
Informatica 34 (2010) 159–168 159

Planning to Discover and Counteract Attacks

Tatiana Kichkaylo, Tatyana Ryutov, Michael D. Orosz and Robert Neches
Information Sciences Institute
University of Southern California,
Marina del Rey, CA 90292, USA

Keywords: planning, attack recognition, intrusion detection

Received: September 4, 2009

A major function of a security analyst is to analyze collected intelligence looking for plans, associated
events, or other evidence that may identify an adversary’s intent. Armed with this knowledge, the analyst
then develops potential responses (e.g., countermeasures) to deter the discovered plan or plans, weighs
their strengths and weaknesses (e.g., collateral damage) and then makes a recommendation for action.
Unfortunately, the collected intelligence is typically sparse and it is not possible for the analyst to
initially discover the adversary’s specific intent. Under these circumstances, the analyst is forced to look
at the range of possible plans/actions an adversary may take. The full range of potential attack
scenarios is too rich to generate manually. Its complexity also bars direct analysis and evaluation of the
potential impact of alternative actions and countermeasures. To address these issues, we are developing
a set of tools that exhibit the following features/capabilities:

 Using available partial plan segments (referred to as snippets), construct multiple feasible
scenarios/pathways that an adversary may take to reach an identifiable end goal

 Provide visual tools for exploring sets of possible scenarios under various observables, importance,
and likelihood conditions, helping the analyst generate information probes, actions and
countermeasures

 Compare the potential impact of alternative data probes, actions and countermeasures on an
adversary’s actions by assessing their discrimination/attack mitigation potential and possible side-
effects

 Automatically suggest potential data probes, actions and countermeasures based on partial
understanding of the adversary’s plan and given observable activity

These tools can provide decision support for many different domains, including terrorist activity
recognition and network intrusion detection.

Povzetek: Opisan je nabor orodij za napovedovanje napadov.

1 Introduction
The problem of detection, prevention and/or response to
attacks is common to multiple domains. In the cyber
community, a goal of an attacker may be to gain access
to protected resources or to disrupt service to legitimate
users. In counter-terrorism, an attack manifests itself as
actions in the physical world. In robotic soccer, an attack
is a sequence of actions by a team aimed at
outmaneuvering the opponents and scoring goals.

Attacks can be classified along several dimensions.
Different techniques and tools for attack detection and
prevention/counteraction are applicable to different
regions of this multi-dimensional space.

 Attacks may be fast or slow. Slow attacks, such
as terrorism in the physical world, leave
sufficient time for human analysts to respond to
alerts and warnings. In the case of some cyber-
attacks (e.g., Denial of Service) a reaction is
required in real time, which often leaves no
room for human operators or complex reasoning
algorithms.

 Vulnerabilities may or may not be known in
advance. In the case of existing physical
infrastructures or legacy systems it may be
impossible to eliminate all vulnerabilities.
However, for many of these legacy systems and
physical infrastructures, it is possible to identify
possible attack strategies for known weak points
and design systems that detect such attacks. In
the case of unknown vulnerabilities these
external detection systems need to monitor the
general health of the legacy system and
dynamically devise detection and response
strategies if something abnormal is detected.

 An attack may appear either as an expected
behavior of other agents, or an anomaly. In
soccer, one may assume that any action of the
opposing team is a part of an attack. In the
cyber-world, most actions are part of some
legitimate user activity. Therefore, it is desirable

160 Informatica 34 (2010) 159–168 T. Kichkaylo et al.

to minimize the overhead of monitoring and
limit disruption of legitimate activity.

In this paper we discuss a set of tools and approaches
for identifying vulnerabilities, detecting potential attacks
based on observables, and devising detection and/or
countermeasures aimed at minimizing disruption of
normal operations. We discuss the potential of such tools
for human analysts for detection of slow attacks. In
addition, we describe an initial prototype system
developed for the Intelligence Advanced Research
Projects Activity (IARPA) sponsored Proactive
Intelligence (PAINT) project. The system generates both
benign and nefarious pathways (i.e., plans that an
opponent or adversary may take to achieve an objective)
based on an initial goal and a collection of partial plan
segments (which we call snippets). The implemented
system was targeted for the counter-terrorism domain.
We also present network intrusion detection examples
from as a new potential application for our system.

2 The problem
Recognizing attack plans is a key activity of security
analysts. Plan recognition has been a research area in
artificial intelligence (AI) for decades. In AI, plan
recognition is a process of inferring the goals of an agent
from observations of the agent’s activities. In security
applications (e.g., intrusion detection), the plan
recognition process is concerned with adversary
recognition, where attackers try to avoid or interfere with
recognition process and can take deliberate actions to
hide their actions and intentions.

The assumptions used in traditional plan recognition
[3] [5] are not valid in the security-related adversary
recognition domain. In some domains (e.g., RoboCup
soccer [16] , computer games [4] , and military
simulations [15]) the adversary and its high level goals
are known. In security domains (e.g., computer security,
information warfare, and antiterrorism), the adversary
tries to hide its actions and identity. Additionally, its real
intentions are not always clearly identifiable.

The challenges in adversary plan recognition and
response in security domain include the following [10]
[11] :
Uncertainty and incompleteness. In some cases, the
functional limitations of security sensors or a less-than
optimum deployment pattern may increase uncertainty
by hindering our ability to observe all attacker activities
and steps. Moreover, we may have an incomplete
knowledge of the possible attack plans.
Partially ordered plans. Often attackers’ plans are
flexible in the ordering of the plan’s steps; therefore we
must be able to recognize the multiple possible
instantiation orderings created by these plans.
Multiple concurrent goals. Attackers can have multiple
dynamic attack plans. For example, a hacker might be
interested in stealing sensitive data as well as using
computers to launch attacks against other targets.
Actions used for multiple effects. Often a single action
can be used for multiple effects. For example, scanning
of a domain can be used both for planning a DoS (Denial

of Service) attack as well as to identify the web server
that a hacker wants to deface.
Misleading behavior. In addition to actions directly
contributing to achieving a goal, an attacker can take
actions to mislead plan recognition, or to exploit some of
its weaknesses.
Multiple weighed hypotheses. Ranking the possibilities
is often more helpful than providing a single (possibly
incorrect) explanation for observed activities. Say one
observes scanning activity. While this action indicates a
hacker is interested in a network, the observation of the
action itself provides very little evidence about the
hacker’s intent. Rather than giving just one of the many
equally likely answers, it is much more helpful to report
the relative likelihood of each of the possibilities.
Automated vs. human-in-the-loop operation. In
security applications, the purpose of adversarial plan
recognition is to predict possible attacks in order to
generate effective countermeasures. In many current
human-in-the-loop operations, real-time detection and
response is not achievable. The resulting delays could
enable an actual attack. As [20] [6] have pointed out, in
such applications, an automated attack recognition and
reaction system avoids these delays and can stop an
attack before the damage is done. Automated systems,
however, can produce negative outcomes since some
response actions (e.g., changes to firewall rules) can
negatively affect legitimate users. Hence, the application
of automated techniques is limited to well-known attacks
(e.g., signature-based intrusion detection) and targeted
countermeasures.
Side-effects of probes and countermeasures. Detection
of stealthy attacks, such as malicious insider covert
activity and terrorist preparations, can be complex and
may require probes (i.e., actions designed to engender a
response likely to provide additional useful information).
To prevent a situation where a probe or a response action
causes more damage than the actual attack, a system
must allow analysts to reason about the likelihood and
severity of an attack as well as about the effects of
candidate alternative probe/response mechanisms.

Existing techniques for predicting adversary actions,
include game theoretic approaches and game playing,
adversarial planning, and pattern recognition. These
provide partial/limited solutions at best. Data mining
approaches have been used to find information that helps
to detect attacks; however they suffer from a high false
alarm rate and do not help analysts connect separate
events. In order to minimize damage, new algorithms and
tools for security analysts are needed to enable them to
further analyze and correlate attack scenarios, make
accurate situational assessments and quickly execute
appropriate responses.

3 Modelling alternatives
The algorithmic core of our toolkit is a constraint-based
planning system [18] . The system core maintains
alternative plans consisting of tokens. A token may
represent an action or a state. Both past events (observed
or hidden) and future ones (plan projection) are part of a

PLANNING TO DISCOVER AND… Informatica 34 (2010) 159–168 161

plan. Tokens contain variables representing temporal
(start, end, duration) and resource properties (actor,
equipment) of the action/state. Variables can be used as
arguments to constraints. Constraints define tuples of
values their arguments can take [8] . Constraints enforce
partial temporal ordering and/or resource dependencies
between tokens.

A plan is seeded with a set of tokens representing
high-level goals, target states, and/or observed events.
The planning module then refines the seeded plans
according to snippets. Snippets are similar to HTN
methods [9] . A snippet captures a modification of a plan
as an implication of the form “if a certain configuration
of tokens is a part of the plan, then the following
configuration of tokens is also a part of the plan”.
Snippets thus can represent expansion of high-level goals
into lower-level actions and states. They also can
enforce causality (e.g., if an attacker knows a password,
then an action of stealing the password should have
preceded the attack). If multiple snippets are applicable
to a given situation (e.g., there are multiple ways to
achieve the same goal), the planner will create alternative
plans using each of the snippets. In the current system
implementation, the user has sole responsibility for
generating attack snippets. A possible direction for future
research is to extract snippets from execution traces
using machine learning techniques.

Consider the following example. Figure 1 shows a
snippet describing the use of the lpr attack1 to achieve a
state when an attacker gets access to a protected file. This
snippet says that a possible way to explain the presence
of a secret printed state in a plan is to add to the plan a
partially ordered sequence of actions implementing the
attack. Lines on the figure represent temporal constraints.
Note that the snippet imposes only a partial ordering on
its steps, thus allowing for generation of partially ordered
plans. Additional resource constraints (not shown)
declare that all variables marked as f (or s) refer to the
same file. Constraint propagation helps to limit the set of
possibilities and to define windows of interest. For
example, suppose an analyst has an estimate for the
earliest time a printed copy of a file secret.txt was
available to an attacker. Propagation of this file name and
time point will limit the set of ln –s commands that
would be considered as a possible part of the attack. Note
also that application of snippets may reuse existing
tokens in the plan. For example, block ppt command
might have been issued by a different user for a
legitimate reason and hijacked by the attacker.

In addition to describing goal/sub-goal relationships,
snippets can describe necessary effects of actions (e.g.,

1 To carry out the attack, an attacker requests

printing of file doc.txt that he is authorized to access.
User rights are checked by lpr command, access is
granted, and the request is put into the printer queue.
Then, before the printing actually starts, the attacker
removes the printed file and replaces it by a link to file
secret.txt he is not allowed to access. As a result, the
latter file will eventually be printed and the attacker will
be able to get the sensitive information.

"if a port scan detection tool is installed and there is a
port scan in progress, an alert will be generated").

Figure 1: lpr attack snippet.

Representing domain knowledge in the form of
snippets allows the system to mix-and-match various
steps, making it possible to discover new combinations
that could constitute possible new attacks. Further, by
using automated planning algorithms instead of having
human analysts manually compose scenarios, our
approach provides better coverage of both attacks and
normal operations. This in turn leads to higher-quality
analysis of vulnerabilities, possible attacks and side-
effects of countermeasures. The potential downside of
this approach is that an operator could be overwhelmed
with too many different plans to consider. However, we
will discuss techniques which ameliorate that risk by
reducing and filtering the set of all possible plans down
to a more manageable set of plausible plans.

We now describe how this algorithmic core may be
used in end-user tools for security analysis.

4 Discovering potential plans of
attack

One way to discover potential vulnerabilities in a system
is to think like an attacker. Our tools allow the user to
specify multiple high-level goals, both for attacks and for
(typically) benign activities. In the network intrusion
detection domain, the goals of an attacker can be denial
of service (e.g., taking down a web site) unauthorized
access to sensitive information (e.g., password or credit
card numbers) and unauthorized modification of data
(e.g., web site defacement). To stage an attack, multiple
objectives may need to be achieved (e.g., first steal a web
site password, and then deface the site).

Once the goals/objectives have been
established/defined, the planning system then builds a set
of plans in the form of partially ordered sets of
executable actions and/or observable states that achieve
these goals. Since multiple goals are considered together,
actions are reused where possible. For example, in the
data network domain, installation of Trojan software can
be used to 1) hide an attacker break in to avoid early
detection, 2) capture key strokes for stealing passwords,
and/or 3) install backdoors that enable an attacker to use
the compromised system for a DDoS attack.

The resulting set of plans is similar to a set of attack
trees [21] , where each path through an attack tree
represents a unique attack with overall attacker's
objective placed in the root. A snippet can be seen as
node (or a subset of nodes) in an attack tree. An attack
tree representation requires explicit chronological
orderings of "exploits" (nodes). Since our approach

162 Informatica 34 (2010) 159–168 T. Kichkaylo et al.

supports snippet reuse and captures partial orderings of
plans, it offers a more compact representation.
Furthermore, attack trees do not facilitate adequate
visualization support for analyzing different attack plans.
After a set of plans has been constructed, our scheme
enables a user/analyst to both explore individual plans
and run multiple analyses on the set of plans as a whole.
The rest of this section illustrates some of the ways this
can be done. The screenshots are taken from several
prototype tools built as part of the IARPA PAINT
(ProActive INTelligence) program.

4.1 Exploring details of a plan and
comparing individual plans

Note that because of reuse, an action may serve as a sub-
goal supporting multiple goals. Each token has a set of
variables, including a description of the start and end of
the action, resources involved, and the agent performing
the action. For example, to achieve the goal “find
vulnerable system to install a Trojan”, several actions are
needed:
 Step 1: Scan for active IP addresses, open ports,

operating systems (OS) and any applications
running.

 Step 2: Create a report.
 Step 3: Determine the patch level of the OS or

applications.
 Step 4: Attempt to exploit the vulnerability.

Scanners may either be malicious or friendly. Friendly
scanners usually stop at step 2 and occasionally step 3
but never go to step 4.

Constraints, such as temporal ordering and resource
restrictions, and semantic relations, connect the variables.
In the “Trojan” example above, the temporal constraints
are: Step1 before Step2 before Step3 before Step4.

The user can browse details of each plan to discover
why each action is added to the plan and which potential
goals each action is contributing to. In addition, the user
can compare individual plans with each other or explore
common features among sets of plans.

Figure 2 shows a graphical interface for visually
comparing two plans. Circles and squares represent high-
level and atomic actions respectively. Each rhombus
represents a constraint. Blue shapes describe elements
common to both plans. Green and white shapes show
elements present in one plan but not the other. Such
comparisons help the analyst identify differentiating
points between attacks and benign activity, as well as
potential conditions for generating alarms and warnings.

The table interface (Figure 3) is used for comparing
group of plans. The user selects a set of plans from the
tree of generated plans. The table interface distributes
different states and actions in the plans into separate
columns. Each row describes one plan. This arrangement
allows users to see common and distinguishing

Figure 2: Plan comparison interface.

PLANNING TO DISCOVER AND… Informatica 34 (2010) 159–168 163

components of plans. The table can be sorted by any
column, for example, to separate plans which contain a
particular undesirable action from those that do not.

Any column of the table can be declared observable
or hidden. The user can then select a set of rows and use
the user interface (the Distinguish button) to determine if
the selected plans can be distinguished from those not
selected. This function allows one to quickly determine if
a given set of observations is sufficient to determine the
intent of the adversary regardless of which particular
plan in the set is followed. Distinguishable plans are
greyed out. In Figure 3, all plans are distinguishable
given the chosen set of observables except the scenario
identified as gen#752.

The graphical version of the group comparison
interface (Figure 4) shows the goal-subgoal structure of
the plans and visualizes the relative frequency of
different actions in plans and presence of individual
actions in distinguishable and non-distinguishable plans.
Where this approach is helpful is in situations where the
set of generated (and possible) plans can be divided into
a benign group and a nefarious group and there exists a
certain event (i.e., a node) which, if observable, clearly
distinguishes the direction (benign vs. nefarious) the
potential attacker is going regardless of the remaining

nodes/events/steps in each plan. In such a situation, if a
certain event is observed that clearly indicates the
potential adversary is implementing one of the benign
plans, there is no need to continue monitoring for
additional intelligence/observables. On the other hand,
if a certain event is observed that clearly indicates that
the potential adversary is implementing one of nefarious
plans, then further analysis is required to determine the
path being taken in order to implement appropriate
countermeasures.

4.2 Plan recognition
In addition to building plans from goals to observables,
our approach could also be used bottom up (i.e., from
observables to goals). This process provides alternative
feasible explanations of observed activity (note: this has
not yet been implemented, however). For instance, if we
observe the actions depicted in Figure 1, we may suspect
an unauthorized file access scenario exploiting the lpr
vulnerability. The list of actions indicates an attack if a
user who executes the commands does not have access to
the file secret.txt. Otherwise, this may indicate unusual,
but non-malicious activity.

Figure 3: Table-based interface for comparing sets of plans

164 Informatica 34 (2010) 159–168 T. Kichkaylo et al.

Figure 4: Graphical interface for comparing sets of plans

4.3 Weighting plans and actions
Typically, there are multiple paths that achieve the

same result. In these cases, some plans are more
preferable (and/or likely) than others. Figure 5 shows a
user interface that allows the analyst to adjust weights of
individual plans and/or actions. This tool can be used to
identify correlations between actions and states. For
example, this feature may be useful in cases where an
event has occurred unobserved, but a related event is
observable. For instance, we may not know that our
system was compromised and is being used as “zombie”

to stage a DDoS attack against other host, but we can
observe unusual traffic indicating the presence of a
hacker DDoS tool (e.g., trinoo or TFN).

The weight assigned to an action or observable state
(specified in the columns) is the likelihood of it to
actually happening, given the set of plans of which it is a
part and likelihoods of these plans. The weight of a plan
is the likelihood of it being carried out as opposed to
alternative plans. The initial weights of plans may be
assigned uniformly or using a heuristic function. For
example, due to relative likelihood, the same attack plans
against a server for an online banking service, might be

Figure 5: Interface for weighting plans and actions

PLANNING TO DISCOVER AND… Informatica 34 (2010) 159–168 165

assigned higher values than they would be against a
personal home server.

Users can adjust weights of plans and actions to
simulate various “what-if” scenarios. Once a single value
is modified, the implications are propagated to other
values. For example, declaring that a particular
observable has been detected will increase the likelihood
of plans containing it and decrease likelihood of plans
that do not contain it. This, in turn, affects likelihoods of
other actions and observables constituting these plans.

4.4 Likelihood propagation within a plan
The logical structure of tokens, constraints, and goal-sub-
goal links can be leveraged to reason about the likelihood
of violations within each plan. The user interface
presented in Figure 6 provides access to such reasoning.
This interface also allows the user to treat likelihoods
qualitatively, rather than quantitatively. In practice,
single numbers describing likelihoods are both hard to
obtain and hard to understand. Our user interface instead
represents the range of likelihoods from 0 (definitely
false) to 1 (definitely true), using double-headed sliders.
For example, a range of [0, 1] means “no information”,
while [0, 0.3] would mean “unlikely, but not yet
completely ruled out”.

Figure 6 illustrates a simple scenario, where a
restaurant buys produce from two farms and delivers
using two independent companies. The sliders describe
the likelihood of food contamination at each stage of this
transportation network. The Local column describes
introduction of a contaminant at the given location, and
the Total column corresponds to the presence of the
contaminant resulting from all upstream sources. This
interface allows the user to see the pruning effect of
probes. For example, suppose food contamination has
been detected at the restaurant (hence rest1's Total slider
set to the right), but local contamination at the site has
been ruled out (hence rest1's Local slider set to the left).
These two observations do not give us any additional
information. If we further observe that the produce
delivered from farm2 is clean (hence deliver21's slide in
the Total column being set to the left), the system can
deduce that both farm2 and the delivery company are
clean. It thus follows that the contaminant was
introduced somewhere along the second transportation
chain, although it is not possible to say whether it
happened at farm1 or during transportation (which is
why the corresponding sliders show the [0, 1] interval).

Stopping attacks with minimum collateral damage
The analytical features described in the previous section
can be combined to generate more powerful tools for a
given domain. One goal of such tools is development of
countermeasures that minimize collateral damage.

False positives are a major problem in alert
generation. One way to decrease them is to perform
diagnostic actions upon initial detection of a potential
problem. The reaction to these alert-triggered diagnostics
can, in many cases, provide a clue as to whether or not
the alert in question is indeed part of an attack. This
allows adjusting the confidence in the original alert,
thereby reducing false positives.

By analysing multiple ways to execute an attack and
contrasting them with multiple ways to perform benign
activities, our tools help to identify potential points for
alert generation and intervention. For example, these
tools may help an analyst identify an action (i.e., a probe)
that could force a potential adversary to (unknowingly)
proceed down a pathway that produces a predicted
benign outcome rather than proceed down a pathway that
produces a predicted nefarious outcome.

One challenge for this approach is selection of an
action for diagnosis or intervention. Often, such actions
may affect not only an attack but benign activity as well.
For example, detection of SYN flooding attack may use
active probing [23] that collects data on the delay
between the server and the client. While timely and
reliable, this intervention imposes processing and storage
overhead. Techniques already described can be reapplied
to address this class of problems.

Earlier we described tools that help an analyst
analyze sets of attack plans and contrast them with
benign activities. To do so, a scenario is seeded with a set
of goals, and the system generates various potential
instantiation of the scenario. This same technique can
also be used to analyse potential effects of diagnostic
actions or countermeasures. The new action is simply
added to the description of the scenario. The resulting set
of plans can then be contrasted with the one obtained
without the diagnostic action/countermeasure.

This approach can be used to analyze effects of
response strategies in addition to individual actions.
Multiple actions can be added to the scenario. Further, by
introducing a new snippet instead of a fixed action, the
analyst can model actions triggered by certain activity.
As a result, such actions will occur in some realizations
of the scenario but not in others.

Figure 6: Slider interface for exploring likelihoods.

166 Informatica 34 (2010) 159–168 T. Kichkaylo et al.

5 Related work
Huang et. al. [16] developed a technique for automated
plan recognition in the field of RoboCup simulation
soccer games. For each agent representing a player in
the game, they translated the actions observed from
various adversaries (consecutive or discrete multivariable
streams) into behavior queues using prediction and
backfill techniques. After populating an agent’s behavior
queue, frequent and interesting behavior sequences were
identified using a statistical dependency test. These
sequences were then retrieved and transformed into
formalized plans. Finally the plans were refined as multi-
agent teams adopted them. [13] applied Hidden Markov
Models (HMMs) for recognizing opponent behaviours in
RoboCup soccer simulations. HMM states corresponded
to decomposed robot behavior. Uncertainty in
recognizing behaviour was represented as probabilistic
transitions between the states. [19] adopted case-based
reasoning (CBR) for opponent modelling and planning
players’ strategies in RoboCup competitions. Solutions to
problems were found by reusing solutions to similar
problems encountered in the past.

None of these techniques are directly applicable to
the security domain. In every case, their plan recognition
process depends on the observations of opponent players,
position of ball and gates, and the game state at a
particular moment. In security domain, we may not know
who the adversary is, what its goal is, and whether the
adversary exists (observed activity can be legitimate).

Attacker plan recognition [10] [7] [22] in the
network security domain largely concentrates on
correlation of observed actions and alerts produced by
intrusion detection systems. [10] presented a probabilistic
model of plan recognition for recognizing and predicting
the intentions of the agents based on the construction of
execution traces from raw security alerts. This method
requires a library of fully predefined attack plans and
lacks support for reasoning about deceptive actions by an
adversary. [7] proposed a method for detecting various
steps of an intrusion scenario, casting it as a planning
activity based on a declarative description of actions,
goals, and plans. The method does not, however, provide
additional information to distinguish between more vs.
less plausible scenarios. As we noted earlier, this is a
very important issue because the number of possible
scenarios can be quite large. [1] extends the previous
approach by providing the ability to rank possible
scenarios. [22] proposed a graph-based technique to
correlate isolated attack scenarios derived from low-level
alerts. Attack trees define attack plan libraries used to
correlate isolated alert sets that are converted into causal
networks with assigned probability distributions to
evaluate the likelihood of attack goals and predict future
attacks.

None of these systems provide visual tools for an
analyst to explore sets of possible scenarios under
various observables, levels of importance (or priorities),
and likelihood conditions. These aids are essential for
helping analysts generate probes and countermeasures.

[14] proposed a method to analyse and test threats
posed by malicious insiders. They used AI planning to
automatically generate courses of action an adversary
could choose in subverting the system. The analyst can
then use this information to evaluate the vulnerability of
a system to attacks, and to select the most reasonable
defensive measures. There is no notion of uncertainty or
likelihood in the generated plans, and no support for
comparative analysis of several plans to achieve a given
goal. [17] presented an application of plan recognition
techniques to support analysts in processing national
security alerts by automatically identifying the hostile
intent behind them. The system needs a complete library
of manually-generated attack templates, a daunting
requirement.

6 RAMPARTS Prototype 1.0
As noted earlier, we have developed an initial prototype
implementation of a number of the features and
capabilities described in this paper. The Risk Analyses
and Models of Plans of Attack for Recognizing Terrorist
Schemes (RAMPARTS) project was funded by IARPA
as part of the ProActive INTelligence (PAINT) program.
The objective of this effort was to demonstrate an initial
proof-of-concept by developing supporting infrastructure
and implementing a subset of capabilities.

Based on an initial set of goals and a set of plan
snippets (generated by subject matter experts), the
RAMPARTS prototype (1.0) generates and visually
displays possible plans (both nefarious and benign) that a
potential adversary/opponent might follow. The
RAMPARTS toolkit also allows the user/analyst to
explore the plans to help determine which key
actions/events – if observed – could be used to help the
analyst predict whether the potential adversary is going
down a nefarious or benign pathway without actually
knowing which exact pathway is being taken.

The next step (to be implemented in prototype 2.0) is
to determine which “probe” or “probes” (active or
passive) to implement to possibly cause the specified
event/action to be observed or to cause (or at least
attempt to cause) the potential adversary to go down a
benign pathway (ideally, without their knowledge). In
addition, we plan to use the DHS and NSF funded
DETER [2] infrastructure for conducting experiments in
computer security, as a test bed for further development
of the project. Further, we plan to test the next
prototype on a number of port security scenarios as part
of the DHS sponsored USC Center for Risk and
Economic Analysis of Terrorism Events (CREATE)
PortSec (Port Security) project.

Acknowledgement
This research was partially supported by the Intelligence
Advanced Research Projects Activity (IARPA) under
grant number FA8750-07-2-0177. However, all
opinions, findings, and conclusions or recommendations
in this document are those of the authors and do not
necessarily reflect the views of IARPA.

PLANNING TO DISCOVER AND… Informatica 34 (2010) 159–168 167

References
[1] S. Benferhat, F. Autrel et F. Cuppens (2003).

Enhanced Correlation in an Intrusion Detection
Process. In Proceedings of Second International
Workshop Mathematical Methods, Models and
Architectures for Computer Networks Security.

[2] T. Benzel, R. Braden, D. Kim, A. Joseph, C.
Neuman, R. Ostrenga, S. Schwab, K. Sklower
(2007). Design, Deployment, and Use of the
DETER Testbed, In Proceedings of the DETER
Community Workshop on Cyber Security
Experimentation and Test.

[3] J. Blythe (1999). Decision-Theoretic Planning. AI
Magazine, 20(2).

[4] M. Buro & T. Furtak (2003), RTS Games as Test-
Bed for Real-Time Research, Invited Paper at the
Workshop on Game AI, JCIS

[5] CALO (2003). Cognitive agent that learns and
organizes, http://calo.sri.com.

[6] C. A. Carver, J. M. D. Hill, J. R. Surdu, and U. W.
Pooch (2000), A Methodology for using Intelligent
Agents to provide Automated Intrusion Response,
Proceedings of the IEEE Systems, Man, and
Cybernetics Information Assurance and Security
Workshop.

[7] F. Cuppens, F. Autrel, A. Mi`ege and S. Benferhat
(2002). Recognizing Malicious Intention in an
Intrusion Detection Process. Soft Computing
Systems - Design, Management and Applications,
volume 87, 806–817.

[8] R. Dechter (2003). Constraint Processing. Morgan
Kaufmann Publishers Inc.

[9] K. Erol, J. Hendler, and D. Nau (2004). UMCP: A
sound and complete procedure for hierarchical task-
network planning. Proceedings of AIPS.

[10] C. W. Geib and R. P. Goldman (2001). Plan
Recognition in Intrusion Detection Systems. In
Proceedings of the Second DARPA Information
Survivability Conference and Exposition.

[11] Geib, C., Goldman, R. (2002), Requirements for
Plan Recognition in Network Security Systems,
Proceedings of the Recent Advances in Intrusion
Detection conference.

[12] Frank M, Frans V (2003). A formal description of
tactical recognition [J]. Information Fusion, 4(1):
47-61.

[13] K. Han and M. Veloso (1999). Automated robot
behavior recognition applied to robotic soccer.

Proceedings of the Workshop on Team Behaviors
and Plan Recognition, 47 –52.

[14] S. Harp, J. Gohde (2005), Thomas Haigh, M.
Boddy Automated Vulnerability Analysis Using AI
Planning, 2005 AAAI Spring Symposium on AI for
Homeland Security.

[15] C. Heinze, S. Goss, and A. Pearce (1999). Plan
Recognition in Military Simulation: Incorporating
Machine Learning with Intelligent Agents.
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, Workshop on
Team Behaviour and Plan Recognition, pages 53-
63Author (year). Title of the book. Publisher.

[16] Z. Huang, Y. Yang and X. Chen (2003). An
approach to plan recognition and retrieval for multi-
agent systems. Proceedings of AORC.

[17] Jarvis, P.; Lunt, T. F.; Myers, K. L (2004).
Identifying terrorist activity with AI plan
recognition technology. National Conference on
Artificial Intelligence, AAAI Press.

[18] Kichkaylo, T., van Buskirk, C., Singh, S., Neema,
H., Orosz, M., and Neches (2007), R. Mixed-
Initiative Planning for Space Exploration Missions,
Workshop on Moving Planning and Scheduling
Systems into the Real World.

[19] C Marling, M Tomko, M Gillen, D Alexander, D
(2003). Case-based reasoning for planning and
world modeling in the robocup small size league,
IJCAI Workshop on issues in designing physical
agents.

[20] P. A. Porras and P. G. Neumann (1997),
EMERALD: Event Monitoring Enabling Responses
to Anomalous Live Disturbances, Proceedings of
the National Information Systems Security
Conference, pp. 353-365.

[21] Schneier, B., “Attack Trees.” Dr Dobbs Journal.
December 1999.

[22] Qin X. and Lee W. (2004), Attack Plan Recognition
and Prediction Using Causal Networks, ACSAC-O4,
370-379.

[23] B. Xiao, W. Chen, Y. He, E. H.-M. Sha (2005). An
active Detecting Method Against SYN Flooding
Attack, icpads, vol. 1, pp.709-715, 11th
International Conference on Parallel and
Distributed Systems (ICPADS'05).

168 Informatica 34 (2010) 159–168 T. Kichkaylo et al.

