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Software production is a complex process. Accurate estimation of the effort required to build the 

product, regardless of its type and applied methodology, is one of the key problems in the field of 

software engineering. This study presents the approach to effort estimation on agile software project 

using local data and data mining techniques, in particular k-nearest neighbor clustering algorithm. The 

applied process is iterative, meaning that in order to build predictive models, sets of data from 

previously executed project cycles are used. These models are then utilized to generate estimate for the 

next development cycle. Used data enrichment process, proved to be useful as results of effort prediction 

indicate decrease in estimation error compared to the estimates produced solely by the estimators. The 

proposed approach suggests that similar models can be built by other organizations as well, using the 

local data at hand and this way optimizing the management of the software product development.  

Povzetek: V prispevku je predstavljen pristop strojnega rudarjenja za modeliranje agilnih programskih 

projektov. 

 

1 Introduction 
Accurate estimation of work effort required to build the 

product is a critical activity in software development 

industry [1] and it is carried out on most projects [2]. 

Previously a number of approaches have been proposed 

to reliably estimate the effort, such as theoretical [3], 

formal [4], analogy-based estimation [5], just to name a 

few. Despite all, expert estimation [6] remains the most 

widely used method of effort estimation. 

Regardless of its comparative advantages, such as 

ease of implementation and the validity of the results it 

produces [7], expert effort estimation can still be 

improved [8]. Estimation is particularly challenging in 

large agile projects [9]. One way to achieve this is to use 

own, locally built, collections of past project data [10], 

[11]. The emergence of machine learning algorithms and 

data mining in general, paired with the availability of 

tools, has led to progress in application of these methods 

in practice [12].  

This paper presents an approach to effort estimation 

using data mining techniques, particularly k-Nearest 

Neighbor (KNN) clustering algorithm [13], on local 

collection of telco project data. The approach uses local 

data [14], extracted from the tracking system 

implemented on the project. The process itself is 

iterative, implemented in a way that at first it uses a 

collection of data from initial project phase in order to 

build primary predictive model. 

Then in the next project phase – an upgrade, this 

model is being enriched with the data from the recently 

completed iteration in order to gradually improve its 

properties, and thus reduce the estimation error. 

This research builds upon our previous work [15] 

now being applied to a large agile project and using 

different approach to predict effort. Instead of project 

clustering applied in [15], in this paper KNN is used to 

cluster work items and for each new instance it finds the 

nearest neighbors and calculates the model predicted 

effort. 

The proposed approach itself follows on one hand 

the iterative nature of agile scrum methodology [16] 

implemented on the project while at the same time fitting 

it to the cyclicality of the CRISP-DM process [17]. This 

proved to be efficient way to improve estimation 

accuracy and therefore can be suggested as a method by 

which organizations can improve the process of project 

management. 

The remaining part of this paper is organized as 

follows: Section 2 presents the current state of the 

research of the areas being discussed in the paper. 

Section 3 elaborates the design of the study, applied 

approach and techniques used to model effort estimation. 

In Section 4 results are presented together with their 

implication and potential limitations. The concluding 

section summarizes the findings and gives directions for 

future work. 

2 Related research 
Data mining techniques provide a means to analyze and 

extract patterns from data and through that process 

produce previously unknown and potentially useful 

information [18]. They emerged as an interdisciplinary 

domain with evolution and merging of databases, 

statistics and machine learning [19].  
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It can be viewed as a method for discovering 

knowledge from large sets of data [20]. Data mining 

consists of a set of techniques applicable for different 

purposes [21]. Clustering being one among them is 

particularly useful in prediction [22] and KNN is one of 

the most widely used algorithms [23]. 

Research in the field of software development effort 

estimation is active since the emergence of this industry 

[24]. During that period this has resulted in the number 

of approaches intended to estimate the effort required to 

build the product [25], each with their own advantages 

and limitations. Up to now, due to its comparative 

advantages, expert effort estimation remains the most 

frequently used technique in practice [26]. Paired with 

modern data analysis techniques it has potential to 

significantly improve reliability of the estimates [27]. 

Mining software engineering data raises the interest 

of researcher for quite some time [28], it also poses 

specific challenges [29]. It has been applied to different 

types of data [30], [31] and uses a number of techniques 

[32]. The application of these techniques is particularly 

appropriate in software engineering as it is rich in data 

[33] while, on the other hand, they can be used to 

optimize the software development process, software 

itself and support decision making process [34]. 

Agile development methods emerged from the need 

to efficiently handle close interaction with the customer, 

flexibility in requirements definition and the urge to 

deliver software on time and within the budget [35]. In 

contrast to sequential, agile development methods 

propose incremental approach to building of the software 

product [36]. These practices can also be used to handle 

the system and team scale issues [37] what is especially 

important in today’s dynamic business environment.  

Agile scrum executes the project in a sequence of 

iterations called sprints, where each sprint represents a 

cycle within which development activities occur [38]. 

During sprint planning, team members determine sprint 

goal, prioritize and estimate the effort of work items [39]. 

3 Study design 
This empirical study was performed using local data 

from a complex telco solution development project 

executed in large international company. Development of 

the application was based on Java technology and Oracle 

DB. Data used for the study refers to the tracking system 

items and descriptive features of the estimators, as these 

are the entities used to construct the predictive models. 

The authors implemented these models before [15], [40], 

so the selection of predictors was based on their relative 

importance determined in this, our previous [41] and 

similar studies [2]. 

The study exclusively used data required to build 

predictive models for effort estimation and for this it was 

sufficient that for example, components are identified as 

Component_1, Component_2, etc. or that estimators are 

referred to as Estimator_1, Estimator_2, ..., and so on, 

with matching attributes taking appropriate values. 

The average number of estimators per sprint 

fluctuated around 22, reaching at one point the total of 

31. The number of estimation items per Sprint was 

between 80 and 110, with the total of 1,732 in Phase 1 

and 532 in Phase 2. Total actual effort recorded in Phase 

1 was 20,814.25 [h] and in Phase 2 sprints 5,344.50 [h]. 

These numbers indicate that the analyzed project 

belongs to the class of “large” projects [42]. In the 

sequence of analyzed sprint data, none of them ended up 

exactly on the estimated value of effort. Both under and 

over estimations occurred with relatively same 

frequency, see Table 1 (sprints 1-19) and Table 3 (sprints 

20-24), yet overestimation was more common in early 

project phase while underestimation was more common 

in later phase. 

Sprint 
Effort [h] Estimation Error 

Estimated Actual Absolute (Relative) MMRE Pred(0.25) 

1 1,335.00 1,297.00 +38.00 (+2.93%) 0.652 0.660 

2 1,224.00 1,302.00 -78.00 (-5.99%) 0.215 0.738 

3 1,294.00 1,223.00 +71.00 (+5.81%) 0.310 0.673 

4 1,173.00 1,171.00 +2.00 (+0.17%) 0.359 0.774 

5 375.00 358.00 +17.00 (+4.75%) 0.522 0.733 

6 1,328.00 1,278.00 +50.00 (+3.91%) 0.378 0.767 

7 1,314.00 1,289.00 +25.00 (+1.94%) 0.301 0.663 

8 1,262.00 1,239.00 +23.00 (+1.86%) 0.323 0.670 

9 1,056.00 1,078.00 -22.00 (-2.04%) 0.254 0.803 

10 1,432.50 1,424.25 +8.25 (+0.58%) 0.210 0.779 

11 1,120.00 1,146.00 -26.00 (-2.27%) 0.071 0.879 

12 1,518.00 1,479.00 +39.00 (+2.64%) 0.383 0.780 

13 1,255.00 1,304.00 -49.00 (-3.76%) 0.092 0.893 

14 1,089.00 1,081.00 +8.00 (+0.74%) 0.063 0.925 

15 991.00 975.00 +16.00 (+1.64%) 0.226 0.861 

16 1,182.00 1,149.00 +33.00 (+2.87%) 0.180 0.843 

17 970.00 979.00 -9.00 (-0.92%) 0.194 0.813 

18 884.00 922.00 -38.00 (-4.12%) 0.128 0.848 

19 118.00 120.00 -2.00 (-1.67%) 0.026 0.923 

Table 1: Efforts and estimation error values per sprint for the training set. 
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The analyzed data covers Phase 1 (initial version) 

and Phase 2 (upgrade) of development project. Each 

phase was implemented in so called sprints i.e. 

development cycles as defined by the agile scrum 

methodology. Phase 1 consists of 19, while Phase 2 

covers 5 sprints. Each sprint produces a given set of 

estimation items i.e. data records. The problem that is 

being solved was weather it is possible to predict the 

effort of the upcoming Phase 2 sprints by using the 

knowledge from those completed. Sprints 1 to 19 (S1-

S19) were used as initial data base of items for training 

and test of predictive model, while sprints S20 to S24 

served for validation, see Figure 1. 

Upon building of the initial model M1 this model 

was used to predict effort of sprint S20. In each 

following iteration the model was enriched by the data 

from the last sprint, thus the data set (S1-S19+S20) was 

used to build model M2 and predict effort of S21, data 

set (S1-S19+S20+S21) was used to build model M3 and 

predict effort of S22, etc. This process passed through 

five iterations that could also be presented as follows: 

1st iteration: (S1-S19) } M1 → S20 

2nd iteration: (S1-S19+S20) } M2 → S21 

3rd iteration: (S1-S19+S20+S21) } M3 → S22 

4th iteration: (S1-S19+S20+S21+S22) } M4 → S23 

5th iteration: (S1-S19+S20+S21+S22+S23) } M5 → S24 

Expert estimation heavily relies on the intuition 

where based on the received input information estimator 

uses his judgment to come up with the solution [43]. This 

process can be improved by designing models that 

support the estimation of effort.  

The proposed predictive model targets the agile 

software development environment. It uses data mining 

approach that is explained next in more details. This is 

followed by the description of the entities that represent 

the sources of data and the fields used as predictors of the 

effort. Finally, the modeling method, determined by the 

selected tool itself is described. 

3.1 Data mining process 

Building of the data mining model considered in this 

study required the definition of research objective. In this 

case it was optimization of the software development 

process through the application of machine learning 

algorithm in order to provide the way to decrease effort 

estimation error, thus allowing more efficient 

management of the project. 

The data mining process applied in this study uses 

de-facto industry standard known as CRISP-DM (CRoss-

Industry Standard Process for Data Mining). This is 

iterative process structured around six phases: 

• Business understanding – identification of the 

business problem that has to be solved, 

• Data understanding – obtaining, exploring and 

verification of the data that will be used, 

• Data preparation – retirement of the data before 

it can be used for modeling, 

• Modeling – selection of appropriate technique, 

building and assessment of the model, 

• Evaluation – evaluation of results and review of 

the process, 

• Deployment – use of the model in order to 

improve the business. 

Understanding of the business and data was 

established prior and during initial prediction iteration: 

(S1-S19) } M1 → S20. For each next iteration data 

preparation followed by modeling and evaluation phase 

was executed. The presented model has academic 

purpose i.e. evaluation of proposed approach, so 

currently there is no deployment in real environment. 

Once the model proves effectiveness, it is possible to 

recommend its application in practice. 

3.2 Entities and data 

The study uses following entities and related fields as 

data sources: 

● Item: these are the records by which the work is 

represented and stored in the tracking system 

implemented on the analyzed project i.e. tickets. 

Variables used to represent work item entity are: 

Assignment (representing type of item association to the 

estimator, taking the form of either “own” or 

“assigned”), Component (identifying the component 

 

Figure 1: Model building and prediction process used in the study. 
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within the system that is related to, identified as 

Component_1, Component_2, …), Area (refers to the 

area of work with possible values: PM, QM, CM, 

System, …, Other), Activity (refers to the type of activity 

with possible values: Management, Quality, Design, 

Implementation, Test, …, Installation, Documentation, 

etc.), Type (identifies type of the item according to the 

applied scrum methodology, being either user story, task, 

defect, or other) and Priority (or urgency, it indicates the 

order in which item should be taken into execution in 

relation to the other items, describe as Prio_1, Prio_2, …, 

where Prio_1 refers to the highest priority). As it is 

evident, these are descriptive attributes related to the item 

at the moment of its creation. Additional fields associated 

with the item entity used to record the efforts are: 

Estimated Effort, Remaining Effort and Actual Effort. 

These were populated at the moment of item creation and 

later updated as the work progresses until its completion. 

● Estimator: the estimator is basically the employee 

engaged on the project, sometimes referred to as a 

project team member. In the model the estimator is 

represented with set of variables describing his: Role 

(representing his primary occupation on the project, with 

potential values: Project Manager, Solution Architect, 

Software Engineer, Configuration Manager, etc.), 

Seniority Level (representing the level of seniority, being 

either Junior, Mid-Level or Senior), Total Experience 

(representing the total number of years of work 

experience), Company Experience (representing number 

of years of experience within the current company), 

Number of Projects (representing number of projects 

employee participated in while working for the current 

company) and Estimation Competence (representing the 

level of estimation competence, being either Beginner, 

Intermediate or Advanced). 

The list of fields used as predictors and target, 

together with associated measurement type is presented 

in Table 2. 

3.3 k-Nearest Neighbor algorithm 

The model uses k-Nearest Neighbor (KNN) algorithm. 

The nearest neighbor (NN) rule assigns to unclassified 

incoming observation the class of the nearest sample in 

the set, the simplest form of KNN when k = 1 [44]. KNN 

is based on measuring the distance between data to 

decide the final classification output based on their 

similarity [45]. 

KNN is an extension of NN and due to its 

advantages has been used for solving classification 

problems in numerous domains, the algorithm procedure 

can be presented as follows [46]: 

𝑇 =  {(𝑥𝑖 , 𝑦𝑖)} ;  𝑖 = 1, … , 𝑁 

Let T denote the training set, where 𝑥𝑖  Є  𝔎𝑚 is a 

training vector in the m-multidimensional feature space, 

and 𝑦𝑖is the corresponding class label. Given a query 𝑥′, 

its unknown class 𝑦′ is assigned in two steps. 

First, a set of k similarly labelled target neighbors for 

the query 𝑥′ is identified. Denote the set  

𝑇′ =  {(𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁)} ;  𝑖 = 1, … , 𝑘 

arranged in an increasing order in terms of Euclidian 

distance 𝑑(𝑥′, 𝑥𝑖
𝑁𝑁) between 𝑥′ and 𝑥𝑖

𝑁𝑁 

𝑑(𝑥′, 𝑥𝑖
𝑁𝑁) =  √(𝑥′ −  𝑥𝑖

𝑁𝑁)𝑇(𝑥′ −  𝑥𝑖
𝑁𝑁) 

Secondly, the class label of the query is predicted by 

the majority voting of its nearest neighbors: 

𝑦′ = arg
𝑚𝑎𝑥

𝑦  ∑ 𝛿(𝑦 = 𝑦𝑖
𝑁𝑁)

(𝑥𝑖
𝑁𝑁,   𝑦𝑖

𝑁𝑁)Є 𝑇′

 

where y is a class label, 𝑦𝑖
𝑁𝑁  is the class label for the i-th 

nearest neighbor among its k nearest neighbors. 𝛿(𝑦 =
𝑦𝑖

𝑁𝑁), the Dirac delta function, takes a value of one if 

𝑦 = 𝑦𝑖
𝑁𝑁 and zero otherwise. 

The quality of k-Nearest Neighbor algorithm 

depends on the choice of k and the distance measure 

parameter [47]: 

● k: the selection of k is dependent on the selected 

data set. There are different recommendations but, 

instead of having the same number of nearest neighbors, 

it is good to find the best k automatically [48], the 

approach used in our study in order to choose the best 

number of neighbors within the range. 

● Distance: the distance or dissimilarity measure, 

between two existing cases 𝑥𝑖 and 𝑦𝑖  can generally be 

expressed by Euclidean distance, as presented above. 

Computed distance is basically the magnitude of the 

vector obtained by subtracting the training data point 

from the point to be classified. 

Thus, in the space defined by the input fields i.e. 

predictors, cases positioned near each other are referred 

to as neighbors. Those dissimilar are more distant from 

each other. For a new case i.e. target that enters the 

model, the procedure calculates the predicted value of a 

Entity 
Field 

Name Measurement Role 

IT
E

M
 

Assignment Flag 

Predictor 

Component Nominal 

Area Nominal 

Activity Nominal 

Type Nominal 

Priority Ordinal 

E
S

T
IM

A
T

O
R

 

Role Nominal 

Seniority 

Level 
Ordinal 

Total 

Experience 
Continuous 

Company 

Experience 
Continuous 

Number of 

Projects 
Continuous 

Estimation 

Competence 
Ordinal 

 Actual Effort Continuous Target 

Table 2: Predictors and target of proposed model. 
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continuous measurement type as a mean of k nearest 

neighbor values [49]. 

KNN was previously used for estimating effort and 

provided better results in comparison to other techniques 

[50], [51]. However, what distinguishes this study is that 

it is performed on a local set of data on a project driven 

by agile methodology while applying iterative effort 

modeling per sprint. This makes it unique according to 

our knowledge. 

3.4 Modeling and evaluation 

From the input set 12 variables were used as predictors 

and single variable (Actual Effort) as a target. The 

experiment was conducted using IBM SPSS Modeler 

tool 14.2 [52]. In each iteration for analyzed data sets a 

stream representing data flow was formed to perform 

experiment. The modelling element implements the k-

Nearest Neighbor algorithm, with k set in range of 

minimum of 3 and maximum of 5, allowing procedure to 

choose the best number of neighbors, in order to compute 

the value of the target variable. 

Effort modeling for each validation Phase 2 sprint is 

performed in the following steps: 

1. Predictive model is built using data from 

previously executed i.e. finished sprints, 

2. Existing effort values were removed from input 

data of the sprint that is estimated in iteration, 

3. Sprint data is feed into the prediction stream, 

4. Predictive modeling is performed and model 

estimates are generated, 

5. Effort estimates are exported from the stream 

for subsequent evaluation. 

After generation of the model predictions for each 

Phase 2 iteration, as a part of the evaluation procedure, 

the comparison of the results of estimations produced by 

models vs. estimators in relation to the actual values of 

the total reported effort per sprint was performed. In 

addition to that criterion, the standard measures of 

estimation error, MMRE and Pred at level x, are used 

[53]. They are explained next. 

Estimation error is the difference between the 

estimated effort (EST) and the actual value (ACT): 

𝐸𝐸 = 𝐸𝑆𝑇 − 𝐴𝐶𝑇 

Magnitude of relative error (MRE) is the absolute 

value of estimation error relative to the actual: 

𝑀𝑅𝐸 =
|𝐸𝑆𝑇 − 𝐴𝐶𝑇|

𝐴𝐶𝑇
 

it is the basic metric used to calculate Mean Magnitude 

of Relative Error (MMRE): 

𝑀𝑀𝑅𝐸 = 𝑚𝑒𝑎𝑛 (𝑀𝑅𝐸) =  
1

𝑛
 ∑ |

(𝐸𝑆𝑇𝑖 − 𝐴𝐶𝑇𝑖)

𝐴𝐶𝑇𝑖

|

𝑛

𝑖=1

 

The Pred(x) is a criterion that defines the predictions 

having a relative error of less than or equal to level x, the 

set threshold, defined as: 

𝑃𝑟𝑒𝑑(𝑥) =
100

𝑁
 ∑ {

1    𝑖𝑓   𝑀𝑅𝐸 𝑖 ≤ 𝑥/100
 0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑖

 

The x is typically set to 25 so that it reveals the 

portion of the estimates that are within the tolerance of 

25% from the actuals. 

Using these metrics it was possible to conduct a 

reliable evaluation of the predictive model efficiency. 

4 Results and discussion 
In this section results of the modeling process are 

presented and commented. Additionally, the implications 

and limitations related to the data, model and study are 

discussed. 

4.1 Study results 

The results of the effort predictions generated by the 

models, together with the values of effort estimated by 

the expert estimators and actuals, for each of the 

validation sprints are listed in Table 3 and illustrated in 

Figure 3. To meet the standards used by both industry 

practitioners and scientific community during evaluation 

we use a comparison of the estimated and the actual 

efforts [26] as well as MMRE and Pred(0.25). From the 

data it can be seen that validation sprints vary in volume, 

ranging from some 500 [h] up to more than 1,500 [h] of 

actual effort, making validation set representative. 

By reviewing the results of the total values produced 

by the estimators and predictive models, compared to the 

actuals of each sprint we can conclude that models 

provided better estimates in four (S21, S22, S23 and S24) 

out of five iterations. Given the volume of the iteration 

S20 the difference in gains that the experts made in 

relation to the model predictions was practically 

negligible. Within the last four sprints, in three cases the 

model’s prediction was significantly better than the 

estimates the experts gave. 

Regarding the direction of the estimation error, from 

the validation set, estimators underestimated effort in 

three out of five sprints and the same was the outcome of 

the predictions made by the models. It is interesting that 

errors from both experts and the predictive models had 

the same tendency i.e. the models do not show the 

tendency to either under or overestimate but that results 

depend exclusively of the properties of the provide data 

set. It seems that both classify in the similar way, that is, 

the model in certain way mimics the reasoning process 

but performs better. 

Using this evaluation approach, typical for industry 

practitioners, and comparing the average estimation error 

produced by the models it is evident that it was smaller in 

magnitude as presented in Table 3 and that it had a 

positive tendency i.e. as the modeling progressed the 

trend of error correction was better, see Figure 4. This 

can be attributed to the data mining learning process in 

which as the quantity of data used to build predictive 

models was increased from iteration to iteration. As it is 

evident, this had a positive impact on the accuracy of the 
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predictions as the tendency of their reliability increased. 

Therefore, we can assume that a similar trend would 

have continued if this phase of development consisted of 

more sprints. 

The use of both MMRE and Pred was an option in 

order to provide more accurate study results as these 

metrics show different tendencies [54]. MMRE and 

Pred(0.25) are both measures of relative estimation error 

in a collection of instances, but quite different. Greater 

values of MMRE indicate greater magnitudes of error, 

while higher Pred(0.25) score indicates better estimation 

efficacy i.e. more predictions within a set tolerance (in 

this case of 25%) from the actuals. 

Comparison of the MMRE and Pred(0.25) values, 

which are de facto standard measures used by the 

scientific community in the field, generated by the 

estimators and models for the validation set is provided 

in Table 5. These results clearly indicate that the model 

generated estimates produced an overall smaller 

estimation error. Here again we notice a practically equal 

score in S20 and improvement in S21, S22, S23 and S24, 

see Figure 5. 

Another observation that can be made is that 

predictive model, based on k-Nearest Neighbor (KNN) 

algorithm, generally outperformed the expert estimators 

in their ability to estimate. This indicates that selection of 

learners used in the model was properly carried out and 

that the overall modeling process itself was effective. 

The results of the performed evaluation confirm the 

applicability of the proposed approach and suggest that 

similar models could be built using data mining 

techniques and local data at hand, that way optimizing 

the estimation process and management of the agile 

software projects. 

4.2 Implications 

Used for the purpose of software development effort 

estimation data mining methods do not only solve that 

problem but provide a way for better understanding of 

the context in which estimation occurs and factors that 

affect it. This way an additional insight to the problem 

was achieved. 

The study once again confirmed the possibility of 

application of machine learning algorithms to solve the 

identified problem, this time on a somewhat different 

type of project. It encourages the enhanced effort 

estimation process through the synergy of expert 

estimation and estimation supported by the use of 

modern methods of prediction. 

4.3 Limitations 

Potential limitation of this study is the fact that it was 

performed using the data from a single large agile 

project. In regards to that in future it would be desirable 

to conduct similar experiments using the data sets from 

other projects and environments. 

In order to produce more general models future 

research could as well include projects driven by other 

Sprint 
Effort [h] Error[%] 

Estimated Actual Model Estimators Model Correction 

20 814.00 866.00 809.00 -6.00% -6.58% -0.58% 

21 1,688.00 1,549.00 1,647.80 8.97% 6.38% 2.60% 

22 1,305.00 1,109.50 1,258.40 17.62% 13.42% 4.20% 

23 1,133.00 1,281.00 1,215.60 -11.55% -5.11% 6.45% 

24 497.00 539.00 500.60 -7.79% -7.12% 0.67% 

Table 3: Efforts, Estimation error and correction per sprint for the validation set. 

 

Figure 3: Values of estimated, actual and predicted 

effort for the validation set. 

 
Figure 4: Estimators error, model error and correction in 

% for validation set with correction trend. 
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methodologies and those implemented using other 

technologies. Certainly, relatively straightforward 

approach used to construct the models, described here, 

encourages its replication. 

5 Conclusions and future work 
The paper presented the approach to the effort estimation 

on agile software project using data mining techniques 

on the local set of telco project data. It positions the 

research within the field of software engineering in 

addition to affirming the actuality of the topic being 

presented. 

Recent research suggests the intensive application of 

proposed methods to model the effort estimation though, 

up to our best knowledge, there has been no similar 

experiment conducted using data set constructed from the 

mentioned sources and within such environment. This is, 

among other, the contribution of this work. 

The approach proved its validity, providing 

corrections of the estimated effort generated by the 

models in most cases in comparison to the experts, and 

thus can be suggested for use in this or similar forms. 

Future work is aimed towards extending the 

presented model by including data from other entities 

within the studied environment. Additionally, if possible 

it would be valuable to include data from other projects 

of different size and technological basis. 

All stated can contribute to the reliability and 

performance of the predictive models being built and in 

case of their application in practice support the 

development process through more optimized project 

management. 
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