https://doi.org/10.31449/inf.v4413.2864

Informatica 44 (2020) 327-334 327

Increasing the Engagement Level in Algorithms and Data Structures Course

by Driving Algorithm Visualizations

Slavomir Simonak

Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics

Technical University of KoSice, Slovak Republic
E-mail: slavomir.simonak @tuke.sk

Keywords: algorithms, data structures, algorithm visualization, study supporting system, active learning

Received: July 12, 2019

The paper presents the results of our research in the field of applying algorithm visualizations within Data
structures and algorithms subject. We accomplished several experiments relating the ability of students to
solve simple problems in a pure visual way in one case and by programming the solution using a particular
programming language in another one. The experiments are described and the results are analyzed within
the paper. In accordance with our previous informal experiences and the results of the analysis we found
there can be some part of students, which will be able to apply an algorithm to concrete problem in a
visual way, but will not be able to express it clearly enough and implement it in given programming
language. As an attempt to cope with the situation, we propose a new teaching approach, together with a
prototype of study supporting system, based on the idea that students would participate on creating simple
visualizations, not just using them. The purpose of such approach is to help students to develop both types
of skills - understanding the algorithms and implementing them as well, by increasing the engagement
level and supporting the active learning.

Povzetek: Predstavljen je nacin predavanja o algoritmih in podatkovnih strukturah s pomocjo algoritmicne

vizualizacije.

1 Introduction

Data structures and algorithms, the subject of our inter-
est within the paper, is one of fundamental subjects taught
within the bachelor study program at our department. Since
the subject is positioned in the second year of study, stu-
dents are supposed to have the basic knowledge and some
practical skills in programming [12]. The goal of the sub-
ject is to further enhance this skills and to provide the
students with fundamental knowledge on data structures,
methods for designing algorithms and to asses their effi-
ciency. As the area of algorithms and data structures is
more general and abstract, it is also more complicated to
learn for many students [5]. One of widely adopted ap-
proaches to help with this situation is based on using algo-
rithm visualizations within the subjects covering the area
[8, 6]. Also within our subject, except the conventional
ways of teaching (using pseudocodes of algorithms or dia-
grams), we also use algorithm visualizations for couple of
years [17, 16]. Although the results achieved by using visu-
alizations are promising [19, 20], we further try to improve
the educational process in order to make it more attractive
and efficient.

If we want to write a correct program for solving a given
problem, we need to have pretty clear idea on the algorithm
solving the problem. But we also need some practical skills
to be able to implement the algorithm in a particular pro-

gramming language. So if one of this two basic elements
is missing it would be very challenging task, so we can
give up, or it will take too long to write the required pro-
gram. While the first one seems to be absolutely necessary,
as without knowing the particular algorithm we will not be
able to create its implementation, it does not automatically
imply, that a student knowing the algorithm will be able
to create the corresponding program. So our hypothesis is,
that there will be some part of students, which will be able
to apply an algorithm to concrete problem in a visual way,
but will not be able to create its corresponding program im-
plementation within the reasonable time limit.

In experiments described further within the paper we
want to contribute to this idea by comparing the results of
solving simple problems by students just in visual way in
one case and by programming the solution in another one.
We think it is very useful to utilize algorithm visualizations
in order to help students to understand the basic principles
of algorithms operation. But according to our experiences,
we also believe there is still some gap between understand-
ing the basic principles of particular algorithm and the abil-
ity to express it clearly enough in a given programming
language. By the experiments we wanted to obtain some
empirical results in order to support or to invalidate our
informal experiences in this respect. After evaluating the
results of experiments we provide some of our ideas how
the quality of the understanding of the given topic as well

328 Informatica 44 (2020) 327-334

as the ability to implement particular algorithms could be
improved jointly.

The rest of the paper is organized as follows. In section 2
we provide a short description on selection of some inter-
esting and influential works on the topic of algorithm visu-
alization and its effectiveness. Section 3 gives an overview
of the algorithm visualization systems we developed to
support the teaching process in the field of algorithms and
data structures. Experiments we conducted are described in
section 4 and the results of experiments are evaluated and
analyzed in section 5 of the paper. Section 6 proposes a
new approach, aiming at increasing the engagement level,
supported by the prototype of new study supporting system.
Section 7 concludes the paper and provides some ideas for
further development.

2 Related work

There are many tools for algorithm visualizations avail-
able presently, which would indicate that algorithm visu-
alizations are widely used in a field of algorithm and data
structures education. But, as the results from the recent
research in the filed indicate, the important part of effec-
tiveness of algorithm visualization is how students are en-
gaged in a learning activity. Authors of a meta-study [7]
conclude, that studies in which students only viewed visu-
alizations, usually did not indicate significant learning ad-
vantages over students using conventional learning materi-
als. This can be perceived in a way, that the mere presence
of visualizations does not guarantee that students will bet-
ter understand algorithms. The results of this research also
suggest that the most successful educational applications
of algorithm visualizations are those in which the visual-
ization is used as a vehicle for engaging students into the
process of learning. So the form of the learning activity in
which visualization technology is used is more important
than the style of visualizations used.

One of modern approaches is based on learning through
playing educational games [3, 4]. It is believed that us-
ing educational games can provide a wide range of bene-
fits (like increased effectiveness, interest and motivation),
but those are questionable or at least not rigorously estab-
lished [11]. In the paper [5] authors present an educational
game intended to help students in understanding the stack
data structure on conceptual as well as practical level. The
Stack Game was developed in three parts, corresponding to
learning objectives (understanding the concept of stack, ap-
plication of stacks, stack implementation), bound together
by a meaningful storyline.

An interesting exercise support system, based on com-
bining exercise tasks with automatic evaluation and inte-
grated algorithm animation is described in [14]. The sys-
tem is based on the established ANIMAL system, since it
supports the ad-hoc generation of animation based on data
provided by a user. So the creation of new exercise sheets
based on existing sheets by the means of modifying the

input parameters is supported by the system. The correct
answer does not have to be given directly, since it can be
determined by the system automatically, based on provided
evaluation scripts.

While the above mentioned approaches are interesting,
the approach described in this work for increasing students’
engagement and motivation is slightly different and it is
based on the idea that they would participate on creating
visualizations not just using them. The approach, together
with the prototype of associated supporting tool, will be
described in greater details later in this paper.

Very interesting in this respect is the engagement taxon-
omy [10], which defines five levels of interaction [8] be-
tween a student and an algorithm visualization:

- viewing,

responding,

changing,

constructing,

presenting.

Several hypotheses are proposed in [10], which can be in-
terpreted in a way, that the higher level or the more forms
of engagement are used, the more efficient the learning
becomes. Within our currently available tools (like Al-
gomaster or VizAlgo, described briefly in the following
section) first three levels of interaction from the engage-
ment taxonomy are easily accessible for students. Master-
ing the fourth level (constructing visualizations) however,
is bit more complicated, since it requires some knowledge
about the structure of the application and its plugin mod-
ules. There has been some attempts to simplify the process
of creating plugins for Algomaster platform [2], but the so-
lution created has still limited area of usability.

As the approach presented later in this work is based
on the idea of involving students deeper into the process
of creating particular visualizations, it can be considered
to provide the fourth level of interaction within the en-
gagement taxonomy. Hence we hope it could help to in-
crease the learning efficiency by providing the higher level
of interaction, as well as to develop practical programming
skills by implementing the algorithm under consideration.

3 Algorithm visualization tools

Within our subject we use algorithm visualizations as an
education supporting tools for several years. We started
with visualizations available from different authors. But,
while it was a quick and simple solution, we encountered
the limitations of various kinds time to time, so we started
developing our platforms for visualizing algorithms and
data structures. Platforms were developed in order to ful-
fill our specific needs regarding the selection of algorithms,
naming conventions or the ability to adapt the visualiza-
tions whenever we decided. The platforms are only briefly

Increasing the Engagement Level in Algorithms and. ..

described here, to provide a reader with basic context, since
one of them (Algomaster) was also involved in experiments
described in the next section. For more information, addi-
tional references are provided as well. The first of the plat-
forms was named VizAlgo [16] and it was developed with
emphasis on two main goals: extensibility and portability.
The first of the goals is reflected within the structure of the
application, which consists of two cooperating parts - the
core module and the set of relatively independent plugin
modules. The core module is intended to provide the sup-
port for displaying and controlling the algorithm execution,
while plugin modules are responsible for visualizations of
particular algorithms. Choosing the Java development plat-
form was connected with the second of the goals mentioned
above. The platform is still in development and over the
years not only the set of available visualizations was chang-
ing, but also the core functionalities and user interface [1]
evolved (Figure 1).

Complexity Graph

Figure 1: VizAlgo platform

According to experiences gained with the VizAlgo, the
second of the platforms, Algomaster [18], also has the
plugin-based architecture, but it was intended to provide
some more advanced features. The features include func-
tionality for algorithm stepping in both directions [13], call
stack visualization for recursive algorithms and a special
mode for practical student testing in a visual way. In con-
trast to the VizAlgo, the Algomaster is based on .NET
framework development and execution platform [9]. Later
on, the platform was extended significantly [2] in order to
provide the support for visualization of complex algorithms
with the ability of changing input data during the visualiza-
tion. Examples of visualizations using the new features are
operations on B-tree, 2-3 tree or AVL tree (Figure 2).

In addition to the ability to define input data dynamically,
extensions were also oriented towards a real-time student
testing and support for simplified development of plugins
for the platform. In order to simplify the creation of Algo-
master plugins, a separate application named AlgoCreator
(Figure 3) was developed.

The application uses a pattern for generating plugins of
particular algorithm class, e.g. pattern for comparison-
based sorting algorithms. A pattern consists of text tem-

Informatica 44 (2020) 327-334 329

AVL tree

nsert Dete

nserted vaues: 53824710169
nseting: 11

Playback Speed

Figure 2: Algomaster platform

AlgoCreator - o x

Menu About

sed Sorting Algorthm. v BEGIN
FOR (3 =N -1; 3 > @; j--)
BEGIN
FOR (i = 0; i< 3; it+)
BEGIN
IF (numbers[i] > numbers[i+1])
suap(numbers[i], numbers[i+1])

Pattem:

Agorttm Name (S

Agorthm Name (€n):
DLL Lirasy Name:

END
END
END.

N - number of elements

B 1

Output Directory: ~ [DAUSERS

Check Syntax Generate

Generai
Generating: nputFor
Generating: BubbleS:

Figure 3: An environment of AlgoCreator application

plates for source code generation and an interpreter for in-
terpreting user defined model. In short, a process of creat-
ing a plugin module can be described as follows: a user can
select one of available patterns, provide basic algorithm-
related information and the algorithm pseudocode, define
the behavior of the algorithm and initiate library genera-
tion. The process is described in deeper detail in [2].

4 Experiments

As it was yet mentioned within introductory part of the pa-
per, the main motivation behind the accomplished experi-
ments was the comparison of the ability of students to solve
algorithmic problems in two distinct ways. One of them
was based on visual “simulation” of given algorithm op-
eration, using one of our visualization tools, described in
section 3. The another one consisted of programming the
particular algorithm in given programming language. Ex-
periments considered in this work were conducted with stu-
dents of four study groups (G1-G4) and they were focused
on two basic areas. The first area was oriented on travers-
ing trees using different strategies (7°) and the second one
on simple comparison-based sorting algorithms (.5).

Thus assignments of the particular area consisted of two

330 Informatica 44 (2020) 327-334

Binary Tree: Postorder ~ jees

Task: Traverse the tree using the Postorder algorithm

/

(\5/‘ g\/;\/

Mode: [check v <Siep Back

Figure 4: Algomaster in check mode - traversing binary
tree

parts: solving the problem in pure visual way using the Al-
gomaster platform (V') in one case (Figure 4) and program-
ming the particular algorithm in C programming language
(P) in the another one. This way we got the four combina-
tions (two areas and two ways of solving a problem from
the given area - TP, TV, SP and SV) for each of four
study groups (G1-Gy).

In the area of tree traversing, three basic traversing
strategies were used (in-order, pre-order and post-order).
In the area of sorting, simple sorting algorithms (like In-
sert sort and Bubble sort) were used. Within the following
four tables (Table 1, Table 2, Table 3, and Table 4), individ-
ual scores are presented, achieved by students of particular
study groups (G1-Gy) in all experiments (T'P, TV, SP,
SV).

Experiment Results
TP-Gy 000000010110001100100
Tv-Gy 10i016 (121 (;.(;711110?00100
SP-Gy 0001 01 01 01 11 _00000100
VG111 057005 1-101 018
Table 1: Results achieved by the students of the study

group G

Experiments described within this section were con-
ducted in Fall 2017. 82 students were considered on ex-
periments in total, of which 72 were males and 10 were
females. Since all the activities were not necessarily con-
ducted on a single class, not all students were necessarily
present on all activities. Such situation can be distinguished
in particular table by the presence of “-” character within
the Results column. This fact can be perceived as a slight
disadvantage, but it is generally hard to influence the pres-
ence of students on classes. And since it was registered
only in few individual cases from all considered students,
we believe it was not affecting the results significantly.

S. Simotidk

Experiment Results
0000101-01
TP-Gy 00000111011
V-G, 10.670.09110.21010.380.4

1014111061110.790.67
1011101101
10010111011
110331011111
0.8100050621111111

SP-Go

SV-Ga

Table 2: Results achieved by the students of the study
group G2

Experiment Results
o, | L
TV-Gs 0.46(821 1%7? } (1).}41 11 1101.13 1
PG| go11111010
V61 | 1100000911

Table 3: Results achieved by the students of the study
group G3

5 Analysis of the results of
experiments

Within this section we provide a sketch of approach for
calculating some of the resulting values, summarize the
obtained results and formulate some comments on them.
For calculating the average scores (mean) of the first group
(Gh) of students in particular experiments (I'P, TV, SP,
SV), the following formulas (1 - 4) were used. The av-
erage score (G Avrp) achieved by the study group (G1)
in the experiment T'P is given by the formula (1). Within
the formula, G1T St p represents the fotal score achieved
by the group G in the T'P experiment and G1 N St p the
number of students participating in the experiment. The
mean values (G Avry, G1Avsp, G1Avgy) for remain-
ing experiments (T'V, S P, SV) of the study group GG; were
calculated analogically.

Experiment Results
PG | 0110010100
TV-Gy 1 O1-603 11 1010381601 1101.313 1
SPG | i1 t011010
SV-Gy 1 0171 (i 11611111111111— 1

Table 4: Results achieved by the students of the study
group G4

Increasing the Engagement Level in Algorithms and. ..

G Avrp = % = 261 = 0.286, (1)
Gy Avry = gﬁgﬁi = 1‘;'123 =0.678, (2
G1Avgp = % = % =0.35, 3)
G1Avgy = g;ﬁ‘zssz = 1‘;;8 =0.739. (4

Similarly, the mean values were calculated for remain-
ing groups (G2 - G4), based on the data presented in tables
Table 2, Table 3, and Table 4. Variance and standard devia-
tion values for all experiments were calculated as well and
the overall results are available in the table Table 5.

Exper. | Group | Mean | Variance | Std. deviat.
TP 0.286 | 0.204 0.452
vV Gl 0.678 | 0.201 0.448
SP 0.35 0.228 0.477
SV 0.739 | 0.153 0.391
TP 0.4 0.24 0.490
TV G 0.712 | 0.125 0.353
SP 0.667 | 0.222 0.471
SV 0.8 0.128 0.358
TP 0.611| 0.238 0.487
TV G3 0.739 | 0.147 0.383
SP 0.55 | 0.248 0.497
SV 0913 | 0.064 0.253
TP 0.35 | 0.228 0.477
TV Ga 0.761 | 0.141 0.376
SP 0.526 | 0.249 0.499
SV 0.94 | 0.038 0.196

Table 5: Statistical results of experiments

As we can observe from the graph of average scores
(Figure 5) achieved by students in particular activities, the
scores achieved in visual tasks are usually significantly
higher than the scores achieved in corresponding program-
ming tasks. The only differences are T'P/T'V relation for
the group G's and S P/SV relation for the group Gs. Also
in these cases the scores achieved by solving problems in
visual way are higher, but maybe not so significantly.

0.7
06
0.5
04
03
02
0.1

0

™ ™ SP sV

Experiment

mScore G1
mScore G2

Score G3
mScore G4

Av. score

Figure 5: Graph of average scores (study groups)

Informatica 44 (2020) 327-334 331

When we further average the results obtained in par-
ticular experiments, better results in visual tasks become
clearly visible (Figure 6). These results practically sup-
port our informal experiences and the hypothesis expressed
within the introductory part of the paper.

0.9
0.8
0.7
0.6
@ 05
o
5 04
L 43
02
0.1
0
P v sp sV

Bxperiment

Figure 6: Graph of average scores (experiments)

The results can be also interpreted in a way, that algo-
rithm visualizations provide the solid potential we would
like to build upon and examine the new ways of utilizing
them in the filed of algorithms and data structures educa-
tion.

6 Proposal of the new approach and
study supporting system

In order to cope with the situation and stimulate further
students’ algorithmic and programming skills, while tak-
ing advantage of algorithm visualizations, we propose a
new teaching approach supported by the prototype of new
study supporting system. As it was mentioned before, the
teaching approach is based on the idea that students would
participate on creating simple visualizations, and this way
interact with algorithm visualization on a higher level of the
engagement taxonomy. The role of the proposed system is
to provide the environment, that allows students to control
the pre-arranged visualizations from their code by using
simple programming constructs. The approach, together
with the system are intended to be used in conjunction with
other teaching methods, not to replace them. The proto-
type of the system with a working name DSAV (Figure 7)
combines algorithm visualizations with programming tasks
and so increases the engagement level and supports active
learning.

As a proof of concept, we implemented the support for
several (Bubble sort, Selection sort, Insertion sort, Quick
sort, Heap sort, Merge sort) sorting algorithms [15] and al-
gorithms for traversing binary trees (Figure 8) using var-
ious strategies (Inorder, Preorder, Postorder and Level-
order). We would like to enhance the system in the future,
and perspective areas for such enhancements would be vi-
sualizations of operations on lists, trees, or graphs.

332 Informatica 44 (2020) 327-334

B " DSAV - Data Structures and Algorithms Visualizer x

File | Settings Help
Bubble sort
Selection sort rison-based sorting visualization

Insertion sort

~ Quick sort

Quick sort]

Heap sort
Merge sort

BT Inorder

BT Preorder
BT Postorder
BT Levelorder l D I D
T = =
3 4 5 7 6 8 12 9

o 2

| CLOSE | ‘ RESET | | START |

Figure 7: The working prototype of DSAV system

Technically, the system essentially consists of two parts:
the main part, managing the user interface and visualiza-
tion, and a separate thread implementing the algorithms
to be visualized. There is a simple API consisting of sev-
eral supporting operations which can be used appropriately
by a programmer implementing a particular algorithm.
The basic operation available is (RedrawAndWait (int
millis)) telling the system to update the visualization
according to current values in a data structure shared by
both parts and wait for a specified amount of time.

B ' DSAY - Data Structures and Algorithms Visualizer x
File 3Settings Help

Binary tree traversing visualization

Binary Tree - Inorder

Visited: 14 7 2 8

| CLOSE | ‘ RESET | | START |

Figure 8: Visualization of traversing binary tree

In case of sorting algorithms we provide several simple
API calls for rendering some elements of sorted array in
different color. They can be useful in cases we want to put
special emphasis on particular element (elements) of the
sorted sequence (Figure 7). Some of them are given in the
following list:

— CSortClearColorArr ()
— CSortSetColor (int index)

— CSortClrSetColor (int index)

— CSortSetColorInt (int begidx, int
endidx)
— CSortClrSetColorRW (int index, int

millis)

As some of operations tend to be used often together,
we also provide special calls for performing combined
operations (e.g. CSortClrSetColorRW (index,
millis) combines CSortClrSetColor (index)
for rendering specified element in different color and
RedrawAndWait (millis)). The reason for introduc-
ing such combined calls is to leave the code of particular
algorithm closer to its original form. Figure 9 provides an
example of using one of the operations within a simple sort-
ing algorithm.

void selectionsortiint a[], int size)

int i,3,k:
for (i=0;i<size;i++)

int min = i;
for({j=i+l:j<=9:j++)

if{al[jl<amin])

min = j;

kE=alil:
CSortClrSetColorBW (min, S00);
al[i]
a[min] = k:
CSortClrSetColorRW (1, 500);

= a[min]:

Figure 9: A simple sorting algorithm implementation
within the DSAV system

Analogically, there is a set of simple supporting API
calls for visualization of tree traversing algorithms. Some
of them are provided in the following list:

Btree3AGetDepth (int root)

Btree3AGetLevel (int root, int d)

BT3GetListVisited()

Btree3ASetVisited (int root)

An example of implementation of simple traversing al-
gorithm is given in Figure 10.

Debugging outputs for particular algorithm can be
printed using console output, if needed. The DSAV is
a Win32 application, written in C/C++ programming lan-
guage, since students mainly use this language in exercises
within our subject presently.

7 Conclusion

Within the paper we described our experiments based on
solving problems from given areas by students in two dif-
ferent ways. The first way was purely visual, accomplished

Increasing the Engagement Level in Algorithms and. ..

volid inorder (int root) {
if{lefc[root] '=0) inorder (left[root]) ;
Brtree3ASetVisiced (root) ;
BedrawhAndWait (300) »
if(right[root] '=0) inorder (right[root]) ;

Figure 10: A simple traversing algorithm implementation
within the DSAV system

by using the Algomaster platform and the second way was
based on programming a particular algorithm using C pro-
gramming language.

The results acquired are presented and analyzed. We
found that the scores achieved in visual tasks are usually
significantly higher than the scores achieved in correspond-
ing programming tasks. This correlates with our previous
informal experiences and supports the validity of the hy-
pothesis expressed within the introductory part of the pa-
per.

The solution is proposed based on the idea of involv-
ing students into the process of creating algorithm visual-
izations. By the proposed solution we would like to help
students not only to understand the basic principles of the
particular algorithm in a convenient visual way, but also
to stimulate their ability to implement it in particular pro-
gramming language. Based on our experiences, confirmed
by the results of accomplished experiments we believe, we
should develop both of the skills in order to better prepare
our students for their future professional career.

It would be interesting to further develop the proposed
approach and the supporting system and study the contri-
butions of the approach. Except the additional sorting al-
gorithms, perspective areas for further extension would in-
clude visualizations of lists, trees, graphs or hash tables.
We believe, that if system is enhanced properly and uti-
lized in a right way, it would contribute to the quality of
education in the subject. However, the further research is
required in order to evaluate the benefits and efficiency of
the proposed solution.

References

[1] Bacdikovd M., Porubédn J.: Ergonomic vs. Domain
Usability of User Interfaces, HSI 2013: 6th Inter-
national Conference on Human System Interaction,
June 6. - 8. 2013, Sopot, Poland, Piscataway, IEEE,
2013, pp. 1-8. https://doi.org/10.1109/
hsi.2013.6577817

[2] Benej M., Simotidk S.: Algomaster platform exten-
sion for improved usability, Journal of Electrical and
Electronics Engineering, vol. 10, no. 1, 2017, pp. 27-
30.

(3]

(4]

(5]

(6]

(71

(8]

(9]
[10]

[11]

[12]

Informatica 44 (2020) 327-334 333

Boyle E.A., Connolly T.M., Hainey T.: The role
of psychology in understanding the impact of com-
puter games, Entertainment Computing, vol. 2, no. 2,
2011, pp. 69-74. https://doi.org/10.1016/
Jj.entcom.2010.12.002

Boyle E.A., Hainey T., Connolly T.M., Gray G.,
Earp J.,, Ott M., et al. An update to the system-
atic literature review of empirical evidence of the
impacts and outcomes of computer games and se-
rious games, Computers & Education, 94, 2016,
pp- 178-192. https://doi.org/10.1016/7.
compedu.2015.11.003

Dicheva D., Hodge A.: Active Learning through
Game Play in a Data Structures Course, Proceed-
ings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18), ACM,
New York, NY, USA, 2018, pp. 834-839. https:
//doi.org/10.1145/3159450.3159605

Grissom S., McNally M.F,, Naps T.: Algorithm vi-
sualization in CS education: comparing levels of
student engagement, Proceedings of the 2003 ACM
symposium on Software visualization (SoftVis ’03),
ACM, New York, USA, 87-94. https://doi.
org/10.1145/774833.774846

Hundhausen C. D., Douglas S. A. and Stasko J. T.:
A meta-study of algorithm visualization effective-
ness, Journal of Visual Languages and Computing,
13, 2002, pp. 259-290. https://doi.org/10.
1006/3v1c.2002.0237

Karavirta V., Shaffer C. A.: Creating Engaging On-
line Learning Material with the JSAV JavaScript Al-
gorithm Visualization Library, IEEE Transactions on
Learning Technologies, vol. 9, no. 2, pp. 171-183,
April-June 2016. https://doi.org/10.1109/
£1t.2015.2490673

Microsoft .NET, https://dotnet.microsoft.com/

Naps T. L., RoBling G, et al.: Exploring the role
of visualization and engagement in computer science
education, Working group reports from ITiCSE on
Innovation and technology in computer science ed-
ucation (ITICSE-WGR ’°02), ACM, New York, NY,
USA, 131-152. https://doi.org/10.1145/
960568.782998

Petri G., von Wangenheim C. G.: How games for
computing education are evaluated? A systematic
literature review, Computers & Education, vol. 107,
April 2017, pp. 68-90. https://doi.org/10.
1016/7j.compedu.2017.01.004

Pietrikovd E., Chodarev S.: Towards Program-
mer Knowledge Profile Generation, Acta Elec-
trotechnica et Informatica, vol. 16, no. 1, 2016,

334

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

Informatica 44 (2020) 327-334

pp. 15-19. https://doi.org/10.15546/
aeei-2016-0003

RoBling G.: A First Set of Design Patterns for Al-
gorithm Animation, Electronic Notes in Theoreti-
cal Computer Science, Volume 224, 2009, pp. 67-
76. https://doi.org/10.1016/7.entcs.
2008.12.050

RoBling G., Mihaylov M., Saltmarsh J.: Ani-
malSense: Combining Automated Exercise Evalu-
ations with Algorithm Animations, Proceedings of
the 16th Annual SIGCSE Conference on Innova-
tion and Technology in Computer Science Educa-
tion, ITiCSE 2011, Darmstadt, Germany, June 27-
29, 2011, pp. 298-302. https://doi.org/10.
1145/1999747.1999831

Silvasi F., Tomasek M.: Lean Formaliza-
tion of Insertion Sort Stability and Correct-
ness, Acta Electrotechnica et Informatica,
vol. 18, mno. 2, 2018, pp. 42-49. https:
//doi.org/10.15546/aeei-2018-0015

Simotidk S.: Algorithm Visualization Using the
VizAlgo Platform, Acta Electrotechnica et In-
formatica, vol. 13, no. 2, 2013, pp. 54-64.
http://aei.tuke.sk/papers/2013/2/
08_%C5%A0imo%C5%88%C3%Alk.pdf

Simonak S.: Using algorithm visualizations in
computer science education, Central European
Journal of Computer Science, vol. 4, no. 3,
2014, pp. 183-190. https://doi.org/10.
2478/s13537-014-0215-4

Simondk S., Benej M.: Visualizing Algorithms and
Data Structures Using the Algomaster Platform, Jour-
nal of Information, Control and Management Sys-
tems, vol. 12, no. 2, 2014, pp. 189-201.

Simotidk S.: Algorithm visualizations as a way
of increasing the quality in computer science ed-
ucation, SAMI 2016, Danvers, IEEE, 2016, pp.
153-157. https://doi.org/10.1109/sami.
2016.7422999

Urquiza-Fuentes J., Veldzquez-Iturbide J. A.: Peda-
gogical Effectiveness of Engagement Levels - A Sur-
vey of Successful Experiences, Electronic Notes in
Theoretical Computer Science, Volume 224, 2009,
pp. 169-178. https://doi.org/10.1016/7.
entcs.2008.12.061

S. Simotidk

