
Informatica 29 (2005) 155–161 155

Efficient Pre-Processing for Large Window-Based Modular Exponentiation
Using Ant Colony

Nadia Nedjah
Department of Electronics Engineering and Telecommunications,
Faculty of Engineering, State University of Rio de Janeiro, Brazil
nadia@eng.uerj.br

Luiza de Macedo Mourelle
Department of Systems Engineering and Computation,
Faculty of Engineering, State University of Rio de Janeiro, Brazil
ldmm@eng.uerj.br

Keywords: ant colony, addition chain, cryptosystem, modular exponentiation

Received: September 30, 2004

Modular exponentiation is the main operation to RSA-based public-key cryptosystems. It is performed
using successive modular multiplications. This operation is time consuming for large operands, which is
always the case in cryptography. For software or hardware fast cryptosystems, one needs thus reducing
the total number of modular multiplications required. Existing methods attempt to reduce this number by
partitioning the exponent in constant or variable size windows. However, these window-based methods
require some pre-computations, which themselves consist of modular exponentiations. It is clear that pre-
processing needs to be performed efficiently also. In this paper, we exploit the ant colony strategy to
finding an optimal addition sequence that allows one to perform the pre-computations in window-based
methods with a minimal number of modular multiplications. Hence we improve the efficiency of modular
exponentiation. We compare the yielded addition sequences with those obtained using Brun’s algorithm.

Povzetek: Metoda kolonij mravelj je uporabljena za kriptografske probleme.

1 Introduction

Public-key cryptographic systems (such as the RSA en-
cryption scheme [6], [12]) often involve raising large el-
ements of some groups fields (such as GF(2n) or elliptic
curves [9]) to large powers. The performance and practi-
cality of such cryptosystems is primarily determined by the
implementation efficiency of the modular exponentiation.
As the operands (the plain text of a message or the cipher
(possibly a partially ciphered) are usually large (i.e. 1024
bits or more), and in order to improve time requirements of
the encryption/decryption operations, it is essential to at-
tempt to minimise the number of modular multiplications
performed.

A simple procedure to compute C = TE mod M based
on the paper-and-pencil method is described in Algorithm
1. This method requires E-1 modular multiplications. It
computes all powers of T : T → T 2 → . . . → TE−1

→ TE .

Algorithm 1. simpleExponentiation(T,M,E)
1. C := T ;
2. for i := 1 to E − 1 do C := (C × T) mod M ;
3. return C;
end algorithm.

The computation of exponentiations using Algorithm 1
is very inefficient. The problem of yielding the power of a
number using a minimal number of multiplications is NP -
hard [5], [10]. There are several efficient algorithms that
perform exponentiation with a nearly minimal number of
modular multiplications, such that the window-based meth-
ods. However, these methods need some pre-computations
that if not performed efficiently can deteriorate the al-
gorithm overall performance. The pre-computations are
themselves an ensemble of exponentiations and so it is also
NP -hard to perform them optimally. In this paper, we con-
centrate on this problem and engineer a new way to do the
necessary pre-computations very efficiently. We do so us-
ing the ant colony methodology. We compare our results
with those obtained using the Brun’s algorithm [1].

Ant systems [2-1] are distributed multi-agent systems [3-
1] that simulate real ant colony. Each agent behaves as an
ant within its colony. Despite the fact that ants have very
bad vision, they always are capable to find the shortest path
from their nest to wherever the food is. To do so, ants de-
posit a trail of a chemical substance called pheromone on
the path they use to reach the food. On intersection points,
ants tend to choose a path with high amount of pheromone.
Clearly, the ants that travel through the shorter path are ca-

156 Informatica 29 (2005) 155–161 N. Nedjah et al.

pable to return quicker and so the pheromone deposited on
that path increases relatively faster than that deposited on
much longer alternative paths. Consequently, all the ants of
the colony end using the shorter way.

In this paper, we exploit the ant colony methodology to
obtain an optimal solution to AS-chain minimisation NP-
complete problem. In order to clearly report the research
work performed, we subdivide the rest of this paper into
five important sections. In Section 2, we present the win-
dow methods; In Section 3, we present the concepts of ad-
dition chains and sequence and they can be used to improve
the pre-computations of the window methods; In Section
4, we give an overview on ant colony concepts; In Section
5, we explain how these concepts can be used to compute
a minimal addition chain to perform efficiently necessary
pre-computations in the window methods. In Section 6, we
present some useful results.

2 Window-Based Methods
Generally speaking, the window methods for exponentia-
tion [5] may be thought of as a three major step procedure:

1. partitioning in k-bits windows the binary representa-
tion of the exponent E;

2. pre-computing the powers in each window one by one;

3. iterating the squaring of the partial result k times to
shift it over, and then multiplying it by the power in
the next window when if window is not 0.

There are several partitioning strategies. The window
size may be constant or variable. For the m-ary methods,
the window size is constant and the windows are next to
each other. On the other hand, for the sliding window meth-
ods the window size may be of variable length. It is clear
that zero-windows, i.e. those that contain only zeros, do not
introduce any extra computation. So a good strategy for
the sliding window methods is one that attempts to max-
imise the number of zero-windows. The details of m-ary
methods are exposed in Section 2.1 while those related to
sliding constant-size window methods are given in Section
2.2. In Section 2.3, we introduce the adaptive variable-size
window methods.

2.1 M -ary Methods
The m-ary methods [3] scans the digits of E form the less
significant to the most significant digit and groups them
into partitions of equal length log2 m, where m is a power
of two. Note that 1-ary methods coincides with the square-
and- multiply well-known binary exponentiation method.

In general, the exponent E is partitioned into p parti-
tions, each one containing l = log2 m successive digits.
The ordered set of the partition of E will be denoted by
P(E). If the last partition has less digits than log2 m, then
the exponent is expanded to the left with at most log2m−1

zeros. The m-ary algorithm is described in Algorithm 2,
wherein Vi denotes the decimal value of partition Pi.

Algorithm 2. m-aryMethod(T,M,E)
1. Partition E into p l-digits partitions;
2. for i := 2 to m Compute T i mod M ;
3. C := TVp mod M ;
4. for i := p− 2 downto 0
5. C := C2l mod M ;
6. if Vi 6= 0 then C := C× mod M ;
7. return C;
end algorithm.

2.2 Sliding Window Methods

For the sliding window methods the window size may
be of variable length and hence the partitioning may
be performed so that the number of zero-windows is as
large as possible, thus reducing the number of modular
multiplication necessary in the squaring and multiplication
phases. Furthermore, as all possible partitions have to start
(i.e. in the right side) with digit 1, the pre-processing step
needs to be performed for odd values only. The sliding
method algorithm is presented in Algorithm 3, wherein
d denotes the number of digits in the largest possible
partition and Li the length of partition Pi.

Algorithm 3. slidingWindowMethod(T, M, E)
1. Partition E using the given strategy;
2. for i := 2 to 2d − 1 step 2 do
3. Compute T i mod M ;
4. C := TVp−1 mod M ;
5. for i := p− 2 downto 0 do
6. C := CLi mod M ;
7. if Vi 6= 0 then C := C × TVi mod M ;
8. return C;
end algorithm.

In adaptive methods [7] the computation depends on the
input data, such as the exponent E. M -ary methods and
window methods pre-compute powers of all possible parti-
tions, not taking into account that the partitions of the ac-
tual exponent may or may not include all possible parti-
tions. Thus, the number of modular multiplications in the
pre-processing step can be reduced if partitions of E do not
contain all possible ones.

Let ℘(E) be the list of partitions obtained from the bi-
nary representation of E. Assume that the list of partition
is non-redundant and ordered according to the ascending
decimal value of the partitions contained in the expansion
of E. Recall that Vi and Li are the decimal value and the
number of digits of partition Pi. The generic algorithm for
describing the computation of TE mod M using the win-
dow methods is given in Algorithm 4.

In Algorithm 2 and Algorithm 3, it is clear how to
perform the pre-computation indicated in lines 2–3. For
instance, let E = 1011001101111000. The pre-processing

EFFICIENT PRE-PROCESSING FOR LARGE WINDOW-BASED. . . Informatica 29 (2005) 155–161 157

step of the 4-ary method needs 14 modular multiplica-
tions (T → T × T = T 2 → T × T 2 = T 3 → →
T × T 14 = T 15) and that of the maximum 4-digit sliding
window method needs only 8 modular multiplications
(T → T × T = T 2 → T × T 2 = T 3 → T 3 × T 2 =
T 5 → T 5 × T 2 = T 7 → → T 13 × T 2 = T 15).
However the adaptive 4-ary method would partition
the exponent as E = 1011‖0011‖0111‖1000 and
hence needs to pre-compute the powers T 3, T 7, T 8

and T 11 while the method maximum 4-digit slid-
ing window method would partition the exponent as
E = 1‖0‖11‖00‖11‖0‖1111‖000 and therefore needs to
pre-compute the powers T 3 and T 15. The pre-computation
of the powers needed by the adaptive 4-digit sliding win-
dow method may be done using 6 modular multiplications
T → T × T = T 2 → T × T 2 = T 3 → T 2 × T 2 = T 4 →
T 3 × T 4 = T 7 → T 7 × T = T 8 → T 8 × T 3 = T 11

while the pre-computation of those powers neces-
sary to apply the adaptive sliding window may
be accomplished using 5 modular multiplications
T → T × T = T 2 → T × T 2 = T 3 → T 2 × T 3 = T 5 →
T 5 × T 5 = T 10 → T 5 × T 10 = T 15. Note that Algorithm
4 does not suggest how to compute the powers (lines 2–3)
needed to use the adaptive window methods. Finding the
best way to compute them is a NP -hard problem [4], [7].

Algorithm 4. AdaptiveWindowMethod(T, M, E)
1. Partition E using the given strategy;
2. for each partition Pi ∈ ℘ do
3. Compute TVi mod M ;
4. C := TVp−1 mod M ;
5. for i := p− 2 downto 0 do
6. C := CLi mod M ;
7. if Vi 6= 0 then C := C × TVi mod M ;
8. return C;
end algorithm.

3 Addition Chains and Sequences

An addition chain of length l for an positive integer N is a
list of positive integers (E1, E2, . . . , El) such that E1 = 1,
El = N and Ek = Ei + Ej , 0 ≤ i ≤ j < k ≤ l. Finding
a minimal addition chain for a given positive integer is an
NP -hard problem. It is clear that a short addition chain
for exponent E gives a fast algorithm to compute TE mod
M as we have if Ek = Ei + Ej then TEk = TEi × TEj .
The adaptive window methods described earlier use a near
optimal addition chain to compute TE mod M . However
these methods do not prescribe how to perform the pre-
processing step (Line 3 of Algorithm 4). In the following
we show how to perform this step with minimal number of
modular multiplications.

3.1 Addition sequences
There is a generalisation of the concept of addition chains,
which can be used to formalise the problem of finding a
minimal sequence of powers that should be computed in
the pre-processing step of the adaptive window method.

An addition sequence for the list of positive integers
V1, V2, . . ., Vp such that V1 < V2 < . . . < Vp is an ad-
dition chain for integer Vp that includes all the integers
V1, V2, . . . , Vp. The length of an addition sequence is the
numbers of integers that constitute the chain. An addition
sequence for a list of positive integers V1, V2, . . . , Vp will
be denoted by ξ(V1, V2, . . . , Vp).

Hence, to optimise the number of modular required mul-
tiplications in the pre-processing step of the adaptive win-
dow methods for computing TE mod M , we need to find
an addition sequence of minimal length (or simply minimal
addition sequence) for the values of the partitions included
in the non-redundant ordered list ℘(E). This is an NP -
hard problem and we use genetic algorithm to solve it. Our
method showed to be very effective for large window size.
General principles of genetic algorithms are explained in
the next section.

3.2 Brun’s algorithm
Now we describe briefly, Brun’s algorithm [1] to compute
addition sequences. The algorithm is a generalisation of
the continued fraction algorithm [1]. Assume that we need
to compute the addition sequence ξ(V1, V2, . . . , Vp). Let
Q = b Vp

Vp−1
c and let χ(Q) be the addition chain for Q us-

ing the binary method (i.e. that used in Algorithm 2 with l =
1). Let R = Vp−Q×Vp−1. By induction we can construct
an addition sequence ξ(V1, V2, . . . , R, . . . , Vp−1), then ob-
tain:

ξ(S) = ξ(V1, V2, . . . , R, . . . , Vp−1)∪
Vp−1 × χ(Q) \ {1} ∪ {Vp},

S = V1, V2, . . . , Vp

(1)

4 Ant Systems and Algorithms
Ant systems can be viewed as multi-agent systems [3] that
use a shared memory through which they communicate and
a local memory to bookkeep the locally reached problem
solution. Fig. 1. depicts the overall structure of an system,
wherein Ai and LMi represent the ith. agent of the ant sys-
tem and its local memory respectively. Mainly, the shared
memory (SM) holds the pheromone information while the
local memory LMi keeps the solution (possibly partial)
that agent Ai reached so far.

The behaviour of an artificial ant colony is summarised
in Algorithm 5, wherein N, C, SM are the number of
artificial ant that form the colony, the characteristics of
the expected solution and the shared memory used by the
artificial ants to store pheromone information respectively.

158 Informatica 29 (2005) 155–161 N. Nedjah et al.

Figure 1: Multi-agent system architecture

The first step consists of activating N distinct artificial
ants that should work in simultaneously. Every time an ant
conclude its search, the shared memory is updated with
an amount of pheromone, which should be proportional
to the quality of the reached solution. This called global
pheromone update. When the solution yield by an ant’s
work is suitable (i.e. fits characteristics C) then all the
active ants are stopped. Otherwise, the process is iterated
until an adequate solution is encountered.

Algorithm 5. ArtificialAntColony(N,C)
1. Initialise SM with initial pheromone;
2. do
3. for i := 1 to N
4. Start ArtificialAnt(Ai, LMi);
5. Active := Active ∪ {Ai};
6. do
7. Update SM (pheromone evaporation);
8. when an ant (say Ai) halts do
9. Active := Active \ {Ai};
10. Φ := Pheromone(LMi);
11. Update SM (global pheromone Φ);
12. S := ExtractSolution(LMi);
13. until Fitness(S) = C or Active = ∅;
14. while Active 6= ∅ do
15. Stop ant Ai | Ai ∈ Active;
16. Active := Active \ {Ai};
17. until Fitness(S) = C;
18. return S;
end.

The behaviour of an artificial ant is described in
Algorithm 6, wherein Ai and LMi represent the ant
identifier and the ant local memory, in which it stores
the solution computed so far. First, the ant computes the
probabilities that it uses to select the next state to move
to. The computation depends on the solution built so far,
the problem constraints as well as some heuristics [2], [6].

Thereafter, the ant updates the solution stored in its local
memory, deposits some local pheromone into the shared
memory then moves to the chosen state. This process is
iterated until complete problem solution is yielded.

Algorithm 6. ArtificialAnt(Ai, LMi)
1. Initialise LMi;
2. do
3. P := TransitionProbabilities(LMi);
4. NextState := StateDecision(LMi, P);
5. Update LMi;
6. Update SM with local pheromone;
7. CurrentState := NextState);
8. until CurrentState := TargetState;
9. Halt Ai;
end.

5 Chain Sequence Minimisation
Using Ant System

In this section, we concentrate on the specialisation of the
ant system of Algorithm 4 and Algorithm 5 to the addi-
tion sequence minimisation problem. For this purpose,
we describe how the shared and local memories are repre-
sented. We then detail the function that yields the solution
(possibly partial) characteristics. Thereafter, we define the
amount of pheromone to be deposited with respect to the
solution obtained so far. Finally, we show how to compute
the necessary probabilities and make the adequate decision
towards a shorter addition sequence for the considered the
sequence (V1, V2, . . . , Vp).

5.1 The Ant System Shared Memory

The ant system shared memory is a two-dimension array.
If the last exponent in the sequence is Vp then the array
should Vp rows. The number of columns depends on the
row. It can be computed as in Eq. 2, wherein NCi denotes
the number of columns in row i.

NCi =

2i−1 − i + 1 if 2i−1 < Vp

1 if i = Vp

Vp − i + 3 otherwise

(2)

An entry SMi,j of the shared memory holds the pheromone
deposited by ants that used exponent i+j as the i th. mem-
ber in the built addition sequence. Note that 1 ≤ i ≤ Vp

and for row i, 0 ≤ j ≤ NCi. Fig. 2 gives an example
of the shared memory for exponent 17. In this example,
a table entry is set to show the exponent corresponding to
it. The exponent Ei,j corresponding to entry SMi,j should
be obtainable from exponents of previous rows. Eq. 3 for-
malises such a requirement.

EFFICIENT PRE-PROCESSING FOR LARGE WINDOW-BASED. . . Informatica 29 (2005) 155–161 159

Figure 2: Example of shared memory content for Vp = 17

Ei,j = Ek1,l1 + Ek2,k2 | 1 ≤ k1, k2 < i,
0 ≤ l1, l2 ≤ j,
k1 = k2 ⇐⇒ l1 = l2

(3)

Note that, in Fig. 2, the exponents in the shaded entries
are not valid exponents as for instance exponent 7 of row
4 can is not obtainable from the sum of two previous dif-
ferent stages, as described in Eq. 3. The computational
process that allows us to avoid these exponents is of very
high cost. In order to avoid using these few exponents,
we will penalise those ants that use them and hopefully,
the solutions built by the ants will be almost all valid ad-
dition chains. Furthermore, note that for a valid solution
need also to contain all the exponents of the sequence i.e.,
V1, V2, . . . , Vp−1, Vp.

5.2 The Ant Local Memory
In an ant system, each ant is endowed a local memory that
allows it to store the solution or the part of it that was built
so far. This local memory is divided into two parts: the
first part represents the (partial) addition sequence found
by the ant so far and consists of a one-dimension array of
Vp entries; the second part holds the characteristic of the
solution. It represents the solution fitness i.e., its length.
The details of how to compute the fitness of a possibly par-
tial addition sequence are given in the next section. Fig.
3 shows six different examples of an ant local memory for
sequence (5, 7, 11). Fig. 3(a) represents addition sequence
(1, 2, 4, 5, 7, 11), which is a valid and complete solution of
fitness 5. Fig. 3(b) depicts addition sequence (1, 2, 3, 5, 7,
10, 11), which is also a valid and complete solution but of
fitness 6. Fig. 3(c) represents partial addition sequence (1,
2, 4, 5), which is a valid and but incomplete solution as it
does not include exponent 7 and 11 and the last exponent

5 1 2 4 5 7 11 0 0 0 0 0 (a)

6 1 2 3 5 7 10 11 0 0 0 0 (b)

8.8 1 2 4 5 0 0 0 0 0 0 0 (c)

15 1 2 4 5 10 11 0 0 0 0 0
(d)

15 1 2 3 5 7 11 0 0 0 0 0 (e)

25 1 2 5 10 11 0 0 0 0 0 0 (f)

Figure 3: Example of an ant local memory

is smaller than both 7 and 11. The corresponding fitness is
8.8. Fig. 3(d) consists of non-valid addition sequence (1, 2,
4, 5, 10, 11) as 7 is not included. The corresponding fitness
is 15. Fig. 3(e) represents also non-valid addition sequence
(1, 2, 3, 5, 7, 11) as 11 is not a sum two previous exponents
in the sequence. Its fitness is also 15. Finally, Fig. 3(f) rep-
resents also non-valid addition sequence (1, 2, 5, 10, 11)
as 5 is not a sum two previous and mandatory exponent 7
is not in the addition sequence. exponents in the sequence.
Its fitness is also 25. In next section, we explain how the
fitness of a solution is computed.

5.3 Addition Sequence Characteristics
The fitness evaluation of an addition sequence is performed
with respect to three aspects: (a) how much it adheres
to the definition (see Section 3), i.e. how many of its
members cannot be obtained summing up two previous
members of the sequence; (b) how far the it is reduced,
i.e. what is the length of the chain; (c) how many of
the mandatory exponents do not appear in the sequence.
Eq. 4 shows how to compute the fitness f of solution
α = (E1, E2, . . . , En, 0, . . . , 0) regarding mandatory ex-
ponents σ = V1, V2, . . . , Vp.

f(S,A) = Vp×(n−1)
En

+ ψ × (η1 + η2)

σ = V1, V2, . . . , Vp

α = V1, V2, . . . , Vp

(4)

wherein ψ is a penalty, η1 represents the number of Ei,
3 ≤ i ≤ n in the addition sequence that verify the predicate
below:

∀j, k | 1 ≤ j, k < i,Ei 6= Ej + Ek (5)

and η2 represents the number of mandatory exponents Vi,
1 ≤ i ≤ p that verify the predicate below:

Vi ≤ En =⇒ ∀j | 1 ≤ j ≤ n,Ej 6= Vi (6)

For a valid complete addition sequence, the fitness co-
incides with its length, which is the number of multiplica-

160 Informatica 29 (2005) 155–161 N. Nedjah et al.

tions that are required to compute the exponentiation us-
ing the sequence. For a valid but incomplete addition se-
quence, the fitness consists of its relative length. It takes
into account the distance between last mandatory exponent
Vp and the last exponent in the partial addition sequence.
Furthermore, for every mandatory exponent that is smaller
than the last member of the sequence which is not part of
it, a penalty is added to the sequence fitness. Note that
valid incomplete sequences may have the same fitness of
some other valid and complete ones. For instance, addi-
tion sequence (1, 2, 3, 6, 8) and (1, 2, 3, 6) for exponent
mandatory exponents (3, 6, 8) have the same fitness 4.

For an invalid addition sequences, a penalty, which
should be larger than Vp, is introduced into the fitness value
for each exponent for which one cannot find two (may be
equal) members of the sequence whose sum is equal to the
exponent in question or two distinct previous members of
the chain whose difference is equal to the considered ex-
ponent. Furthermore, a penalty is added to the fitness of a
addition sequence whenever the a mandatory exponent is
not part of it. The penalty used in the examples of Fig. 3 is
10.

5.4 Pheromone Trail and State Transition
Function

There are three situations wherein the pheromone trail is
updated: (a) when an ant chooses to use exponent F = i+j
as the ith. member in its solution, the shared memory cell
SMi,j is incremented with a constant value of pheromone
∆φ, as in the first assignment of Eq. 7; (b) when an
ant halts because it reached a complete solution, say α =
(E1, E2, . . . , En) for mandatory exponent sequence σ, all
the shared memory cells SMi,j such that i+j = Ei are in-
cremented with pheromone value of 1/F itness(σ, α), as
in the second Eq. 7. Note that the better is the reached
solution, the higher is the amount of pheromone deposited
in the shared memory cells that correspond to the addition
sequence members. (iii) The pheromone deposited should
evaporate. Periodically, the pheromone amount stored in
SMi,j is decremented in an exponential manner [6] as in
the third assignment of Eq. 7.

SMi,j := SMi,j + ∆φ, whenever Ei = i + j

SMi,j := SMi,j + 1/f(σ, α),∀i, j | i + j = Ei

SMi,j := (1− ρ)SMi,j | ρ ∈ (0, 1], periodically

(7)

An ant, say A that has constructed partial addition se-
quence (E1, E2, . . . , Ei, 0, . . . , 0) for exponent sequence
(V1, V2, . . . , Vp), is said to be in step i. In step i + 1, it
may choose exponent Ei+1 Ei + 1, Ei + 2, . . ., 2Ei, if
2Ei ≤ Vp. That is, ant A may choose one of the ex-
ponents that are associated with the shared memory cells
SMi+1,Ei−i, SMi+1,Ei−i+1, . . ., SMi+1,2Ei−i−1. Oth-
erwise (i.e. if 2Ei > Vp), it may only select from

Figure 4: Comparison of the average length of the addition
chains

exponents Ei + 1, Ei + 2, . . ., E + 2. In this case,
ant A may choose one of the exponent associated with
SMi+1,Ei−i, SMi+1,Ei−i+1, . . . , SMi+1,E−i+1. Further-
more, ant A chooses the new exponent Ei+1 with the prob-
ability expressed through Eq. 8 below.

Pi,j =

SMi+1,j

2Ei−i−1
max

k=Ei−i
SMi+1,k

if 2Ei ≤ E &

j ∈ [Ei − i, 2Ei − i− 1]

SMi+1,j

E−i−1
max

k=Ei−i
SMi+1,k

if 2Ei > E &

j ∈ [Ei − i, E − i− 1]

0 otherwise
(8)

6 Performance Comparison

The ant system described in Algorithm 5 and Algorithm 6
was implemented using Java as a multi-threaded ant sys-
tem. Each ant was simulated by a thread that implements
the artificial ant computation of Algorithm 4. A Pentium
IV-HTTM of a operation frequency of 1GH and RAM size
of 2GB was used to run the ant system and obtain the per-
formance results.

We compared the performance of m-ary methods, the
Brun’s algorithm, genetic algorithms and ant system-based
methods. The obtained addition chains are given in Table
1.

The average lengths of the addition sequences for dif-
ferent exponent sequences obtained using these methods
are given in Table 2. The exponent size is that of its bi-
nary representation (i.e. number of bits). The ant system-
based method always outperforms all the others, including
the genetic algorithm-based method [7]. The chart of Fig.
4 shows the relation between the average length of the ob-
tained addition sequences.

EFFICIENT PRE-PROCESSING FOR LARGE WINDOW-BASED. . . Informatica 29 (2005) 155–161 161

Table 1: The addition sequences yield for ξ(5, 9, 23),
ξ(9, 27, 55) and ξ(5, 7, 95) respectively

Method Addition sequence #×
5-ary (1,2,3,. . .,30,31) 30
5-window (1,2,3,5,7,9,11,. . .,31) 16
Brun’s (1,2,4,5,9,18,23) 6
GAs (1,2,4,5,9,18,23) 6
Ant system (1,2,4,5,9,14,23) 6
6-ary (1,2,3,. . .,. . .,63) 62
6-window (1,2,3,5,7,. . .,63) 31
Brun’s (1,2,3,6,9,18,27,54,55) 8
GAs (1,2,4,8,9,18,27,28,55) 8
Ant system (1,2,4,5,9,18,27,54,55) 8
7-ary (1,2,3,4,5,6,7,. . .,95) 94
7-window (1,2,3,5,7,. . .,95) 43
Brun’s (1,2,4,5,7,14,21,42,84,91,95) 10
GAs (1,2,3,5,7,10,20,30,35,65,95) 10
Ant system (1,2,4,5,7,14,19,38,76,95) 9
7-ary (1,2,3,4,5,6,7,. . .,95) 94
7-window (1,2,3,5,7,. . .,95) 43
Brun’s (1,2,4,5,7,14,21,42,84,91,95) 10
GAs (1,2,3,5,7,10,20,30,35,65,95) 10
Ant system (1,2,4,5,7,14,19,38,76,95) 9

Table 2: Average length of addition sequence for Brun’s
algorithm (BA), genetic algorithms (GA) and ant system
(AS)

|Vp| BA GA AS

32 41 42 45
64 84 85 86
128 169 170 168
256 340 341 331
512 681 682 658
1024 1364 1365 1313

7 Conclusion
In this paper we applied the methodology of ant colony to
the addition chain minimisation problem. Namely, we de-
scribed how the shared and local memories are represented.
We detailed the function that computes the solution fitness.
We defined the amount of pheromone to be deposited with
respect to the solution obtained by an ant. We showed how
to compute the necessary probabilities and make the ade-
quate decision towards a good addition chain for the con-
sidered exponent.

Furthermore, we implemented the ant system described
using multi-threading (each ant of the system was imple-
mented by a thread). We compared the results obtained by
the ant system to those of m-ary methods (binary, quater-
nary and octal methods). Taking advantage of the a previ-
ous work on evolving minimal addition chains with genetic
algorithm, we also compared the obtained results to those
obtained by the genetic algorithm. The ant system always
finds a shorter addition chain and gain increases with the
size of the exponents.

References
[1] Rivest, R., Shamir, A. and Adleman, L., A method

for Obtaining Digital Signature and Public-Key Cryp-
tosystems, Communications of the ACM, 21:120-126,
1978.

[2] Dorigo, M. and Gambardella, L.M., Ant Colony:
a Cooperative Learning Approach to the Travelling
Salesman Problem, IEEE Transaction on Evolutionary
Computation, Vol. 1, No. 1, pp. 53-66, 1997.

[3] Feber, J., Multi-Agent Systems: an Introduction to
Distributed Artificial Intelligence, Addison-Wesley,
1995.

[4] Downing, P. Leong B. and Sthi, R., Computing Se-
quences with Addition Chains, SIAM Journal on Com-
puting, vol. 10, No. 3, pp. 638-646, 1981.

[5] Nedjah, N., Mourelle, L.M., Efficient Parallel Modular
Exponentiation Algorithm, Second International Con-
ference on Information systems, ADVIS’2002, Izmir,
Turkey, Lecture Notes in Computer Science, Springer-
Verlag, vol. 2457, pp. 405-414, 2002.

[6] Stutzle, T. and Dorigo, M., ACO Algorithms for the
Travelling Salesman Problems, Evolutionary Algo-
rithms in Engineering and Computer Science, John-
Wiley & Sons, 1999.

[7] Nedjah, N. and Mourelle, L.M., Minimal addition-
subtraction chains using genetic algorithms, Proceed-
ings of the Second International Conference on Infor-
mation Systems, Izmir, Turkey, Lecture Notes in Com-
puter Science, Springer-Verlag, vol. 2457, pp. 303-313,
2002.

162 Informatica 29 (2005) 155–161 N. Nedjah et al.

