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This work introduces a modified MAX MIN Ant System (MMAS) designed to solve the Capacitated p-
Medians Problem (CPMP). It presents the most relevant steps towards the implementation of an MMAS 
to solve the CPMP, including some improvements on the original MMAS algorithm, such as the use of a 
density model in the information heuristics and a local search adapted from the uncapacitated p-
medians problem. Extensions of a recently proposed updating rule for the pheromone level, aiming at 
improving the MMAS ability to deal with large-scale instances, are also presented and discussed. Some 
simulations are performed using instances available from the literature, and well-known heuristics are 
employed for benchmarking. 
Povzetek: Predstavljene so izboljšave algoritma MAX MIN na osnovi kolonij mravelj za reševanje 
problema CPMP. 
 

1 Introduction 
The capacitated p-medians problem (CPMP), also known 
as capacitated clustering problem, is a combinatorial 
programming task that can be described as follows: given 
a graph with n vertices (clients), find p centers (medians) 
and assign the other vertices to them minimizing the total 
distance covered, limited to a capacity restriction. This 
problem is a special case of the “capacitated plant loca-
tion problem with single source constraints” and many 
other combinatorial problems as pointed in Osman and 
Christofides [1]. As such, the CPMP was proved to be 
NP-complete in Garey and Johnson [2]. Its practical use 
varies from industrial and commercial planning to every 
clustering related problem, like data mining, pattern rec-
ognition, vehicle routing and many others. 

Ant Systems (AS) were first proposed in Dorigo [3] 
as an attempt to use the ant foraging behavior as a source 
of inspiration for the development of new search and 
optimization techniques. By using the pheromone trail as 
a reinforcement signal for the choice of which path to 
follow, ants tend to find “minimal” routes from the nest 
to the food source. The system is based on the fact that 
ants, while foraging, deposit a chemical substance, 
known as pheromone, on the path they use to go from the 
food source to the nest. The standard system was later 
extended in Dorigo and Di Caro [4], giving rise to the so-
called Max Min Ant System (MMAS). The main purpose 
of the max-min version is to improve the search capabil-
ity of the standard algorithm by combining exploitation 
with exploration of the search space, and by imposing 

bounds to the pheromone level, thus helping to avoid 
stagnation. 

This paper is an extension of the work initiated in de 
França et al. [5], with additional contributions: a thor-
ough analysis and explanation of the proposed operators, 
and a broader set of experiments. Essentially, the innova-
tive aspects of the approach are twofold: (i) adaptation of 
the MMAS algorithm to deal with a problem not previ-
ously conceived by means of an ant-based formalism; 
and (ii) proposition of several modifications to the 
MMAS algorithm so as to improve its performance when 
dealing with large instances of combinatorial optimiza-
tion problems. In practical terms, the ant system will 
incorporate a local search procedure for the CPMP, a 
new updating rule for the pheromone level, and a stagna-
tion control mechanism. 

The paper is organized as follows. Section 2 provides 
a mathematical formulation of the CPMP problem and 
the General Assignment Problem (GAP) that results 
when the medians are already specified. In Section 3, the 
basic Ant System algorithm together with its Max Min 
version, MMAS, are reviewed. Section 4 emphasizes the 
contributions of this work. It describes the proposed en-
hancements of MMAS, leading to the improved MMAS, 
called here IMMAS, and how to apply ant-based algo-
rithms to the capacitated p-medians problem. The pro-
posed algorithm is evaluated in Section 5, and its per-
formance is compared with that of other works from the 
literature. The paper is concluded in Section 6 with a 
discussion about the formal and methodological contri-
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butions and a description of several avenues for further 
investigation. 

2 Mathematical Formulation of the 
Capacitated p-Medians Problem 

This section provides a mathematical formulation of the 
capacitated p-medians problem as a constrained optimi-
zation problem: the total distance from the medians to 
the clients has to be minimized, constrained by the de-
mands of clients and capacities of medians. 

On a complete graph, given n nodes with predefined 
capacities and demands, the goal is to choose p nodes 
(p < n) as capacitated medians and to attribute each one 
of the remaining (n − p) nodes, denoted clients, to one of 
the chosen medians, so that the capacity of each median 
is not violated by the cumulated demand, and the sum of 
the distances from each client to the corresponding me-
dian is minimal. Every node is a candidate to become a 
median, and the solution will consider demand and ca-
pacity of medians, and only demand of clients. 

Defining an n × n matrix X, with components 
xij ∈ {0,1}, i,j = 1,...,n, and an n-dimensional vector y, 
with components yj ∈ {0,1}, j = 1,...,n, the following 
associations are imposed: 
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The CPMP formulation as an integer-programming prob-
lem can, thus, be given as follows: 
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where: 

n = number of nodes in the graph 
ai = demand of node i 
cj = capacity of median j 
dij = distance between nodes i and j 
p = number of medians to be allocated 

 
After all p medians are chosen, the CPMP becomes a 

Generalized Assignment Problem (GAP); that is, given a 

set of medians, allocate a set of clients to those medians 
so as to minimize Eq. (3): 
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where dij is the cost of allocating client i to median j, n is 
the number of nodes, and p is the number of medians, 
subject to the capacity of the respective medians and 
client demands: 
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where ai is the demand of client i, and cj is the capacity 
of median j. 

3 Ant System and Max-Min Ant Sys-
tem 

The ant system (AS) [3] was the first ant-based algorithm 
applied to solve combinatorial optimization problems. 
More than one decade after it was introduced, several 
different versions, improvements and applications have 
been presented (c.f. Dorigo and Di Caro [4], Dorigo and 
Stützle [6], de Castro and Von Zuben [7]). This section 
briefly reviews the original proposal together with one of 
its most popular variants, the Max Min Ant System 
(MMAS). 

3.1 Ant System 
The basic AS [3] is conceptually simple, as described in 
Algorithm 1. 

 
   Function AS() 

While it < max_it do, 
 For each ant do, 

 build_solution(); 
 update_pheromone(); 

 Endfor 
Endwhile 

    End 
Algorithm 1: Pseudocode for the basic ant system (AS). 

 
In Algorithm 1, procedure build_solution() builds a solution 
to a problem based on a pheromone trail and on optional 
information heuristics. Each ant k traverses one node per 
iteration step t and, at each edge, the local information 
about its pheromone level, τij, is used by the ant such that 
it can probabilistically decide the next node to move to, 
according to the following rule: 
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where τij(t) is the pheromone level of edge (i,j), and Jk is 
the list of nodes yet to be visited by ant k. 

While traversing an edge (i,j), ant k deposits some 
pheromone on it – procedure update_pheromone() – and the 
pheromone level of edge (i,j) is updated according to 
Eq. (6). 

τij ← ρ.τij + ∆τij, (6)

where ρ ∈ (0,1] is the pheromone decay rate, and ∆τij is 
the increment in the pheromone level. In minimization 
problems, the pheromone increment is given by 
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where S is the solution used to update the trail, and f(S) is 
a function that reflects the quality of a solution, i.e., the 
lower the value the better the quality assuming a minimi-
zation problem is being solved. 

In our proposal, the pheromone is represented as a vec-
tor, instead of as a bi-dimensional matrix as in the classi-
cal AS. This is because the algorithm to be described 
here works by assigning pheromone to vertices and not 
to edges, as will be further discussed in Section 4. 

3.2 Max Min Ant System (MMAS) 
An important improvement to the Ant System, called 
Max Min Ant System (MMAS), was introduced in 
Stützle and Hoos [8]. In this implementation, the phero-
mone trail is updated only on the global best and/or local 
best solutions, instead of on solutions created by every 
ant. This promotes a better exploitation of the search 
space, as it favors the solutions in the neighborhood of 
the global and local bests. Another improvement is the 
inclusion of upper and lower bounds to the pheromone 
level (τmax and τmin), thus helping to avoid stagnation. 
Initially all trail is set to the upper bound in order to fa-
vor exploration. As defined in Stützle and Hoos [8], and 
in Stützle and Dorigo [9], the upper bound is usually 
chosen to be the maximum value the pheromone can 
reach at the final iterations. Following from Eq. (6), the 
maximum value at a given iteration t is: 
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where Fopt is the optimal solution, ρ is the pheromone 
decay rate, and τ0 is the initial pheromone value. As 
ρ < 1, when t tends to infinity, the pheromone value is 
limited to 
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The problem with Eq. (9) is that the optimal solution 
Fopt is usually unknown. To circumvent this difficulty, 
Fbest; that is, the fitness of the best solution found so far, 
is used in place of Fopt, as an approximation. 

The lower bound is calculated so as to give a τmax/τmin 
ratio equal to 2n (twice the set of candidates to medians), 
so it is set to τmin = τmax/2n. On the one hand, this ratio 
must not be too high, because the probability of selecting 
a path with low pheromone level would become too 
small. On the other hand, if the ratio is too low, the prob-
ability of selecting a path with high pheromone level 
would be very close to the probability of selecting a path 
with low pheromone level.  

4 MMAS Applied to the Capacitated 
p-Medians Problem 

 
This section describes the general methodology used to 
apply the proposed modified Max Min Ant System to the 
CPMP [5]. In particular, it is described how the solutions 
are built by the algorithm, the use of a density-based in-
formation heuristics, a local search procedure, a new 
updating rule for the ant system, and a stagnation control 
mechanism.  

4.1 Building Solutions 
The construction of each solution to the CPMP using 
MMAS is made as follows. Using the probabilistic equa-
tion, Eq. (5), each ant sequentially chooses a set of p 
nodes to become medians among the n candidate nodes. 
Note that the pheromone level in our proposal is attrib-
uted to nodes and not edges. After the definition of the p 
nodes that will play the role of medians, each one of the 
remaining n − p nodes has to be allocated to precisely 
one median, giving rise to the Generalized Assignment 
Problem (GAP) described in Section 2. 

The resulting GAP will not be solved using ant system. 
Instead, a constructive heuristic to allocate clients to me-
dians will be adopted. The method used here was pro-
posed by Osman and Christofides [1] and works as sum-
marized in Algorithm 2. 

 
Function [x] = GAP(clients[ ],medians[ ],n,p) 
         ordered_clients = sort_clients(); 
         For i = 1 to n do, 
             ordered_medians = sort_medians(ordered_clients[i]); 
             For j = 1 to p do, 
                If (capacity(ordered_medians[j]) –  
                     demand(ordered_clients[i])) >= 0, 
                           x[ordered_clients[i]][ordered_medians[j]]=1; 
                Endif 
             Endfor 
         Endfor 
 End 

Algorithm 2: Constructive heuristics to allocate clients to 
medians. 

 
Function sort_clients() generates a list with all the n clients 
in increasing order of distance to their corresponding 
nearest median. Then, the algorithm loops sequentially 
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through this list calling sort_medians() to each client, which 
generates a list with all the p medians in increasing order 
of distance to the current client. Given the ordered list of 
medians, the current client will be allocated to the first 
available median, i.e., the one for which the difference 
between median capacity and client demand is greater or 
equal to zero. The result is the matrix xij described in 
Section 2. 

After these steps the solution is evaluated by means of 
Eq. (1). Then, one iteration of local search is performed 
as described in Section 4.3. This procedure is then re-
peated for each ant. For stagnation control, if the algo-
rithm does not improve the solution for 30% (defined 
empirically) of the number of total iterations, all phero-
mone trails are restarted.  

4.2 Information Heuristic (η) 
In order to improve the solutions found by the construc-
tive phase of the ant algorithm, an information heuristic 
which contains the quality of choosing each node as part 
of the solution is used. For this heuristic, some greedy 
information concerning the problem is often adopted, 
such as the distance among the current node to the others 
in traveling salesperson problems as shown in Dorigo 
[3], Dorigo and Di Caro [4], and Dorigo and Stützle [6]. 
Thus, Eq. (5) becomes Eq. (10): 
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The parameters α and β are user-defined and control 
the relative weight of trail intensity τi(t) and information 
heuristic ηi. 

In the case of CPMP, the information heuristic pro-
posed here is a density model for this problem based on 
Ahmadi and Osman [10]. The idea is to calculate an op-
timistic density of a cluster if a given node was to be 
chosen as the median. The computation follows Algo-
rithm 3. 
 

Function [η] = density() 
    For i = 1 to n do, 

    ordered_nodes = sort_nodes(i); 
    [all_nodes, sum_distance] = allocate(i,ordered_nodes); 

  ;
cesum_distan

all_nodes
=ηi  

     Endfor 
 End 

Algorithm 3: Calculating the density of a cluster. 
 

Function sort_nodes() sorts all nodes based on their dis-
tance to node i; and function allocate() assigns each node 
in ordered_nodes to i, until its capacity is reached, return-
ing two outputs: (i) all_nodes: the number of allocated 
nodes; and (ii) sum_distance: the summation of the dis-
tance between each allocated node and node i. Although 
this is a reasonable measure of the potential of a node as 
a candidate to become a median, it does not always im-

ply the most appropriate scenario. Given that information 
heuristic provides just an approximated indication of the 
best candidates to become medians, parameters α and β 
are set so as to emphasize pheromone instead of the heu-
ristic information, as will be observed in the experiments 
described in Section 5. This is opposed to the approach 
usually adopted for tackling the TSP problem, in which 
the best results found are given more importance. 

4.3 A Local Search Procedure for the 
CPMP 

The local search heuristic is a first improvement ap-
proach for the MMAS algorithm. Basically it consists of 
changing a client into a median and this median into a 
client seeking an improvement of the objective function. 

To define the search neighborhood, an approach based 
on the uncapacitated p-medians problem proposed in 
Resend and Werneck [11], and in Teitz and Bart [12] 
was adopted. This approach consists of an optimistic 
function to calculate a profit, P, obtained by changing a 
client into a median and determining which median to 
remove in this case. Initially, two vectors d1 and d2, con-
taining the first and second closest median to each client, 
are calculated. Then, the profit associated with each pos-
sible interchange between a client and a median obeys 
the following equation: 
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where M is the set of medians, fi ∉ M and fr ∈ M is ap-
plied, fi is the node chosen to enter the solution as a me-
dian, fr is the node chosen to leave it, d1(u) is the distance 
of node u to its nearest median, d2(u) is the distance of 
node u to its second nearest median, and d(x1,x2) is the 
Euclidean distance between x1 and x2. 

Figure 1 provides a general overview of the local 
search procedure. The larger circles represent candidates 
to medians, and the smaller ones represent the clients. 

 

fi 

fr 
 

Figure 1: Overview of the local search procedure. Solid lines 
connect clients to medians, fi is the candidate to enter the solu-
tion as a median, and fr is the median that will leave the solu-
tion.  



MAX MIN ANT SYSTEM AND CAPACITATED...  Informatica 29 (2005) 163–171 167
  
 
The first term of the right hand side of Eq. (11), detailed 
in Figure 2, refers to all clients that do not belong to the 
median candidate to leave the solution, and takes into 
account two possibilities: (i) the new median is nearer to 
the client than its previous nearest median; or (ii) the new 
median is farther to the client than its previous nearest 
median. When the former holds, allocating this client to 
the new median will reduce the total value of the objec-
tive function, increasing the profit in proportion to 
d1(u) − d(u,fi). Otherwise, no change occurs. 

 

0 

0 
fi 

fr 

d1−d(fi) 

d1−d(fi) 

 
Figure 2: First term of the right hand side of Eq. (11). Clients 
not allocated to fr that will profit from the insertion of fi. Solid 
lines connect each client to a median, dotted lines represent the 
new connections, fi is the candidate to enter the solution as a 
median, and fr is the median that will leave the solution. 

In the second term of the right hand side of Eq. (11), 
those clients that will lose their nearest median and will 
be allocated to a new one are taken into account (Figure 
3). There are also two possibilities in this case: (i) the 
nearest median becomes the new median; or (ii) the cli-
ent is allocated to its second nearest median. In the first 
case, the difference on the profit will be d(u,fi) − d1(u), 
and can make the total distance larger or smaller. In the 
second case, the profit function will have a decrease pro-
portional to d2(u) – d1(u). 

 

 d2−d1 

 d2−d1 

0 
 

0 

fi 

fr 

d(fi)−d1 

d(fi)−d1 

d1−d(fi) 

 
Figure 3: Second term of the right hand side of Eq. (11). Cli-
ents allocated to fr that will profit or not from the exit of fr. 
Solid lines connect each client to a median, dotted lines repre-
sent the new connections, fi is the candidate to enter the solu-
tion as a median, and fr is the median that will leave the solu-
tion. 

After this procedure has finished, two similar First Im-
provement Local Search procedures are performed, but 

regarding the clients instead of medians. The first one 
(Figure 4(a)) consists of interchanging two clients of 
different medians whenever it is profitable, and after that, 
recalculating the medians taking the best point inside 
each cluster. The second type (Figure 4(b)) is the same as 
the previous one, but two clients of one median are inter-
changed with one client from another. 

 
(a) 

 
(b) 

Figure 4: First Improvement Local Search procedures. (a) One 
movement of 1-interchange GAP local search. One client of the 
first cluster interchanges with a client from the other one (dot-
ted lines). (b) One movement of 2-interchange GAP local 
search. One client of the first cluster interchanges with two 
clients from the other one (dotted lines). 

A number greater than 2 for the λ-interchange algorithm 
is computationally expensive and will hardly represent 
significant benefits to the final results, because 1- and 2-
interchange, when tried several times, can eventually 
perform the job of a λ-interchange for higher values of λ. 

4.4 A New Updating Rule for AS 
A well-known problem with the AS is that of scaling the 
objective function to update the pheromone trail. If not 
appropriately done, the performance of the algorithm 
tends to be unsatisfactory for large instances of the prob-
lem. To propose a suitable updating rule, a framework 
for the AS that can also be applied to its variants like 
MMAS was introduced in Blum et al. [13] and Blum and 
Dorigo [14]. The main idea is to normalize the bounds of 
the pheromone trails in the range [0,1], and consequently 
normalize the quality function of a solution, f(⋅). The 
updating rule thus becomes: 

 

τi = τi + ρ(∆τi − τi). (12)
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for each node i, where Sbest is the best solution found and 
Sj is the solution found by ant j. In this case, τi, ∀i, is 
initially set to 0.5 in order to equal the chances in both 
directions. 
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4.5 Adaptation to the CPMP 
To apply the MMAS to the capacitated p-medians prob-
lem using the new updating rule, some modifications had 
to be introduced to take full advantage of all the problem 
information available. First, τmin and τmax were set to 
0.001 and 0.999, respectively, and the pheromone trail 
was initialized to 0.5.  

It can be noticed from Eq. (12) that in order to have a 
positive increase in the pheromone level it is necessary 
that τι < ∆τι, and, as the solutions obtained per iteration 
have a value near the best so far, Eq. (13) will hardly 
produce a value greater than 0.5, so there is a bound 
lower than τmax imposed by ∆τι.  

For this reason it is proposed a new updating rule, pre-
sented in Eq. (14), where a simpler calculation taking 
into account just the two solutions used to update the 
pheromone is made, giving a better quality function. 
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where gbest, lbest, and lworst are the global best, local best 
and local worst solutions, respectively. In Eq. (14), 
whenever the local best is better than the global one, the 
pheromone is updated proportionally to the difference 
between them. Otherwise, the complementary value is 
taken; thus, the closer the local best from the global best, 
the closer ∆τι becomes to one. Note that the global best 
information is updated after this process, so Eq. (14) can 
result in a range [0,2], meaning that whenever a new best 
solution is found, the vertices with low pheromone val-
ues are set to a value near or equal to τmax and those 
which are already with a high value will be equal to τmax. 

4.6 Pheromone Stagnation Control 
A stagnation control mechanism for the algorithm is pro-
posed so that it is restarted every time it stagnates. For 
this problem, it is intuitive that when the pheromone trail 
converges, p points (number of medians) will be at the 
upper bound, τmax, and the remaining will be at the lower 
bound, τmin. Thus, every time the sum of all pheromone 
follows Eq. (15), the algorithm is said to have stagnated 
and is thus restarted: 

( ) minmax τ⋅−+τ⋅=τ∑ pnp
i

i . (15)

5 Performance Evaluation 
To evaluate the performance of the modified algorithm, 
several CPMP instances from the literature were tested. 
For each instance of a given set, it was made the calcula-
tion of the relative percentage deviation from the best 
known solution: RPD = 100 × (SMMAS − Sbest)/Sbest and 
then the average was taken, where SMMAS is the best solu-
tion found by MMAS and Sbest the best solution known 
for each instance.  

The first experiment was performed to assess the influ-
ence of the information heuristics on the MMAS. Simple 
experiments were run on the classic instances of Osman 
[1] and Lorena [15]. Table 1 presents some results found 
with two sets of parameters α and β to illustrate the im-
portance of the heuristic information. 500 iterations of 
the improved MMAS (IMMAS) were run with the fol-
lowing parameters: α = 1, β = 0 (only pheromone and no 
heuristic information), and α = 3, β = 1 (with heuristics 
but privileging pheromone). As can be seen from Table 
1, the heuristic information successfully improves the 
results found by the Ant System (i.e. only using phero-
mone information). 

Table 1: Average relative percentage deviation from the best 
known solution to the Osman and Lorena sets. Influence of the 
information heuristics. Negative results mean that a solution 
better than the best solution found so far was found 

   α = 1, β = 0 α = 3, β = 1
Osman Average (%) 0.081203 0.064181 
Lorena Average (%) 0.090277 −0.11838 

 
To illustrate the performance of the two different phero-
mone updating rules studied, some experiments were 
performed with the IMMAS algorithm applied to the 
same instance sets as above for 500 iterations. As can be 
seen from Tables 2 and 3, on harder instances (i.e. larger 
number of clients and medians to search and harder GAP 
instances generated from each p-median solution) Eq. 
(14) gives better results than Eq. (13). On easier ones, 
they both give the same results. 
 

Table 2: Comparison between the two pheromone updating 
rules in 500 iterations on the first instance set. The first group 
of columns corresponds to the first 10 instances of Osman [1] 
and the second group represents the last 10 instances. The best 
results are presented in bold. “∆τ” represents the solution ob-
tained using Eq. (13) while “new ∆τ” represents the solution 
obtained using Eq. (14). “n” represents the number of clients 
and “p” represents the number of medians for each instance. 

 ∆τ new ∆τ  ∆τ new ∆τ 

Osman Sol. Sol.  Sol. Sol. 
713 713 1008 1007 
740 740 966 966 
751 751 1026 1026 
651 651 983 983 
664 664 1091 1091 
778 778 955 955 
787 787 1034 1034 
820 820 1043 1043 
715 715 1032 1032 

n=50 
p=5 
  
  
   
  
  
  
  831 831 

n=100 
p=10  
  

1007 1005 
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Table 3: Comparison between the two pheromone updating 
rules in 500 iterations on the second instance set. The best re-
sults are presented in bold. 

 ∆τ new ∆τ   ∆τ new ∆τ 

Lorena Sol. Sol.  Sol. Sol. 

n=100 
p=10 17377 17352 n=300 

p=30 41228 40790 

n=200 
p=15 33254 33254 n=402 

p=30 63966 62400 

n=300 
p=25 45279 45279 n=402 

p=40 53909 52857 

 
In the next experiments, comparisons were performed 
between MMAS and IMMAS. For each algorithm, 10 
trials of 2,000 iterations were run on an Athlon XP + 
2000, 1.67GHz, 512 MB RAM running Slackware 9.l, 
compiled with gcc 3.2, not optimized at compilation.  

Error! Reference source not found. presents the set 
of problems first introduced in Osman and Christofides 
[1] and broadly studied in the CPMP literature. The data 
sets are available at the OR-Library 
(http://www.brunel.ac.uk/depts/ma/research/ 
jeb/info.html), a repository of test data sets for a variety 
of Operations Research (OR) problems. 

The results were compared with those presented in 
Osman and Christofides [1], referred to as HSS.OC, 

which is an implementation of a hybrid involving Simu-
lated Annealing and Tabu Search. As can be observed 
from this table, the IMMAS algorithm performed better 
than the MMAS alone and is competitive when com-
pared to the HSS.OC algorithm. It must also be noticed 
that the variance of the solutions found was 0%, meaning 
that the same results were found for all 10 trials, indicat-
ing the robustness of the algorithm. 

Error! Reference source not found. shows the set of 
problems created by Lorena in [15], where geographical 
information about a large city in Brazil was obtained, 
thus creating a more realistic and complex scenario. In 
this particular problem, the IMMAS presents a superior 
performance when compared with the simple MMAS 
algorithm. Furthermore, IMMAS was capable of finding 
better solutions than the best solutions known to date. It 
is also important to observe that the most noticeable dif-
ferences in performance are on the larger instances, thus 
suggesting that the proposed modifications help to over-
come one important difficulty of Ant Systems, associated 
with problems containing a large dataset. 

6 Discussion and Future Trends 
This paper presented the application and further im-
provements of an ant-colony optimization algorithm to 
the capacitated p-medians problems (CPMP). In particu-
lar, it described one form of applying the Max Min Ant 

Table 4: MMAS, IMMAS and HSS.OC results for Osman’s set of instances, the “Best” column is the best known solution 
found so far, “Sol.” is the solution obtained by each algorithm, “%” is the average relative percentage deviation from best and 
“Time” is the execution time in seconds, results in boldface are the best found by comparing the algorithms. 

 
   MMAS IMMAS HSS.OC 

Osman Best Sol. % Time(s) Sol. % Time(s) Sol. % 
713 713 0.00 31.93 713 0.00 28.22 713 0.00 
740 740 0.00 33.52 740 0.00 30.11 740 0.00 
751 751 0.00 45.59 751 0.00 37.83 751 0.00 
651 651 0.00 47.51 651 0.00 32.73 651 0.00 
664 664 0.00 40.24 664 0.00 31.98 664 0.00 
778 778 0.00 39.88 778 0.00 33.37 778 0.00 
787 787 0.00 44.00 787 0.00 34.19 787 0.00 
820 822 0.24 56.31 820 0.00 36.95 820 0.00 
715 715 0.00 44.05 715 0.00 33.64 715 0.00 

  
n=50 
p=5 
   
  

829 831 0.24 49.12 829 0.00 40.12 829 0.00 

1006 1008 0.20 316.03 1007 0.09 158.34 1006 0.00 
966 966 0.00 180.66 966 0.00 156.33 966 0.00 

1026 1026 0.00 180.56 1026 0.00 168.29 1026 0.00 
982 985 0.30 152.64 982 0.00 194.13 985 0.31 

1091 1092 0.09 118.62 1091 0.00 154.32 1091 0.00 
954 955 0.10 120.84 955 0.10 186.21 954 0.00 

1034 1034 0.00 150.60 1034 0.00 162.23 1039 0.48 
1043 1043 0.00 142.65 1043 0.00 167.21 1045 0.19 
1031 1033 0.19 118.23 1032 0.09 164.43 1031 0.00 

  
  
n=100 
p=10 
  
   

1005 1009 0.40 178.15 1005 0.00 214.39 1005 0.00 

 Avg.   0.088   0.014   0.049 
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System (MMAS) to the CPMP problem that includes a 
local search heuristics, and combines the MMAS with a 
new updating rule and a recent framework from the lit-
erature in order to improve the performance of the algo-
rithm, mainly when large instances are considered. It is 
an extension of a previous work by the authors [5]. 

With the extensions proposed here, based on the 
framework presented in Blum et al. [13] and Blum and 
Dorigo [14], the results obtained showed that the modi-
fied algorithm is competitive and sometimes better than 
other heuristics found in the literature when applied to 
the same problem instances. It could also be noted that, 
over ten trials, the variance in the behavior of the modi-
fied algorithm was very small, sometimes zero, for the 
smaller instances. 

Despite the quality of the results already achieved, 
there are some important aspects that deserve further 
investigation. For instance, even though the density func-
tion gives information about promising medians, it is 
only accurate on the choice of the first points, because, as 
a point is chosen, the density surface of the search space 
changes accordingly. So, recalculating this value for all 
the candidates not yet chosen could improve the quality 
of the results obtained, but with the drawback of a high 
computational cost. Furthermore, it must also be investi-
gated an adaptive distribution of the importance factors 
given for the pheromone and information heuristic (α 
and β) so as to try to improve the performance of the 
algorithm. This happens because, initially, the algorithm 
has no information about the pheromone trail. Thus, a 
higher importance should be given to η during the first 
iterations, and after a number of iteration steps the 
pheromone trail can give better information than η, so it 
must have a higher importance as well. Finally, a better 
GAP local search, or even a constructive heuristics, can 

be implemented to further improve the assignment of 
clients to medians. 
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