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Several bibliographic databases offer a free tool that enables one to determine the collaboration distance or
co-authorship distance between researchers. This paper addresses a real-life application of the collabora-
tion distance. It concerns somewhat unusual clustering; namely clustering in which the average distances in
each cluster need to be maximised. We briefly consider a pair of clusterings in which two cluster partitions
are uniform and orthogonal in the sense that in each partition all clusters are of the same size and that no
pair of elements belongs to the same cluster in both partitions. We consider different objective functions
when calculating the score of the pair of orthogonal partitions. In this paper the Wiener index (a graph
invariant, known in chemical graph theory) is used. The main application of our work is an algorithm for
scheduling a series of parallel talks at a major conference.

Povzetek: Nekatere bibligrafske zbirke podatkov nudijo orodje, ki za poljubna raziskovalca poišče njuno
razdaljo sodelovanja, oz. razdaljo soavtorstva. Članek obravnava konkretno uporabo razdalje sodelovanja.
Pri tem gre za nekoliko nenavadno razvrščanje podatkov, pri katerem morajo biti razdalje med elementi
skupine čim večje. Na kratko obravnavamo par uniformnih razvrščanj, pri katerem ima vsaka skupina prve
komponente z vsako skupino druge komponente natanko en skupen element. Omenimo različne kriterijske
funkcije za izračun vrednosti razvrščanj. V praksi uporabimo Wienerjev indeks, ki ga dobro poznamo v
kemijski teoriji grafov. Glavna uporaba našega dela je algoritem za razporejanje serije vzporednih preda-
vanj na večji konferenci.

1 Introduction

In this paper we address the use of collaboration distance
in solving several practical problems. In particular we ap-
ply it to scheduling conference talks in parallel. A problem
facing organizers of large conferences where several talks
are scheduled in parallel is to avoid simultaneous talks of
speakers that may interest the same person, or at least to
minimize the number of attendees who have to choose be-
tween two interesting talks. Another, somehow comple-
mentary task is to schedule similar talks in the same ses-
sion, preferably in the same lecture room and next to each
other. So the main question is, what function one has to
take to measure similarity between two speakers. In this
paper we will use an objective approach to these ends and
simply employ the collaboration distance, information that
is readily available in some bibliographic databases.

2 Collaboration graph and
collaboration distance

2.1 Collaboration graph
Let V be a list of researchers. This list may be obtained in
any manner, but it makes sense to base it on (preferably
authority controlled) lists of authors from bibliographic
databases. We say that u, v ∈ V are adjacent: u ∼ v, if
u and v collaborate. Usually, by collaboration we mean
that they have written a joint publication in the past. In
this sense we consider collaboration to be the same thing
as co-autorship. Since ∼ is a binary irreflexive, symmetric
relation it defines a simple graph G = (V,∼) that we call
the collaboration graph1. Clearly, one has to specify the
data set from which relation ∼ can be deduced. Hence G
depends on the choice of such a data set.

1Here we present the basic model that suffices for our purposes. Note
that some studies use reflexive relation signifying that each author collab-
orates with himself or herself. Also, the graph may be weighted where
the weights on the edges represent the number of joint papers between the
two authors.
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2.2 Collaboration distance

Any connected graph G gives rise to a metric space where
the distance d(u, v) between two vertices u, v ∈ V is de-
fined as the length of the shortest path in G between u and
v. If G is disconnected, each of its connected components
is a metric space and we let d(u, v) = ∞ for vertices in
different connected components. For a collaboration graph
G the expression d(u, v) is called a collaboration distance
between authors u and v.

For basics in graph theory, the reader is referred to [6];
for metric spaces, see [7].

2.3 Data sets

It seems the first idea of collaboration graph and collab-
oration distance appeared as entertainment among mathe-
maticians when measuring how close their research is from
the prolific mathematician Pál Erdős. The corresponding
collaboration distance is called the Erdős number, and was
first formally introduced forty years ago [10]. Scientific in-
vestigation of Erdős collaboration graph began in 2000 [5].
Soon it became clear that the same data set can be used
for computation of collaboration distance between any two
individuals, not only the distance from one particular sub-
ject. One can easily define other collaboration graphs, e.g.
among movie actors. There is an edge between two actors
if and only if they have appeared in the same movie. Col-
laboration graphs became important in social sciences as
prominent examples of social networks. Large social net-
works exhibit characteristic features of random networks.
Modern theory of random networks was born in 1999 [1]
when the model was proposed which explains very well the
nature of social networks such as collaboration graphs.

Nowadays, two large bibliographic databases covering
research in mathematics exist: MathSciNet that is run by
the American Mathematical Society and ZbMath, run by
the European Mathematical Society via Springer. Both
cover most important publications in mathematics, statis-
tics and theoretical computer science. Each of them con-
tains a tool for calculating the collaboration distance be-
tween two authors. In our application the collaboration dis-
tances between speakers were taken from ZbMath.

Unfortunately, other important bibliographic databases
such as Web of Science, SCOPUS or Google Scholar,
do not provide free tools for computing collaboration dis-
tance. Slovenia has an excellent research information sys-
tem SICRIS/COBISS that covers the work of over 15,000
Slovenian scientists. Although it has been analysed with
respect to collaboration distance, only summary results in
form of scientific papers are available, see e.g. [2, 3, 9, 11].
We strongly believe that a collaboration graph and the
corresponding collaboration distance function based on
SICRIS should be made available on-line.

3 Selecting optimal orthogonal
partitions

Here we present an application of collaboration distance to
a sample of individuals.

3.1 Scheduling talks in parallel
Let V be a set of speakers at a scientific conference. As-
sume each speaker delivers a single talk and that all talks
are to be scheduled in parallel in m lecture rooms. Let
n = |V |. To simplify our task we assume that there are t
equal time-slots available and that n = tm.2 Our task is
to partition the set of speakers into t groups U1, U2, . . . , Ut
such that each groupUi containsm speakers that will speak
at the same time. At the same time we want to partition
the speakers into m groups L!, L2, . . . Lm., assigning each
group to a lecture room. In other words we are restricting
our search to the pair of uniform partitions.

Group L1 . . . Lm.
U1 v11 . . . v1m

U2 v21 . . . v2m

. . . . . . . . . . . .
Ut vt1 . . . vtm

Table 1: Partitioning the set of speakers into t clusters Ui,
representing time slots and an orthogonal partitioning into
m clusters Lj , representing lecture rooms.

We would like to choose a partition in which the re-
searchers in each part U work on different topics. A good
measure may be collaboration distance.3 If two researchers
have a paper in common they should probably be in differ-
ent parts. We would like collaboration distances in each
group as big as possible. At the same time we would like
to have the clusters in the other, orthogonal partition to be
as homogeneous as possible. We decided to use a function
that is well-known in chemical graph theory, namely, the
Wiener index.

3.2 The Wiener index of an induced
subgraph and clustering

Let G be a connected graph. The Wiener index W (G) is
defined as:

W (G) = (1/2)
∑
u∈V

∑
v∈V

d(u, v)

2In more general case when the divisibility condition is violated one
could introduce slack or dummy speakers and appropriately define the
distances for them.

3Any of several other measures, such as citations, keywords, etc, could
have been used.
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We may restrict this index to a subgraph, induced by U ⊂
V .

W (G,U) = (1/2)
∑
u∈U

∑
v∈U

d(u, v)

This notion can be found, for instance in [7].
Let U be a partition of V into t parts of size m, each.

The partitioning may be called a clustering and each part
may be called a cluster.

We generalise the notion of the transmission of a vertex
in a graph; see [8]. Let v be a vertex, then the sum:

w(G,U, v) =
∑
u∈U

d(v, u)

is called the transmission of v to U in G. Note that Do-
brynin in [8] only considers the case when U = V . Given
cluster U , the element u ∈ U with minimal transmission is
called a clustroid of U . Clustroids are used in several clus-
tering algorithms. However, we will use them only post
festum.

For a clustering U define

F (U) =
∑
U∈U

W (G,U)

We are searching for an admissible partition U that will
maximise F (U). As we show below one may refine this
search by adding another, orthogonal criterion.

3.3 Orthogonal clusters and orthogonal
partitions

The same data and the same criterion function can be used
in the opposite direction, namely to cluster speakers into
sections. This means that the talks in the same section will
be scheduled consecutively in the same lecture room.

Figure 1: F (U) vs. F (L) for 10000 random permutations
π. The optimal results and Pareto frontier can be found in
the bottom right.

Figure 2: F (U) vs. F (L) for 10 random permutations π
each followed by a local optimisation.The initial scores are
in top left squares while the optimal scores and Pareto fron-
tier can be found on the bottom right circles. Arrows link
each square to the corresponding circle.

In case we want to perform both tasks simultaneously,
we may choose to consider orthogonal partitions. Two
uniform partitions of an mk-set are orthogonal if one has
clusters of size k and the other one of size m and no pair
of elements belongs to both partitions. In one partition we
want to maximize distances while in its orthogonal mate
we minimize distances.

Let c = (U ,L) be a pair of orthogonal partitions of V .
Let F be defined as above. Define the score of (U ,L) to
be F (U) − F (L). Note that each permutation π of V ,
i.e. π ∈ Sym(V ), can be considered as a pair (U ,L).
Hence F (π) = F (U)−F (L). We chose the solution to be
argmaxπ∈Sym(V)F(π).4

The task we wanted to solve was the scheduling of 30
invited speakers of the 8th European Congress of Math-
ematics that is taking place in Portorož, Slovenia in July
2020. The Congress takes place in 5 consecutive days and
each day 6 speakers have to deliver their talks in parallel.

In the first attempt we generated 1000 admissible solu-
tions randomly. The results are depicted in Figure 1. We
also wrote a program for improving each admissible solu-
tion by local optimisation. This improved the quality of the
final solution considerably. Figure 2 depicts 10 runs of our
algorithm. The top left dots correspond to the randomly
generated solutions while the bottom right ones depict the
ones, obtained by a sequence of improvements leading to a
local minimum. The arrows join each initial solution to the
corresponding locally optimal one.

4Note that this can be considered also as a multi-criteria optimisation
problem with score (F (U),−F (L)) with Pareto points being candidate
solutions.
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3.4 Alternative candidates for a score of an
orthogonal pair of partitions.

The choice of F (π) may not be most suitable for the task.

v

v
rR

U

Figure 3: Radius R and the isolation radius r of point v
with respect to U . Points in U are in the gray cloud.

We extend the definition of the radius of a cluster [12],
to the radius of any individual v with respect to the cluster
U :

R(G,U, v) = max
u∈U

d(v, u)

Since our clusters are in a sense anticlusters as they con-
tain individuals being as far apart as possible, it make sense
to define another radius that we call the isolation radius

r(G,U, v) = min
u∈U,d(u,v)>0

d(v, u)

measuring the distance to the nearest element in the cluster;
see Figure 3.

Note that transmissions measure average distance, while
the radius and isolation radius measure maximal and min-
imal distance, respectively. Also, the centroid is a vertex
attaining the maximum radius in has been used extensively
in data science. We may define isolation centroid as the
vertex attaining minimal isolation radius.

Since we are already given a distance matrix, data pre-
processing is not needed. If needed a method that has all
clusters of equal size can be used.

It would be probably interesting to select the pair (U ,L)
by maximizing the sum of isolation radii in U and mini-
mizing the sum of radii in L. There are other well-known
techniques, such as greedy method or integer programming
that should be investigated for this problem.

4 Some further applications of
collaboration distance

Collaboration distance can be used as a basis for natural
structuring of a given list of researchers using standard
clustering methods. We envision several applications of
this approach including two that we mention here.

In the first approach one can focus on researchers be-
longing to a given organization, such as university, insti-
tute, faculty, department, project, etc. The internal struc-
ture of various universities and institutes could be com-
pared to the collaboration network. Figure 4 is just an il-
lustration of a simple application that gives a very natu-
ral stratification of a mathematical department in Slovenia
in which three subgroups of researchers are clearly iden-
tified. Again, collaboration distances from ZbMath were
used. We intend to pursue further studies in this direction.

The second one involves clustering of individuals of a
given bibliographic database. Namely, having collabora-
tion graph consisting of all researchers in a given database
or country would be very useful. One could use it, in prin-
ciple, to analyse similarity between various institutions, re-
search groups and scientific disciplines. Various anomalies
could be detected and used by policy makers to change the
rules in order to avoid it in the future.

While the two mathematics databases (MathSciNet and
ZbMath) provide the users with collaborative distance for a
given pair of authors, most of the databases in other fields,
as well as general databases, do not. This means that ad-
ditional work must be done by users to find collaboration
distances between authors. There are other factors to con-
sider, when calculating Erdős numbers. Firstly, consistent
data on the authors is needed, which implies at least consis-
tent spelling of the names, but preferably authority control
using consistent identifiers5. If this condition is not met,
the results will not be appropriate. Next, the range of pub-
lications considered for calculation, can have a significant
effect on the calculated collaboration distance. For a given
pair of researchers their collaboration distance can be, and
is, different for different databases. That only a certain sub-
class of publications is considered, is more or less an arbi-
trary decision, which is usually a reflection of the scope of
a particular database.

One can envision other situations where different dis-
tances may be significant. For instance, when selecting
referees for a paper one would like to select objective ones,
i.e. the ones that are not co-authors of candidates. On the
other hand we would like so select individuals who know
well the subject, covered in the paper or project under re-
view. This closeness may be measured, for instance by the
overlap of keywords used by the two individuals.

Clearly, a fractional approach [4] in which the collabo-
ration distance is not measured simply as a distance in the
collaboration graph but the number of joint papers shortens
the distance accordingly.

5One of the most well-know identifiers is ORCID.
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Figure 4: Ward method clustering based on the ZbMath collaboration distance for a department gives a reasonable partition
of its members in three groups.

5 Conclusion

The main goal of this paper was to point out that the col-
laboration distance that is available at some high-quality
bilbliographic databases such as MathSciNet and ZbMath
is a useful tool that can be applied to a variety of spe-
cific problems such as scheduling talks at conferecnes or
analysing internal structures of universities, institutes, etc.
However, it would be very useful if one could specify the
types of edges of the collaboration graphs. For instance,
in MathSciNet co-authorship of editorial does not count. It
would be useful if the user could choose criteria for inclu-
sion/exclusion of data from the dataset. An important fact
may be the time-frame of joint publications. For instance,
by looking at recent co-authorships one could easily detect
possible conflicts of interest. For other purposes it would
be helpful to have information how many co-authors con-
tributed to the edge of the collaboration graph and more
generally the number of shortest paths connecting two au-
thors.

Having such a simple tool incorporated into SICRIS
would be an important upgrade of the system. One could
also look at other measures of similarity, however, it would
probably be difficult to get an agreement which ones to in-
clude. We would like to stress that we are not doing mas-
sive data mining. Our real-life calculations involved rather
small data sets. For larger conferences with over 1000 ac-
tive participants one should perhaps look for methods that
would reduce the size of data that is needed to store the
distance matrix. It would be interesting to explore how the
attendees of a conference choose the talks they attend. In
particular, it would be interesting to compare the proposed
clustering approach to the manual organization of talks.
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