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A major function of a security analyst is to analyze collected intelligence looking for plans, associated 
events, or other evidence that may identify an adversary’s intent. Armed with this knowledge, the analyst
then develops potential responses (e.g., countermeasures) to deter the discovered plan or plans, weighs 
their strengths and weaknesses (e.g., collateral damage) and then makes a recommendation for action.  
Unfortunately, the collected intelligence is typically sparse and it is not possible for the analyst to 
initially discover the adversary’s specific intent. Under these circumstances, the analyst is forced to look 
at the range of possible plans/actions an adversary may take.  The full range of potential attack 
scenarios is too rich to generate manually. Its complexity also bars direct analysis and evaluation of the 
potential impact of alternative actions and countermeasures. To address these issues, we are developing 
a set of tools that exhibit the following features/capabilities:

 Using available partial plan segments (referred to as snippets), construct multiple feasible 
scenarios/pathways that an adversary may take to reach an identifiable end goal

 Provide visual tools for exploring sets of possible scenarios under various observables, importance, 
and likelihood conditions, helping the analyst generate information probes, actions and 
countermeasures

 Compare the potential impact of alternative data probes, actions and countermeasures on an 
adversary’s actions by assessing their discrimination/attack mitigation potential and possible side-
effects

 Automatically suggest potential data probes, actions and countermeasures based on partial 
understanding of the adversary’s plan and given observable activity

These tools can provide decision support for many different domains, including terrorist activity 
recognition and network intrusion detection.

Povzetek: Opisan je nabor orodij za napovedovanje napadov.

1 Introduction
The problem of detection, prevention and/or response to 
attacks is common to multiple domains. In the cyber 
community, a goal of an attacker may be to gain access 
to protected resources or to disrupt service to legitimate 
users. In counter-terrorism, an attack manifests itself as 
actions in the physical world. In robotic soccer, an attack 
is a sequence of actions by a team aimed at 
outmaneuvering the opponents and scoring goals.

Attacks can be classified along several dimensions. 
Different techniques and tools for attack detection and 
prevention/counteraction are applicable to different 
regions of this multi-dimensional space.

 Attacks may be fast or slow. Slow attacks, such 
as terrorism in the physical world, leave 
sufficient time for human analysts to respond to 
alerts and warnings. In the case of some cyber-
attacks (e.g., Denial of Service) a reaction is 
required in real time, which often leaves no 
room for human operators or complex reasoning 
algorithms. 

 Vulnerabilities may or may not be known in 
advance. In the case of existing physical 
infrastructures or legacy systems it may be 
impossible to eliminate all vulnerabilities. 
However, for many of these legacy systems and 
physical infrastructures, it is possible to identify 
possible attack strategies for known weak points 
and design systems that detect such attacks. In 
the case of unknown vulnerabilities these 
external detection systems need to monitor the 
general health of the legacy system and 
dynamically devise detection and response 
strategies if something abnormal is detected. 

 An attack may appear either as an expected 
behavior of other agents, or an anomaly. In 
soccer, one may assume that any action of the 
opposing team is a part of an attack. In the 
cyber-world, most actions are part of some 
legitimate user activity. Therefore, it is desirable 
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to minimize the overhead of monitoring and 
limit disruption of legitimate activity.

In this paper we discuss a set of tools and approaches 
for identifying vulnerabilities, detecting potential attacks 
based on observables, and devising detection and/or 
countermeasures aimed at minimizing disruption of 
normal operations. We discuss the potential of such tools 
for human analysts for detection of slow attacks. In 
addition, we describe an initial prototype system 
developed for the Intelligence Advanced Research 
Projects Activity (IARPA) sponsored Proactive 
Intelligence (PAINT) project. The system generates both 
benign and nefarious pathways (i.e., plans that an 
opponent or adversary may take to achieve an objective) 
based on an initial goal and a collection of partial plan 
segments (which we call snippets). The implemented 
system was targeted for the counter-terrorism domain. 
We also present network intrusion detection examples 
from as a new potential application for our system.

2 The problem
Recognizing attack plans is a key activity of security 
analysts. Plan recognition has been a research area in 
artificial intelligence (AI) for decades. In AI, plan 
recognition is a process of inferring the goals of an agent 
from observations of the agent’s activities. In security 
applications (e.g., intrusion detection), the plan 
recognition process is concerned with adversary 
recognition, where attackers try to avoid or interfere with 
recognition process and can take deliberate actions to 
hide their actions and intentions. 

The assumptions used in traditional plan recognition 
[3] [5] are not valid in the security-related adversary 
recognition domain.  In some domains (e.g., RoboCup 
soccer [16] , computer games [4] , and military 
simulations [15] ) the adversary and its high level goals 
are known. In security domains (e.g., computer security, 
information warfare, and antiterrorism), the adversary 
tries to hide its actions and identity. Additionally, its real 
intentions are not always clearly identifiable. 

The challenges in adversary plan recognition and 
response in security domain include the following [10] 
[11] :
Uncertainty and incompleteness. In some cases, the 
functional limitations of security sensors or a less-than 
optimum deployment pattern may increase uncertainty 
by hindering our ability to observe all attacker activities 
and steps. Moreover, we may have an incomplete 
knowledge of the possible attack plans.
Partially ordered plans. Often attackers’ plans are 
flexible in the ordering of the plan’s steps; therefore we 
must be able to recognize the multiple possible 
instantiation orderings created by these plans.
Multiple concurrent goals. Attackers can have multiple 
dynamic attack plans.  For example, a hacker might be 
interested in stealing sensitive data as well as using 
computers to launch attacks against other targets. 
Actions used for multiple effects. Often a single action 
can be used for multiple effects. For example, scanning 
of a domain can be used both for planning a DoS (Denial 

of Service) attack as well as to identify the web server 
that a hacker wants to deface.  
Misleading behavior. In addition to actions directly 
contributing to achieving a goal, an attacker can take 
actions to mislead plan recognition, or to exploit some of 
its weaknesses.
Multiple weighed hypotheses. Ranking the possibilities 
is often more helpful than providing a single (possibly 
incorrect) explanation for observed activities. Say one 
observes scanning activity. While this action indicates a 
hacker is interested in a network, the observation of the 
action itself provides very little evidence about the 
hacker’s intent. Rather than giving just one of the many 
equally likely answers, it is much more helpful to report 
the relative likelihood of each of the possibilities. 
Automated vs. human-in-the-loop operation. In 
security applications, the purpose of adversarial plan 
recognition is to predict possible attacks in order to 
generate effective countermeasures. In many current 
human-in-the-loop operations, real-time detection and 
response is not achievable.  The resulting delays could 
enable an actual attack.  As [20] [6] have pointed out, in 
such applications, an automated attack recognition and 
reaction system avoids these delays and can stop an 
attack before the damage is done. Automated systems, 
however, can produce negative outcomes since some 
response actions (e.g., changes to firewall rules) can 
negatively affect legitimate users.  Hence, the application 
of automated techniques is limited to well-known attacks 
(e.g., signature-based intrusion detection) and targeted 
countermeasures.
Side-effects of probes and countermeasures. Detection 
of stealthy attacks, such as malicious insider covert 
activity and terrorist preparations, can be complex and 
may require probes (i.e., actions designed to engender a 
response likely to provide additional useful information). 
To prevent a situation where a probe or a response action 
causes more damage than the actual attack, a system 
must allow analysts to reason about the likelihood and 
severity of an attack as well as about the effects of 
candidate alternative probe/response mechanisms.

Existing techniques for predicting adversary actions, 
include game theoretic approaches and game playing, 
adversarial planning, and pattern recognition.  These 
provide partial/limited solutions at best. Data mining 
approaches have been used to find information that helps 
to detect attacks; however they suffer from a high false 
alarm rate and do not help analysts connect separate 
events. In order to minimize damage, new algorithms and 
tools for security analysts are needed to enable them to 
further analyze and correlate attack scenarios, make 
accurate situational assessments and quickly execute 
appropriate responses.

3 Modelling alternatives
The algorithmic core of our toolkit is a constraint-based 
planning system [18] . The system core maintains 
alternative plans consisting of tokens. A token may 
represent an action or a state. Both past events (observed 
or hidden) and future ones (plan projection) are part of a 
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plan. Tokens contain variables representing temporal 
(start, end, duration) and resource properties (actor, 
equipment) of the action/state. Variables can be used as 
arguments to constraints. Constraints define tuples of 
values their arguments can take [8] . Constraints enforce 
partial temporal ordering and/or resource dependencies 
between tokens.

A plan is seeded with a set of tokens representing 
high-level goals, target states, and/or observed events. 
The planning module then refines the seeded plans 
according to snippets. Snippets are similar to HTN 
methods [9] . A snippet captures a modification of a plan 
as an implication of the form “if a certain configuration 
of tokens is a part of the plan, then the following 
configuration of tokens is also a part of the plan”. 
Snippets thus can represent expansion of high-level goals 
into lower-level actions and states.  They also can 
enforce causality (e.g., if an attacker knows a password, 
then an action of stealing the password should have 
preceded the attack). If multiple snippets are applicable 
to a given situation (e.g., there are multiple ways to 
achieve the same goal), the planner will create alternative 
plans using each of the snippets. In the current system 
implementation, the user has sole responsibility for 
generating attack snippets. A possible direction for future 
research is to extract snippets from execution traces 
using machine learning techniques.

Consider the following example. Figure 1 shows a 
snippet describing the use of the lpr attack1 to achieve a 
state when an attacker gets access to a protected file. This 
snippet says that a possible way to explain the presence 
of a secret printed state in a plan is to add to the plan a 
partially ordered sequence of actions implementing the 
attack. Lines on the figure represent temporal constraints. 
Note that the snippet imposes only a partial ordering on 
its steps, thus allowing for generation of partially ordered 
plans. Additional resource constraints (not shown) 
declare that all variables marked as f (or s) refer to the 
same file. Constraint propagation helps to limit the set of 
possibilities and to define windows of interest. For 
example, suppose an analyst has an estimate for the 
earliest time a printed copy of a file secret.txt was 
available to an attacker. Propagation of this file name and 
time point will limit the set of ln –s commands that 
would be considered as a possible part of the attack. Note 
also that application of snippets may reuse existing 
tokens in the plan. For example, block ppt command 
might have been issued by a different user for a 
legitimate reason and hijacked by the attacker.

In addition to describing goal/sub-goal relationships, 
snippets can describe necessary effects of actions (e.g., 

                                                          
1 To carry out the attack, an attacker requests 

printing of file doc.txt that he is authorized to access. 
User rights are checked by lpr command, access is 
granted, and the request is put into the printer queue. 
Then, before the printing actually starts, the attacker 
removes the printed file and replaces it by a link to file 
secret.txt he is not allowed to access. As a result, the 
latter file will eventually be printed and the attacker will 
be able to get the sensitive information.

"if a port scan detection tool is installed and there is a 
port scan in progress, an alert will be generated").

Figure 1: lpr attack snippet.

Representing domain knowledge in the form of 
snippets allows the system to mix-and-match various 
steps, making it possible to discover new combinations 
that could constitute possible new attacks. Further, by 
using automated planning algorithms instead of having 
human analysts manually compose scenarios, our 
approach provides better coverage of both attacks and 
normal operations. This in turn leads to higher-quality 
analysis of vulnerabilities, possible attacks and side-
effects of countermeasures.  The potential downside of 
this approach is that an operator could be overwhelmed 
with too many different plans to consider.   However, we 
will discuss techniques which ameliorate that risk by  
reducing and filtering the set of all possible plans down 
to a more manageable set of plausible plans.

We now describe how this algorithmic core may be 
used in end-user tools for security analysis. 

4 Discovering potential plans of 
attack 

One way to discover potential vulnerabilities in a system 
is to think like an attacker. Our tools allow the user to 
specify multiple high-level goals, both for attacks and for 
(typically) benign activities.  In the network intrusion 
detection domain, the goals of an attacker can be denial 
of service (e.g., taking down a web site) unauthorized 
access to sensitive information (e.g., password or credit 
card numbers) and unauthorized modification of data 
(e.g., web site defacement).  To stage an attack, multiple 
objectives may need to be achieved (e.g., first steal a web 
site password, and then deface the site).

Once the goals/objectives have been 
established/defined, the planning system then builds a set 
of plans in the form of partially ordered sets of 
executable actions and/or observable states that achieve 
these goals. Since multiple goals are considered together, 
actions are reused where possible. For example, in the 
data network domain, installation of Trojan software can 
be used to 1) hide an attacker break in to avoid early 
detection, 2) capture key strokes for stealing passwords, 
and/or 3) install backdoors that enable an attacker to use 
the compromised system for a DDoS attack. 

The resulting set of plans is similar to a set of attack 
trees [21] , where each path through an attack tree 
represents a unique attack with overall attacker's 
objective placed in the root. A snippet can be seen as 
node (or a subset of nodes) in an attack tree. An attack 
tree representation requires explicit chronological 
orderings of "exploits" (nodes). Since our approach 
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supports snippet reuse and captures partial orderings of 
plans, it offers a more compact representation.  
Furthermore, attack trees do not facilitate adequate 
visualization support for analyzing different attack plans. 
After a set of plans has been constructed, our scheme 
enables a user/analyst to both explore individual plans 
and run multiple analyses on the set of plans as a whole. 
The rest of this section illustrates some of the ways this 
can be done. The screenshots are taken from several 
prototype tools built as part of the IARPA PAINT 
(ProActive INTelligence) program.

4.1 Exploring details of a plan and 
comparing individual plans

Note that because of reuse, an action may serve as a sub-
goal supporting multiple goals. Each token has a set of 
variables, including a description of the start and end of 
the action, resources involved, and the agent performing 
the action.  For example, to achieve the goal “find 
vulnerable system to install a Trojan”, several actions are 
needed:
 Step 1: Scan for active IP addresses, open ports, 

operating systems (OS) and any applications 
running. 

 Step 2:  Create a report. 
 Step 3: Determine the patch level of the OS or 

applications. 
 Step 4:  Attempt to exploit the vulnerability. 

Scanners may either be malicious or friendly. Friendly 
scanners usually stop at step 2 and occasionally step 3 
but never go to step 4.

Constraints, such as temporal ordering and resource 
restrictions, and semantic relations, connect the variables.  
In the “Trojan” example above, the temporal constraints 
are:  Step1 before Step2 before Step3 before Step4. 

The user can browse details of each plan to discover 
why each action is added to the plan and which potential 
goals each action is contributing to. In addition, the user 
can compare individual plans with each other or explore 
common features among sets of plans. 

Figure 2 shows a graphical interface for visually 
comparing two plans. Circles and squares represent high-
level and atomic actions respectively. Each rhombus 
represents a constraint. Blue shapes describe elements 
common to both plans.  Green and white shapes show 
elements present in one plan but not the other. Such 
comparisons help the analyst identify differentiating 
points between attacks and benign activity, as well as 
potential conditions for generating alarms and warnings. 

The table interface (Figure 3) is used for comparing 
group of plans. The user selects a set of plans from the 
tree of generated plans. The table interface distributes 
different states and actions in the plans into separate 
columns. Each row describes one plan. This arrangement 
allows users to see common and distinguishing

Figure 2: Plan comparison interface.
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components of plans. The table can be sorted by any 
column, for example, to separate plans which contain a 
particular undesirable action from those that do not.

Any column of the table can be declared observable 
or hidden. The user can then select a set of rows and use 
the user interface (the Distinguish button) to determine if 
the selected plans can be distinguished from those not 
selected. This function allows one to quickly determine if 
a given set of observations is sufficient to determine the 
intent of the adversary regardless of which particular 
plan in the set is followed. Distinguishable plans are 
greyed out. In Figure 3, all plans are distinguishable 
given the chosen set of observables except the scenario 
identified as gen#752.

The graphical version of the group comparison 
interface (Figure 4) shows the goal-subgoal structure of 
the plans and visualizes the relative frequency of 
different actions in plans and presence of individual 
actions in distinguishable and non-distinguishable plans.   
Where this approach is helpful is in situations where the 
set of generated (and possible) plans can be divided into 
a benign group and a nefarious group and there exists a 
certain event (i.e., a node) which, if observable, clearly 
distinguishes the direction (benign vs. nefarious) the 
potential attacker is going regardless of the remaining 

nodes/events/steps in each plan.  In such a situation, if a 
certain event is observed that clearly indicates the 
potential adversary is implementing one of the benign 
plans, there is no need to continue monitoring for 
additional intelligence/observables.   On the other hand, 
if a certain event is observed that clearly indicates that 
the potential adversary is implementing one of nefarious 
plans, then further analysis is required to determine the 
path being taken in order to implement appropriate 
countermeasures.

4.2 Plan recognition 
In addition to building plans from goals to observables, 
our approach could also be used bottom up (i.e., from 
observables to goals). This process provides alternative 
feasible explanations of observed activity (note: this has 
not yet been implemented, however). For instance, if we 
observe the actions depicted in Figure 1, we may suspect 
an unauthorized file access scenario exploiting the lpr
vulnerability. The list of actions indicates an attack if a 
user who executes the commands does not have access to 
the file secret.txt. Otherwise, this may indicate unusual, 
but non-malicious activity.

Figure 3: Table-based interface for comparing sets of plans
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Figure 4: Graphical interface for comparing sets of plans

4.3 Weighting plans and actions 
Typically, there are multiple paths that achieve the 

same result. In these cases, some plans are more 
preferable (and/or likely) than others. Figure 5 shows a 
user interface that allows the analyst to adjust weights of 
individual plans and/or actions. This tool can be used to 
identify correlations between actions and states.  For 
example, this feature may be useful in cases where an 
event has occurred unobserved, but a related event is 
observable.  For instance, we may not know that our 
system was compromised and is being used as “zombie” 

to stage a DDoS attack against other host, but we can 
observe unusual traffic indicating the presence of a 
hacker DDoS tool (e.g., trinoo or TFN).

The weight assigned to an action or observable state 
(specified in the columns) is the likelihood of it to 
actually happening, given the set of plans of which it is a 
part and likelihoods of these plans. The weight of a plan 
is the likelihood of it being carried out as opposed to 
alternative plans. The initial weights of plans may be 
assigned uniformly or using a heuristic function. For 
example, due to relative likelihood, the same attack plans 
against a server for an online banking service, might be 

Figure 5: Interface for weighting plans and actions
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assigned higher values than they would be against a 
personal home server.

Users can adjust weights of plans and actions to 
simulate various “what-if” scenarios. Once a single value 
is modified, the implications are propagated to other 
values. For example, declaring that a particular 
observable has been detected will increase the likelihood 
of plans containing it and decrease likelihood of plans 
that do not contain it. This, in turn, affects likelihoods of 
other actions and observables constituting these plans.

4.4 Likelihood propagation within a plan
The logical structure of tokens, constraints, and goal-sub-
goal links can be leveraged to reason about the likelihood 
of violations within each plan. The user interface 
presented in Figure 6 provides access to such reasoning. 
This interface also allows the user to treat likelihoods 
qualitatively, rather than quantitatively. In practice, 
single numbers describing likelihoods are both hard to 
obtain and hard to understand. Our user interface instead 
represents the range of likelihoods from 0 (definitely 
false) to 1 (definitely true), using double-headed sliders.
For example, a range of [0, 1] means “no information”, 
while [0, 0.3] would mean “unlikely, but not yet 
completely ruled out”. 

Figure 6 illustrates a simple scenario, where a 
restaurant buys produce from two farms and delivers 
using two independent companies. The sliders describe 
the likelihood of food contamination at each stage of this 
transportation network. The Local column describes 
introduction of a contaminant at the given location, and 
the Total column corresponds to the presence of the 
contaminant resulting from all upstream sources. This 
interface allows the user to see the pruning effect of 
probes. For example, suppose food contamination has 
been detected at the restaurant (hence rest1's Total slider 
set to the right), but local contamination at the site has 
been ruled out (hence rest1's Local slider set to the left). 
These two observations do not give us any additional 
information. If we further observe that the produce 
delivered from farm2 is clean (hence deliver21's slide in 
the Total column being set to the left), the system can 
deduce that both farm2 and the delivery company are 
clean. It thus follows that the contaminant was 
introduced somewhere along the second transportation 
chain, although it is not possible to say whether it 
happened at farm1 or during transportation (which is 
why the corresponding sliders show the [0, 1] interval).

Stopping attacks with minimum collateral damage 
The analytical features described in the previous section 
can be combined to generate more powerful tools for a 
given domain. One goal of such tools is development of 
countermeasures that minimize collateral damage.

False positives are a major problem in alert 
generation. One way to decrease them is to perform 
diagnostic actions upon initial detection of a potential 
problem. The reaction to these alert-triggered diagnostics 
can, in many cases, provide a clue as to whether or not 
the alert in question is indeed part of an attack. This 
allows adjusting the confidence in the original alert, 
thereby reducing false positives.

By analysing multiple ways to execute an attack and 
contrasting them with multiple ways to perform benign 
activities, our tools help to identify potential points for 
alert generation and intervention.  For example, these 
tools may help an analyst identify an action (i.e., a probe) 
that could force a potential adversary to (unknowingly) 
proceed down a pathway that produces a predicted 
benign outcome rather than proceed down a pathway that 
produces a predicted nefarious outcome.   

One challenge for this approach is selection of an 
action for diagnosis or intervention. Often, such actions 
may affect not only an attack but benign activity as well. 
For example, detection of SYN flooding attack may use 
active probing [23] that collects data on the delay 
between the server and the client. While timely and 
reliable, this intervention imposes processing and storage 
overhead.  Techniques already described can be reapplied 
to address this class of problems.

Earlier we described tools that help an analyst 
analyze sets of attack plans and contrast them with 
benign activities. To do so, a scenario is seeded with a set 
of goals, and the system generates various potential 
instantiation of the scenario. This same technique can 
also be used to analyse potential effects of diagnostic 
actions or countermeasures. The new action is simply 
added to the description of the scenario. The resulting set 
of plans can then be contrasted with the one obtained 
without the diagnostic action/countermeasure. 

This approach can be used to analyze effects of 
response strategies in addition to individual actions. 
Multiple actions can be added to the scenario. Further, by 
introducing a new snippet instead of a fixed action, the 
analyst can model actions triggered by certain activity. 
As a result, such actions will occur in some realizations 
of the scenario but not in others. 

Figure 6: Slider interface for exploring likelihoods.
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5 Related work
Huang et. al. [16] developed a technique for automated 
plan recognition in the field of RoboCup simulation 
soccer games.  For each agent representing a player in 
the game, they translated the actions observed from 
various adversaries (consecutive or discrete multivariable 
streams) into behavior queues using prediction and 
backfill techniques.  After populating an agent’s behavior 
queue, frequent and interesting behavior sequences were 
identified using a statistical dependency test. These 
sequences were then retrieved and transformed into 
formalized plans. Finally the plans were refined as multi-
agent teams adopted them. [13] applied Hidden Markov 
Models (HMMs) for recognizing opponent behaviours in 
RoboCup soccer simulations.  HMM states corresponded 
to decomposed robot behavior. Uncertainty in 
recognizing behaviour was represented as probabilistic 
transitions between the states. [19] adopted case-based 
reasoning (CBR) for opponent modelling and planning 
players’ strategies in RoboCup competitions. Solutions to 
problems were found by reusing solutions to similar 
problems encountered in the past.

None of these techniques are directly applicable to 
the security domain.  In every case, their plan recognition 
process depends on the observations of opponent players, 
position of ball and gates, and the game state at a 
particular moment. In security domain, we may not know 
who the adversary is, what its goal is, and whether the 
adversary exists (observed activity can be legitimate).

Attacker plan recognition [10] [7] [22] in the 
network security domain largely concentrates on 
correlation of observed actions and alerts produced by 
intrusion detection systems. [10] presented a probabilistic 
model of plan recognition for recognizing and predicting 
the intentions of the agents based on the construction of 
execution traces from raw security alerts. This method 
requires a library of fully predefined attack plans and 
lacks support for reasoning about deceptive actions by an 
adversary. [7] proposed a method for detecting various 
steps of an intrusion scenario, casting it as a planning 
activity based on a declarative description of actions, 
goals, and plans. The method does not, however, provide 
additional information to distinguish between more vs. 
less plausible scenarios.  As we noted earlier, this is a 
very important issue because the number of possible 
scenarios can be quite large. [1] extends the previous 
approach by providing the ability to rank possible 
scenarios. [22] proposed a graph-based technique to 
correlate isolated attack scenarios derived from low-level 
alerts. Attack trees define attack plan libraries used to 
correlate isolated alert sets that are converted into causal 
networks with assigned probability distributions to 
evaluate the likelihood of attack goals and predict future 
attacks.

None of these systems provide visual tools for an 
analyst to explore sets of possible scenarios under 
various observables, levels of importance (or priorities), 
and likelihood conditions.  These aids are essential for 
helping analysts generate probes and countermeasures.

[14] proposed a method to analyse and test threats 
posed by malicious insiders. They used AI planning to 
automatically generate courses of action an adversary 
could choose in subverting the system. The analyst can 
then use this information to evaluate the vulnerability of 
a system to attacks, and to select the most reasonable 
defensive measures.  There is no notion of uncertainty or 
likelihood in the generated plans, and no support for 
comparative analysis of several plans to achieve a given 
goal. [17] presented an application of plan recognition 
techniques to support analysts in processing national 
security alerts by automatically identifying the hostile 
intent behind them. The system needs a complete library 
of manually-generated attack templates, a daunting 
requirement.

6 RAMPARTS Prototype 1.0
As noted earlier, we have developed an initial prototype 
implementation of a number of the features and 
capabilities described in this paper.  The Risk Analyses 
and Models of Plans of Attack for Recognizing Terrorist 
Schemes (RAMPARTS) project was funded by IARPA 
as part of the ProActive INTelligence (PAINT) program.  
The objective of this effort was to demonstrate an initial 
proof-of-concept by developing supporting infrastructure 
and implementing a subset of capabilities.

Based on an initial set of goals and a set of plan 
snippets (generated by subject matter experts), the 
RAMPARTS prototype (1.0) generates and visually 
displays possible plans (both nefarious and benign) that a 
potential adversary/opponent might follow.   The 
RAMPARTS toolkit also allows the user/analyst to 
explore the plans to help determine which key 
actions/events – if observed – could be used to help the 
analyst predict whether the potential adversary is going 
down a nefarious or benign pathway without actually 
knowing which exact pathway is being taken.   

The next step (to be implemented in prototype 2.0) is 
to determine which “probe” or “probes” (active or 
passive) to implement to possibly cause the specified 
event/action to be observed or to cause (or at least 
attempt to cause) the potential adversary to go down a 
benign pathway (ideally, without their knowledge). In 
addition, we plan to use the DHS and NSF funded 
DETER [2] infrastructure for conducting experiments in 
computer security, as a test bed for further development 
of the project.   Further, we plan to test the next 
prototype on a number of port security scenarios as part 
of the DHS sponsored USC Center for Risk and 
Economic Analysis of Terrorism Events (CREATE) 
PortSec (Port Security) project.
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