signes-Pont, M.T., Gil, D., Johnsson, M.,

(2018). Collaborative working architecture for IoT-

based applications. Sensors (Switzerland) 18.

https://doi.org/10.3390/s18061676

[17] Nair, A.S., Hossen, T., Campion, M., Selvaraj, D.F.,

Goveas, N., Kaabouch, N., Ranganathan, P., (2018).

Multi-Agent Systems for Resource Allocation and

Scheduling in a Smart Grid. Technol. Econ. Smart

Grids Sustain. Energy 3, 1-15.

https://doi.org/10.1007/s40866-018-0052-y

[18] Rivera, W., (2017). Sustainable cloud and energy

services: Principles and practice. Sustain. Cloud

Energy Serv. Princ. Pract. 1-268.

https://doi.org/10.1007/978-3-319-62238-5

[19] Roogi, R.H., (2015). Big Data Solution by Divide

and Conquer technique in Parallel Distribution

System using Cloud Computing. Orient. J. Comput.

Sci. Technol. 8, 9-12.

[20] Shrimali, B., Bhadka, H., Patel, H., (2018). A fuzzy-

based approach to evaluate multi-objective

optimization for resource allocation in cloud. Int. J.

Adv. Technol. Eng. Explor. 5, 140-150.

https://doi.org/10.19101/IJATEE.2018.542020

[21] Singh, A., Viniotis, Y., (2017). Resource allocation

for IoT applications in cloud environments. 2017 Int.

Conf. Comput. Netw. Commun. ICNC 2017 719-

723.

https://doi.org/10.1109/ICCNC.2017.7876218

[22] Singh, M.P., Chopra, A.K., (2017). The Internet of

Things and Multiagent Systems: Decentralized

Intelligence in Distributed Computing. Proc. - Int.

Conf. Distrib. Comput. Syst. 1738-1747.

https://doi.org/10.1109/ICDCS.2017.304

[23] Son, S., Sim, K.M., (2012). A price-and-time-slot-

negotiation mechanism for cloud service

reservations. IEEE Trans. Syst. Man, Cybern. Part B

Cybern. 42, 713-728.

https://doi.org/10.1109/TSMCB.2011.2174355

[24] Suciu, G., Suciu, V., Martian, A., Craciunescu, R.,

Vulpe, A., Marcu, I., Halunga, S., Fratu, O., (2015).

Big Data, Internet of Things and Cloud Convergence

- An Architecture for Secure E-Health Applications.

J. Med. Syst. 39.

https://doi.org/10.1007/s10916-015-0327-y

[25] Zahoor, S., Mir, R.N., (2018). Resource

management in pervasive Internet of Things: A

survey. J. King Saud Univ. Inf. Sci.

https://doi.org/10.1016/j.jksuci.2018.08.014

https://doi.org/10.4018/ijcac.2013040105
https://doi.org/10.14569/IJACSA.2016.070346
https://doi.org/10.14569/IJACSA.2016.070655
https://doi.org/10.1007/s10586-019-02910-8
https://doi.org/10.1007/978-3-642-27180-9_66
https://doi.org/10.1109/CC.2015.7112034
https://doi.org/10.5220/0005438801050112
https://doi.org/10.17758/UR.U0316020
https://doi.org/10.1007/s40866-018-0052-y
https://doi.org/10.1109/ICCNC.2017.7876218
https://doi.org/10.1109/ICDCS.2017.304
https://doi.org/10.1109/TSMCB.2011.2174355
https://doi.org/10.1007/s10916-015-0327-y

