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A growing number of security applications are being developed and deployed to explicitly reduce risk
from adversaries’ actions. However, there are many challenges when attempting to evaluate such systems,
both in the lab and in the real world. Traditional evaluations used by computer scientists, such as runtime
analysis and optimality proofs, may be largely irrelevant. The primary contribution of this paper is to pro-
vide a preliminary framework which can guide the evaluation of such systems and to apply the framework
to the evaluation of ARMOR (a system deployed at LAX since August 2007). This framework helps to
determine what evaluations could, and should, be run in order to measure a system’s overall utility. A
secondary contribution of this paper is to help familiarize our community with some of the difficulties
inherent in evaluating deployed applications, focusing on those in security domains.

Povzetek: Kako ovrednotiti varnostne aplikacije, kot recimo sistem ARMOR, ki je od 2007 dalje v uporabi
na LAX?

1 Introduction

Computer scientists possess many tools that are partic-
ularly applicable to security-related problems, including
game-theoretic reasoning, efficient algorithmic design, and
machine learning. However, there are many challenges
when attempting to evaluate a security system in a lab set-
ting or after it has been deployed. Traditional evaluations
used by computer scientists — such as runtime analysis and
optimality proofs — often do not consider the relevance of
modeling assumptions or account for how a system is actu-
ally used by humans. If there is an error “between the key-
board and the chair,” it still needs to be addressed, even if
such problems are beyond the scope of some computer pro-
grams. An additional complication is that no security sys-
tem is able to provide 100% protection. Instead, systems
must be evaluated on basis of risk reduction, often through
indirect measures such as increasing adversary cost and un-
certainty, or reducing the effectiveness of an adversaries’
attack. Despite these challenges, evaluation remains a crit-
ical element of the development and deployment of any se-
curity system.

An important challenge in security evaluation is that per-
formance necessarily depends on an adversarial human’s
behavior and decisions. Controlled laboratory studies can
be a valuable component of an evaluation, but the popu-
lation of test subjects is necessarily different that that of
actual attackers. Evaluating a system once it is deployed
only increases the experimenter’s burden. First, while a
system could be alternatively enabled and disabled on dif-

ferent days to measure its efficacy, this is at best impractical
and at worst unethical. Second, data related to the config-
uration and performance of the system may be classified
or sensitive, and not available to researches. Third, a key
component of many security systems is deterrence: an ef-
fective system will not only identify and prevent successful
attacks, but will also dissuade potential attackers. Unfor-
tunately, it is generally impossible to directly measure the
deterrence effect.1

This paper introduces a general framework for evaluat-
ing deployed systems and then presents a case study of
one such security system. While computer scientists tra-
ditionally prioritize precise, repeatable studies, this is not
always possible in the security community; computer sci-
entists are used to quantitative evaluations in controlled
studies, whereas security specialists are more accepting
of qualitative metrics on deployed systems. For instance,
Lazaric (14) summarized a multi-year airport security ini-
tiative by the FAA where the highest ranked evaluation
methodology (of seven) relied on averaging qualitative ex-
pert evaluations.

The primary advantage of quantitative evaluations,
rather than qualitative, is that they can be integrated into
a cost-benefit analysis. A particular security measure may
be effective but prohibitively expensive — consider two ex-
tremes in the domain of airport security. Hand searching
every passenger who enters an airport and disallowing all
luggage would likely increase the security of plane flights,

1To measure deterrence, one needs to know how many attacks did not
occur due to security, a generally unmeasurable counterfactual.
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Figure 1: A LAX checkpoint scheduled by ARMOR

but the costs from extra security personnel, increased time
in the airport, and lost revenue makes such a draconian
policy infeasible. On the other hand, removing all airport
screenings and restrictions would reduce costs and delays,
but also significantly increase security risks. By carefully
weighing costs and benefits, including non-monetary ef-
fects like privacy loss, security experts and policy makers
can better decide which measures are appropriate in a par-
ticular context.

Our ultimate goal is to provide a framework for com-
prehensive evaluation of deployed systems along multiple
attributes, in absolute or relative terms, to facilitate cost-
benefit analysis. We examine existing evaluations of the
ARMOR system (16) as a case study. Several different
kinds of evaluation of this system support the claim that
it significantly improves over the previous best practices of
uniform randomization or hand-constructed schedules and
is cost effective.

The primary contribution of this paper is to provide a
framework to evaluate such deployed systems and apply it
to ARMOR. This framework helps to determine what to
measure, how to measure it, and how such metrics can de-
termine the system’s overall utility. A secondary contribu-
tion of this paper is to help familiarize our community with
some of the difficulties inherent in evaluating deployed ap-
plications, particularly for security domains.

2 Case study: ARMOR
The Los Angeles World Airports (LAWA) police at the Los
Angeles International Airport (LAX) operate security for
the fifth busiest airport in the United States (and largest des-
tination), serving 70–80 million passengers per year. LAX
is considered a primary terrorist target on the West Coast
and multiple individuals have been arrested for plotting or
attempting to attack LAX (19). Police have designed multi-
ple rings of protection for LAX, including vehicular check-
points, police patrols of roads and inside terminals (some
with bomb-sniffing canine units, also known as K9 units),
passenger screening, and baggage screening.

There are not enough resources (police and K9 units) to
monitor every event at the airport due to the large physi-

Figure 2: A K9 patrol

cal area and the number of passengers served. ARMOR
addresses two specific security problems by increasing the
unpredictability of security schedules and weighting defen-
sive strategy based on targets’ importance. First, there are
many roads that are entry points to LAX. When and where
should vehicle checkpoints (Figure 1) be set up on these
roads? Pertinent information includes typical traffic pat-
terns on inbound roads, the areas each road accesses within
LAX, and areas of LAX which may have more or less im-
portance as terrorist targets. Second, how and when should
the K9 units (Figure 2) patrol the eight terminals at LAX?
Here it is important to consider the time-dependant passen-
ger volumes per terminal, as well as the attractiveness of
different terminals. In both cases a predictable pattern can
be exploited by an observant attacker.

To address the two security problems above, we use
game theory to model and analyze the two domains. The
police and attackers play a Bayesian Stackelberg game (6),
with the police first committing to a (randomized) security
policy. Multiple attacher types are modeled. Each attacker
type observes this policy and then selects the optimal attack
strategy (depending on the defense strategy). Solving this
game for a Strong Stackelberg Equilibrium finds an opti-
mal randomized policy for the police, which is sampled as
necessary to give specific schedules. ARMOR (Assistant
for Randomized Monitoring Over Routes) is the software
tool that assists police with randomized scheduling using
this game-theoretic analysis (16). The software uses an op-
timized algorithm for solving Bayesian Stackelberg games
called DOBSS (15).

The randomized schedules account for three key factors:
(1) attackers are able to observe the security policy us-
ing surveillance, (2) attackers change their behavior in re-
sponse to the security policy, and (3) the risk/consequence
of an attack varies depending on the target. The end result
is a randomized police schedule that is unpredictable, but
weighted towards high-valued targets. ARMOR has been
in use at LAX since August 2007, marking an important
transition from theoretical to practical application. The sys-
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tem has received very positive feedback and is considered
an important element of security at the airport.

3 Current ARMOR evaluations

The ARMOR system has undergone multiple evaluations
before and after deployment. We summarize the cur-
rent evaluations below, both from existing publications and
novel to this article, grouped by category. It is not difficult
to argue that ARMOR is a significant improvement over
previous practices: it saves time for human schedulers, it is
inexpensive to implement, and humans are known to have
difficulty randomizing effectively (21). However, our goal
is to take steps towards a more comprehensive understand-
ing of ARMOR that provides as much insight as possible
into the value of the system.

3.1 Mathematical

The first category of analyses are mathematical evaluations
that use our game-theoretic model to evaluate ARMOR’s
security policies against other baseline policies. In par-
ticular, if we assume attackers act optimally and have the
utilities specified in the model, we can predict how they
will react to any schedule and therefore compare the ex-
pected utility of these schedules. ARMOR uses a game
theoretic optimal schedule. Comparing against benchmark
uniform random and hand-crafted schedules show that AR-
MOR’s schedule is substantially better than these bench-
marks across a variety of different settings. For example,
Figure 3(d) shows the expected reward for the police using
ARMOR’s schedule (calculated using DOBSS) compared
with a uniform random benchmark strategy in the canines
domain. ARMOR is able to make such effective use of
resources that using three canines scheduled with DOBSS
yields higher utility than using six canines with uniform
random scheduling!

Sensitivity analysis is another important class of evalu-
ations that can be performed using only the mathematical
models. In this type of evaluation, important parameters
of the model are varied to test how sensitive the output
of the model is to the input. One important input to our
models is the distribution of different types of attackers.
For example, some attackers may be highly organized and
motivated, while others are amateurish and more likely to
surrender. Different types of attackers can be modeled as
having different payoff matrices. Changing the percentages
of each attacker can help show the system’s sensitivity to
assumptions regarding the composition of likely attackers,
and (indirectly) the system’s dependence on precise util-
ity elicitation. In Figure 3(a)–3(c), there are two adversary
types with different reward matrices. Figure 3(a) demon-
strates that DOBSS has a higher expected utility than that
of a uniform random strategy on a single checkpoint, re-
gardless of the percentage of “type one” and “type two”
adversaries. Figures 3(b) and (c) shows that DOBSS again

dominates uniform random for two and three checkpoints,
respectively.

Further sensitivity analysis can be applied to measure
how the optimal strategy computed by DOBSS changes as
payoffs are modified. Since the payoff functions are deter-
mined through preference elicitation sessions with experts,
these payoffs are estimates of true utilities. Game-theoretic
models can be quite sensitive to payoff noise, and arbitrary
changes in the payoffs can lead to arbitrary changes in the
optimal schedule. However, there is some evidence that
ARMOR is robust to certain types of variations. In one ex-
periment, we multiplied all of the defender’s negative pay-
offs for successful attacks by a factor of four, essentially
increasing the impact of a successful attack. We found that
in the one and three checkpoint case, the strategies were
unchanged. In the two checkpoint case the actions were
slightly different, but the overall strategy and utility were
unchanged.

As with any game theoretic analysis, the assumptions re-
garding the opponent’s behavior may dramatically change
the outputs and evaluated performance. Figure 4 exam-
ines an assumption typically made by Stackelberg solvers.
Specifically, such solvers assume that if an adversary is
given a set of actions with equivalent payoffs, the attacker
will select the action that maximizes the defender’s payoff
(the Strong Stackelberg Equilibrium, or SSE). We compare
this potentially optimistic behavior with two other reason-
able choices: the attacker selects randomly from the set of
actions with the maximum (equivalent) attacker utility, and
the attacker selects the action that minimizes the defender
utility from the set of equivalent actions with the maximum
attacker utility. The similarity in payoffs of these three
ways for attackers to break ties show that this assumption
is not critical for ARMOR’s success.

Additionally, note that Figure 4 has a roughly linear
trend. Resource graphs that have a “knee,” or location
where the marginal utility improvement sharply decreases,
suggest a natural resource allocation. In the case of a linear
utility curve, adding an extra resource will return the same
marginal expected utility. One benefit of such an analysis
is that in budget meetings, security experts can show the
expected impact to safety as the budget changes.

Lastly we also note that significant work has gone into
speeding up the Bayesian Stackelberg solver. While de-
tailed timing analysis often features prominently in com-
puter science papers, for the purposes of evaluating AR-
MOR it is sufficient that the system runs “quickly enough”
to meet the needs of the LAWA police on the size of prob-
lem instances they face on a daily basis. Other speedup
techniques may be necessary in much larger domains, such
as when scheduling over hundreds of thousands of different
targets (11).

3.2 Human behavioral experiments

ARMOR’s game-theoretic model uses strong assumptions
about the attacker’s rationality to predict how they will be-
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Figure 3: Comparisons of ARMOR’s schedules with a uniform random baseline schedule. Figures a–c show the utility of
schedules for 1–3 vehicle checkpoints varying the relative probability of two different attacker types. The x-axes show the
probability of the two attacker types (where 0 corresponds to 0% attack type 2, and 100% attack type 1) and y-axes show
the expected utility of ARMOR (using the DOBBS solver) and a uniform random defense strategy. Figure d shows that
DOBSS can outperform the baseline, even using many fewer K9 units. The x-axis shows the results from seven different
days, and the y-axis shows the expected utility for the different scheduling methods.

have and optimize accordingly. Humans often do not al-
ways conform to the predictions of strict equilibrium mod-
els (though some other models offer better predictions of
behavior (8)). In addition, ARMOR assumes that an at-
tacker can perfectly observe the security policy, which may
not be possible in reality.

We have run controlled laboratory experiments with hu-
man subjects to address both of these concerns (17). In
these experiments, subjects play a “pirates and treasure”
game designed to simulate an adversary planning an attack
on an LAX terminal, shown in Figure 5. Subjects are given
information about the payoffs for different actions and the
pirates’ strategy for defending their gold (analogous to the
security policy for defending airport terminals). Subjects
receive payments based on their performance in the game.

These experiments have provided additional support for
quality of ARMOR’s schedules against human opponents.
First, they suggest that the assumptions imposed by the
game-theoretic model are reasonable. Second, we have
tested many conditions, varying both the payoff structure
and the observation ability, ranging from no observation
of the defense strategy to perfect observation. The re-

sults show that ARMOR’s schedules achieve higher pay-
offs than the uniform random benchmark across all of the
experimental conditions tested, often by a large margin.2

These results demonstrate that ARMOR schedules outper-
form competing methods when humans are trying to defeat
the defender.

3.3 Operational record

A potentially useful test of ARMOR would be to compare
the risk level at the airport with and without the system in
place. This is problematic for several reasons that we dis-
cuss in more depth later on, including the sensitivity of the
relevant data and the impossibility of controlling for many
important variables. However, there is some public infor-
mation that can be of use in evaluating the performance of
the system, including arrest records. There have been many
success stories, prompting significant media coverage. For
example, in the month of January this year, the following

2New defense strategies developed in this work show even better per-
formance against some (suboptimal) human adversaries by explicitly ex-
ploiting the attacker’s weaknesses.
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Figure 4: This graph shows game theoretic evaluations of
the K9 scheduling program for different numbers of re-
sources, each averaged over 161 trials (error bars show
standard errors). First, the SSE assumption is reason-
able, as two different defender action selection mechanisms
yield little change to the defender payoff. Second, note that
the defender utility of additional resources appears approx-
imately linear.

seven stops discovered one or more firearms, resulting in
five arrests:

1. January 3, 2009: Loaded 9/mm pistol discovered

2. January 3, 2009: Loaded 9/mm handgun discovered
(no arrest)

3. January 9, 2009: 16 handguns, 4 rifles, 1 pistol, and 1
assault rifle discovered — some loaded

4. January 10, 2009: 2 unloaded shotguns discovered (no
arrest)

5. January 12, 2009: Loaded 22/cal rifle discovered

6. January 17, 2009: Loaded 9mm pistol discovered

7. January 22, 2009: Unloaded 9/mm pistol discovered
(no arrest)

This data, while not conclusive, is encouraging. It appears
that potential attackers are being caught at a high rate at
ARMOR-scheduled checkpoints.

3.4 Qualitative expert evaluations
Security procedures at LAX are subject to numerous inter-
nal and external security reviews (not all of which are pub-
lic). The available qualitative reviews indicate ARMOR is
both effective and highly visible. Director James Butts of
the LAWA police reported that ARMOR “makes travelers
safer,” and Erroll Southers, Assistant Chief of LAWA po-
lice, told a Congressional hearing that “LAX is safer today
than it was eighteen months ago,” due in part to ARMOR.
A recent external study by Israeli transportation security

Figure 5: Screenshot of the “pirates and treasure” game

experts concluded that ARMOR was a key component of
the LAX defensive setup.

ARMOR was designed as a mixed initiative system that
allows police to override the recommended policies. In
practice, users have not chosen to modify the recommended
schedules, suggesting that users are confident in the out-
puts. While such studies are not very useful for directly
quantifying ARMOR’s benefit, it would be very hard to de-
ploy the system without the support of such experts. Fur-
thermore, if there were an “obvious” problem with the sys-
tem, such experts would likely identify it quickly.

We have also compared ARMOR-enabled scheduling
with previous LAWA practices (7). First, all checkpoints
previously remained in place for an entire day, whereas
checkpoints are now are moved throughout the day accord-
ing to ARMOR’s schedule (adding to the adversary’s un-
certainty). Second, before ARMOR only a single check-
point was manned on any given day; multiple checkpoints
are now used (due to an increased security budget). Third,
a fixed sequence of checkpoints was defined (i.e., check-
points 2, 3, 1, etc.), to create a static mapping from date to
checkpoint. This sequence was not optimized according to
the importance of different targets and the sequence would
repeat (allowing the attacker to anticipate which checkpoint
would be manned on any given day).

Expert opinions have said that an important benefit of
the system is its transparency and visibility which con-
tribute to deterrence. ARMOR assumes that adversaries
are intelligent and have the ability to observe the security
policy: knowing about the system does not reduce its ef-
fectiveness. The deployment of ARMOR has been quite
visible: ARMOR has been covered on local TV stations
(including FOX and NBC), in newspapers (including the
LA Times and the International Herald Tribune), and in a
national magazine (Newsweek).
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4 Dimensions of comparison
Evaluating deployed security systems poses many chal-
lenges and there is currently no “gold standard” that can
be applied in all cases. Our general approach is based on
cost-benefit analysis, with the goal of maximizing the util-
ity of the deployed system. A key challenge in applying
this methodology to security domains is that many costs
and benefits are difficult, or even impossible, to measure
directly. For this reason, it is important to carefully con-
sider which metrics of costs and benefits are desirable, and
what sources of data are available to estimate these metrics.
We thus categorize representative tests in terms of the as-
sumptions they make, relative accuracy, and the cost of run-
ning the test. We first discuss three general dimensions of
evaluation (Section 4.1) and then a fourth security-specific
dimension (Section 4.2). Each type of test has inherent lim-
itations and it is important to draw on as many different cat-
egories as possible to provide a compelling validation of a
deployed system.

4.1 Test categories
Possible evaluations cover a broad spectrum of evaluation
methods. At one end, mathematical analysis is relatively
convenient, but requires strong and sometimes question-
able assumptions (14; 4). At the other, situated tests us-
ing the actual personnel and equipment are very realistic,
but also very costly and may not be able to directly mea-
sure desired variables. Along this spectrum, we group tests
according to their type, their accuracy, and cost:

Test Types:

– Mathematical: formal reasoning using a precise
model

– Computational simulation: Computational simula-
tions of varying degrees of abstraction/realism

– Controlled laboratory studies: Testing systems with
human subjects can account for human decision mak-
ing, which may be suboptimal or irrational

– Natural experiments: Observe the behavior the the de-
ployed system by gathering data without intervention

– Situated studies: Testing a deployed system provides
the most realistic data, but at high cost

– Qualitative expert studies: Domain experts can exam-
ine a system and give a holistic evaluation

Accuracy: Different categories of evaluation offer dif-
ferent tradeoffs in the realism of their assumptions, as well
as the precision and repeatability of the results. A mathe-
matical model is typically precise, but dependent on model-
ing assumptions. On the other hand, real-world tests make
fewer assumptions and simplifications, but it may not be
possible to draw strong conclusions from a small number
of trials and repeatability is often low.

Cost: Test vary dramatically in cost. In addition to
monetary costs, situated tests require the time of domain
experts and personnel. A special concern for security do-
mains is that simulated attacks where security personnel
are not informed before the event may be quite dangerous
to participants.

4.2 Quantitative metrics
We now shift our attention to the variety of different met-
rics that different tests can measure. The fundamental goal
of a security system is to maximize utility, which can be
decomposed into minimizing deployment cost, attack fre-
quency, and expected damage of attacks. These primary
metrics are not directly measurable in all types of tests, so
we must often fall back on secondary metrics that are cor-
related with one or more primary metrics (and therefore,
overall utility). Here we describe a representative set of
such secondary metrics, commenting on their benefits and
detriments.

– Attacks Prevented: How many attacks in progress
are interdicted? Pro: This metric directly measures
the benefit of reduced attack damage/frequency. Con:
The total number of attempted attacks may be un-
observable (for instance, it is not known how many
weapons have been smuggled past ARMOR check-
points) and quite rare.

– Attacks Deterred: How many planned attacks are
abandoned due to security measures? Pro: Attack de-
terrence may be a primary benefit of security (9; 4).
Con: Deterrence is generally impossible to measure
directly.

– Planning Cost: How much time and cost is necessary
to plan an attack? Pro: Increased planning costs pro-
vides deterrence and opportunities to detect terrorist
activities before an attack. Con: This cost is difficult
to measure directly, and motivated attackers may have
significant planning resources.3

– Attacking Resources Required: Can a single at-
tacker with simple equipment cause significant dam-
age? Or is sophisticated equipment and/or multiple at-
tackers required? Pro: Like increasing planning cost,
increased resources require larger attacker efforts, im-
proving the chance of detection or infiltration. Con:
Attackers may have sufficient resources, regardless.

– Attack Damage: What is the expected consequence
of a successful attack? Pro: Possible consequences
are relatively easy to estimate, as they are less depen-
dent on human decisions. Con: Determining which
attacks are most likely is still difficult, and there may
be high variance. Multiple assumptions must hold

3For instance, see http://www.globalsecurity.org/
security/profiles/dhiren_barot.htm
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about the attackers’ behavior and preferences for the
reasoning to be correct (8).

– Implementation Cost: What are the implementation
and maintenance costs for a particular measure, in-
cluding detrimental effects such as inconvenience to
passengers, lower cargo throughput, etc.? Pro: Such
a measurement can help decide which security mea-
surements to implement. Con: All effects, positive
and negative, must be quantified.

– Expert Evaluation: Are domain experts satisfied
with the system? Pro: Security experts, who spend
their career addressing such issues, have well in-
formed opinions about what works and what does not.
Con: Expert evaluations may identify security flaws
but generally are not quantitative nor consistent across
different experts.

5 Evaluation options
The previous sections introduced a classification system for
different types of tests and metrics that be useful to mea-
sure. We now list and discuss possible evaluations that
can be conducted in a security domain, in the context of
the above discussion. The evaluation options are situated
within the proposed framework and categorized according
to the type of test, relative accuracy, cost, and which met-
ric(s) can be measured. The decision of which test(s) to run
requires weighing each of these factors.

1. Game Theoretic Analysis: Given assumptions about
the attacker (e.g., the payoff matrix is known), game
theoretic tools can be used to determine the attacker’s
expected payoff. Additionally, deterrence can be mea-
sured by including a “stay home” action, returning
neutral reward.4

(a) Attacker Resources vs. Damage: A game theo-
retic analysis can evaluate how attacker observa-
tion, equipment, and attack vectors can change
the expected attacker payoff. Only defensive
measures known by the researcher can be con-
sidered, but such an analysis will provide an es-
timate of attack difficulty, an indirect measure of
deterrence.

(b) Defense Dollars vs. Successful Attack: A
game theoretic analysis can measure how at-
tacker success varies as security measures
are added (e.g., implementing a new baggage
screening process), or increasing the strength of
an existing measure (e.g., adding checkpoints).
Such an analysis may help ensure that resources
are not over-committed and provide organiza-
tions with quantitative data to assist with bud-
geting.

4Some attackers may be set on attacking at any cost and may be mod-
eled with a “stay home” action returning a large negative reward.

2. Simulated Attacks: A simulator with more or less
detail can be constructed to model a specific secu-
rity scenario. Such modeling may be more realistic
than a game theoretic analysis because structure lay-
out, simulated guard capabilities, and agent-level poli-
cies5 may be incorporated.

3. Human Studies: Human psychological studies can
help to better simulate attackers in the real world.
Evaluations on an abstract version of the game may
test base assumptions, or a detailed rendition of the
target in a virtual reality setting with physiological
stress factors could test situated behavior. Human sub-
jects may allow researchers to better simulate the ac-
tions of attackers, who may not be fully rational. Hu-
man tests suffer from the fact that participants are not
drawn from the same population as the actual attack-
ers.

4. Foiled Attacks: The number of attacks disrupted by a
security system can provide a sanity check (i.e., it dis-
rupts a non-zero number of attacks). If the metric is
correlated with an estimated number of attacks, it may
help estimate of the attacker percentage captured. En-
abling and disabling the security system and observ-
ing how the number of foiled attacks changes would
be more accurate, but this methodology is likely un-
ethical in many real world settings.

5. Red Team: Tests in which a “Red Team” of quali-
fied security personnel attempt to probe security de-
fenses provides realistic information in life-like situa-
tions using the true defenses (including those that are
not visible). However, such a test is very difficult to
conduct as some security must be alerted (so that the
team is not endangered) while remaining realistic, the
tests are often not repeatable, and a single test is likely
unrepresentative.

6. Expert Evaluation: Security experts — internal or
external — may holistically evaluate a target’s de-
fenses, including both visible and non-visible, and
provide a high-level security assessment.

7. Deterrence Measurement: Different methods for di-
rectly estimating deterrence can be used, such as esti-
mating how likely an attacker is to know about a se-
curity precaution and how that knowledge will affect
the likelihood of attack. A more quantitative approach
would allow attackers to choose between different ac-
tions that attack the defended target and actions that
attack a different target.6

5One exciting direction, as yet unexplored, is to incorporate machine
learning into such policies. Such an extension would allow attackers to
potentially discover flaws in the system, in addition to modeling known
attacker behaviors.

6Although this may seem myopic, institution-level security measures
are designed to protect a single target; if ARMOR causes attackers to
be deterred and attack elsewhere, the security measure has successfully
defended LAX. If a measure was designed to cause attackers to never
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8. Cost Study: A cost estimate for an entire location
may examine multiple security measures and different
levels of staffing, as well as measuring each resource’s
total cost. Some intangible factors may be very diffi-
cult to determine, such as quantifying a decrease in
civil liberties.

6 ARMOR evaluation, revisited
This section first re-examines the current evaluations pre-
sented in Section 3 to summarize the state of the system’s
evaluation and then discusses what additional experiments
could/should be performed based on the framework pre-
sented above.

Existing evaluations of the deployed ARMOR system
fall into the Mathematical, Controlled Laboratory, Natu-
ral Experiments, and Qualitative categories. These repre-
sent a fairly broad range of types of evaluations, showing
that ARMOR works well in theory, and that security ex-
perts agree it is beneficial. The controlled laboratory exper-
iments, qualitative evaluations, and (sparse) data from nat-
ural experiments are particularly interesting in that they go
beyond the framework of the game-theoretic model to test
it’s key assumptions. In many ways, this level of evaluation
goes beyond what is typical of applications, even those de-
ployed in real-world settings. Overall, we find strong evi-
dence to support the use of ARMOR over previous methods
(notably, hand-crafted or uniform random schedules).

Nevertheless, our framework also suggests new direc-
tions that could fill in gaps in the existing evaluation of
ARMOR. This is particularly important as we move for-
ward and wish to evaluate ARMOR against more sophis-
ticated alternatives than the hand-crafted and uniform ran-
dom baselines. In cases where the comparison is less clear-
cut, we may need additional metrics to make a compelling
argument for one approach or another. Based on our analy-
sis above, we suggest several possible directions for future
evaluations of ARMOR and similar systems:

1. None of the current evaluations effectively measure
the cost of deploying ARMOR. New analysis should
estimate the cost of deploying ARMOR at a new loca-
tion, both in monetary terms and in side effects. For
example, does using ARMOR result in increased con-
gestion or wait times for travelers? It would also be
useful to quantify the time required to create hand-
crafted schedules instead of using ARMOR.

2. Any additional data we can gather about the effects
of ARMOR on risk at LAX would be incredibly valu-
able for evaluation. Hard numbers are quite difficult
to obtain due to security concerns, but efforts to find
alternatives should continue. One that is frequently
suggested is using security experts to “Red Team” the
airport and plan or simulate attacks against it. While

attack (or fail at any attack, anywhere), our definition of deterrence would
have to be significantly modified.

this would undoubtedly provide useful information, it
is very costly and would require the approval of the
airport authorities. Truly live red team operations are
generally not conducted due to the risks they create
for security personnel.

3. It would be useful to correlate the number of suspected
attackers stopped at checkpoints with the number of
suspected attackers stopped by other security methods
over time. If the number of people detained at check-
points increases after ARMOR was deployed and the
number of people detained by other methods stayed
the same (or fell), it is likely that ARMOR is more
successful than the previous checkpoint strategy. Cur-
rently, such arrest statistics are considered sensitive
and are not available to researchers.

4. Another approach for testing the assumptions of our
game-theoretic model and the quality of the payoffs
elicited from the security experts is to build more de-
tailed computer simulations of airport operations and
potential attack scenarios. These simulations them-
selves also make assumptions, but it would potentially
improve reliability to model and understand the do-
main using two very different modeling frameworks
at different levels of abstraction.

5. A weakness of the current evaluation is the lack of
an effective measure of deterrence. This is an in-
herently difficult aspect to capture, as the important
variables cannot be observed in practice. One pos-
sibility is to explore deterrence more carefully in the
game-theoretic model. For example, attackers could
be given the option of attacking other targets in addi-
tion to LAX. Combined with sensitivity analysis and
behavioral experiments, this could be a way to better
understand the effects of deterrence.

7 Related work
Security is a complex research area, spanning many dis-
ciplines, and policy evaluation is a persistent challenge.
Many security applications are evaluated primarily on the
basis of theoretical results; situated evaluations and even
laboratory experiments with human subjects are relatively
rare. In addition, existing general methodologies for risk
and security evaluation often rely heavily on expert opin-
ions and qualitative evaluations.

Lazarick (14) is a representative example which re-
lies heavily on expert opinions. In the study, seven
tools/approaches used to evaluate airport security were
compared as part of a competitive bidding process. At the
end of the multi-year security initiative, the highest ranked
evaluation methodology relied on averaging qualitative ex-
pert evaluations.

A second example of a high-level methodology for per-
facility and regional risk assessment, such as described
by Baker (1). The methodology relies heavily on expert
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Game Theory Mathematic High Low X X X
Attacker Resources/Payoff Mathematic High Low X X X X
Defense Dollars / Damage Mathematic High Low X X X
Simulated Attacks Simulation High Low X X
Human Studies Human Med Med X X
Foiled Attacks Natural Low Low X
Red Team Situated Low High X X
Expert Evaluation Qualitative Low Med X X X X X X
Deterrence Measurement Math. / Qual. Low Low X X X
Cost Study Math. / Qual. Med Low X X X

Table 1: This table summarizes our proposed evaluation methods by suggesting where each falls along the three general
dimensions and which of the seven security-specific metrics are measured.

opinions and evaluations from local technical staff/experts,
similar to Lazarick (14). The three key questions in the
methodology are: (1) Based on the vulnerabilities identi-
fied, what is the likelihood that the system will fail? (2)
What are the consequences of such failure (e.g., cost or
lives)? (3) Are these consequences acceptable? Such an
approach enumerates all vulnerabilities and threats in an
attempt to determine what should (or must) be improved.
There is no quantitative framework for evaluating risk.

Many in the risk analysis community have recently ar-
gued for game theory as a paradigm for security evalua-
tion, with the major advantage that it explicitly models the
adaptive behavior of an intelligent adversary. Cox (13) pro-
vides a detailed discussion of the common “Risk = Threat
× Vulnerability × Consequence” model, including analy-
sis of an example use of the model. There are several argu-
ments raised as weaknesses of the approach, including (1)
the values are fundamentally subjective (2) rankings of risk
are often used, but are insufficient (3) there are mathemat-
ical difficulties with the equation, including dependencies
between the multiplied terms, and (4) the model does not
account for adaptive, intelligent attackers. One of the main
recommendations of the paper is to adopt more intelligent
models of attacker behavior, instead of more simple, static,
risk estimates.

Bier et al. (3) provide a high-level discussion of game-
theoretic analysis in security applications and their limita-
tions. The main argument is that the adaptive nature of
the terrorist threat leads to many problems with static mod-
els — such models may overstate the protective value of a
policy by not anticipating an attacker’s options to circum-
vent the policy. They explicitly propose using quantitative
risk analysis to provide probability/consequence numbers
for game-theoretic analysis.

Beir (4) performs a theoretical analysis of the implica-
tions of a Bayesian Stackelberg security game very similar
to the one solved by ARMOR, although most of the analy-
sis assumes that the defender does not know the attacker’s

payoffs. The primary goal is to examine intuitive impli-
cations of the model, such as the need to leave targets un-
covered in some cases so as not to drive attackers towards
more valuable targets. There are no “real world” evalu-
ation of the model. Other work (2) considers high-level
budget allocation (e.g., to large metropolitan areas). While
the study uses real data, its focus is not model evaluation
but the implications resulting from the model.

Game theory does have much to offer in our view, but
should not be considered a panacea for security evaluation.
One difficulty is that human behavior often does not cor-
respond exactly to game-theoretic predictions in controlled
studies. Weibull (22) describes many of the complex is-
sues associated with testing game-theoretic predictions in
a laboratory setting, including a discussion of the ongoing
argument regarding whether people typically play the Nash
equilibrium or not (a point discussed at length in the liter-
ature, such as in Erev et al. (8)). This is one reason we
believe behavioral studies with humans are an important
element for security system evaluation.

Many of the issues we describe in acquiring useful real-
world data for evaluation purposes are mirrored in other
types of domains. Blundell and Costa-Dias (5) describe
approaches for experimental design and analysis of pol-
icy proposals in microeconomics, where data is limited in
many of the same ways: it is often not possible to run con-
trolled experiments and many desired data cannot be ob-
served. They describe several classes of statistical methods
for these cases, some of which may be valuable in the secu-
rity setting (though data sensitivity and sparse observations
pose significant additional challenges). In truth, it is often
hard to evaluate complex deployed systems in general —
in our field a test of the prototype often suffices (c.f., Scerri
et al. (18)).

Jacobson et al. (9) describe a deployed model for screen-
ing airline passenger baggage. The model includes detailed
information regarding estimated costs of many aspects of
the screening process, including variables for probability
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of attack and cost of a failed detection, but these are noted
to be difficult to estimate and left to other security experts
to determine. One particularly interesting aspect of the
approach is that they perform sensitivity analysis on the
model in order to assess the effect of different values on
the overall decisions. Unfortunately, the authors have little
to say about actually setting the input values to their model;
in fact, there is no empirical data validating their screening
approach.

Kearns and Ortiz (10) introduce algorithms for a class of
“interdependent” security games, where the security invest-
ment of one player has a positive externality and increases
the security of other players. They run the algorithms on
data from the airline domain but do not directly evaluate
their approach, instead looking at properties of the equi-
librium solution and considering the broad insight that this
solution yields regarding the benefits of subsidizing secu-
rity in such games.

Lastly, the field of fraud detection (12), encompassing
credit card fraud, computer intrusion, and telecommunica-
tions fraud, is also related. Similar to the physical security
problem, data is difficult to access, researchers often do not
share techniques, and deterrence is difficult (or impossible)
to measure. Significant differences include:

1. Humans can often classify (in retrospect) false posi-
tives and false negatives, allowing researchers to ac-
curately evaluate strategies.

2. Companies have significant amounts of data regard-
ing known attacks, even if they do not typically share
the data outside the company. Some datasets do ex-
ist for common comparisons (c.f., the 1998 DARPA
Intrusion Detection Evaluation data7).

3. The frequency of such attacks is much higher than
physical terrorist attacks, providing significant train-
ing/evaluation data.

4. Defenders can evaluate multiple strategies (e.g., clas-
sifiers) on real-time data, whereas physical security
may employ only, and evaluate, one strategy at a time.

8 Conclusions
While none of the evaluation tests presented in Section 5
can calculate a measure’s utility with absolute accuracy,
understanding what each test can provide will help evalua-
tors better understand what tests should be run on deployed
systems. The goal of such tests will always be to provide
better understanding to the “customer,” be it researchers,
users, or policy makers. By running multiple types of tests,
utility (the primary quantity) can be approximated with in-
creasing reliability.

7See http://www.ll.mit.edu/mission/
communications/ist/index.html for data and program
details.

At a higher level, thorough cost-benefit analyses can pro-
vide information to policy makers at the inter-domain level.
For instance, consider the following example from Tengs
and Graham (20):

To regulate the flammability of children’s cloth-
ing we spend $1.5 million per year of life saved,
while some 30% of those children live in homes
without smoke alarms, an investment that costs
about $200,000 per year of life saved.

While such a comparative cost-benefit analysis is beyond
the scope of the current study, these statistics show how
such an analysis can be used to compare how effective mea-
sures are across very different domains, and could be used
to compare different proposed security measures.

In the future we plan to use this framework to help decide
which evaluation tests are most important to determine AR-
MOR’s utility, as suggested in Section 6. Additionally, we
intend to continue collaborating with security experts to de-
termine if our framework is sufficiently general to cover all
existing types of security tests, as well test how the frame-
work can guide evaluation in additional complex domains.
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