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The well-known Iris data set has been studied applying partial ordering methodology. Previous studies, 

e.g., applying supervision learning such as neural networks (NN) and support-vector machines (SVM) 

perfectly distinguish between the three Iris subgroups, i.e., Iris Setosa, Iris Versicolour and Iris 

Virginica, respectively, in contrast to, e.g., K-means clustering that only separates the full Iris data set 

in two clusters. In the present study applying partial ordering methodology further discloses the 

difference between the different classification methods. The partial ordering results appears to be in 

perfect agreement with the results of the K-means clustering, which means that the clear separation in 

the three Iris subsets applying NN and SVM is neither recognized by clustering nor by partial ordering 

methodology. 

Povzetek: Analizirana je znana baza učnih domen Iris s poudarkom na nekaterih metodah, recimo 

gručenju. 

 

1 Introduction 
One of the most often applied datasets in machine 

learning studies test cases is the Iris dataset [1, 2]. This 

dataset includes 150 entries comprising 3 x 50 entries for 

three subspecies of class of iris plant, i.e., Iris Setosa (i-

set), Iris Versicolour (i-ver) and Iris Virginica (i-vir), 

respectively. The plants are characterized by four 

indicators, i.e., Sepal length (SepalL), Sepal width 

(SepalW), Petal length (PetalL) and Petal width 

(PetalW), respectively, all in cm. 

We find that supervised learning, like neural network 

and SVM, nicely classify the 3 classes Iris Setosa (i-set), 

Iris Versicolour (i-ver) and Iris Virginica (i-vir). Using 

60% randomly chosen entries as test set a neural network 

with one hidden layer with 3 nodes leads to only one 

misclassification between the remaining 40% of the 

entries serving as validation set. A similar result was 

obtained using a SVM approach with a radial kernel. 

Here we find two misclassifications of i-vir being 

classified as i-ver. In the case of K-means clustering a 

somewhat less clear picture develops. 

In a recent chemistry-oriented study we investigated 

the potential use of partial ordering methodology as a 

tool for classification of alkyl anilines [3]. In the present 

study we apply partial order methodologies to further 

study as to how far the supervised classification of the 

three types of Iris-plants can be re-found. 

The mathematical theory of partial orders seems to 

be started in the late 19th century (cf. [4]), however, the 

main development to establish an own mathematical 

discipline with the methodological components of 

combinatorics, algebra and graph theory, can be 

attributed to the work of Birkhoff [5] and Hasse [6]. To 

our knowledge there were only few applications of the 

theory of partial order, i.e., in statistics, e.g. [7-9], 

concepts of phase transfers [10] and early electronics 

[11]. In chemistry important and theoretically attractive 

applications were found by Ruch [12]. Nevertheless, 

these concepts became not popular, albeit their 

theoretical beauty. With publications of Randic [13]  and 

Klein [14] and after the pioneering work of  Halfon and 

Reggiani [15] the mathematical theory of partial order 

became a useful tool in environmental sciences. The 

background of this development is that environmental 

systems are complex and a decision about environmental 

issues   had to be based on a set of indicators, describing 

the state of the environmental system. However, 

decisions based on a set of indicators are difficult and 

caused the usage of multicriteria decision aids (MCDA). 

Famous MCDA-methods are PROMETHEE [16], 

Electre [17] and partial order concepts [18]. Today the 

partial order theory is further developed, mainly in the 

field of multi indicator-systems and is recently applied in 

social sciences too, e.g. [19]. The latest methodological 

development is mainly focused on, how to include data 

uncertainty [20]. 
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2 Materials and methods  

2.1 Data 

The data for the current study is the well-known Iris 

dataset [1] comprising 3 x 50 entries for three subspecies 

of class of iris plant, i.e., Iris Setosa (i-set), Iris 

Versicolour (i-ver) and Iris Virginica (i-vir), respectively. 

Thus, the Iris dataset comprises in total 150 entries. 

2.2 Basic concepts of partial order 

Let X be a set of objects, labeled by xi (i = 1,…,n), which 

can be for example chemical compounds. To define an 

order relation among them, the relation “” has to obey 

the following order axioms: 

• reflexivity: the object can be compared with 

itself, i.e., x ≤ x 

• antisymmetry: if  x  y and y  x  x = y 

• transitivity: if x  y and y  z  x  z 

A special realization of order relations is given by 

eq. 1.  Equation 1 expresses a mapping from object x to 

its representation by a tuple q with m components, as 

well as the order relation among objects defined by the 

simultaneous evolution of the tuple q. 

• x → q  (the set of objects, X, is mapped onto the 

set of tuples {q},   

by assigning to each object x its tuple, based on 

the values of the considered indicators, i.e., 

• x → (q1(x), q2(x),…, qm(x)) where  qj (j=1,..,m) 

is a selection of certain properties of x           

• x  y :  (qj(x)  (qj(y) for all j          (1) 

By eq. 1 a partial order is defined, and the object set 

X is by eq. 1 equipped with partial order relation; such a 

set is called a partially ordered set, in brief poset, denoted 

often as: (X, ≤.). If neither x ≤ y nor y ≤ x, x is said to be 

incomparable with y, denoted as x ǁ y. By eq. 1 an order 

relation is defined, if x ≤ y or y ≤ x. The presence of an 

order relation can be described by the zeta matrix. The 

zeta matrix is defined as follows: 

 

𝑧𝑖,𝑗 =  {
1  𝑖𝑓  𝑥𝑖 ≤  𝑥𝑗

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

From transitivity it follows that in case of x ≤ z and z 

≤ y the implication x ≤ z can be deduced from the 

premise, i.e., a rational description of the partial order 

can be  given by the cover relation: “ y is covering x, if x 

< y and there is no other element z, for which x <  z and z 

≤ y. Both relations, i.e., the order and the cover-relation 

can be expressed by adjacency like matrices. 

By application of the cover-relation a graph is 

constructed. This graph is, based on the three axioms of 

partial order 

• directed (due to the order relation) 

• triangle free (due to the cover relation) and  

• does not contain cycles, due to the 

antisymmetry.  

By convention, originally introduced by Halfon and 

Reggiani [15], the graph is drawn with  

• x  y locating x below y,  

• attempting a symmetric presentation as far as 

possible  

• by an arrangement of objects in levels.  

For a detailed explanation see [18]. For examples, 

see sect. 3. 

2.3 Levels 

A poset (X, ≤) can be partitioned into a family of subsets 

Xi ⸦ X: 

(X, ≤ ) =  (Xi, ≤), i.e. Xi , Xj ⸦ X and  Xi  Xj = , 

i≠j       (2) 

The symbol  is a shorthand notation for the union 

of mutually non-intersecting subsets whereby any pair x, 

y with x  Xi and y Xj (with i ≠ j) implies  x ǁ y  . 

The family of sets Xi can be ordered, i.e., Xi1 < Xi2: 

 there is an element in Xi1 which is covered by an 

element in Xi2.  The sets Xi obeying the above relations 

are called levels. 

The dissection of X into levels, i.e., into subsets 

obeying not only the order theoretical characterization, 

given above, but also eq. 2, allows a geometrical 

representation by a so-called Hasse diagram that can be 

seen as a rectangle, filled with the bottom level, then the 

next level, until the top level is reached. Important is the 

possibility to perform for each level a permutation (this is 

possible because there is no order relation among the 

elements of a level) in that manner, that supervised 

subsets can be given specific locations within any level. 

If for example a Hasse diagram has four levels, then its 

representation by level may look like that in Fig. 1. 

 

Table 1:. i-set/i-ver, i-set/i-vir and i-ver/i-vir ratios for the 50 sample in the three Iris set set1, set2 and set3. 

 set1 (i-set)  set2 (i-ver)  set3 (i-vir) 

 i-set/i-ver  i-set/i-vir  i-ver/i-vir 

No SepalL SepalW PetalL PetalW  SepalL SepalW PetalL PetalW  SepalL SepalW PetalL PetalW 

1 0.73 1.09 0.30 0.14  0.81 1.06 0.23 0.08  1.11 0.97 0.78 0.56 

2 0.77 0.94 0.31 0.13  0.84 1.11 0.27 0.11  1.10 1.19 0.88 0.79 

3 0.68 1.03 0.27 0.13  0.66 1.07 0.22 0.10  0.97 1.03 0.83 0.71 

4 0.84 1.35 0.38 0.15  0.73 1.07 0.27 0.11  0.87 0.79 0.71 0.72 

5 0.77 1.29 0.30 0.13  0.77 1.20 0.24 0.09  1.00 0.93 0.79 0.68 
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6 0.95 1.39 0.38 0.31  0.71 1.30 0.26 0.19  0.75 0.93 0.68 0.62 

7 0.73 1.03 0.30 0.19  0.94 1.36 0.31 0.18  1.29 1.32 1.04 0.94 

8 1.02 1.42 0.45 0.20  0.68 1.17 0.24 0.11  0.67 0.83 0.52 0.56 

9 0.67 1.00 0.30 0.15  0.66 1.16 0.24 0.11  0.99 1.16 0.79 0.72 

10 0.94 1.15 0.38 0.07  0.68 0.86 0.25 0.04  0.72 0.75 0.64 0.56 

11 1.08 1.85 0.43 0.20  0.83 1.16 0.29 0.10  0.77 0.63 0.69 0.50 

12 0.81 1.13 0.38 0.13  0.75 1.26 0.30 0.11  0.92 1.11 0.79 0.79 

13 0.80 1.36 0.35 0.10  0.71 1.00 0.25 0.05  0.88 0.73 0.73 0.48 

14 0.70 1.03 0.23 0.07  0.75 1.20 0.22 0.05  1.07 1.16 0.94 0.70 

15 1.04 1.38 0.33 0.15  1.00 1.43 0.24 0.08  0.97 1.04 0.71 0.54 

16 0.85 1.42 0.34 0.29  0.89 1.38 0.28 0.17  1.05 0.97 0.83 0.61 

17 0.96 1.30 0.29 0.27  0.83 1.30 0.24 0.22  0.86 1.00 0.82 0.83 

18 0.88 1.30 0.34 0.30  0.66 0.92 0.21 0.14  0.75 0.71 0.61 0.45 

19 0.92 1.73 0.38 0.20  0.74 1.46 0.25 0.13  0.81 0.85 0.65 0.65 

20 0.91 1.52 0.38 0.27  0.85 1.73 0.30 0.20  0.93 1.14 0.78 0.73 

21 0.92 1.06 0.35 0.11  0.78 1.06 0.30 0.09  0.86 1.00 0.84 0.78 

22 0.84 1.32 0.38 0.31  0.91 1.32 0.31 0.20  1.09 1.00 0.82 0.65 

23 0.73 1.44 0.20 0.13  0.60 1.29 0.15 0.10  0.82 0.89 0.73 0.75 

24 0.84 1.18 0.36 0.42  0.81 1.22 0.35 0.28  0.97 1.04 0.96 0.67 

25 0.75 1.17 0.44 0.15  0.72 1.03 0.33 0.10  0.96 0.88 0.75 0.62 

26 0.76 1.00 0.36 0.14  0.69 0.94 0.27 0.11  0.92 0.94 0.73 0.78 

27 0.74 1.21 0.33 0.29  0.81 1.21 0.33 0.22  1.10 1.00 1.00 0.78 

28 0.78 1.17 0.30 0.12  0.85 1.17 0.31 0.11  1.10 1.00 1.02 0.94 

29 0.87 1.17 0.31 0.13  0.81 1.21 0.25 0.10  0.94 1.04 0.80 0.71 

30 0.82 1.23 0.46 0.20  0.65 1.07 0.28 0.13  0.79 0.87 0.60 0.63 

31 0.87 1.29 0.42 0.18  0.65 1.11 0.26 0.11  0.74 0.86 0.62 0.58 

32 0.98 1.42 0.41 0.40  0.68 0.89 0.23 0.20  0.70 0.63 0.58 0.50 

33 0.90 1.52 0.38 0.08  0.81 1.46 0.27 0.05  0.91 0.96 0.70 0.55 

34 0.92 1.56 0.27 0.13  0.87 1.50 0.27 0.13  0.95 0.96 1.00 1.07 

35 0.91 1.03 0.33 0.13  0.80 1.19 0.27 0.14  0.89 1.15 0.80 1.07 

36 0.83 0.94 0.27 0.13  0.65 1.07 0.20 0.09  0.78 1.13 0.74 0.70 

37 0.82 1.13 0.28 0.13  0.87 1.03 0.23 0.08  1.06 0.91 0.84 0.63 

38 0.78 1.57 0.32 0.08  0.77 1.16 0.25 0.06  0.98 0.74 0.80 0.72 

39 0.79 1.00 0.32 0.15  0.73 1.00 0.27 0.11  0.93 1.00 0.85 0.72 

40 0.93 1.36 0.38 0.15  0.74 1.10 0.28 0.10  0.80 0.81 0.74 0.62 

41 0.91 1.35 0.30 0.25  0.75 1.13 0.23 0.13  0.82 0.84 0.79 0.50 

42 0.74 0.77 0.28 0.21  0.65 0.74 0.25 0.13  0.88 0.97 0.90 0.61 

43 0.76 1.23 0.33 0.17  0.76 1.19 0.25 0.11  1.00 0.96 0.78 0.63 

44 1.00 1.52 0.48 0.60  0.74 1.09 0.27 0.26  0.74 0.72 0.56 0.43 

45 0.91 1.41 0.45 0.31  0.76 1.15 0.33 0.16  0.84 0.82 0.74 0.52 

46 0.84 1.00 0.33 0.25  0.72 1.00 0.27 0.13  0.85 1.00 0.81 0.52 

47 0.89 1.31 0.38 0.15  0.81 1.52 0.32 0.11  0.90 1.16 0.84 0.68 

48 0.74 1.10 0.33 0.15  0.71 1.07 0.27 0.10  0.95 0.97 0.83 0.65 

49 1.04 1.48 0.50 0.18  0.85 1.09 0.28 0.09  0.82 0.74 0.56 0.48 

50 0.88 1.18 0.34 0.15  0.85 1.10 0.27 0.11  0.97 0.93 0.80 0.72 
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Figure 1: Within any level the position of objects can be freely 

permutated, nevertheless keeping their original order relations. 

2.4 Dominance and separability 

A partially ordered set may be partitioned in any other 

manner, i.e., not following the level-construction, but 

following a supervised classification, e.g., through an 

aggregation process [21]. Let X be partitioned into a 

family of sets Xi, i= 1,…,r, where the sets Xi are 

externally defined.. Then the natural question is, as to 

how far the family of sets {Xi} can be partially ordered. 

This question was in depth analyzed by Restrepo and 

Bruggemann [22]. Here, however, we follow a different 

concept.  

Assume that by any cluster analysis (K-means, 

hierarchical models) the family of subsets Xi is defined. 

What at best can be expected from an analysis by partial 

order? In order to arrive at this aim, the partial order 

concepts of linear sums and disjoint union of sets must 

be defined: 

Let Xi, Xj be subsets of X, then: 

Xi and Xj form a linear sum, denoted as  Xi ≤ Xj (in 

order to differentiate this symbol from that in eq. 2, we 

add as a subscript “≤”) when:  

For all x Xi, and all y Xj  x ≤ y,  

Similarly: 

Xi and Xj form a complete disjoint union of sets, 

denoted as  Xi ≤ Xj (in order to differentiate this symbol 

from the union symbol in set theory, we add as a 

subscript “≤”) when:  

For all x Xi, and all y Xj  x || y,  

A pretty clear classification by partial order theory 

can be obtained, when the poset is either a linear sum, cf. 

[21] or a complete disjoint union of sets [23]. Such a 

classification due to partial order concepts can be 

visualized as shown in Fig. 2. 

 
Figure 2: Two extremal cases for a posetic representation of a 

supervised classification (see text). 

 In Fig. 2A x ≥ y for any x  Xik and y Xik+1.  A 

partially ordered set representable by Fig. 2A is called a 

linear sum. In contrast to the linear sum construction is 

the disjoint union of sets Xik in Fig. 2B. Here the 

following is valid: x ǁ y for all x  Xik and y Xik+s. 

Structures like those shown in Fig. 2 cannot be 

expected within a real data set. The question is, as to how 

far approximations corresponding to the two archetypes 

of Fig. 2 can be found. Hereto two matrices, dominance 

and separability are introduced. 

The dominance matrix being defined as follows 

Dom(Xi,Xj) = |{(x, y) with x Xi and y Xj  

and x > y}|/|Xi|*|Xj|, dominance matrix  (3) 

In a situation as shown in Fig. 3a, Dom(Xik, Xik+s) = 

1, in all other cases 0 ≤ Dom (Xi,Xj) < 1. We speak of Xi 

as approximately dominating Xj, if Dom(Xi,Xj) > 0.5.   

The analog to Fig. 2B is the separability matrix 

defined as 

Sep(Xi,Xj) =|{(x, y)  

with x Xi and y Xj and x ǁ y}|/|Xi|*|Xj|, (4) 

A situation such as shown in Fig. 2B would lead to 

Sep(Xi,Xj) = 1, in cases Sep(Xi,Xj) > 0.5 we speak of an 

approximation with respect to Fig. 2B. 

2.5 Software 

The applied software is PyHasse, programmed applying 

the programming (interpreter) language Python and, in 

honor of Helmut Hasse, who was one of the main 

mathematicians, investigating partial order. The complete 

PyHasse software package is available from Dr. 

Bruggemann (brg_home@web.de). A limited version can 

be assessed at www.pyhasse.org  (For further details, see 

[24, 25]). 

3 Results and discussion 

3.1 K-means clustering 

K-means clustering and Hierarchical clustering (HCA) 

apparently does lead to less clear-cut pictures. Thus, we 

find that K-means clustering virtually separated i-set 

from i-vir and i-ver, whereas a separation of i-vir and i-

ver is significantly less pronounced (Fig. 3A). This is in 

agreement with the plots shown in [2]. A further analyses 

including the i-ver and i-vir sets lead to some separation 

between the two sets although a significant overlap is 

seen (Fig. 3B). 

The answer to the somewhat surprising K-means 

clustering can be found in the data shown in Table 1. 

Table 1 discloses the i-set/i-ver, i-set/i-vir and i-ver/i-vir 

ratios for the 50 sample in the three iris sets set 1, set2 

and set 3. It is immediate noted that in the cases of the i-

set/i-ver and i-set/i-vir the rations are significantly 

different from 1, whereas in the case of i-ver/i-vir th ratio 

values are in most case rather close to 1, explaining the 

lack of separation between), Iris Versicolour and Iris 

Virginica as displayed in the K-means clustering.  
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A further discussion of the K-means clustering that is 

a well-established method is not in the focus od the 

present paper. 

3.2 The Hasse diagram - visual inspection 

The Hasse diagram of the complete Iris dataset is found 

in Fig. 4. 

Inspecting Fig. 4 a substructure, which hopefully 

mimics the three Iris-families, can obviously not be 

recognized. There is no clear separation in the sense of 

eq. 4, which can be just visually detected.   

The tools outlined in sect. 2.4 may be helpful to find 

a structure in the Hasse diagram, when the classification 

into the three Iris-subsets is used. Hence, we sharpen our 

message to: Given the classification into the three Iris-

subsets, what posetic relations among these three subsets 

can be found. As visual techniques fail, numerical 

devices as the dominance and separability matrices are 

necessary.   

3.3 Supervised classification 

3.3.1 The subsets  

The complete Iris data set is subsetted into three sets 

comprising the 3 three Iris species Iris Setosa (i-set), Iris 

Versicolour (i-ver) and Iris Virginica (i-vir), respectively. 

Hence, 

 

set  1: 

i-set1, i-set2, i-set3, i-set4, i-set5, i-set6, i-set7, i-set8,       

i-set9, i-set10, i-set11, i-set12, i-set13, i-set14, i-set15,      

i-set16, i-set17, i-set18, i-set19, i-set20, i-set21, i-set22,     

i-set23, i-set24, i-set25, i-set26, i-set27, i-set28, i-set29,    

i-set30, i-set31, i-set32, i-set33, i-set34, i-set35, i-set36,    

i-set37, i-set38, i-set39, i-set40, i-set41, i-set42, i-set43,    

i-set44, i-set45, i-set46, i-set47, i-set48, i-set49, i-set50 

 

set  2:  

i-ver1, i-ver2, i-ver3, i-ver4, i-ver5, i-ver6, i-ver7, i-ver8,   

i-ver9, i-ver10, i-ver11, i-ver12, i-ver13, i-ver14, i-ver15, 

i-ver16, i-ver17, i-ver18, i-ver19, i-ver20, i-ver21,  

i-ver22, i-ver23, i-ver24, i-ver25, i-ver26, i-ver27,  

i-ver28, i-ver29, i-ver30, i-ver31, i-ver32, i-ver33,  

i-ver34, i-ver35, i-ver36, i-ver37, i-ver38, i-ver39,  

i-ver40, i-ver41, i-ver42, i-ver43, i-ver44, i-ver45,  

i-ver46, i-ver47, i-ver48, i-ver49, i-ver50 

 

set  3:  

i-vir1, i-vir2, i-vir3, i-vir4, i-vir5, i-vir6, i-vir7, i-vir8,       

i-vir9, i-vir10, i-vir11, i-vir12, i-vir13, i-vir14, i-vir15,      

i-vir16, i-vir17, i-vir18, i-vir19, i-vir20, i-vir21, i-vir22,    

i-vir23, i-vir24, i-vir25, i-vir26, i-vir27, i-vir28, i-vir29,    

i-vir30, i-vir31, i-vir32, i-vir33, i-vir34, i-vir35, i-vir36,    

i-vir37, i-vir38, i-vir39, i-vir40, i-vir41, i-vir42, i-vir43,    

i-vir44, i-vir45, i-vir46, i-vir47, i-vir48, i-vir49, i-vir50 

3.3.2 Dominances and separabilities 

Applying the appropriate PyHasse module, mainly 

ddssimpl and the new module ddssimpl_batch (for 

ddssimpl,, cf. [22] the dominance and separability 

matrices for the three subsets are 

 

 

 
Figure 3: K-means clustering of A: the complete Iris data 

set and B: the i-ver and i-vir sets 

 
Figure 4: The Hasse diagram of complete Iris set 

under the four indicators. The diagram displays  4150 

compar- abil¬ities and 6876 incomparabilities. 
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Dominance matrix Dom (DOM(i,j)/(ni*nj))  

     1    2    3  

1  0.252 0.0 0.0  

2  0.094 0.31 0.002  

3  0.196 0.63 0.256  

Separability matrix Sep (SEP(i,j)/(ni*nj))  

     1      2     3  

1  0.517 0.906 0.804  

2  0.906 0.401 0.368  

3  0.804 0.368 0.509  

The separability matrix shows a clear separation 

between set1 and sets2 and set3, respectively, However, 

between set2 and set3 a considerable overlapping can be 

noted expressed by the relatively low value of the 

nondiagonal element Sep(2,3) = 0.368, which does not 

justify a separation in the sense of Fig. 3B. The 

dominance matrix shows correspondingly for the entry 

Dom(3,2) a value > 0.5.  This result is in perfect 

agreement with the above discussed K-means results. 

3.4 Separability matrix as mean to 

visualize the classification 

Taken just the two sets, set1 (i-set) and set2 (i-ver), the 

Hasse diagram is shown in Fig. 5. 

In contrast to the pretty clear separation between set1 

and set2 (Table 5A) on the one hand, and set1 and set3 

(Fig. 5B) on the other hand, the Hasse diagram, based on 

set2 and set3 only, shows a structure, which 

schematically could  be visualized, as shown in Fig. 6. 

The blue part is located below the orange colored 

part. Hence, there are many order relations of x set3 

and y  set2, where x > y  in the order-theoretical sense. 

This explains pictorially that dom(3,2) >> dom(2,3) (vide 

supra). As the blue part is located on the left side, 

whereas the orange part of the right side of the schematic 

representation of a Hasse diagram, there are also many 

relations with x ǁ y. The order theory does not support a 

separation between set2 and set3. An enhancement with 

respect to dominance relations may be given by the two 

little rectangles in the middle of the scheme (Fig. 6), 

which we call a “nose”. Note that from a geometrical 

point of view, the elements of the "nose" could be 

arranged so that formally the two triangles are not 

perturbed. However, the “nose” indicates the count of 

elements which lead to the irregular structure, shown in 

Fig. 6. The real Hasse diagram of set2 and set3 is shown 

in Fig. 7, where the above schematic structure (Fig. 6) 

easily is recognized. 

It remains to discuss two points: 

1. What is the effect of the elements within the 

”nose” (section 3.4)? 

2. What can be said about an internal partitioning 

of the sets i-set, i-ver and i-vir (section 3.5)? 

3.5 Effect of the elements of the "nose" 

In this section we investigate, as to how far elements of a 

specific geometric configuration, here the “nose” can 

influence the values of the dominance and separability 

matrix. It is to be clarified, whether or not such 

geometrical configuration destabilizes the conclusions 

based on the two concepts, i.e., dominance and 

 

 
Figure 5:  Hasse diagram of A: the i-set (set1) and i-ver 

(set2) and B: the i-set (set1) and i-vir (set3) under the four 

indicators. 

 

Figure 6: Schematic view, based on the methods, explained 

in sect. 2 for set2 and 3. The parts, obviously not being 

confined by the triangles are called “nose”. 
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separability. 

The elements of the “noses” are (cf. Fig. 7): 

• i-ver: 27, 28, 37 

• i-vir: 12, 14, 22, 27 

 

There will be 7 runs: 

a. Keeping i-vir constant and eliminate one after 

another 27, 28, 37 to study the effect of the 

”noses”  of i-ver and 

b. Keeping i-ver constant and eliminate 12, 14, 22, 

27, respectively, one after another. 

 

The results are shown in Table 2. 

All in all the entries of the dominance and 

separability matrix are only slightly changed. The 

elements of the ”nose” do not contribute much to the 

general dominance behavior, i.e., the presence of the 

”noses” does not change the impression that i-vir 

dominates to some degree the set i-ver. The separability 

values are in comparison to the standard reduced, 

showing that the elements of the ”nose” contribute 

somewhat to the incomparabilities between the elements 

of i-vir and i-ver, respectively. When all elements of the 

”nose” are eliminated (9th row in Table 2) then the 

dominance of i-vir over i-ver is slightly enhanced, that of 

i-ver over i-vir reduced and the separation reduced. The 

comparison to the effect of the elements of the top level, 

namely i-vir10,i-vir18,i-vir19,i-vir32, i-vir36  shows that 

the position of elements to be eliminated within the level-

order-system as schematically shown in Fig. 6 does not 

play a strong role.  

3.6 Internal structures 

So far it has been demonstrated that posetic relations can 

roughly, but not convincingly verify the supervised 

classification. A further question remains, which is a 

partial-order-like point of view. Thus, do internal 

separations occur? Are there subsets of set1, set2 and 

set3, respectively that may be identified by partial order 

theory? 

We answer these questions by an analysis of the i-set 

(set1). In Fig. 8 the Hasse diagram of set1 is shown. 

By a simple optical inspection it is clear that there 

are two subsets which dominate each other to a striking 

degree. This situation can be schematically illustrated by 

Fig. 9. 

In order not solely to rely on the visual impression, 

the dominance and separability approach (cf. sect. 3.2) is 

brought into play. 

 
Figure 7: Hasse diagram of only set2 and set3. The 

separation between set3and set2 is marked with a red line. 

The characteristic S-like curve marks the “noses”. 

 
Figure 9: Hasse diagram of the i-set (set1). Total 

incomparabilities 646; Total comparabilities 579. 

 

Figure 8: Scheme of the Hasse diagram, based on set1. 
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3.6.1 Subset-selection: 

In the following the 3 subsets, selected based on a visual 

inspection to be included in the analysis is shown. It 

should be noted that only representatives is shown, i.e., 

equivalent object being represented by one element only. 

 

subset  1:  

i-set6, i-set15, i-set16, i-set19, i-set24, i-set44, i-set45,   

i-set11, i-set17, i-set20, i-set21, i-set22, i-set25, i-set27, 

i-set32, i-set33, i-set34, i-set47, i-set12, i-set18, i-set26, 

i-set37, i-set49, i-set5, i-set7, i-set28, i-set30, i-set31,     

i-set41, i-set46, i-set1, i-set23, i-set29, i-set38, i-set40,   

i-set42 

 

subset  2:  

i-set8 

 

subset  3: 

 i-set35, i-set50, i-set2, i-set3, i-set4, i-set10, i-set36,      

i-set48, i-set9, i-set13, i-set43, i-set39, i-set14, 

3.6.2 Dominances and separabilities 

The (relative) dominance matrix was calculated to be 

Dominance matrix Dom (DOM(i,j)/(ni*nj))  

    1    2    3  

1  0.176 0.417 0.688  

2  0.0 1.0 1.0  

3  0.0 0.0 0.296  

The values of this matrix imply that there is a vague 

dominance of subset1 over subset2 (which is a singleton 

(namely comprising only i-set8), and a slightly clearer 

dominance of subset1 over subset3. It is further disclosed 

that i-set8  is higher located than all elements of subset3, 

i.e., completely dominating subset3. 

Relative separability matrix was found to be 

 

Separability matrix Sep (SEP(i,j)/(ni*nj))  

    1     2     3   

1  0.676 0.583 0.312  

2  0.583 0.0 0.0  

3  0.312 0.0 0.485  

 

Here it becomes clear that the incomparability 

among elements of subset1 and subset2 is the main 

result. Whereas the role of incomparabilities among 

elements of subset1 and those of subset3 is relatively 

low. Thus, a model for a classification for the i-set- series 

is the Hasse diagram, found in Fig. 10 using the PyHasse 

module  ddssimpl1.py. 

It can be seen, that due to the values of the 

dominance and separability matrices the differentiation 

between subset1 and subset3 is more pronounced than a 

differentiation within subset1.  

Just by a simple visual inspection of Fig. 7 it is clear 

that a differentiation between i-vir and i-ver does not 

appear meaningful.  

 

Figure 10: The representative elements of each subset are 

selected as labels for the Hasse diagram. The basic set is 

the i-set. 

subsets 
Dom(1,2) 

Dominance i-ver over i-vir 

Dom(2,1) 

Dominance i-vir over i-ver 
Sep(1,2) = Sep(2,1) 

No. of  elimination 

at all: Standard 
0.002 0.637 0.362 

Elim 27 from i-ver 0.002 0.643 0.355 

Elim 28 from i-ver 0.001 0.643 0.356 

Elim 37 from i-ver 0.002 0.645 0.353 

Elim 12 frim i-vir 0.002 0.641 0.357 

Elim 14 from i-vir 0.002 0.638 0.361 

Elim 22 from i-vir 0.002 0.645 0.353 

Elim 27 from i-vir 0.002 0.641 0.358 

i-ver without 

"nose" 
0.001 0.687 0.312 

I-vir without top 

level element 10 in 

comparison with i-

ver 

0.002 0.629 0.369 

…Without 18 0-002 0.629 0.369 

…Without 19 0.002 0.643 0.355 

…Without 32 0.002 0.629 0.369 

…Without 36 0.002 0.633 0.366 

Table 2: Elimination of single elements from the “nose”. 
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4 Conclusions and outlook 
The results of partial order theory suggest a pictorial 

representation as follows (Fig. 11) 

The result summarized in Figure 11 is in perfect 

agreement with the results of the K-means clustering (cf. 

Fig. 1). Hence, the clear separation in the three sets is 

disclosed through the supervised leaning by NN and 

SVM cannot be verified neither by clustering nor by 

partial ordering methodology. 

The slight dominance of Set3 over Set2 is not 

indicated, it is discussed in more detail in Sect. 3. 

Correspondingly the internal structure within Set1 is not 

represented. 

Section 3.4 shows that in the case of so many 

elements in each set (i-set, i-ver, i-vir) , the effect of 

elements in the ”nose” seems to play a minor role. These 

elements contribute slightly to incomparabilities, but do 

not change the dominance values. The reason is that 

these elements are mainly “in-between”-elements. 

Elements above the ”nose” (i-vir) are still connected with 

elements below the ”nose” (i-ver) , independently 

whether elements in the ”nose” are eliminated or not.  

Section 3.5 shows, based on optical inspection of the 

corresponding Hasse diagrams that at maximum the i-set 

could be further partitioned, although a complete 

dominance cannot be obtained.  

The interplay between ranking studies and 

classification is emphasized. Hence, researchers being 

interested in ranking may additionally be interested in 

classification. The present study suggests that partial 

ordering may be helpful also in this second aspect. This 

can be thought of as being comfortable for any user. 

However, still more experience and work is needed to 

further elucidate how, e.g., NN/SVM and partial order 

methodology can supplement each other.  Thus, in order 

further to elucidate the use of partial ordering for 

classification studies it appears appropriate to 

investigating the stability of the dominance and 

separability matrices with respect to data uncertainty.  

The application of dominance and separability 

matrices implies a further critical point: The central point 

in many classification algorithms is the metric 

information inherent in the data matrix. By adoption of 

the concept of dominance and separability matrices, 

however, metric information is lost. 

A possible way to some extent to recover the metric 

information, will be to consider not just the poset of 

observed flowers, but to embed this into a larger poset 

built upon the set of all profiles (combination of values) 

obtained by discretizing the input variables in a 

sufficiently fine way (see for example papers by Fattore 

and Maggino, [26] Fattore, [19]). Based on this 

construction, the mutual ranking probability matrix of the 

observed profiles, might lead to better separation of 

classes. However, enlarging the poset unequivocally 

leads to more difficult computations. Thus, instead of the 

dominance- and separability matrices a matrix of mutual 

ranking probabilities could be applied to decide whether 

or not a linear sum or a complete disjoint union could be 

stated. However, this procedure is on the one side 

computationally difficult, and, on the other side, 

especially the poset of all profiles is losing their 

structural information, which is evident, if an object 

oriented poset is applied, as in the case studied here. 

Therefore, we postpone this kind of analysis for a further 

publication. 
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