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This paper describes a work on transfer learning in neural networks carried out in 1970s and early 

1980s, which produced its first publication in 1976. In the contemporary research on transfer learning 

there is a belief that pioneering work on transfer learning took place in early 1990s, and this paper 

updates that knowledge, pointing out that the transfer learning research started more than a decade 

earlier. This paper reviews the pioneering 1970s research, and addresses important issues relevant for 

the current transfer learning research. It gives a mathematical model and geometric interpretation of 

transfer learning, and a measure of transfer learning indicating positive, negative, and no transfer 

learning. It presents experimental investigation in the mentioned types of transfer learning. And it gives 

an application of transfer learning in pattern recognition using datasets of images.  

Povzetek: Ta članek opisuje delo na področju prenosa učenja v nevronskih omrežjih, opravljeno v 

sedemdesetih in zgodnjih osemdesetih letih prejšnjega stoletja, ki je prvo publikacijo izdalo leta 1976. V 

sodobni raziskavi o transfernem učenju obstaja prepričanje, da je pionirsko delo na področju 

transfernega učenja potekalo v začetku devetdesetih let, in ta članek to znanje posodablja. poudarja, da 

so se raziskave o transfernem učenju transfernem učenju začele 15 let prej. Ta članek pregleduje 

raziskave in obravnava pomembna vprašanja za sedanje raziskave o transfernem učenju. Daje 

matematični model in geometrijsko razlago transfernega učenja. Daje merilo transfernega učenja, 

vključno s pozitivnim, negativnim in tabula rasa prenosnim učenjem. Predstavlja eksperimentalno 

raziskovanje omenjenih vrst transfernega učenja. Uporablja prenosno učenje pri prepoznavanju nabora 

podatkov. 

 

1 Introduction
Transfer learning is a machine learning method where a 

learning model developed for a first learning task is 

reused as the starting point for a learning model in a 

second learning task (Tan et al. 2018). It is a research 

problem in machine learning that focuses on storing 

knowledge gained while solving one problem and 

applying it to a different but related problem (Wikipedia 

> Transfer Learning, October 2020). Often previous 

learning is referred to as source and the next learning as 

target (Pratt 1993, Pan and Yang 2010, Weiss et al. 

2016). Basically it is using a pre-trained neural network 

(trained for Task1) for achieving shorter training time 

(positive transfer learning) in learning Task2. Transfer 

learning is an emphasized way of learning in 

contemporary multistage neural networks named deep 

neural networks (e.g., Goodfellow et al. 2016). 

According to (Wikipedia > Transfer Learning, 

October 2020), the earliest work on transfer in machine 

learning is attributed to Lorien Pratt (1993). That work 

points out the earlier work on the subject (Pratt et al. 

1991). After 1993, as pointed in Pan and Yang (2010) the 

fundamental motivation for transfer learning in the field 

of machine learning was discussed at a NIPS-95 

workshop on “Learning to Learn” (Baxter et al. 1995).  
In the context described above, this paper informs on 

an explicit work on transfer learning which took place 

fifteen years before the Pratt et al. (1991) work. That 

research, reviewed here, started 1972 producing some 

unpublished reports (Bozinovski 1972, 1974) and a 

published report in 1976 (Bozinovski and Fulgosi, 1976) 

which explicitly in the title addressed the transfer 

learning concept. Research continued after that, and 

reports were given in (Bozinovski et al. 1977, 

Bozinovski 1978, 1981, 1985a, 1985b, 1995).  

That initial research on transfer learning is important 

to the current effort in transfer learning, because in 

addition of presenting initial concept of transfer learning 

in neural networks, it describes an early approach of 

defining a measure of transfer learning which is of 

interest to current efforts in transfer learning (Tan et al. 

2018). The review presented here, in addition to 

mathematical treatment of transfer learning, describes the 

experimental investigation on transfer learning  which 

took place during 1976-1981. This paper also gives an 
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application of transfer learning, in obtaining shorter 

training sequences in learning a dataset of images 

representing letters.   

In the sequel the paper first reviews the neural 

network used in early research on transfer learning, 

during 1972-1981. Then it gives a mathematical model of 

supervised learning, in which it explicitly introduces 

transfer learning. Then it gives a geometrical model of 

transfer learning, including positive, negative, and no 

transfer learning. Then, in Section 5, it defines a 

mathematical index, a measure of transfer learning. In 

Section 6 the paper discusses a search for a solution of 

pattern classification problem in case of negative transfer 

learning. In Section 7 the paper discusses the multi-class 

multi-template problem of transfer learning. Section 8 

shows results of experimental investigation in transfer 

learning. It first shows experiments with small set of low 

resolution images representing letters, demonstrating 

experimentally the effect of tabula rasa, positive, and 

negative transfer. The paper then extends to an 

application of transfer learning in case of learning a 

dataset of three sets each containing 26 images 

representing letters. The section 9 reviews the related 

work by other authors which appeared after 1986, 

influenced by the renewed interest in neural networks 

due to the book of Rumelhart, McClelland, and the PDP 

Group (1986), including the work of Pratt et al. (1991) 

and Pratt (1993). The paper ends with a discussion and 

conclusion section. 

2 The neural network 
The neural network used in our study (Bozinovski 1972, 

1974, 1995) is shown in Figure 1. 

The network contains 5 computational stages 

(layers). The first one, M, is the sensor layer, with 

sensors arranged according to a need, for example as a 

matrix retina. Sensors are binary giving values 0 or 1. 

Second layer, Z, is a feature extraction layer. Feature 

is a pattern which is used as input in recognition of a 

higher level pattern. Examples of features might be 

"horizontal line", "circle", "upper left corner", or a rather 

complex feature. Important is that the feature is a first 

stage in recognizing a pattern, which is a set of features. 

One way of defining a feature is to pre-wire all sensors in 

a horizontal line and to create an output from Z layer, 

with interpretation "horizontal line". The other way is to 

add a Z-element with trainable weights and produce an 

output with interpretation "horizontal line". The number 

of outputs from Z-layer is often  larger than the number 

of input sensors. For example each sensor can be 

considered a feature, plus some needed features such as 

"middle horizontal line", "left corner" or "square".  

The outputs of the layer Z are inputs to the third 

layer, the A-layer. It contains A-elements, or associative 

units, as named originally by Rosenblatt (1958, 1962), 

and used in early neural learning research (e.g. Glushkov, 

1967). We will use that term, but we will also use the 

term associative weights. A weight represents the 

relevance of the feature in creating the concept of a 

pattern. They are divided into subsets A1, A2, ..., An, each 

subset having inputs from the feature layer Z. The 

subsets are associated to a cognitive concept, a class to 

which input patterns are classified. If there are n possible 

classes and Ns possible features, then each A element can 

be represented by values wis, i=1,..,n; j=1,..,Ns. They are 

in general real numbers. Each class of A elements 

represent a concept, a cognitive class, that will be learned 

in the pattern classification process. For example, if a 

task is to classify images, then one set of A elements will 

be devoted to recognize image "E", another to recognize 

the image "F" etc. 

Next layer, S, are elements that perform some 

computation over the subsets of A elements representing 

cognitive classes. An S element si computes some 

function y(wij) over the elements wij , i = 1,..,n; j =1,.., 

Ns. Most often these elements compute a weighted and 

thresholded sum yi = jwij xj - pi where pi  is named 

threshold of the element si. Further in the text we will use 

the -notation for threshold , i.e. pi = i. There are n S-

elements in this layer, s1, s2, ..., sn. A subset of A 

elements and the corresponding S element is named a 

neuron of the neural network. 

The next layer, D, is an arbiter layer, which chooses 

an S-element out of n alternative S-elements. Usual way 

is computing a maximum function. This layer can be 

composed by set of neurons which have a common  

threshold. Such an Isothreshold Neural Network (e.g. 

Bozinovski 1985a) has a common threshold value equal 

to maximal value of the individual neuron thresholds. 

Such a network provides a mechanism for computing 

maximal value in neural networks. In addition, the 

maximal value might be normalized to 1, and the 

maximum computing network can be viewed as 

computing fuzzy union if the input values are also 

normalized between 0 and 1. The output of this layer is 

an integer from 0 to n. For example, output d = 2 means 

that the observed pattern belongs to class 2 out of the 

considered n classes. The output d = 0 means that the 

classification is undecided, possibly there are two S-

elements computing the same largest value, so there is no 

single maximal value.  

The next layer E, is output interface layer. It 

activates some device that is controlled by this neural 

 
Figure 1: A 5-layer neural network used in supervised 

learning for pattern recognition in the research 

described here (Bozinovski 1974, 1995). 
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network. For example if d=2 is computed, then this layer 

may activate a speech device telling the sound 

representation of the class 2.  

The neural network presented in Figure 1 was the 

one we started our research in neural networks with. The 

first task we considered was distinguishing a horizontal 

vs vertical line on a matrix retina (Bozinovski 1972). 

That is not reviewed here. This paper is focused on 

modeling transfer learning.  

3 Mathematical modeling of transfer 

learning in a neural network 
For purpose of presenting the concept of transfer 

learning, here we use a simplified version of the 5-layer 

network on Figure 1. Let the layer M consists of m 

synapses or sensors. Let layer Z does not compute any 

additional feature besides the sensor inputs, so it just 

represents connections from sensors to A-elements. Let 

each subset of A elements has the same connections to 

the sensors as the other subset of A-elements. The A-

elements will be named synaptic weights, such that the 

weight wis represents the s-th synapse element in the i-th 

class of A elements. Then the S-element si computes the 

function yi = swisxs - i. Let the layer D is represented 

by a maximum selector function: (di = 1 if yi = maxi{yi} 

otherwise di = 0). Other way of denoting a maximum 

selector is d = indmax{yi} where indmax{ } returns the 

index of the maximal element in the considered set. In 

the literature this function is usually written as d = 

argmax{ }, but we use our original notation (Bozinovski 

and Fulgosi, 1976). 

3.1 An approach toward modeling 

supervised learning in neural networks 

The principal learning concept of the neural network 

approach toward machine learning is the concept of 

(synaptic) weights (e.g. Rumelhart et al. 1986, 

Goodfellow et al. 2016). In pattern classification with 

neural networks the principal representation spaces are 

the pattern feature space and weights space. However, it 

should be noted that while in artificial neural nets 

synaptic weights are observable, in real biological 

systems they are not observable. So it is interesting to use 

a representation of the supervised learning problem 

which will not deal with synaptic weights as primary 

representation concept. Here we will describe such a 

representation which is a weights-free and we call it 

teaching space (Bozinovski 1981, 1985b). 

Let us note that in a supervised learning there is a 

system named teacher who has a reference model of the 

knowledge to be transferred in the other system named 

learner or student. The teaching space approach is based 

on the following notation:  

Let x be a body of knowledge to be learned by the 

student. For example x might be a visual pattern to be 

classified in a class. The supervised learning procedure 

(training) contains both teaching trials (where the teacher 

presents the knowledge about x), and examination trials 

(where the student presents its knowledge about x). After 

the training is completed there will be many exploitation 

trials, where the learner will show its knowledge in an 

application. 

Let !(x) denotes a teaching (or advising) trial, 

representing the teacher’s reference model knowledge 

about x. Let ?(x) denotes a test (or examination) trial, 

representing the current learner’s knowledge about x. 

Then, the goal of the teaching process becomes  

?(x) = !(x) for all considered x.   (1) 

The learner we use is a maximum selector classifier 

(Figure 1). For each input pattern x in an test trial, the 

learner computes n alternatives, i.e., computes n 

functions y1(x),..,yn(x), and chooses the one with 

maximal value. If there is no maximal value the learner 

gives special answer meaning "undecided", for example 

value 0. 

Lets define a set X of N objects (patterns), 

X={x1,..,xi,..,xj,..,xN}, to be classified into n classes, 

C1,..,Ck,..,Cq,..,Cn, where N > n. Let, by teachers 

reference model, the i-th pattern belongs to the k-th class 

and j-th pattern belongs to the q-th class. That can be 

written as  

!(xi)= Ck;  i=1, …, N; k=1,...,n; (2.1) 

!(xj)= Cq;  j = 1,…, N, q=1,...,n; j  i, qk; (2.2) 

In an examination trial it is computed the maximum 

value, which means that the correct classification is 

achieved if the following pair of inequalities holds 

?(xi) = !(xi) = Ck   yk(xi ) > yq(xi )       (3.1) 

?(xj) = !(xj) = Cq   yq(xj ) > yk(xj )       (3.2) 

Further, we assume that the patterns are represented 

as feature vectors x1,..,xN and that the weight  vectors are 

represented with w1,..,wn, where wk is associated with the 

class Ck.  

The learning process is governed by a consequence 

driven teaching process with an error correction learning 

rule  

 if  ?(xi)   is different than   (!(xi) = Ck ) 

 then correct wk toward xi:  wk = wk + cxi  (4) 

where c is a constant. In words, if the classifier 

erroneously classifies the pattern xi in an test trial, a 

teaching trial is introduced in which the pattern xi is 

added to the weight wk, lecturing that xi belongs to Ck.  

Here c is a learning rate which is a constant and we 

use the value c=1.  

3.2 Introducing transfer learning  

Consider neural network from Figure 1 which has 

capability to classify N patterns into n classes, N > n. 

Consider the simplest task, two patterns xi and xj to be 

classified into two classes Ck and Cq. The problem is 

stated with relations (3). However let us emphasize that k 

and q are arbitrary in the set of {1,...,n| kq}, and also i 

and j are arbitrary in the set {1,...,N| ij}. 

Now we introduce transfer learning. Let assume the 

considered neural network has been subject of a learning 

task which we call first learning task. After that first 

learning task the neural network learner is now subject to 
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a second learning task. The second learning task will be 

carried out by a supervised learning (or teaching) process 

represented by a teaching sequence L. The teaching 

sequence contains both teaching and test (examination) 

trials. However, the memory of the learner is updated 

only during the teaching trials. The test trials demonstrate 

the knowledge already stored in the memory of the 

neural network learner. 

Let yk(xi) be the output of Sk element of the neural 

network at the completion of the first learning task. It is 

the initial knowledge as demonstrated by this neural 

network before the second learning task. We emphasize 

that with notation yk
0(xi) := yk(xi), pointing out with a 

superscript 0 that it is initial knowledge for the second 

learning task. So the output  yk
0(xi) manifests the transfer 

learning from the first teaching task about the concept 

class k, before the second teaching task with teaching 

sequence L is applied.  

Let yk(xi/L) be the output of Sk element representing 

class k when shown pattern xi after the learning in the 

second task with the learning sequence L. So the second 

learning task will be modeled with the following outputs 

from elements Sk and Sq 

 yk(xi/L) = yk
0(xi)+ aijpi   (5.1) 

 yq(xj/L) = yq
0(xj)+ ajipj   (5.2) 

where pi is the number of appearance of pattern x in a 

teaching trial of the teaching sequence L, i.e. the number 

of application of the learning rule (4), and aij is the inner 

product between patterns, aij = xi
Txj. 

So, in order a correct pattern classification to be 

achieved in the second task, by a neural network with 

maximum selector as in Figure 1, it is necessary and 

sufficient that the following system of inequalities holds 

 yk(xi/L) > yq(xi/L)   (6.1) 

 yq(xj/L) >  yk(xj/L)   (6.2) 

which leads to 

 aii pi - aij pj > - yk
0(xi) + yq

0(xi) (7.1) 

 -aji pi + ajj pj  > yk
0(xj) - yq

0(xj) (7.2) 

That reasoning leads to the following Theorem: 

Theorem 1. (Transfer learning in case of learning 

arbitrary two patterns from a set of patterns) Let xi and xj 

be arbitrary patterns from a set X ={x1,..,xi,..,xj,..,xN} of 

N patterns, which a maximum selecting neural classifier 

should learn to classify into given two classes Ck and Cm 

respectively, from a set C={C1,..,Ck,..,Cm,..,Cn} of n 

classes. Let aij = xi
Txj. Let the lecture (teaching trial)  !xi 

= Ck is presented pi times, and let !xj = Cm  is presented pj  

times in the teaching sequence L. Then, the problem of 

correct classification learning is equivalent to the 

problem of finding pi  and pj  which satisfy the pair of 

inequalities 

      aii  -aji       pi      qk(xi)  

         >    (8) 

      - aij   ajj     pj            kq(xj)   

which in compact form can be written as  

 Ap >      ( 9) 

where   

        = qk(xi)   =   yq
0(xi) -yk

0(xi)               (10) 

 kq(xj)        yk
0(xj) - yq

0(xj) 

is named transfer learning vector. 

Before we present the proof of the Theorem 1 we 

will give interpretation of the variables which appear in 

the theorem.  

First we point out that the left side of the inequalities 

(8) contain a matrix of all inner products between 

patterns. The inner product aij  between two patterns xi 

and xj shows how much their features overlap. It can be 

viewed as covariance, a manifestation of pattern 

similarity. We denote that matrix A = [aij], and name it a 

matrix of mutual similarity between patterns. Note that 

this matrix is invariant to the teaching process, it simply 

describes relation between the given patterns.  

The vector p=(pi pj)T  shows how many times 

patterns were shown in a teaching trial in the teaching 

sequence L. It is a training vector of the second learning 

task.  

The right side of inequalities contain the variables 

are due to transfer learning from a learning task prior to 

this considered task of training using curriculum L. It 

contains differences of outputs of S-elements for each 

pattern shown in the teaching process, i.e. yqk
0(xi) = 

yq
0(xi) - yk

0(xi) for shown pattern xi, and ykq
0(xj) = yk

0(xj) 

- yq
0(xj) for shown pattern xj.  

So the left side of matrix inequalities, Ap, contains 

all controllable and observable parameters of the 

teaching process. If patterns are known, the matrix A is 

known. The teaching sequence L is the one it is looked 

for, and after it is found, the vector p will be known. 

However, the right side of inequalities, vector , which 

represents transfer learning, is in general case not 

known. Teaching of a biological brain does not assume 

that initial values of weights are known. Often the task is 

to teach a learner regardless the transfer learning. 

However, because of unknown transfer learning teaching 

process might converge in a longer time. 

The proof of the Theorem can be expressed using a 

reasoning flow diagram as shown in Figure 2. The 

equations and inequalities used have been already 

described in the text. 

Note that if all thresholds in the network are equal, 

then the transfer learning can be expressed as 

kq(xj) = (wk
0-wq

0)xj    (11) 

3.3 Modeling positive and negative 

transfer learning  

In this section we will address formally the following 

questions.  

Given a neural network that has been subject to a 

learning Task1, is it possible to find a teaching sequence 

L which will solve the teaching Task2 regardless the 

transfer learning from Task1? 
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!(xi) = Ck  yk(xi)|L > ym(xi)|L 

!(xj) = Cq..  yq(xj)|L > yk(xj)|L 

 

yk(xi)|L = (wk|L)xi -k 

 

   (wk|L)xi - k > (wq|L)xi - q 

   (wq|L)xj - q > (wk|L)xj - k 

 

 

wk|L = wk
0 + cpixi 

 

aij := xixj 

          cpiaii – cpjaji > (wq
0xi- q) – (wk

0xi-k) 

          cpjajj – cpiaii > (wk
0xj- k) – (wq

0xj-q ) 

 

yq
0(xi) := wq

0xi-q 

 

qk
0(xi) = yq

0(xi)-yk
0(xi) 

 

 c=1 

 

  aii -aji pi qk
0(xi) 

          > 

  -aij ajj pj kq
0(xj) 

 

Figure 2: Proof of the Theorem 1 in a reasoning flow 

representation. 

Case of positive transfer of learning. Is it possible 

that Task1 helps achieving shorter sequence L in Task2, 

than if starting from no previous transfer of learning?  

Case of negative transfer of learning. Is it possible 

that Task1 will produce a longer sequence L in Task2, 

than if starting from no previous transfer of learning?  

In order to answer those questions we will further 

elaborate on the inequalities (7). We repeat them here for 

clarity and renumber them (12) for keeping the sequence: 

 aii pi - aij pj > - yk
0(xi) + yq

0(xi) (12.1) 

 -aji pi + ajj pj  > yk
0(xj) - yq

0(xj) (12.2) 

The inequalities (12) can be rewritten to see 

explicitly how pj depends on pi. To see that, we move 

terms with pi on the right side of the inequalities (12) and 

we obtain the following system of inequalities: 

 - aij pj > - aii pi - yk
0(xi) + yq

0(xi) (13.1) 

   ajj pj  >   aji pi + yk
0(xj) - yq

0(xj) (13.2) 

Now we multiply equation (13.1) with -1, which 

changes the inequality sign from > to <. We obtain the 

following system of inequalities:  

 aij pj < aii pi + yk
0(xi) - yq

0(xi) (14.1) 

 ajj pj > aji pi + yk
0(xj) - yq

0(xj) . (14.2) 

where from 

 pj < (aii / aij) pi + (yk
0(xi) - yq

0(xi))/aij      (15.1) 

 pj > (aji / ajj) pi + (yk
0(xj) - yq

0(xj))/ajj      (15.2) 

and finally 

 pj < (aii / aij) pi + kq(xi) / aij   (16.1) 

 pj > (aji / ajj) pi + kq(xj) / ajj  (16.2) 

These inequalities can be observed geometrically as 

in Figure 3. 

 

         Pj  

 

 

 

 

kq(xj)/ajj            

 

 

           kq(xi)/aij  

 

      pi  

Figure 3: Geometric interpretation of Theorem 1. 

Note that because aij =xi
Txj, the coefficient aii/aij > 1, 

and the coefficient aji/ajj < 1. Because xi  xj those 

coefficients are never at the same time equal 1. Because 

coefficients aii/aij > 1 and aji/ajj < 1 are slopes of the 

boundaries of the solution region, it means because 

patterns are different, xi  xj, the angle  on Figure 3 

always exists, and the solution points for (pi, pj) inside 

the shaded region defined by the angle  always exist.  

So we can formulate the following statement.  

Theorem 2. It is always possible to chose a teaching 

sequence L which will contains patterns xi and xj (xi  

xj), such that after training with L the learner is able to 

correctly classify the patterns regardless transfer of 

learning from a previous learning task.  

The proof is given in the previous reasoning using 

equations (12)-(16).  

The teaching space in which we observe transfer 

training is an integer space. The components pi and pj are 

non-negative integers. In Figure 3 it is shown that only 

the integer points are solutions for correct classification 

of xi and xj. 

4 Geometric interpretation of 

transfer learning: positive, 

negative, and tabula rasa  
From Figure 3 we can see that the solution region of the 

teaching process is a convex cone defined by two 

parameters: 1) the position of the coordinate origin 

relative to the vertex of the cone, and 2) the angle of the 

convex cone. The orientation of the cone is always such 

that most of it lies within the first quadrant, although the 

vertex may be in any quadrant. We call this a positive 

convex cone. 

The angle of the convex cone is determined solely by 

inner products between patterns. The angle represents the 

similarity between patterns in a sense of overlapping 

features. 
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Transfer learning is geometrically represented by the 

position of origin of the coordinate space (pi, pj) relative 

to the convex cone. That is illustrated in Figure 4. 

               pj  

 

 

                T4 

  

            T2  pi 

             T0 

 

        T-2  

        T-4 

 

Figure 4: A geometric interpretation of transfer learning. 

The plane (pi, pj), the convex cone, and various 

coordinate origins representing transfer learning from a 

previous learning task.  

As Figure 4 shows, if the peak of the convex cone is 

in the coordinate origin (coordinate system T0), then 

there is no transfer learning. The learner starts from 

tabula rasa initial conditions. It means that the memory 

values are all equal, for example all zero. However they 

are not necessary zero, they need only to be all equal 

(homogenous initial conditions). In this condition a 

learning process must take place for both patterns (or 

lessons) xi and xj in order the learner to correctly 

recognize those patterns.  

If the coordinate origin is inside the solution region 

(coordinate system T4) the learner has positive transfer 

learning. There is no need of additional learning. The 

previous learning is enough for the correct recognition of 

the patterns.  

If the coordinate origin is in region symmetrically 

opposite the solution region, (negative convex cone), it is 

an example of negative transfer learning. Coordinate 

system T-4 is such a case. Both patterns xi and xj have 

been previously, in Task1, classified into classes which 

are incorrect according to the new Task2. So the new 

learning process must include both patterns. The learning 

process will be longer than in case of tabula rasa 

condition. 

If the coordinate system is in the area outside the 

positive and negative convex cones (examples T2 and T-2 

coordinate systems), then there are situations in which 

for one pattern there is positive transfer learning and for 

the other is negative.  

5 Defining an index of transfer 

learning in a neural network 
Based on the geometrical interpretation of transfer 

learning in Figure 4 we will now define an index of 

transfer learning, a numerical representation of transfer 

learning. Measure of negative transfer as well as 

transferability measure are emphasized in contemporary 

transfer learning research (Tan et al. 2018). The index 

which we will discuss here is proposed in (Bozinovski 

and Fulgosi 1976).  

The mathematical measure of transfer learning was 

introduced using the following reasoning. Observe the 

segments the lines in Figure 4 define intercepting with 

ordinate pj. For T0 coordinate system both lines have 

intercept 0. For coordinate system T4, one intercept is 

positive (for the boundary line pj > pi) and the other is 

negative (for the boundary line pj < pi). For coordinate 

system T2 one intercept is positive and the other is 

negative. For T1 both intercepts are negative. For T3 both 

intercepts are positive. Note that also in Figure 3 above, 

it is shown a case of both positive intercepts. So we will 

only observe the sign of the intercepts, positive, negative, 

or zero, and we will define index of transfer learning.   

Note that the intercepts are defined as kq(xi)/aij and 

kq(xj)/ajj  and consequently their signs are defined as 

sign(kq(xi)/aij) and sign(kq(xj)/ajj) where sign( ) is a 

function that gives 1 for positive, 0 for zero, and -1 for 

negative argument. Now we can define an index, a 

measure of transfer learning on the basis of signs of 

intercepts of the boundary lines for patterns xi and xj. 

TL(kq(xi), kq(xj)) = 3sign (kq(xi) -sign(kq(xj)       (17) 

According to this index, if both signs are positive 

then TL =2. That corresponds to a coordinate system T2 

in Fig. 4. If both are negative, then TL = -2 and that 

corresponds to the coordinate system T-2 is Fig 4. If both 

are zero, then TL=0, which corresponds to coordinate 

system T0 in Fig. 4. If sign (kq(xi) =1 and sign(kq(xj) = -

1, then TL = 4 which corresponds to coordinate system 

T4 in Fig. 4.  

Note that the index TL considers all the integer 

values in the interval [-4,+4]. Figure 5 shows the TL 

values and their geometric interpretation. 
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Figure 5: A geometric interpretation of index TL, a 

numerical index of transfer learning. It shows the values 

of the regions of the (pi, pj) plane where a learner finds 

itself after the first learning task Task1, and facing the 

second learning task Task2.  

The introduced index of transfer learning shows 

position of the coordinate origin in the plane (pi, pj) 

relative to the peak of the vertex inside which is a 

solution of the pattern recognition problem. It shows 

where in the (pi, pj) plane is the starting point to learn 

Task2 by a learner with transfer learning from previous 

Task1. From Fig. 5 we can give following interpretations 

for transfer learning index TL: 

 If TL = 4 the learner correctly classifies both 

patterns, without need for additional learning. It is a 

positive transfer learning from a previous Task1.  
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 If TL = 1 or 3 the learner recognizes one 

pattern but is undecided about the other. The coordinate 

origin lies on a boundary line of inequalities. For 

example, if TL=3 the coordinate origin lies on the right 

boundary line of the positive convex cone. In such a 

case, if the convex cine angle is not too small. then only 

one presentation of the pattern xj in a teaching trial is 

enough that the learner correctly classify both patterns.  

 If TL = 0 the learner is undecided about both 

patterns. There is no transfer of a previous learning, the 

learner is in tabula rasa condition.. 

 If TL= - 4 the leaner incorrectly classifies both 

patterns. It is example of negative transfer learning. 

 If TL= 2 the learner correctly classifies one 

pattern but incorrectly the other one. In this case there is 

a transfer learning, positive for one pattern but negative 

for other one.  

 The considered index of transfer learning (17) 

can be normalized for value between -1 and  1 if the right 

side of equation (17) is divided by 4. 

6 Search for a learning solution in 

case of negative transfer learning  
To illustrate further the learning process including 

transfer learning, we will consider the search for a 

learning solution in case of negative transfer learning. 

Figure 6 shows such an illustration.  

First let us note that the orientation of the solution 

convex cone in space is regardless of the transfer 

learning. The solution cone orientation depends solely on 

the considered patterns and their mutual position on a 

medium they are shown. If the patterns are digital images 

on a binary retina, then their mutual overlapping aij = aji 

and self overlapping aii and ajj will define the solution 

region. As example, imagine image patterns E, T, and F 

on the retina of 7x5 binary sensors.  

The considered learning Task2 in Figure 6 can have 

different coordinate origins, due to a transfer learning. 

Consequently, a learning process will have different 

trajectory in the Task2 teaching space, depending on 

transfer learning from Task1.  

It can be seen from Figure 6 that due to a negative 

transfer learning it is possible that a teaching sequence L 

never finds a pattern classification solution, as is the case 

with learning trajectory starting with initial condition A. 

The other cases of negative transfer learning can be 

compensated with carefully chosen teaching sequence L, 

as shown with teaching sequences B, C, and D.  In case 

of initial condition B, it is enough that only the pattern xi 

is shown several times until a solution point is found. On 

case of initial condition C both patterns must be shown 

for correct classification. In case of initial condition D, it 

is shown that a teaching sequence containing equal 

number of xi and xj will eventually reach a solution 

region. However, one can observe that also a sequence 

containing only xj will eventually reach the solution 

region. 

7 Multi-class, multi-template task  
Pattern classification usually assumes several template 

patterns for each class to be included in the teaching 

process. In the test task (or in exploitation task) there 

might be patterns that are not shown as template patterns. 

In this section we will discuss two topics. First is 

how the model given by Theorem 1 applies in case of 

several templates for a class, and second is how transfer 

learning is represented in the synaptic weights in an 

artificial neural network. As opposite to natural neural 

networks where weights are not observable, in artificial 

neural networks usually it is assumed that the synaptic 

weights are observable.  

Consider a task in which three patterns are to be 

classified into two classes: x1, x2C1, x3  C2. The two 

neurons associated with the two classes have weight 

vectors w1 and w2, and thresholds 1 and 2 respectively.  

The maximum selector layer for each presented pattern 

computes the following inequalities: 

(x1C1): w1x1 –1 > w2x1 –2   

(x2C1): w1x2 –1 > w2x2 –2                             (18) 

(x3C2): w2x3 –2 > w1x3 –1   

In case of transfer learning, where weights have 

initial values w0
i   (i=1,2) we have 

(x1/L): (w0
1+p1x1+p2x2)x1

 - 1 > (w0
2 + p3x3)x1 - 2  

(x2/L): (w0
1+p1x1+p2x2)x2 - 1 > (w0

2+p3x3)x2 - 2     (19) 

(x3/L): (w0
2+p3x3)x3    - 2 > (w0

1+p1x1+p2x2)x3 - 1 . 

After rearrangement, and introducing w0
kq = w0

k-w0
q 

and kq = k - q, where k, q  {1, 2} and kq, we obtain 

matrix representation of the classification problem which 

includes transfer weights 

(x1/L):  a11 a21  -a31    p1   w0
21    0      0      x1    12  

(x2/L):  a12  a22 -a32     p2    >  0      w0
21   0      x2 + 12   (20) 

(x3/L): -a13 -a23 a33     p3  0      0    w0
12     x3     21  

The shaded areas are diagonal sub-matrices of 

classes. Each class sub-matrix has number of rows (and 

 
Figure 6: Some learning trajectories in teaching 

space of Task2, due to transfer learning from a 

Task1 (Bozinovski 1981). 
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columns) equal to number of templates for that class. In 

case of inequalities (20), the first class contains two 

templates and the second contains one template pattern. 

From this case study we can generalize the transfer 

learning model for a multi-class and multi-template per 

class case as 

(X/L): Ap > W0X +                   (21) 

where X ={x1,..,xN}is the set of patterns which should be 

learned in the second task with the curriculum sequence 

L.  

Note that the mathematical model of transfer 

learning (21) divides the left side of relation to be a 

teacher's side, and right side a learner's side.  

At the teacher side are similarity matrix A and 

distribution vector p showing how many times each 

pattern appeared in a teaching trial of the curriculum L. 

Matrix A shows that what matters in the teaching process 

are not the patterns themselves but rather their 

correlations, inner products, which can be interpreted as 

similarities. 

At the learner side, W0 represents difference of 

initial conditions of the memory due to transfer learning, 

X is the vector of template vectors, a matrix containing 

patterns to be classified, and  represents difference 

between thresholds of neurons representing classes. Note 

that the matrix W0 contains blocks showing which 

template is assigned to which class.  

As pointed before, the space p = (p1,..,pN) is an 

integer space. Dealing with neural network learning is 

actually an integer programming problem. We are 

interested in the most efficient training, and we are 

looking for a training sequence L of the minimal length. 

So we look for a criterion  

p1+p2+...+pN = min                  (22) 

Such a criterion will observe the appearance of 

patterns only in a teaching trial. If we are interested in 

minimal sequence that includes test trials, then the 

optimality criterion is  

(p1+q1 ) + (p2+q2) +...+(pN+qN) = min       (23) 

where qi is number of appearances of the pattern xi in a 

test trial, which does not change the memory of the 

learner, but affects the length of the training sequence L.   

8 Experimental investigation on 

transfer learning  
Experimental investigation on transfer learning was 

carried out in the period 1976-1981. Initial experiments 

was with a dataset containing images of letters A, B, E, 

F, and T taken from the terminal IBM29 card puncher. 

Those experiments were carried out on the computer 

IBM 1130. Later experiments were carried out with two 

datasets. One dataset contained 40 images, consisting of 

26 letters, 10 numbers, and 4 special symbols from the 

terminal IBM29. The other dataset can be described as  

Computer Terminals dataset, consisting of 3x26= 78 

images, taken from three computer terminals: IBM29 

card puncher, VR14 video screen, and VT50 video 

screen. The experiments were carried out on a computer 

VAX/VMS. Figure 7 shows the Computer Terminals 

dataset. As can be seen, the letters of the three terminals 

are mostly identical on an image with resolution 7x5, 

with differences in letters A, B, D, G, J, M, N, O, V, and 

W. 

 
 IBM29  VR14  VT50 

Figure 7: The dataset Computer Terminals used in 

experimental investigation. 

8.1 An experiment in tabula rasa condition, 

showing influence of pattern similarity 

Here we will show an experiment in tabula rasa learning , 

to see the influence of similarity (overlapping pattern 

features) on the learning process. Consider the patterns 

E, T, F, shown in Fig. 7. They are the same for all 

considered terminals. Figure 8 shows the search through 

the (pE, pT, pF ) space that the learning process performs. 

 
Figure 8: Learning trajectory in case of tabula rasa 

learner, learning similar patterns E and F, together with 

the pattern T (Bozinovski  1981, 1985b). 

As Fig. 8 shows, the problem is the distinction 

between the patterns F and E. The convex cone angle is 

narrow, and it is possible that in some search steps the 

cone does not contain an integer point. The search for an 

integer solution is what makes necessary to repeat 

images E and F several times until they are distinguished 

by the learner.  

This experiment emphasizes the problem of feature 

overlapping and the problem of one image included in 

another image. To emphasize the image-subimage 

relation, a measure of similarity between patterns is 

introduced in (Bozinovski and Fulgosi 1976). The 

following index  
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SL(xi, xj) = xi
Txj/min{xi

Txi, xj
Txj} (24) 

has values between 0 and 1. If SL = 0 the solution 

convex cone covers the entire first quadrant of the 

teaching space  (pi, pj). If 0 < SL < 1, the convex cone 

includes the line pj=pi. If SL = 1, one of the cone 

boundaries is the line pj = pi.  

Such a measure is used to predict the length of the 

teaching sequence L. and with that the efficiency of the 

training. 

8.2 Experimental investigation in positive 

and negative transfer learning 

Experiments shown here are carried out during 1976-

1978 on a IBM1130 computer. Table I shows the results 

of the transfer learning experiments which show both 

positive and negative transfer. (Bozinovski et al. 1977, 

Bozinovski 1978). 

Task 1  

Images 

Task 2  

Images 

Task 2  

Teaching sequence 

No transfer learning, tabula rasa  

 A, B AB. 

 A, B, T ABT. 

 E, F EFFEFEFEF. 

 E, F, T EFFEFEFEFTTT. 

Negative transfer learning 

E, F A, B ABABABAB. 

Positive transfer learning 

A, B, T E, F, T EFT. 

Table 1: Experiments in transfer learning. Cases of tabula 

rasa, negative, and positive transfer learning. 

In presenting the results of the experiments with 

transfer learning here we introduce the notation LD2/D1, 

meaning training sequence of Task2, trained with a set of 

patterns D2, after the Task1 in which the learner is 

trained with a set of patterns D1. For a tabula rasa 

training, we use notation LD2/. 

Experiment with no transfer learning. As can be seen 

from the presented experiments, learning the patterns 

E,T, and F with no transfer learning needs the teaching 

sequence LETF/ = EFFEFEFEFTTT. The length of the 

sequence is due to similarity between E and F. 

Experiment showing positive transfer learning. If the 

neural network is previously exposed to the Task1 where 

it learned to recognize A and B, and after that is exposed 

to Task2 to learn E, T, and F, then the teaching sequence 

for Task2 is LEFT/ABT = EFT. The teaching sequence for 

learning E, T, F in this case is shorter than in case of 

tabula rasa. That is experimental evidence of positive 

transfer learning. 

Experiment showing negative transfer learning. If 

the neural network is previously exposed to a Task1 to 

learn E and F, and after that in Task2 to learn A and B, 

the teaching sequence for learning A and B is LAB/EF = 

ABABABAB. It is longer than in case of learning A and 

B in tabula rasa condition, LAB/ = AB. That is an 

experimental evidence of negative transfer learning.  

8.3 Application of transfer learning  

Here we show results of experiments carried out during 

1980-1981 on a VAX/VMS computer (Bozinovski 

1981). The experiments consider real application, 

learning to recognize letters from computer terminals. 

Consider the dataset Computer Terminals from 

Figure 7. The question we would like to answer 

experimentally is: If in the Task1 we teach a learner to 

recognize the letters from the terminal VR14, how faster 

the learner will be able to learn in Task2 to recognize the 

letters from the terminal IBM29, comparatively to 

learning from tabula rasa condition. 

In these experiments we used the following teaching 

strategy (Bozinovski 1981) named perceptron teaching 

strategy:  

Procedure PerceptronTeachingStrategy 

iteration: teachflag = 0; 

 i:=0; n=26; 

 while i < n do 

  i:=i+1 

  grade = test(xi); 

  if grade = 'incorrect"  

   then teach(xi), teachflag=1; 

 endwhile; 

 if teachflag = 1 goto iteration; 

end. 

This strategy performs test trials on all n=26 images, 

and only when needed, a teaching trial is applied for a 

particular image. After such an iteration (or epoch), 

another iteration takes place, and so on, until no teaching 

trial appeared in an iteration (teachflag=0). That means 

there were only test trials in the last iteration and the 

learner now recognizes all the patterns correctly. 

Using this strategy applied to the set of letters 

IBM29, in case of tabula rasa, it gives the 9 iterations as 

shown in Figure 9. 

 
Figure 9: Teaching sequence of learning the set of letters 

IBM29 with no transfer learning. 

With T* we denote the solution teaching sequence in 

which only the teaching trials appear. With |T*| we 

denote its length, in trials. With C* we denote teaching 

sequence containing both teaching and test trials, and 

with |C*| its length. For the experiment on Fig. 9 we 

obtained  

|T*|IBM29/ = 135  and |C*|IBM29/ = 395.   

If before learning the set IBM29 in Task2, the set 

VR14 was learned in Task1, then in Task2 the teaching 

process completes in 4 iterations, with the teaching 

sequence shown in Fig. 10.  
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Figure 10: The teaching sequence in case when set 

IBM29 is leaned, providing that previously was learned 

the set VR14. 

In the experiment shown in Fig. 10 we obtained 

|T*|IBM29/VR14 = 48 and |C*|IBM29/VR14 =178.   

The experiment shown in Figure 9 and 10 shows an 

application of positive transfer learning. We obtained 

shorter training sequence  

|C*|IBM29/VR14 =178  <  |C*|IBM29/ = 395.  

The teaching time is 178/395 = 0.45 of the tabula 

rasa teaching time, and the speed of learning increases 

1/0.45 = 2.2 times. 

When we carried out an experiment of learning the 

set VT50 if previously learned the set VR14, the result 

was 

|T*|VT50/ =207,   |T*|VT50/VR14 = 43, 

|C*|VT50/VR14 =199  <  |C*|VT50/ = 545 

The transfer learning teaching time is 199/545 = 0.36 

of the tabula rasa teaching time, and the speed of learning 

increases 1/0.36 = 2.8 times. 

This application shows the reason of use of transfer 

learning. If you have a knowledge of a dataset 

classification stored in a neural network in Task1, then 

transfer that knowledge to a different task which learns 

classification of a similar dataset. The training time will 

be shorter. 

Here in this application subsection we give also the 

result of learning a dataset IBM29(40) of 40 images, 

defined as 

IBM29(40) = IBM29{+, -, =, /}{0,1,...,9} 

starting with tabula rasa condition.  

The result we obtained is: 10 iterations,  

|T*|IBM29(40)/ = 204 and |C*|IBM29(40)/ =604.   

This is an example of a 1981 machine learning 

experiment with 40 patterns (Bozinovski 1981).  

9 Transfer learning research after 

1986 
The main focus of this paper is to give a review of the 

initial work on transfer learning in neural networks 

which took place between 1972 (Bozinovski 1972) and 

1985 (Bozinovski 1985a, 1985b). To the best of our 

knowledge during that time period, there was no other 

work on transfer learning in neural networks. That was 

the period when neural networks were not the main topic 

in Artificial Intelligence, due to the book of Minsky and 

Papert (1969) which pointed out some limitations of 

perceptron type neural networks. Although during 1970's 

and 1980's there were works on multilayered neural 

networks (e.g. Fukushima, 1975, 1980), the interest in 

multilayered neural networks significantly increased after 

1986, due to appearance of the book by the Parallel 

Distributed Processing (PDP) Group (Rumelhart et al. 

1986). That book reignited the interest in neural 

networks, and after some time, the interest in transfer 

learning in neural networks. Here we will give a short 

review on the works on transfer learning after 1986.  

Early works after 1986 used other terms to describe 

transfer learning. One such term was "sequential 

learning", where negative transfer learning was covered 

with the term "interference" (McCloskey and Cohen, 

1989). Other terms used were "adaptive generalization" 

(Sharkey and Sharkey, 1992), 'learning by learning" 

(Naik and Mammone, 1993), and "lifelong learning" 

(Thrun and Mitchell, 1993).  

In 1991 the term transfer learning related to neural 

networks reappeared in literature. That was the work of 

Pratt. Mostow, and Kamm (1991). That paper introduced 

a framework of transfer learning, pointing out various 

types of transfer learning. That framework was also 

described in the work of Pratt (1993). The framework is 

shown in Figure 11. 
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Figure 11. A general framework for transfer learning 

(adopted from Pratt et al., 1991). 

As can be seen from Fig. 11, the general framework 

for transfer learning proposed in 1991 includes four types 

of transfer.  

One is named literal transfer learning, and it is the 

transfer learning we used in our work (Bozinovski and 

Fulgosi, 1976), and is reviewed in this paper.  

The second type is a transfer learning which uses 

direct intervention in the weights of a neural network. 

We call this direct memory access (DMA) type transfer 

of knowledge. It is an intervention in a neural network 

knowledge without a process of incremental learning. 

The weights change is named weights perturbation. An 

example of direct weight change described in (Pratt at al. 

1991) is w = w+rw, where r is a random number between 

(-0.6, 0.6). Weights perturbation method was also used in 

the work (Agarwal et al. 1992) 

The third type uses problem decomposition into 

subproblems, represented by subnetworks, and training 

the subnetworks for the subproblems, and then insert the 

subproblem knowledge into the target network.  

The fourth type of transfer is indirect transfer, where 

the weight-based knowledge is extracted, then it is 

represented as a rule-based knowledge, then it is updated 

using rule based representation, and then it is inserted in 

a target neural network as weights-based knowledge.  
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A review of transfer learning in the early 1990's is 

given by Pratt and Jennings (1996). A review by Pan and 

Yang (2010) covers the period after that. Tan et al. 

(2018) review the deep transfer learning.  

10 Discussion and conclusion 
The contribution of this paper is a review of an early 

period of transfer learning research, a period which was 

not known to the current researchers in transfer learning. 

In current history part of transfer learning, as covered by 

Wikipedia >Transfer Leaning >History (2020) there is 

information which suggests that the beginning of transfer 

learning research is in 1993. This paper gives 

information on the transfer learning research during 

1970's and early 1980's.  

In this discussion let us mention that the original 

1976 paper was published in the Proceedings of the 

symposium Informatica 1976, which took place in Bled, 

Slovenia, one year before appearance of the first issue of 

the journal Informatica, in 1977. The paper was 

published in Croatian, not in English, which is the main 

reason why the paper was not known for a rather long 

time.  

In the review of the period 1990 - 2000 given in this 

paper, we can notice that the research during that period 

was focused on forms that transfer learning can take, and 

directions it can go. The fundamental concepts like a 

measure of transfer learning was not covered. The 

interest of fundamental notions was pointed out again in 

2000s (Tan et al, 2018). That relates the research in 

1970's to the contemporary research in transfer learning. 

Let us mention that the application of transfer 

learning with real datasets of images described here, such 

as Computer Terminals dataset containing 3x26 letters 

and the IBM29(40) containing 40 characters on a matrix 

7x5 is an early use of datasets of characters in machine 

learning. An example of a character dataset used in 

contemporary research (e.g. Wang et al. 2019) contains 9 

characters (digits 0 to 9) on a matrix 28x28, with variety 

of templates.  

In conclusion, this paper extends the knowledge in 

transfer learning with a relation between the pioneering 

work (in 1970's and early 1980's) and the current 

research on transfer learning, giving also a review of the 

period in early 1990's. Important part of that relation is 

the reminder of the theoretical 1976 paper, which 

presented the first mathematical and geometrical 

modeling, and a measure of transfer learning. The 

experimental work during 1976-1981 with datasets 

representing images of characters also relates to the 

contemporary research in machine learning.  
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