
https://doi.org/10.31449/inf.v44i2.2759 Informatica 44 (2020) 231–239 231

Data Mining Approach to Effort Modeling on Agile Software

Projects

Hrvoje Karna, Sven Gotovac and Linda Vicković

University of Split, Poljička cesta 35, 21000, Split, Croatia

E-mail: hrvoje.karna@gmail.com, sven.gotovac@fesb.hr, linda.vickovic@fesb.hr

Keywords: agile scrum, data mining, effort estimation, k-nearest neighbor, software engineering, project management

Received: April 26, 2019

Software production is a complex process. Accurate estimation of the effort required to build the

product, regardless of its type and applied methodology, is one of the key problems in the field of

software engineering. This study presents the approach to effort estimation on agile software project

using local data and data mining techniques, in particular k-nearest neighbor clustering algorithm. The

applied process is iterative, meaning that in order to build predictive models, sets of data from

previously executed project cycles are used. These models are then utilized to generate estimate for the

next development cycle. Used data enrichment process, proved to be useful as results of effort prediction

indicate decrease in estimation error compared to the estimates produced solely by the estimators. The

proposed approach suggests that similar models can be built by other organizations as well, using the

local data at hand and this way optimizing the management of the software product development.

Povzetek: V prispevku je predstavljen pristop strojnega rudarjenja za modeliranje agilnih programskih

projektov.

1 Introduction
Accurate estimation of work effort required to build the

product is a critical activity in software development

industry [1] and it is carried out on most projects [2].

Previously a number of approaches have been proposed

to reliably estimate the effort, such as theoretical [3],

formal [4], analogy-based estimation [5], just to name a

few. Despite all, expert estimation [6] remains the most

widely used method of effort estimation.

Regardless of its comparative advantages, such as

ease of implementation and the validity of the results it

produces [7], expert effort estimation can still be

improved [8]. Estimation is particularly challenging in

large agile projects [9]. One way to achieve this is to use

own, locally built, collections of past project data [10],

[11]. The emergence of machine learning algorithms and

data mining in general, paired with the availability of

tools, has led to progress in application of these methods

in practice [12].

This paper presents an approach to effort estimation

using data mining techniques, particularly k-Nearest

Neighbor (KNN) clustering algorithm [13], on local

collection of telco project data. The approach uses local

data [14], extracted from the tracking system

implemented on the project. The process itself is

iterative, implemented in a way that at first it uses a

collection of data from initial project phase in order to

build primary predictive model.

Then in the next project phase – an upgrade, this

model is being enriched with the data from the recently

completed iteration in order to gradually improve its

properties, and thus reduce the estimation error.

This research builds upon our previous work [15]

now being applied to a large agile project and using

different approach to predict effort. Instead of project

clustering applied in [15], in this paper KNN is used to

cluster work items and for each new instance it finds the

nearest neighbors and calculates the model predicted

effort.

The proposed approach itself follows on one hand

the iterative nature of agile scrum methodology [16]

implemented on the project while at the same time fitting

it to the cyclicality of the CRISP-DM process [17]. This

proved to be efficient way to improve estimation

accuracy and therefore can be suggested as a method by

which organizations can improve the process of project

management.

The remaining part of this paper is organized as

follows: Section 2 presents the current state of the

research of the areas being discussed in the paper.

Section 3 elaborates the design of the study, applied

approach and techniques used to model effort estimation.

In Section 4 results are presented together with their

implication and potential limitations. The concluding

section summarizes the findings and gives directions for

future work.

2 Related research
Data mining techniques provide a means to analyze and

extract patterns from data and through that process

produce previously unknown and potentially useful

information [18]. They emerged as an interdisciplinary

domain with evolution and merging of databases,

statistics and machine learning [19].

mailto:hrvoje.karna@gmail.com
mailto:sven.gotovac@fesb.hr

232 Informatica 44 (2020) 231–239 H. Karna et al.

It can be viewed as a method for discovering

knowledge from large sets of data [20]. Data mining

consists of a set of techniques applicable for different

purposes [21]. Clustering being one among them is

particularly useful in prediction [22] and KNN is one of

the most widely used algorithms [23].

Research in the field of software development effort

estimation is active since the emergence of this industry

[24]. During that period this has resulted in the number

of approaches intended to estimate the effort required to

build the product [25], each with their own advantages

and limitations. Up to now, due to its comparative

advantages, expert effort estimation remains the most

frequently used technique in practice [26]. Paired with

modern data analysis techniques it has potential to

significantly improve reliability of the estimates [27].

Mining software engineering data raises the interest

of researcher for quite some time [28], it also poses

specific challenges [29]. It has been applied to different

types of data [30], [31] and uses a number of techniques

[32]. The application of these techniques is particularly

appropriate in software engineering as it is rich in data

[33] while, on the other hand, they can be used to

optimize the software development process, software

itself and support decision making process [34].

Agile development methods emerged from the need

to efficiently handle close interaction with the customer,

flexibility in requirements definition and the urge to

deliver software on time and within the budget [35]. In

contrast to sequential, agile development methods

propose incremental approach to building of the software

product [36]. These practices can also be used to handle

the system and team scale issues [37] what is especially

important in today’s dynamic business environment.

Agile scrum executes the project in a sequence of

iterations called sprints, where each sprint represents a

cycle within which development activities occur [38].

During sprint planning, team members determine sprint

goal, prioritize and estimate the effort of work items [39].

3 Study design
This empirical study was performed using local data

from a complex telco solution development project

executed in large international company. Development of

the application was based on Java technology and Oracle

DB. Data used for the study refers to the tracking system

items and descriptive features of the estimators, as these

are the entities used to construct the predictive models.

The authors implemented these models before [15], [40],

so the selection of predictors was based on their relative

importance determined in this, our previous [41] and

similar studies [2].

The study exclusively used data required to build

predictive models for effort estimation and for this it was

sufficient that for example, components are identified as

Component_1, Component_2, etc. or that estimators are

referred to as Estimator_1, Estimator_2, ..., and so on,

with matching attributes taking appropriate values.

The average number of estimators per sprint

fluctuated around 22, reaching at one point the total of

31. The number of estimation items per Sprint was

between 80 and 110, with the total of 1,732 in Phase 1

and 532 in Phase 2. Total actual effort recorded in Phase

1 was 20,814.25 [h] and in Phase 2 sprints 5,344.50 [h].

These numbers indicate that the analyzed project

belongs to the class of “large” projects [42]. In the

sequence of analyzed sprint data, none of them ended up

exactly on the estimated value of effort. Both under and

over estimations occurred with relatively same

frequency, see Table 1 (sprints 1-19) and Table 3 (sprints

20-24), yet overestimation was more common in early

project phase while underestimation was more common

in later phase.

Sprint
Effort [h] Estimation Error

Estimated Actual Absolute (Relative) MMRE Pred(0.25)

1 1,335.00 1,297.00 +38.00 (+2.93%) 0.652 0.660

2 1,224.00 1,302.00 -78.00 (-5.99%) 0.215 0.738

3 1,294.00 1,223.00 +71.00 (+5.81%) 0.310 0.673

4 1,173.00 1,171.00 +2.00 (+0.17%) 0.359 0.774

5 375.00 358.00 +17.00 (+4.75%) 0.522 0.733

6 1,328.00 1,278.00 +50.00 (+3.91%) 0.378 0.767

7 1,314.00 1,289.00 +25.00 (+1.94%) 0.301 0.663

8 1,262.00 1,239.00 +23.00 (+1.86%) 0.323 0.670

9 1,056.00 1,078.00 -22.00 (-2.04%) 0.254 0.803

10 1,432.50 1,424.25 +8.25 (+0.58%) 0.210 0.779

11 1,120.00 1,146.00 -26.00 (-2.27%) 0.071 0.879

12 1,518.00 1,479.00 +39.00 (+2.64%) 0.383 0.780

13 1,255.00 1,304.00 -49.00 (-3.76%) 0.092 0.893

14 1,089.00 1,081.00 +8.00 (+0.74%) 0.063 0.925

15 991.00 975.00 +16.00 (+1.64%) 0.226 0.861

16 1,182.00 1,149.00 +33.00 (+2.87%) 0.180 0.843

17 970.00 979.00 -9.00 (-0.92%) 0.194 0.813

18 884.00 922.00 -38.00 (-4.12%) 0.128 0.848

19 118.00 120.00 -2.00 (-1.67%) 0.026 0.923

Table 1: Efforts and estimation error values per sprint for the training set.

Data Mining Approach to Effort Modeling on ... Informatica 44 (2020) 231–239 233

The analyzed data covers Phase 1 (initial version)

and Phase 2 (upgrade) of development project. Each

phase was implemented in so called sprints i.e.

development cycles as defined by the agile scrum

methodology. Phase 1 consists of 19, while Phase 2

covers 5 sprints. Each sprint produces a given set of

estimation items i.e. data records. The problem that is

being solved was weather it is possible to predict the

effort of the upcoming Phase 2 sprints by using the

knowledge from those completed. Sprints 1 to 19 (S1-

S19) were used as initial data base of items for training

and test of predictive model, while sprints S20 to S24

served for validation, see Figure 1.

Upon building of the initial model M1 this model

was used to predict effort of sprint S20. In each

following iteration the model was enriched by the data

from the last sprint, thus the data set (S1-S19+S20) was

used to build model M2 and predict effort of S21, data

set (S1-S19+S20+S21) was used to build model M3 and

predict effort of S22, etc. This process passed through

five iterations that could also be presented as follows:

1st iteration: (S1-S19) } M1 → S20

2nd iteration: (S1-S19+S20) } M2 → S21

3rd iteration: (S1-S19+S20+S21) } M3 → S22

4th iteration: (S1-S19+S20+S21+S22) } M4 → S23

5th iteration: (S1-S19+S20+S21+S22+S23) } M5 → S24

Expert estimation heavily relies on the intuition

where based on the received input information estimator

uses his judgment to come up with the solution [43]. This

process can be improved by designing models that

support the estimation of effort.

The proposed predictive model targets the agile

software development environment. It uses data mining

approach that is explained next in more details. This is

followed by the description of the entities that represent

the sources of data and the fields used as predictors of the

effort. Finally, the modeling method, determined by the

selected tool itself is described.

3.1 Data mining process

Building of the data mining model considered in this

study required the definition of research objective. In this

case it was optimization of the software development

process through the application of machine learning

algorithm in order to provide the way to decrease effort

estimation error, thus allowing more efficient

management of the project.

The data mining process applied in this study uses

de-facto industry standard known as CRISP-DM (CRoss-

Industry Standard Process for Data Mining). This is

iterative process structured around six phases:

• Business understanding – identification of the

business problem that has to be solved,

• Data understanding – obtaining, exploring and

verification of the data that will be used,

• Data preparation – retirement of the data before

it can be used for modeling,

• Modeling – selection of appropriate technique,

building and assessment of the model,

• Evaluation – evaluation of results and review of

the process,

• Deployment – use of the model in order to

improve the business.

Understanding of the business and data was

established prior and during initial prediction iteration:

(S1-S19) } M1 → S20. For each next iteration data

preparation followed by modeling and evaluation phase

was executed. The presented model has academic

purpose i.e. evaluation of proposed approach, so

currently there is no deployment in real environment.

Once the model proves effectiveness, it is possible to

recommend its application in practice.

3.2 Entities and data

The study uses following entities and related fields as

data sources:

● Item: these are the records by which the work is

represented and stored in the tracking system

implemented on the analyzed project i.e. tickets.

Variables used to represent work item entity are:

Assignment (representing type of item association to the

estimator, taking the form of either “own” or

“assigned”), Component (identifying the component

Figure 1: Model building and prediction process used in the study.

234 Informatica 44 (2020) 231–239 H. Karna et al.

within the system that is related to, identified as

Component_1, Component_2, …), Area (refers to the

area of work with possible values: PM, QM, CM,

System, …, Other), Activity (refers to the type of activity

with possible values: Management, Quality, Design,

Implementation, Test, …, Installation, Documentation,

etc.), Type (identifies type of the item according to the

applied scrum methodology, being either user story, task,

defect, or other) and Priority (or urgency, it indicates the

order in which item should be taken into execution in

relation to the other items, describe as Prio_1, Prio_2, …,

where Prio_1 refers to the highest priority). As it is

evident, these are descriptive attributes related to the item

at the moment of its creation. Additional fields associated

with the item entity used to record the efforts are:

Estimated Effort, Remaining Effort and Actual Effort.

These were populated at the moment of item creation and

later updated as the work progresses until its completion.

● Estimator: the estimator is basically the employee

engaged on the project, sometimes referred to as a

project team member. In the model the estimator is

represented with set of variables describing his: Role

(representing his primary occupation on the project, with

potential values: Project Manager, Solution Architect,

Software Engineer, Configuration Manager, etc.),

Seniority Level (representing the level of seniority, being

either Junior, Mid-Level or Senior), Total Experience

(representing the total number of years of work

experience), Company Experience (representing number

of years of experience within the current company),

Number of Projects (representing number of projects

employee participated in while working for the current

company) and Estimation Competence (representing the

level of estimation competence, being either Beginner,

Intermediate or Advanced).

The list of fields used as predictors and target,

together with associated measurement type is presented

in Table 2.

3.3 k-Nearest Neighbor algorithm

The model uses k-Nearest Neighbor (KNN) algorithm.

The nearest neighbor (NN) rule assigns to unclassified

incoming observation the class of the nearest sample in

the set, the simplest form of KNN when k = 1 [44]. KNN

is based on measuring the distance between data to

decide the final classification output based on their

similarity [45].

KNN is an extension of NN and due to its

advantages has been used for solving classification

problems in numerous domains, the algorithm procedure

can be presented as follows [46]:

𝑇 = {(𝑥𝑖 , 𝑦𝑖)} ; 𝑖 = 1, … , 𝑁

Let T denote the training set, where 𝑥𝑖 Є 𝔎𝑚 is a

training vector in the m-multidimensional feature space,

and 𝑦𝑖is the corresponding class label. Given a query 𝑥′,

its unknown class 𝑦′ is assigned in two steps.

First, a set of k similarly labelled target neighbors for

the query 𝑥′ is identified. Denote the set

𝑇′ = {(𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁)} ; 𝑖 = 1, … , 𝑘

arranged in an increasing order in terms of Euclidian

distance 𝑑(𝑥′, 𝑥𝑖
𝑁𝑁) between 𝑥′ and 𝑥𝑖

𝑁𝑁

𝑑(𝑥′, 𝑥𝑖
𝑁𝑁) = √(𝑥′ − 𝑥𝑖

𝑁𝑁)𝑇(𝑥′ − 𝑥𝑖
𝑁𝑁)

Secondly, the class label of the query is predicted by

the majority voting of its nearest neighbors:

𝑦′ = arg
𝑚𝑎𝑥

𝑦 ∑ 𝛿(𝑦 = 𝑦𝑖
𝑁𝑁)

(𝑥𝑖
𝑁𝑁, 𝑦𝑖

𝑁𝑁)Є 𝑇′

where y is a class label, 𝑦𝑖
𝑁𝑁 is the class label for the i-th

nearest neighbor among its k nearest neighbors. 𝛿(𝑦 =
𝑦𝑖

𝑁𝑁), the Dirac delta function, takes a value of one if

𝑦 = 𝑦𝑖
𝑁𝑁 and zero otherwise.

The quality of k-Nearest Neighbor algorithm

depends on the choice of k and the distance measure

parameter [47]:

● k: the selection of k is dependent on the selected

data set. There are different recommendations but,

instead of having the same number of nearest neighbors,

it is good to find the best k automatically [48], the

approach used in our study in order to choose the best

number of neighbors within the range.

● Distance: the distance or dissimilarity measure,

between two existing cases 𝑥𝑖 and 𝑦𝑖 can generally be

expressed by Euclidean distance, as presented above.

Computed distance is basically the magnitude of the

vector obtained by subtracting the training data point

from the point to be classified.

Thus, in the space defined by the input fields i.e.

predictors, cases positioned near each other are referred

to as neighbors. Those dissimilar are more distant from

each other. For a new case i.e. target that enters the

model, the procedure calculates the predicted value of a

Entity
Field

Name Measurement Role

IT
E

M

Assignment Flag

Predictor

Component Nominal

Area Nominal

Activity Nominal

Type Nominal

Priority Ordinal

E
S

T
IM

A
T

O
R

Role Nominal

Seniority

Level
Ordinal

Total

Experience
Continuous

Company

Experience
Continuous

Number of

Projects
Continuous

Estimation

Competence
Ordinal

 Actual Effort Continuous Target

Table 2: Predictors and target of proposed model.

Data Mining Approach to Effort Modeling on ... Informatica 44 (2020) 231–239 235

continuous measurement type as a mean of k nearest

neighbor values [49].

KNN was previously used for estimating effort and

provided better results in comparison to other techniques

[50], [51]. However, what distinguishes this study is that

it is performed on a local set of data on a project driven

by agile methodology while applying iterative effort

modeling per sprint. This makes it unique according to

our knowledge.

3.4 Modeling and evaluation

From the input set 12 variables were used as predictors

and single variable (Actual Effort) as a target. The

experiment was conducted using IBM SPSS Modeler

tool 14.2 [52]. In each iteration for analyzed data sets a

stream representing data flow was formed to perform

experiment. The modelling element implements the k-

Nearest Neighbor algorithm, with k set in range of

minimum of 3 and maximum of 5, allowing procedure to

choose the best number of neighbors, in order to compute

the value of the target variable.

Effort modeling for each validation Phase 2 sprint is

performed in the following steps:

1. Predictive model is built using data from

previously executed i.e. finished sprints,

2. Existing effort values were removed from input

data of the sprint that is estimated in iteration,

3. Sprint data is feed into the prediction stream,

4. Predictive modeling is performed and model

estimates are generated,

5. Effort estimates are exported from the stream

for subsequent evaluation.

After generation of the model predictions for each

Phase 2 iteration, as a part of the evaluation procedure,

the comparison of the results of estimations produced by

models vs. estimators in relation to the actual values of

the total reported effort per sprint was performed. In

addition to that criterion, the standard measures of

estimation error, MMRE and Pred at level x, are used

[53]. They are explained next.

Estimation error is the difference between the

estimated effort (EST) and the actual value (ACT):

𝐸𝐸 = 𝐸𝑆𝑇 − 𝐴𝐶𝑇

Magnitude of relative error (MRE) is the absolute

value of estimation error relative to the actual:

𝑀𝑅𝐸 =
|𝐸𝑆𝑇 − 𝐴𝐶𝑇|

𝐴𝐶𝑇

it is the basic metric used to calculate Mean Magnitude

of Relative Error (MMRE):

𝑀𝑀𝑅𝐸 = 𝑚𝑒𝑎𝑛 (𝑀𝑅𝐸) =
1

𝑛
 ∑ |

(𝐸𝑆𝑇𝑖 − 𝐴𝐶𝑇𝑖)

𝐴𝐶𝑇𝑖

|

𝑛

𝑖=1

The Pred(x) is a criterion that defines the predictions

having a relative error of less than or equal to level x, the

set threshold, defined as:

𝑃𝑟𝑒𝑑(𝑥) =
100

𝑁
 ∑ {

1 𝑖𝑓 𝑀𝑅𝐸 𝑖 ≤ 𝑥/100
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁

𝑖

The x is typically set to 25 so that it reveals the

portion of the estimates that are within the tolerance of

25% from the actuals.

Using these metrics it was possible to conduct a

reliable evaluation of the predictive model efficiency.

4 Results and discussion
In this section results of the modeling process are

presented and commented. Additionally, the implications

and limitations related to the data, model and study are

discussed.

4.1 Study results

The results of the effort predictions generated by the

models, together with the values of effort estimated by

the expert estimators and actuals, for each of the

validation sprints are listed in Table 3 and illustrated in

Figure 3. To meet the standards used by both industry

practitioners and scientific community during evaluation

we use a comparison of the estimated and the actual

efforts [26] as well as MMRE and Pred(0.25). From the

data it can be seen that validation sprints vary in volume,

ranging from some 500 [h] up to more than 1,500 [h] of

actual effort, making validation set representative.

By reviewing the results of the total values produced

by the estimators and predictive models, compared to the

actuals of each sprint we can conclude that models

provided better estimates in four (S21, S22, S23 and S24)

out of five iterations. Given the volume of the iteration

S20 the difference in gains that the experts made in

relation to the model predictions was practically

negligible. Within the last four sprints, in three cases the

model’s prediction was significantly better than the

estimates the experts gave.

Regarding the direction of the estimation error, from

the validation set, estimators underestimated effort in

three out of five sprints and the same was the outcome of

the predictions made by the models. It is interesting that

errors from both experts and the predictive models had

the same tendency i.e. the models do not show the

tendency to either under or overestimate but that results

depend exclusively of the properties of the provide data

set. It seems that both classify in the similar way, that is,

the model in certain way mimics the reasoning process

but performs better.

Using this evaluation approach, typical for industry

practitioners, and comparing the average estimation error

produced by the models it is evident that it was smaller in

magnitude as presented in Table 3 and that it had a

positive tendency i.e. as the modeling progressed the

trend of error correction was better, see Figure 4. This

can be attributed to the data mining learning process in

which as the quantity of data used to build predictive

models was increased from iteration to iteration. As it is

evident, this had a positive impact on the accuracy of the

236 Informatica 44 (2020) 231–239 H. Karna et al.

predictions as the tendency of their reliability increased.

Therefore, we can assume that a similar trend would

have continued if this phase of development consisted of

more sprints.

The use of both MMRE and Pred was an option in

order to provide more accurate study results as these

metrics show different tendencies [54]. MMRE and

Pred(0.25) are both measures of relative estimation error

in a collection of instances, but quite different. Greater

values of MMRE indicate greater magnitudes of error,

while higher Pred(0.25) score indicates better estimation

efficacy i.e. more predictions within a set tolerance (in

this case of 25%) from the actuals.

Comparison of the MMRE and Pred(0.25) values,

which are de facto standard measures used by the

scientific community in the field, generated by the

estimators and models for the validation set is provided

in Table 5. These results clearly indicate that the model

generated estimates produced an overall smaller

estimation error. Here again we notice a practically equal

score in S20 and improvement in S21, S22, S23 and S24,

see Figure 5.

Another observation that can be made is that

predictive model, based on k-Nearest Neighbor (KNN)

algorithm, generally outperformed the expert estimators

in their ability to estimate. This indicates that selection of

learners used in the model was properly carried out and

that the overall modeling process itself was effective.

The results of the performed evaluation confirm the

applicability of the proposed approach and suggest that

similar models could be built using data mining

techniques and local data at hand, that way optimizing

the estimation process and management of the agile

software projects.

4.2 Implications

Used for the purpose of software development effort

estimation data mining methods do not only solve that

problem but provide a way for better understanding of

the context in which estimation occurs and factors that

affect it. This way an additional insight to the problem

was achieved.

The study once again confirmed the possibility of

application of machine learning algorithms to solve the

identified problem, this time on a somewhat different

type of project. It encourages the enhanced effort

estimation process through the synergy of expert

estimation and estimation supported by the use of

modern methods of prediction.

4.3 Limitations

Potential limitation of this study is the fact that it was

performed using the data from a single large agile

project. In regards to that in future it would be desirable

to conduct similar experiments using the data sets from

other projects and environments.

In order to produce more general models future

research could as well include projects driven by other

Sprint
Effort [h] Error[%]

Estimated Actual Model Estimators Model Correction

20 814.00 866.00 809.00 -6.00% -6.58% -0.58%

21 1,688.00 1,549.00 1,647.80 8.97% 6.38% 2.60%

22 1,305.00 1,109.50 1,258.40 17.62% 13.42% 4.20%

23 1,133.00 1,281.00 1,215.60 -11.55% -5.11% 6.45%

24 497.00 539.00 500.60 -7.79% -7.12% 0.67%

Table 3: Efforts, Estimation error and correction per sprint for the validation set.

Figure 3: Values of estimated, actual and predicted

effort for the validation set.

Figure 4: Estimators error, model error and correction in

% for validation set with correction trend.

Data Mining Approach to Effort Modeling on ... Informatica 44 (2020) 231–239 237

methodologies and those implemented using other

technologies. Certainly, relatively straightforward

approach used to construct the models, described here,

encourages its replication.

5 Conclusions and future work
The paper presented the approach to the effort estimation

on agile software project using data mining techniques

on the local set of telco project data. It positions the

research within the field of software engineering in

addition to affirming the actuality of the topic being

presented.

Recent research suggests the intensive application of

proposed methods to model the effort estimation though,

up to our best knowledge, there has been no similar

experiment conducted using data set constructed from the

mentioned sources and within such environment. This is,

among other, the contribution of this work.

The approach proved its validity, providing

corrections of the estimated effort generated by the

models in most cases in comparison to the experts, and

thus can be suggested for use in this or similar forms.

Future work is aimed towards extending the

presented model by including data from other entities

within the studied environment. Additionally, if possible

it would be valuable to include data from other projects

of different size and technological basis.

All stated can contribute to the reliability and

performance of the predictive models being built and in

case of their application in practice support the

development process through more optimized project

management.

References
[1] M. M. Kirmani. Software Effort Estimation in Early

Stages of Software Development A Review,

International Journal of Advanced Research in

Computer Science (IJARCS), 8(5):1155-1159, 2017.

https://doi.org/10.26483/ijarcs.v8i5.3662

[2] T. Haapio and T. Menzies. Exploring the effort of

general software project activities with data mining,

International Journal of Software Engineering and

Knowledge Engineering, 21(5):725-753, 2011.

https://doi.org/10.1142/s0218194011005438

[3] L. H. Putnam. A general empirical solution to the

macro software sizing and estimating problem, IEEE

Transactions on Software Engineering, 4(4):345-

361, 1978.

https://doi.org/10.1109/tse.1978.231521

[4] A. J. Albrecht and J. E. Gaffney. Software function,

source lines of code, and development effort

prediction: a software science validation, IEEE

Transactions on Software Engineering, 9(6):639-

648, 1983.

https://doi.org/10.1109/tse.1983.235271

[5] M. Shepperd et al. Effort estimation using analogy,

in Proc. of the 18th International Conference on

Software Engineering (ICSE), Berlin, Germany,

1996.

https://doi.org/10.1109/icse.1996.493413

[6] M. Jørgensen. A review of studies on expert

estimation of software development effort, Journal

of Systems and Software, 70(1-2):37–60, 2004.

https://doi.org/10.1016/s0164-1212(02)00156-5

Sprint

Error and Correction

Estimators Model Correction

MMRE Pred(0.25) MMRE Pred(0.25) MMRE Pred(0.25)

20 0.086 0.890 0.093 0.878 ↓ ↓

21 0.501 0.718 0.397 0.835 ↑ ↑

22 0.700 0.537 0.546 0.734 ↑ ↑

23 0.183 0.823 0.146 0.872 ↑ ↑

24 0.106 0.857 0.087 0.915 ↑ ↑

Table 5: MMRE and Pred(0.25) error and correction indicator per sprint for the validation set.

Figure 5: MMRE and Pred(0.25) values generated by estimators and model per sprint for the validation set.

238 Informatica 44 (2020) 231–239 H. Karna et al.

[7] M. Jørgensen. Practical Guidelines for Expert-

Judgment-Based Software Effort Estimation, IEEE

Software, 22(3):57–63, 2005.

https://doi.org/10.1109/ms.2005.73

[8] B. Tanveer et al. Effort estimation in agile software

development: Case study and improvement

framework, Journal of Software: Evolution and

Practice, Special Issue, 29(11):e1862, 2017.

https://doi.org/10.1002/smr.1862

[9] M. Usman et al. Effort Estimation in Large-Scale

Software Development: An Industrial Case Study,

Information and Software Technology, 99:21-40,

2018.

https://doi.org/10.1016/j.infsof.2018.02.009

[10] E. Mendes. Improving Software Effort Estimation

Using an Expert-Centered Approach, in Proc. of the

4th international conference on Human-Centered

Software Engineering (HCSE '12), Springer-Verlag,

Berlin, Heidelberg, 18-33, 2012.

https://doi.org/10.1007/978-3-642-34347-6_2

[11] M. Jørgensen. What We Do and Don't Know about

Software Development Effort Estimation, IEEE

Software, 31(2):37-40, 2014.

https://doi.org/10.1109/ms.2014.49

[12] M. Kim et al. Data scientists in software teams: state

of the art and challenges, IEEE Transactions on

Software Engineering, 44(11):1024-1038, 2017.

https://doi.org/10.1109/tse.2017.2754374

[13] M. Bicego and Marco Loog. Weighted K-Nearest

Neighbor Revisited, in Proc. of the 23rd

International Conference on Pattern Recognition

(ICPR '16), Cancún, México, 2016.

https://doi.org/10.1109/icpr.2016.7899872

[14] L. Radlinski and W. Hoffmann. On Predicting

Software Development Effort Using Machine

Learning Techniques and Local Data, International

Journal of Software Engineering and Computing

(IJSEA), 2(2):123-136, 2010.

[15] H. Karna et al. Application of Data Mining Methods

for Effort Estimation of Software Projects, Software:

Practice and Experience, 49(2):171-191, 2018.

https://doi.org/10.1002/spe.2651

[16] J. Sutherland and K. Schwaber. The scrum guide,

Available: https://www.scrumguides.org/

[17] J. Ponce. Data Mining and Knowledge Discovery in

Real Life Applications (2nd ed.), Springer, New

York, 2009. https://doi.org/10.5772/62143.

[18] Maninderjit Kaur, Sushil Kumar Garg. Survey on

Clustering Techniques in Data Mining for Software

Engineering, International Journal of Advanced and

Innovative Research, 3(4), 2014.

[19] U. Fayyad et al. From Data Mining to Knowledge

Discovery in Databases, AI Magazine, 17(3):37-54,

1996.

https://doi.org/10.1609/aimag.v17i3.1230

[20] T. Menzies. Practical machine learning for software

engineering and knowledge engineering, Handbook

of Software Engineering and Knowledge

Engineering, 1:837-862, 2001.

https://doi.org/10.1142/9789812389718_0035

[21] M. Halkidi et al. Data Mining in Software

Engineering, Intelligent Data Analysis Journal (IDA

'11), 15(3):413-441, 2011.

https://doi.org/10.3233/ida-2010-0475

[22] C. Morbitzer et al. Application of Data Mining

Techniques for Building Simulation Performance

Prediction Analysis, in Proc. of the 8th International

IBPSA Conference, Eindhoven, Netherlands, 2003.

[23] P. Li et al. The Distance-Weighted K-nearest

Centroid Neighbor Classification, Journal of

Information Hiding and Multimedia Signal

Processing, 8(3):611-622, 2017.

[24] B. W. Boehm. Software Engineering Economics,

Englewood Cliffs, Prentice Hall, NJ, USA, 1981.

[25] A. K. Bardsiri and S. M. Hashemi. Software Effort

Estimation: A Survey of Well-known Approaches,

International Journal of Computer Science

Engineering (IJCSE), 3(1), 2014.

[26] M. Usman et al. An Effort Estimation Taxonomy for

Agile Software Development, International Journal

of Software Engineering and Knowledge

Engineering (IJSEKE), 27(4):641–674, 2017.

https://doi.org/10.1142/s0218194017500243

[27] K. Dejaeger et al. Data Mining Techniques for

Software Effort Estimation: A Comparative Study,

IEEE Transactions on Software Engineering,

38(2):375-397, 2012.

https://doi.org/10.1109/tse.2011.55

[28] A. E. Hassan and Tao Xie. Software intelligence: the

future of mining software engineering data, in Proc.

of the Workshop on Future of Software Engineering

Research (FoSER '10), Santa Fe, NM, USA, 2010.

https://doi.org/10.1145/1882362.1882397

[29] T. Xie et al. Data Mining for Software Engineering,

IEEE Computer, 42(8):55-62, 2009.

https://doi.org/10.1109/mc.2009.256

[30] G. Robles et al. Estimating Development Effort in

Free/Open Source Software Projects by Mining

Software Repositories, in Proc. of the 11th Working

Conference on Mining Software Repositories (MSR

2014), ACM Press New York, NY, USA, 222-231,

2014.

https://doi.org/10.1145/2597073.2597107

[31] K. Molokken and M. Jørgensen. Expert Estimation

of Web-Development Projects: Are Software

Professionals in Technical Roles More Optimistic

Than Those in Non-Technical Roles?, Empirical

Software Engineering, 10(1):7-29, 2005.

https://doi.org/10.1023/b:emse.0000048321.46871.2

e

[32] P. K. Suri and P Ranjan. Comparative analysis of

software effort estimation techniques, International

Journal of Computer Applications (IJCA),

48(21):12-19, 2012.

https://doi.org/10.5120/7479-0540

[33] Q. Taylor et al. Applications of data mining in

software engineering, International Journal of Data

Analysis Techniques and Strategies, 2(3):243-257,

2010. https://doi.org/10.1504/ijdats.2010.034058

[34] L. L. Minku et al. Data mining for software

engineering and humans in the loop, Progress in

https://doi.org/10.1109/tse.2017.2754374
https://doi.org/10.1109/icpr.2016.7899872
https://doi.org/10.1002/spe.2651
https://www.scrumguides.org/
https://doi.org/10.5772/62143
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1142/9789812389718_0035
https://doi.org/10.3233/ida-2010-0475
https://doi.org/10.1142/s0218194017500243
https://doi.org/10.1109/tse.2011.55
https://doi.org/10.1145/1882362.1882397
https://doi.org/10.1109/mc.2009.256
https://doi.org/10.1145/2597073.2597107
https://doi.org/10.1023/b:emse.0000048321.46871.2e
https://doi.org/10.1023/b:emse.0000048321.46871.2e
https://doi.org/10.5120/7479-0540

Data Mining Approach to Effort Modeling on ... Informatica 44 (2020) 231–239 239

Artificial Intelligence (PRAI), 5(4):307-314, 2016.

https://doi.org/10.1007/s13748-016-0092-2

[35] R. Marques et al. Assessing Agile Software

Development Processes with Process Mining: A

Case Study, in Proc. of the 20th IEEE Conference on

Business Informatics (CBI), 109-118, Vienna,

Austria, 2018.

https://doi.org/10.1109/cbi.2018.00021

[36] P. Abrahamsson et al. Agile software development

methods: Review and analysis, 2002. Available:

www.vtt.fi/inf/pdf/publications/2002/P478.pdf

[37] T. Dingsøyr et al. Exploring software development

at the very large-scale: a revelatory case study and

research agenda for agile method adaptation,

Empirical Software Engineering, 23(1):490–520,

2018.

https://doi.org/10.1007/s10664-017-9524-2

[38] M. Choetkiertikul et al. A deep learning model for

estimating story points, IEEE Transactions on

Software Engineering, 2018.

https://doi.org/10.1109/tse.2018.2792473

[39] K. S. Rubin. Essential Scrum: a practical guide to

the most popular agile process (1st Edition),

Addison-Wesley, Upper Saddle River, NJ, USA,

2013.

[40] H. Karna and S. Gotovac. Estimators Characteristics

and Effort Estimation of Software Projects, in Proc.

of the 9th International Joint Conference on

Software Technologies (ICSOFT-EA 2014), Vienna,

Austria, 2014.

https://doi.org/10.5220/0005002600260035

[41] H. Karna and S. Gotovac. Modeling Expert Effort

Estimation of Software Projects, in Proc. of 22nd

International Conference on Software,

Telecommunications and Computer Networks

(SoftCOM 2014), Split, Croatia, 2014.

https://doi.org/10.1109/softcom.2014.7039106

[42] J. Aguilar et al. The Size of Software Projects

Developed by Mexican Companies, in Proc. of the

International Conference on Software Engineering

Research and Practice (SERP'14), 2014. Available:

https://arxiv.org/abs/1408.1068

[43] M. Jørgensen et al. Human judgement in effort

estimation of software projects, Presented at Beg,

Borrow, or Steal Workshop, in Proc. of the

International Conference on Software Engineering,

Limerick, Ireland, 2000.

[44] T. M. Cover and P. E. Hart. Nearest neighbor pattern

classification, IEEE Transactions on Information

Theory, 13(1):21–27, 1967.

https://doi.org/10.1109/tit.1967.1053964

[45] L.-Y. Hu et al. The distance function effect on k-

nearest neighbor classification for medical datasets,

SpringerPlus, 5(1), 2016.

https://doi.org/10.1186/s40064-016-2941-7

[46] J. Gou et al. A New Distance-weighted k-nearest

Neighbor Classifier, Journal of Information &

Computational Science, 9(6):1429–1436, 2012.

[47] J. Huang et al. Cross-validation based K nearest

neighbor imputation for software quality datasets:

An empirical study, The Journal of Systems and

Software, 132:226–252, 2017.

https://doi.org/10.1016/j.jss.2017.07.012

[48] E. Kocaguneli et al. Exploiting the essential

assumptions of analogy-based effort estimation,

IEEE Transactions on Software Engineering,

38(2):425–439, 2012.

https://doi.org/10.1109/tse.2011.27

[49] IBM SPSS Modeler: KNN Node, Available:

https://www.ibm.com/support/knowledgecenter/en/S

S3RA7_15.0.0/com.ibm.spss.modeler.help/knn_nod

e_general.htm

[50] R. Olu-Ajayi. An Investigation into the Suitability of

k-Nearest Neighbor (k-NN) for Software Effort

Estimation, International Journal of Advanced

Computer Science and Applications (IJACSA), 8(6),

2017. https://doi.org/10.14569/ijacsa.2017.080628

[51] P. Le and V. Nguyen. A k-Nearest Neighbors

approach for COCOMO calibration, in Proc. of the

4th NAFOSTED Conference on Information and

Computer Science, Hanoi, Vietnam, 219-224, 2017.

https://doi.org/10.1109/nafosted.2017.8108067

[52] IBM SPSS Modeler 14.2, Available: http://www-

01.ibm.com/support/docview.wss?uid=swg2702214

0

[53] B. Kitchenham et al. Assessing prediction systems,

University of Otago Information Science Discussion

Paper No. 99/14, 1999. Available:

http://hdl.handle.net/10523/1015

[54] C. Tofallis. A better measure of relative prediction

accuracy for model selection and model estimation,

Journal of the Operational Research Society,

66(3):1352–1362, 2015.

https://doi.org/10.1057/jors.2014.103

https://doi.org/10.1007/s13748-016-0092-2
https://doi.org/10.1109/cbi.2018.00021
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1109/tse.2018.2792473
https://arxiv.org/abs/1408.1068
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1186/s40064-016-2941-7
https://doi.org/10.1016/j.jss.2017.07.012
https://doi.org/10.1109/tse.2011.27
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.help/knn_node_general.htm
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.help/knn_node_general.htm
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.help/knn_node_general.htm
https://doi.org/10.1109/nafosted.2017.8108067
http://www-01.ibm.com/support/docview.wss?uid=swg27022140
http://www-01.ibm.com/support/docview.wss?uid=swg27022140
http://www-01.ibm.com/support/docview.wss?uid=swg27022140
http://hdl.handle.net/10523/1015
https://doi.org/10.1057/jors.2014.103

240 Informatica 44 (2020) 231–239 H. Karna et al.

