
Informatica 34 (2010) 3–18 3

Recent Advances in Computational Linguistics

Yulia Ledeneva
Autonomous University of the State of Mexico
Santiago Tianguistenco, Mexico
E-mail: yledeneva@yahoo.com

Grigori Sidorov
National Polytechnic Institute
D.F., Mexico
E-mail: sidorov@cic.ipn.mx

Keywords: computational linguistics, natural language processing, computer science, information retrieval, question
answering, text summarization

Received: February 23, 2009

In this paper, we present an overview of recent advances in selected areas of computational linguistics.
We discuss relation of traditional levels of language – phonetics/phonology, morphology, syntax,
semantics, pragmatics, and discourse – to the areas of computational linguistics research. Then the
discussion about the development of the systems of automatic morphological analysis is given. We
present various morphological classifications of languages, discuss the models that are necessary for
this type of systems, and then argue that an approach based on “analysis through generation” gives
several advantages during development and the grammar models that are used. After this, we discuss
some popular application areas like information retrieval, question answering, text summarization and
text generation. Finally, usage of graph methods in computational linguistics is dealt with.

Povzetek: Podan je pregled računalniškega jezikoslovja.

1 Introduction
In this paper, we present an overview of recent advances
in selected areas of computational linguistics (CL).

The objective of computational linguistics is to
develop models of language that can be implemented in
computers, i.e., the models with certain degree of
formalism, and to develop applications that deal with
computer tasks related to human language, like
development of software for grammar correction, word
sense disambiguation, compilation of dictionaries and
corpora, intelligent information retrieval, automatic
translation from one language to another, etc. Thus,
computational linguistics has two sides: on the one hand,
it is part of linguistics; on the other hand, it is part of
computer science.

In this paper, we first discuss the relation of
traditional levels of language – phonetics/phonology,
morphology, syntax, semantics, pragmatics, and
discourse – to the areas of computational linguistics
research.

Then various issues related to automatic
morphological analysis are presented. We remind
morphological classification of languages and discuss the
models that are necessary for development of the system
of automatic morphological analysis. We argue that the
usage of approach known as “analysis through
generation” can significantly reduce the time and effort
during development and allows for usage of intuitively
clear grammar models.

After this we present most popular CL application areas:

 Information Retrieval (IR) consists of finding
documents of an unstructured nature that satisfies
an information need from within large collections
of documents usually in local computer or in the
Internet. This area overtakes traditional database
searching, becoming the dominant form of
information access. Now hundreds of millions of
people use IR systems every day, when they use a
web search engine or search their emails.

 Question Answering (QA) is a complex task that
combines techniques from NLP, IR and machine
learning. The main aim of QA is to localize the
correct answer to a question written in natural
language in a non-structured collection of
documents. Systems of QA look like a search
engine, where the input to the system is a question
in natural language and the output is the answer to
the question (not a list of entire documents like in
IR).

 Text summarization is a popular application that
allows for reduction of text size without significant
loose of the content. Extractive and abstractive
methods are briefly compared; resulting summary
evaluation problem is addressed.

 Text generation consists in generation of coherent
text from raw data, usually in a specific domain.

The paper finishes with discussion of application of
graph methods in computational linguistics. Graph

4 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

methods are widely used in modern research in CL. Text
representation as graphs and graph ranking algorithms
are discussed.

2 Levels of language and areas of
computational linguistic research

Computational linguistic research is correlated with
traditional levels of language that are commonly
accepted in general linguistics. These levels are:

 Phonetics/phonology,
 Morphology,
 Syntax,
 Semantics,
 Pragmatics, and
 Discourse.

At the phonetic level, we analyze the phones
(sounds), from two points of view: 1) as a physical
phenomenon; here we are interested in its spectrum and
other physical characteristics, 2) as an articulatory
phenomenon, i.e., the position of the pronunciation
organs that generate the specific sound (namely, the
sound with specific physical characteristics). At the
phonological level, we interpret these physical or
articulatory features as phonological characteristics and
their values. For example, the feature “vibration of the
vocal cords” with the values “vibrating” or “not
vibrating”; or the feature “mode of the obstacle” with the
values like “explosive”, “sibilant”, “affricate”, etc. By
phonological features we mean the features that depend
on the given phonetic system, for example, long vs. short
vowels are different phonemes in English, but they are
not in many other languages, for example, Spanish,
Russian, etc. So, the vowel duration is phonological
feature in English and it is not in the mentioned
languages.

The morphological level deals with word structure
and grammar categories that exist in languages (or in the
given language) and the expression of these grammar
categories within words.

The syntactic level studies relations between words
in sentences and functions of words in a sentence, like
subject, direct object, etc.

The semantic level is related to the concept of
meaning, its representation and description. Generally
speaking, the meaning can be found at any other level,
see below the discussion about the limits of the levels.

At the pragmatic level, the relationship between the
meaning of the text and the real world is considered. For
example, in indirect speech acts, when the phrase “Can
you pass me the salt?” in fact is a polite mode of asking
the salt, and it is not a question about a physical ability to
pick it up.

And finally, the discourse level is related to analysis
of the relationship between sentences in discourse. For
example, at this level we can find the phenomenon of
anaphora, when the task is to find out to which possible
antecedent (noun) a pronoun refers; or phenomenon of

ellipsis, when some substructure is omitted but can be
restored by reader on the basis of the previous context.

Note that there are no strict criteria for level
distinction: these levels are more like focus of research.
That is why there are many intersections between levels,
for example, the meaning, being part of the semantic
level, can be observed at the syntactic or morphological
levels, but still, if we focus on morphemes or syntactic
constructions, though they have meaning, we will not
consider them as belonging to the semantic level. If we
consider the interpretation of syntactic relations or lexical
meaning, then we deal with semantics.

Now, let us have a look at the computer side of
computational linguistics. Among the most widely
represented modern directions of research in
computational linguistics we can mention:

1. Speech recognition and synthesis,
2. Morphological analysis of a variety of languages

(say, morphological analysis in English is rather
simple, but there are languages with much more
complex morphological structure),

3. Grammar formalisms that allows for
development of parsing programs,

4. Interpretation of syntactic relations as semantic
roles,

5. Development of specialized lexical resources
(say, WordNet or FrameNet),

6. Word sense disambiguation,
7. Automatic anaphora resolution, among others.

The correspondence between these directions of
research and traditional linguistic levels is pretty
obvious. For example, the research directions 4, 5, and 6
are attempts to invoke semantics in text analysis.

It should be mentioned that it is useful to distinguish
between methods and areas of research. The areas of
research are related to the mentioned language levels or
to specific applications, see below. The methods of
research are related to particular methods that are used.
The tendency in modern computational linguistics as far
as methods are concerned is to apply machine learning
techniques accompanied with processing of huge amount
of data, available usually in Internet. Note that each
research area can have additional standard resources
specific for this area.

Another important dichotomy is related to distinction
of procedural and declarative knowledge, which in case
of computational linguistics corresponds to the
distinction between development of algorithms (or
methods) and development of language resources (or
data).

From the list of the seven mentioned research
directions, number 5 (development of specialized lexical
resources) represents a direct development of resources.
The majority of other research directions are dedicated to
methods. In case when methods are based on linguistic
resources, we call these methods knowledge rich. If
developed algorithms do not use any linguistic resource
then we call them knowledge poor. Note that purely
statistic algorithms are knowledge poor when they use
raw data (raw corpora). If a statistic algorithm uses

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 5

marked data, then it uses knowledge coded into a corpus,
and, thus, it becomes knowledge rich.

Note that all these distinctions are basically
tendencies, i.e., usually there is no clear representative of
each member of a given class.

3 Automatic morphological analysis
As an example of implementation of a linguistic
processing task let us discuss a problem of the automatic
morphological analysis.

There exist many different models of the automatic
morphological analysis for different languages. One of
the most famous models is the two-level model
(KIMMO) suggested by Kimmo Koskenniemi [Kos85];
there are other models that focus on different grammar
phenomena or processing scheme [Gel00, Gel03, Hau99,
Sid96, Sed01].

Morphological analysis is a procedure that has as an
input a word form, and gives as an output a set of
grammemes1 that corresponds to this input. Sometimes, it
is accompanied with normalization (lemmatization),
when we also obtain lemma (normalized word form), that
is usually presented as an entry in the dictionaries, for
example, take is lemma for took, taken, take, taking,
takes.

3.1 Morphological classification of
languages

First of all, let us discuss the differences related to
morphological structure of languages, because it is
directly related to the morphological processing
algorithms.

There are two well-known classifications of
languages based on their morphological characteristics.
The first one is centered on the predominant usage of
auxiliary words vs. usage of affixes (grammar
morphemes). According to this classification the
languages can be analytic, when auxiliary words are
predominant (say Chinese, English); or synthetic, when
affixes are used in the majority of cases in the language
(say Russian, Turk). Sometimes it is said that analytic
languages have “poor” morphology in a sense that words
do not have many affixes, while the synthetic languages
have “rich” morphology. Again, these are tendencies,
i.e., a language can have some deviations from the
predominant tendency.

Sometimes, this classification is enriched by adding
categories of isolating and polysynthetic languages. A
language is called isolating if practically no affixes are
used, like in Chinese. If we compare it with English, the
latter still keeps using some affixes, for example, for
plural in nouns, or for past indefinite tense in verbs.
Polysynthetic languages are languages where not only
affixes are added to a stem, but also other syntactically
depending word stems. Thus, several lexical stems are

1 Grammeme is a value of the grammar category, for example,
singular and plural are grammemes of the category number,
etc.

combined within one word. An example of these
languages is Chukchi or some North American Indian
languages.

Other morphological classification of languages is
applied to synthetic languages and it is based on the
predominant morphological technique: agglutination vs.
flexion. Here once again we are speaking about
tendencies: a language can have some features from one
class, and some features from the other class.

We say that the language is agglutinative if:

1. Each grammar morpheme expresses exactly one
grammeme (value of a grammar category).

2. There are no stem alternations or stem
alternations are subjected to very regular
changes that do not presume any knowledge of
specific stem type, for example, vowel harmony.

3. Morphemes are concatenated mechanically
(agglutinated).

4. The stem usually exists as a separate word
without any additional concatenation with
affixes.

Examples of the agglutinative languages are Turk
and the similar ones – Kazakh, Kyrgyz, etc., Hungarian.

On the other hand, inflective languages have the
following features:

1. Each grammar morpheme can express various
grammemes (values of grammar categories), for
example, the flexion -mos in Spanish expresses
grammemes of person(first) and number(plural), among
others. Usually, only one grammar morpheme exists in a
word.

2. Stem alternations are not predictable. i.e., we
should know if this specific stem should be alternated or
not.

3. Morphemes can be concatenated with certain
irregular morphonological processes at the connection
point.

4. Stem usually does not exist without grammar
morphemes. Note that in inflective languages it is
common the usage of morpheme (empty morpheme),
that expresses some grammemes by default (usually,
most common grammemes like singular, third person,
etc).

Examples of the inflective languages are Slavic
languages (Russian, Czech, Polish, etc.).

So, different languages have different morphological
tendencies. Computer methods of analysis that are
perfectly suitable for languages with poor morphology
(like English) or with agglutinative morphology (like
Turk) can be not the best methods for inflective
languages (like Russian).

Note that morphological system of inflective
languages is finite and it is not very vast, so any method
of analysis gives correct results, but not all methods are
equally convenient and easy to implement.

The morphology of agglutinative languages is also
finite, thought the number of possible word forms is
much greater than in an inflective language. Still, since

6 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

the agglutinative morphology is much more regular than
the inflective morphology, it is easier to develop
corresponding processing algorithms.

3.2 Models for automatic morphological
analysis

Our next step is to find out what models or what types of
models are necessary for morphological processing.

Speaking about automatic morphological analysis,
we should take into consideration three types of models:

− Model of analysis (procedure of analysis).
− Model of grammar (morphology) of a given

language. This model consists in assigning of
grammar classes to words that define the unique
word paradigm (=set of affixes and stem
alternations).

− Computer implementation, i.e., the used formalism.

3.2.1 Model of analysis
As far as model of analysis is concerned, there are two
main possibilities: store all word forms in a database or
implement some processing algorithm.

One extreme point is storing all grammatical forms
in a dictionary (database). Such method of analysis is
known as “bag of words”. This method is useful for
inflective languages, but it is not recommended for
agglutinative or polysynthetic ones. Modern computers
have the possibility of storing large databases containing
all grammatical forms for inflective languages (a rough
approximation for Spanish and Russian is 20 to 50
megabytes). Note that we anyway need an algorithm for
generation of these word forms.

In our opinion, more sophisticated algorithms that
allow for reducing the dictionary size to, say, 1
megabyte, are preferable. Indeed, a morphological
analyzer is usually used together with a syntactic parser,
semantic analyzer and reasoning or retrieval engine, so
freeing physical memory for these modules is highly
desirable – of course, the use of large virtual memory
makes simultaneous access to very large data structures
possible, but it does not make it faster.

Algorithmic (non-“bag-of-words”) solutions have a
number of additional advantages. For example, such
algorithms have the possibility to recognize unknown
(new) words. This is a crucial feature for a
morphological analyzer since new words constantly
appear in the languages, not speaking of possible
incompleteness of the dictionary.

Obviously, the algorithmic processing implies
separation of possible flexion and possible stem in the
input word form. Usually, we use programming cycle
and try all possible divisions of the input word. After
that, there are two possibilities for algorithmic
processing. These possibilities are:

− Use straight forward processing, i.e., we use
traditional algorithmic scheme of conditions and
cycles, or

− Use a trick known as “analysis through generation”
(see below), that saves a lot of work in code writing
and allows the usage of grammar models oriented
for generation. Note that all traditional grammar
models are oriented to generation.

Another dichotomy related to the models of analysis is:
store the stems with the corresponding grammar
information in the dictionary or our algorithm will guess
this grammar information. If we store the data then our
algorithm will be exact. If we try to infer the grammar
properties of a stem, then our algorithm will guess and it
will not be exact, i.e., sometimes it will guess incorrectly.

3.2.2 Model of grammar
If we prefer the algorithmic processing, then we should
have a model of grammar (morphology). It is necessary
for defining what paradigms (sets of flexions and regular
stem alternations) are associated with each word.

It is desirable to maintain an existing grammar
model for a given language, if there is any, of course. It
makes the algorithm development much easier and faster.
Note that traditional grammar models are oriented to
generation process. Usually, the speakers of a language
consider these models intuitively clear.

As an alternative solution, we can develop an
algorithm that will transform some traditional
morphological description into a description that we
would like to have for our algorithm. Note, that if we
have an exact algorithm of conversion, these two models
are equivalent in the sense that they represent the same
information. Still, the grammar information is presented
in different ways. Thus, from this point of view of a
human, the traditional model usually is much more
comprehensive. Let us remind that they are oriented to
generation, while the purpose of the morphological
analysis is analysis, i.e., it is a procedure with exactly
opposite direction. We will show later that we can avoid
developing a conversion algorithm using the approach of
“analysis through generation”. This approach substitutes
the process of analysis with the process of generation.
Generally speaking, generation is much simpler than
analysis because we do not have so many possible
combinations to process.

3.2.3 Computer implementation
In our opinion, any computer implementation is

acceptable. It can be direct programming, or finite state
automata, or transducers, etc. All of them give equivalent
results. Mainly, the choice of the implementation
depends on the resources available for the development
and the programming skills of the developers.

3.3 Method “analysis through generation”
In this section, we discuss how to develop an

automatic morphological analysis system for an
inflective language spending less effort and applying
more intuitive and flexible morphological models. We
show that the use of not so straightforward method –
analysis through generation – can greatly simplify the

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 7

analysis procedure and allows using morphological
models that are much more similar to the traditional
grammars.

“Analysis through generation” is an approach to
analysis when some modules formulate hypothesis of
analysis and other modules verify them using generation.

We first describe the suggested method (types of
information, types of morphological models, etc.) and
then briefly discuss its implementation with examples
from Russian language.

The main idea of analysis through generation applied
to morphological analysis is to avoid development of
stem transformation rules in analysis and to use instead
the generation module. Implementation of this idea
requires storing in the morphological dictionary of all
stems for each word with the corresponding information.

As we have mentioned, the main problem of
automatic morphological analysis of inflective languages
is usually stem alternations. The direct way to resolve
this problem is constructing the rules that take into
account all possible stem alternations during the analysis
process; for example, for Russian the number of such
rules is about a thousand [Mal85]. However, such rules
do not have any correspondence in traditional grammars;
in addition, they have no intuitive correspondence in
language knowledge; finally, they are too many.

Another possibility to handle alternations is to store
all stems in the dictionary, together with the information
on their possible grammatical categories; this method
was used for Russian [Gel92] and for Czech [Sed01]. We
also adopt this possibility, but propose a different
technique for treatment of grammatical information: our
technique is dynamic while the techniques described in
[Gel92, Sed01] are static. As we mentioned we use
“analysis through generation” technique. The model
based on this approach uses 50 grammar classes
presented in the corresponding traditional grammars,
while the systems that developed the algorithm for
grammar classes’ transformation ([Gel92], [Sed01]) had
about 1,000 classes that do not have any intuitive
correspondence in traditional grammars.

In the next subsections, we describe the types of
morphological information we use; then we discuss the
morphological models (and the corresponding
algorithms) we have used to implement the method; and
finally, we describe the functioning of our method:
analysis, generation, and treatment of unknown (new)
words.

3.3.1 Types of grammatical information
We use two types of grammatical information:

 Stem dictionary and
 List of grammatical categories and corresponding

grammemes.

The information about the stems is stored in the
morphological dictionary. This information is basically
the data needed for generation, such as:

 Part of speech,
 Presence of alternations,

 Grammatical type (in Russian, there are three genders
and for each gender there are several word formation
types: say, for feminine there are 7 types, etc.),

 Special marks: for example, in Russian some nouns
have two forms of the prepositional case (шкафу
versus шкафе ‘(in) wardrobe’ versus ‘(about)
wardrobe’), which should be marked in the dictionary.

We explicitly store in the dictionary all variants of stems
as independent forms, together with the stem number
(first stem, second stem, etc.). In Russian, nouns and
adjectives with alternations have two possible stems,
while verbs can have up to four stems.

Another type of information is a list of grammatical
categories and corresponding grammemes. Thus, any
word form is characterized by a set of grammemes. For
example, for a Russian noun this set contains a value of
case and of number; for a Russian full adjective it is a
value of case, number, and gender, etc.

3.3.2 Types of morphological models
Three morphological models are used:

 Correspondence between flexions and grammemes,
 Correspondence between stems and grammemes,
 Correspondence between alternating stems of the same

lexeme.

The first model establishes the correspondence
between flexions and sets of grammemes, taking into
account different grammatical types fixed in the
dictionary. In the process of analysis, we use the
correspondence “flexions sets of grammemes”, that is
used to formulate hypothesis; and in the process of
generation, the correspondence “sets of grammemes
flexions”, that is used to verify hypothesis.

A similar correspondence is established between the
sets of grammemes and the types of stems; however, this
correspondence is used only for generation. For example,
if a Russian masculine noun of a certain grammar type
has a stem alternation, then the first stem is used for all
forms except for genitive (case) plural, for which the
second stem is used. Note that corresponding model for
analysis is unnecessary, which makes our method
simpler than direct analysis.

To be able to generate all forms starting from a given
form, it is necessary to be able to obtain all variants of
stems from the given stem. There are two ways to do
this: static and dynamic, which have their own pros and
contras. The static method implies storing in the
dictionary together with the stems the correspondence
between them (e.g., each stem has a unique identifier by
which stems are linked within the dictionary). Storing the
explicit links increases the size of the dictionary.

We propose to do this dynamically. Namely, the
algorithm of constructing all stems from a given stem is
to be implemented. In fact, it must be implemented
anyway since it is used to compile the dictionary of
stems. It is sufficient to develop the algorithm for
constructing the first stem (that corresponds to the
normalized form, such as infinitive) from any other stem,

8 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

and any other stem from the first stem. In this way,
starting from any stem we can generate any other stem.
The difference between static and dynamic method is
that in the former case, the algorithm is applied during
the compile time (when the dictionary is built), while in
the latter case, during runtime.

Note that the rules of these algorithms are different
from the rules that have to be developed to implement
analysis directly. For Russian, we use about 50 rules,
intuitively so clear that in fact any person learning
Russian is aware of these rules of stem construction.
Here is an example of a stem transformation rule:

 -VC, * -C

which means: if the stem ends in a vowel (V) following
by a consonant (C) and the stem type contains the
symbol “*” then remove this vowel. Being applied to the
first stem of the noun молоток ‘hammer’, the rule gives
the stem молотк-(а) ‘of hammer’.

This contrasts with about 1,000 rules necessary for
direct analysis, which in addition are very superficial and
anti-intuitive. For example, to analyze a non-first-stem
word, [Mal85] uses rules that try to invert the effect of
the mentioned rule: if the stem ends in a consonant, try to
insert a vowel before it and look up each resulting
hypothetical stem in the dictionary: for молотк-(а), try
молотек-, молоток-, etc. This also slows down the
system performance.

Two considerations are related to the simplicity of
our rules. First, we use the information about the type of
the stem stored in the dictionary. Second, often
generation of a non-first stem from the first one is
simpler than vice versa. More precisely, the stem that
appears in the dictionaries for a given language is the one
that allows simpler generation of other stems.

3.3.3 Data preparation
Our method needs some preliminary work of data
preparation, carrying out the following main steps:

 Describe and classify all words of the given language
into unique grammatical classes (fortunately, for many
languages this work is already done by traditional
grammar writers);

 Convert the information about words into a stem
dictionary (generating only the first stem);

 Apply the algorithms of stem generation (from the first
stem to other stems) to generate all stems;

 Generate the special marks and the stem numbers for
each (non-first) stem.

To perform the last two steps, the dictionary record
generated for the first stem is duplicated, the stem is
transformed into the required non-first stem, and the
mark with the stem number is added.

3.3.4 Generation process
The generation process is simple. Given the data from
the dictionary (including the stem and its number) and a
set of grammemes, it is required to build a word form of
the same lexeme that has the given set of grammemes.

Using the models we have constructed, the flexion is
chosen and the necessary stem is generated (if a non-first
stem was given, then we generate the first stem and from
it, the necessary stem). Finally, we concatenate the stem
and the flexion.

If necessary, this process is repeated several times
for adding more than one flexion to the stem. For
example, Russian participles (which are verbal forms)
have the same flexions as adjectives (which express the
number and gender) and also special suffixes (which
indicate that this is a participle), i.e., they are
concatenation of a stem and two affixes: a suffix and a
flexion (пис-ать пиш-ущ-ий ‘writ-e’ ‘writt-en’).
In this case, we first generate the stem of participle by
adding the suffix (we use the information from the
dictionary on the properties of the corresponding verbal
stem) and then change the dictionary information to the
information for an adjective of the corresponding type. In
case of Russian, such recursion is limited to three levels
(one more level is added due to the reflexive verbs that
have a postfix morpheme -ся: пиш-ущ-ий-ся ‘is
written’).

3.3.5 Analysis process
Given an input string (a word form), we analyze it in the
following way:

1. The letters are separated one by one from right to
left to get the possible flexion (the zero flexion is
tried at first): given stopping, we try - (zero
flexion); at the next iterations -g, -ng, -ing, -ping,
etc. are tried.

2. If the flexion (here -ing) is found in the list of
possible flexions, we apply the algorithm “flexions
 sets of grammemes”, which gives us a hypothesis
about the possible set of grammemes. Here it would
be “verb, participle”.

3. Then we obtain the information for the rest of the
form, i.e., the potential stem, here stopp- from the
stem dictionary.

4. Finally, we generate the corresponding grammatical
form according to our hypothesis and the obtained
dictionary information. Here, the generated past
participle of the verbal stem stopp- is stopping.

5. If the obtained result coincides with the input form,
then the hypothesis is accepted. Otherwise, the
process repeats from the step 1.

If a word form consists of several morphemes (a stem
and several affixes), then the analysis process is
recursive, precisely as generation. In case of Russian,
there are tree levels of recursion.

As one can see, our method of analysis is simple and
invokes generation. Additional modules are the model
“flexions sets of grammemes” and the module of
interaction between different models.

3.3.6 Treatment of unknown words
The treatment of unknown words is also simple. We

apply the same procedure of analysis to single out the
hypothetical stem. If the stem is not found in the

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 9

dictionary, we use the longest match stem (matching the
strings from right to left) compatible with the given set of
affixes. The longest match stem is the stem present in the
dictionary that has as long as possible ending substring in
common with the given stem (and is compatible with
already separated affixes).

In this way, for example, an (unknown) input string
sortifies will be analyzed as classifies: verb, 3rd person,
present, singular, given that classifi- is its longest match
stem for sortifi- (matching by -ifi-) compatible with the
affix -es.

To facilitate this search, we have another instance of
the stem dictionary in inverse order, i.e., stems are
ordered lexicographically from right to left.

Note that the systems like [Gel00, Gel92] based on
the left-to-right order of analysis (first separating the
stem and only then analyzing the resting affixes) have to
imitate this process with a special dictionary of, say, a
list of 5-letter stem endings, since in such systems the
main stem dictionary is ordered by direct order (left to
right, by first letters).

4 Computational linguistic
applications

This section is divided into following subsections
that correspond to each application of CL: Information
Retrieval, Question Answering, Text Summarization, and
Text Generation.

4.1 Information retrieval
Information Retrieval (IR) according to [Man07,

Bae99] consists of finding documents of an unstructured
nature that satisfies an information need within large
collections of documents usually on a computer or on the
internet. This area overtakes traditional database
searching, becoming the dominant form of information
access. Now hundreds of millions of people use IR
systems every day when they use a web search engine or
search their emails.

The huge amount of available electronic documents
in Internet has motivated the development of very good
information retrieval systems, see NTCIR (NII Test
Collection for Information Retrieval) and Cross-
Language Evaluation Forum (CLEF) web pages.

Information Retrieval models represent documents
or collection of documents by weighting terms appearing
in each document. Then, two directions are traced for
further advances: new methods for weighting and new
methods for term selection.

First, we look through classical models briefly, and
then we describe recently proposed methods. IR classical
models are:

– Vector Space Model [Sal88],
– Model based on term frequency (tf) [Luh57].
– Model based on inverse document frequency (idf)

[Sal88],
– Model based tf-idf [Sal88],
– Probabilistic Models [Fuhr92],
– Transition Point [Pin06],

– n-grams [Man99].

Recent improvements to the following models should
be mentioned. As far as term selection is concerned:
MFS [Gar04, Gar06], Collocations [Bol04a, Bol04b,
Bol05, Bol08], Passages [Yin07].

As far as weighting of terms is concerned: Entropy,
Transition Point enrichment approach.

Various tasks where IR methods can be used are:
– Monolingual Document Retrieval,
– Multilingual Document Retrieval,
– Interactive Cross-Language Retrieval,
– Cross-Language Image, Speech and Video

Retrieval,
– Cross-Language Geographical Information

Retrieval,
– Domain-Specific Data Retrieval (Web, Medical,

Scientific digital corpora) [Van08].

4.2 Question answering
Question Answering (QA) retrieves the correct

answer to a question written in natural language from
collection of documents. Systems of QA look like a
search engine where the input to the system is a question
in natural language and the output is the answer to the
question.

The main goals of the state-of-the-art systems are
targeted to improve QA systems performance, help
humans in the assessment of QA systems output,
improve systems self-score, develop better criteria for
collaborative systems, deal with different types of
questions.

There are several workshops and forums where main
tasks of QA are proposed and discussed. For example,
researchers compete to find the best solution for the
following tasks proposed in Cross-Language Evaluation
Forum (CLEF), NTCIR (NII Test Collection for
Information Retrieval) and Text REtrieval Conference
(TREC): Monolingual task, Multilingual task, Cross-
Language task, Robust task.

And more specific tasks:
– Answer validation task,
– QA over speech transcription of seminars,

meetings, telephone conversations, etc.
– QA on speech transcript where the answers to

factual questions are extracted from spontaneous
speech transcriptions.

– QA using machine translation systems,
– QA for “Other” questions, i.e. retrieval of other

interesting facts about a topic,
– Time-constrained task (realized in real time),
– QA using Wikipedia,
– Event-targeted task on a heterogeneous document

collection of news article and Wikipedia,
– QA using document collections with already

disambiguated word senses in order to study their
contribution to QA performance,

– QA using passage retrieval systems, etc.

10 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

Each task can propose different solutions depending on
the question category. Actually, the following categories
are considered: factoid, definition, closed list and topic-
related. Factoid questions are fact-based questions,
asking for the name of a person, location, organization,
time, measure, count, object, the extent of something, the
day on which something happened. Definition question
are questions such as “What/Who is?”, and are divided
into the following subtypes: person, organization, object,
and “other” questions. Closed list questions are questions
that require in one single answer the requested number of
items. Such questions may contain a temporal restriction.
Topic related questions group questions which are related
to the same topic and possibly contain co-references
between one question and the others. Topics can be
named entities, events, objects, natural phenomena, etc.

Answer validation task develops and evaluates a
special module which validates the correctness of the
answers given by a QA system. The basic idea is that
once a pair (answer and snippet) is returned by a QA
system, a hypothesis is built by turning the pair (question
and answer) into an affirmative form. If the related text
semantically entails this hypothesis, then the answer is
expected to be correct [Peñ06, Peñ07, Peñ08, Tel08].

Machine Translation Systems are broadly
implemented for Cross-Language QA [Ace06]. In recent
studies, the negative effect of machine translation on the
accuracy of Cross-Language QA was demonstrated.
[Fer07]. As a result, Cross-Language QA Systems are
modified [Ace07, Ace09].

QA over speech transcription provides a framework
in which QA systems can be evaluated in a real scenario,
where the answers of oral and written questions (factual
and definitional) in different languages have to be
extracted from speech transcriptions (manual and
automatic transcriptions) in the respective language. The
particular scenario consists in answering oral and written
questions related to speech presentations. As an example,
QA system automatically answers in Chinese about
travel information. This system integrates a user
interface, speech synthesis and recognition, question
analysis, QA database retrieval, document processing
and preprocessing, and some databases [Hu06].

QA systems for “Other” questions generally use
question generation techniques, predetermine patterns,
interesting keywords, combination of methods based on
patterns and keywords, or exploring external knowledge
sources like nuggets [Voo04a, Voo04b, Voo04c,
Voo05a, Voo05b, TREC, Raz07].

4.3 Text summarization
Information retrieval systems (for example, Google)

show part of the text where the words of the query
appears. With the extracted part, the user has to decide if
a document is interesting even if this part does not have
useful information for the user, so it is necessary
download and read each retrieved document until the
user finds satisfactory information. A solution for such
problem is to extract the important parts of the document
which is the task of automatic text summarization.

More applications of automatic text summarization
are, for example, summaries of news and scientific
articles, summaries of electronic mails, summaries of
different electronic information which later can be sent
as SMS, summaries of found documents and pages
returned by a retrieved system.

From one side, there is a single-document
summarization which implies to communicate the
principal information of one specific document, and from
another side—a multi-document summarization which
transmits the main ideas of a collection of documents.
There are two options to achieve a summarization by
computer: text abstraction and text extraction [Lin97].
Text abstraction examines a given text using linguistic
methods which interpret a text and find new concepts to
describe it. And then new text is generated which will be
shorter with the same content of information. Text
extraction means extract parts (words, sequences,
sentences, paragraphs, etc.) of a given text based on
statistic, linguistic or heuristic methods, and then join
them to new text which will be shorter with the same
content of information.

According to the classical point of view, there are
three stages in automated text summarization [Hov03].
The first stage is performed by topic identification where
almost all systems employ several independent modules.
Each module assigns a score to each unit of input (word,
sentence, or longer passage); then a combination module
combines the scores for each unit to assign a single
integrates score to it; finally, the system returns the n
highest-scoring units, according to the summary length
requested by the user. The performance of topic
identification modules is usually measured using Recall
and Precision scores.

The second stage denotes as the stage of
interpretation. This stage distinguishes extract-type
summarization systems from abstract-type systems.
During the interpretation the topics identified as
important are fused, represented in new terms, and
expressed using a new formulation, using concepts or
words not found in the original text. No system can
perform interpretation without prior knowledge about the
domain; by definition, it must interpret the input in term
of something extraneous to the text. But acquisition deep
enough prior domain knowledge is so difficult that
summarizers to date have only attempted it in a small
way. So, the disadvantage of this stage remains blocked
by the problem of domain knowledge acquisition.

Summary generation is the third stage of text
summarization. When the summary content has been
created in internal notation, and thus requires the
techniques of natural language generation, namely text
planning, sentence planning, and sentence realization.

In 2008, new scheme was proposed by Ledeneva
[Led08a] which include four steps for composing a text
summary:

 Term selection: during this step one should decide
what units will count as terms are, for example, they
can be words, n-grams or phrases.

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 11

 Term weighting: this is a process of weighting (or
estimating) individual terms.

 Sentence weighting: the process of assigning numerical
measure of usefulness to the sentence. For example,
one of the ways to estimate the usefulness of a
sentence is to sum up usefulness weights of individual
terms of which the sentence consists.

 Sentence selection: selects sentences (or other units
selected as final parts of a summary). For example, one
of the ways to select the appropriate sentences is to
assign some numerical measure of usefulness of a
sentence for the summary and then select the best ones.

4.3.1 Extractive text summarization methods
Most works appeared in recent researches are based

on looking for appropriate terms. The most used option is
select words as terms; however is not the only possible
option. Liu et al. [Liu06] uses pairs of syntactically
connected words (basic elements) as atomic features
(terms). Such pairs (which can be thought of as arcs in
the syntactic dependency tree of the sentence) have been
shown to be more precise semantic units than words
[Kos04]. However, while we believe that trying text units
larger than a word is a good idea, extracting the basic
elements from the text requires dependency syntactic
parsing, which is language-dependent. Simpler statistical
methods (cf. the use of n-grams as terms in [Vil06]) may
prove to be more robust and language-independent.

Some approaches of text summaries match semantic
units such as elementary discourse units [Mar01, Sor03],
factoids [Teu04a, Teu04b], information nuggets
[Voo04], basic elements [Liu06], etc. A big disadvantage
of these semantic units is that the detection of these units
is realized manually. For example, information nuggets
are atomic pieces of interesting information about the
target identified by human annotators as vital (required)
or non-vital (acceptable but not required) for the
understanding of the content of a summary.

Factoids are semantic units which represent the
meaning of a sentence. For instance, the sentence “The
police have arrested a white Dutch man” by the union of
the following factoids: “A suspect was arrested”, “The
police did the arresting”, “The suspect is white”, “The
suspect is Dutch”, “The suspect is male”. Factoids are
defined empirically based on the data in the set of
summaries. Usually they are manually made summaries
taken from [Duc]. Factoid definition starts with the
comparison of the information contained in two
summaries, and factoids get added or split as
incrementally other summaries are considered. If two
pieces of information occur together in all summaries
and within the same sentence, they are treated as one
factoid, because differentiation into more than one
factoid would not help us in distinguishing the
summaries. Factoids are labeled with descriptions in
natural language; initially, these are close in wording to
the factoid's occurrence in the first summaries, though
the annotator tries to identify and treat equally
paraphrases of the factoid information when they occur
in other summaries. If (together with various statements

in other summaries) one summary contains “was killed”
and another “was shot dead”, we identify the factoids:
“There was an attack”, “The victim died”, “A gun was
used”. The first summary contains only the first two
factoids, whereas the second contains all three. That way,
the semantic similarity between related sentences can be
expressed. When factoids are identified in the collection
of summaries, most factoids turned out to be independent
of each other. But when dealing with naturally occurring
documents many difficult cases appear, e.g. ambiguous
expressions, slight differences in numbers and meaning,
and inference.

The text is segmented in Elementary Discourse Units
(EDUs) or non-overlapping segments, generally taken as
clauses or clauses like units of a rhetorical relation that
holds between two adjacent spans of text [Mar01,
Car03]. The boundaries of EDUs are determined using
grammatical, lexical, syntactic information of the whole
sentence.

Other possible option proposed by Nenkova in
[Nen06] is Semantic Content Units (SCUs). The
definition of the content unit is somewhat fluid, it can be
a single word but it is never bigger than a sentence
clause. The most important evidence of their presence in
a text is the information expressed in two or more
summaries, or in other words, is the frequency of the
content unit in a text. Other evidence is that these
frequent content units can have different wording (but
the same semantic meaning) what brings difficulties for
language-independent solution.

The concept of lexical chains was first introduced by
Morris and Hirst. Basically, lexical chains exploit the
cohesion among an arbitrary number of related words
[Mor91]. Then, lexical chains are computed in a source
document by grouping (chaining) sets of words that are
semantically related (i.e. have a sense flow) [Bar99,
Sil02]. Identities, synonyms, and hypernym/hyponyms
are the relations among words that might cause them to
be grouped into the same lexical chain. Specifically,
words may be grouped when:

Two noun instances are identical, and are used in the
same sense. (The house on the hill is large. The house is
made of wood.)

Two noun instances are used in the same sense (i.e.,
are synonyms). (The car is fast. My automobile is faster.)

The senses of two noun instances have a
hypernym/hyponym relation between them. (John owns a
car. It is a Toyota.)

The senses of two noun instances are siblings in the
hypernym/hyponym tree. (The truck is fast. The car is
faster.)

In computing lexical chains, the noun instances were
grouped according to the above relations, but each noun
instance must belong to exactly one lexical chain. There
are several difficulties in determining which lexical chain
a particular word instance should join. For instance, a
particular noun instance may correspond to several
different word senses and thus the system must
determine which sense to use (e.g. should a particular
instance of “house” be interpreted as sense 1: dwelling or
sense 2: legislature). In addition, even if the word sense

12 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

of an instance can be determined, it may be possible to
group that instance into several different lexical chains
because it may be related to words in different chains.
For example, the word’s sense may be identical to that of
a word instance in one grouping while having a
hypernym/hyponym relationship with that of a word
instance in another. What must happen is that the words
must be grouped in such a way that the overall grouping
is optimal in that it creates the longest/strongest lexical
chains. It was observed that contention that words are
grouped into a single chain when they are “about” the
same underlying concept. That fact confirms the usage of
lexical chains in text summarization [Bru01, Zho05,
Li07].

Keyphrases, also known as keywords, are linguistic
units, usually, longer than a words but shorter than a full
sentence. There are several kinds of keyphrases ranging
from statistical motivated keyphrases (sequences of
words) to more linguistically motivated ones (that are
defined in according to a grammar). In keyphrases
extraction task, keyphrases are selected from the body of
the input document, without a predefined list. Following
this approach, a document is treated as a set of candidate
phrases and the task is to classify each candidate phrase
as either a keyphrase or nonkeyphrase [Dav07]. When
authors assign keyphrases without a controlled
vocabulary (free text keywords or free index terms),
about 70% to 80% of their keyphrases typically appear
somewhere in the body of their documents [Dav07]. This
suggests the possibility of using author-assigned free-text
keyphrases to train a keyphrases extraction system.

D’Avanzo [Dav07] extracts syntactic patterns using
two ways. The first way focuses on extracting uni-grams
and bi-grams (for instance, noun, and sequences of
adjective and noun, etc.) to describe a precise and well
defined entity. The second way considers longer
sequences of part of speech, often containing verbal
forms (for instance, noun plus verb plus adjective plus
noun) to describe concise events/situations. Once all the
uni-grams, bi-grams, tri-grams, and four-grams are
extracted from the linguistic pre-processor, they are
filtered with the patterns defined above. The result of this
process is a set of patterns that may represent the current
document.

For multi-document summarization, passages are
retrieved using a language model [Yin07]. The goal of
language modeling is to predict the probability of natural
word sequences; or in other words, to put high
probability on word sequences those actually occur and
low probability on word sequences that never occur. The
simplest and most successful basis for language
modeling is the n-gram model.

4.3.2 Abstractive text summarization methods
Abstractive summarization approaches use

information extraction, ontological information,
information fusion, and compression. Automatically
generated abstracts (abstractive summaries) moves the
summarization field from the use of purely extractive
methods to the generation of abstracts that contain

sentences not found in any of the input documents and
can synthesize information across sources. An abstract
contains at least some sentences (or phrases) that do not
exist in the original document. Of course, true abstraction
involves taking the process one step further. Abstraction
involves recognizing that a set of extracted passages
together constitute something new, something that is not
explicitly mentioned in the source, and then replacing
them in the summary with the new concepts. The
requirement that the new material not be in the text
explicitly means that the system must have access to
external information of some kind, such as an ontology
or a knowledge base, and be able to perform combinatory
inference.

Recently, Ledeneva et al. [Led08a, Led08b, Led08c]
and Garcia et al. [Gar08a, Gar08b, Gar09] have
successfully employed the word sequences from the self-
text for detecting the candidate text fragments for
composing the summary.

Ledeneva et al. [Led08a] suggest a typical automatic
extractive summarization approach composed by term
selection, term weighting, sentence weighting and
sentence selection steps. One of the ways to select the
appropriate sentences is to assign some numerical
measure of usefulness of a sentence for the summary and
then select the best ones; the process of assigning these
usefulness weights is called sentence weighting. One of
the ways to estimate the usefulness of a sentence is to
sum up usefulness weights of individual terms of which
the sentence consists; the process of estimating the
individual terms is called term weighting. For this, one
should decide what the terms are: for example, they can
be words; deciding what objects will count as terms is
the task of term selection. Different extractive
summarization methods can be characterized by how
they perform these tasks.

Ledeneva et al. [Led08a, Led08b, Led08c] has
proposed to extract all the frequent grams from the self-
text, but she only considers those that are not contained
(as subsequence) in other frequent grams (maximal
frequent word sequences). In comparison with n-grams,
the Maximal Frequent Sequences (MFS) are attractive
for extractive text summarization since it is not necessary
to define the gram size (n), it means, the length of each
MFS is determined by the self-text. Moreover, the set of
all extracted MFSs is a compact representation all
frequent word sequences, reducing in this way the
dimensionality in a vector space model.

Garcia et al. [Gar08b, Gar09] have extracted all the
sequences of n words (n-grams) from the self-text as
features of its model. In this work, we evaluate the n-
grams and maximal frequent sequences as domain- and
language- independent models for automatic text
summarization. In this work, sentences were extracted
using unsupervised learning approach.

Some other methods are also developed for
abstractive summarization. For example, techniques of
sentence fusion [Dau04, Bar03, Bar05], information
fusion [Bar99], sentence compression [Van04, Mad07],
headline summarization [Sar05], etc.

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 13

4.3.3 Recent applications of text
summarization

We should mention some systems base on
summarization for the following applications:

– Legal texts [Far04, Har04],
– Emails [Cor04, Shr04, Wan04],
– Web pages [Dia06],
– Web documents using mobile devices [Ott06],
– Figures and graphics [Fut04, Car04, Car06],
– News [Eva05, Mck03, Nen05a].

4.3.4 Methods for evaluation of summaries
Up to date, the most recent evaluation system is

ROUGE (Recall-Oriented Understudy for Gisting
Evaluation). ROUGE [Lin03a] was proposed by Lin and
Hovy [Lin04a, Lin04b, Lin04c]. This system calculates
the quality of a summary generated automatically by
comparing to the summary (or several summaries)
created by humans. Specifically, it counts the number of
overlapping different units such as word sequences, word
pairs and n-grams between the computer-generated
summary to be evaluated and the ideal summaries
created by humans. ROUGE includes several automatic
evaluation measures, such as ROUGE-N (n-grams co-
occurrence); ROUGE-L (longest subsequence); ROUGE-
W (weighted longest subsequence); ROUGE-S (skip-
bigram co-occurrence). For each of the measures
(ROUGE-N, ROUGE-L, etc.), ROUGE returns Recall,
Precision and F-measure scores.

Another evaluation schemes was proposed by
Nenkova et al. [Nen04, Pas05, Nen06]. In this scheme,
special terms are annotated using the pyramid scheme—a
procedure specifically designed for comparative analysis
of the content of several texts. The idea of this scheme is
to evaluate presence of each term in all documents of the
collection. The more documents contain the term, the
more important is this term, and consequently it will
have higher score.

4.4 Text generation
Text Generation (TG) automatically produces

linguistically correct texts from a rough data that
represent information in a specific domain, and that are
organized in conventional databases, knowledge bases,
or even being produced as result of some application
processing.

Text generation process is traditionally seen as a
goal-driven communication process. As a consequence,
the final text, being written or spoken, just a single-
clause or a multi-paragraph document, is always an
attempt to address some communicative goal. Starting
from a communicative goal, the generator decides which
information from the original data source should be
conveyed in the generated text. During the generation
process, the communicative goal is refined in more
specific sub-goals and some kind of planning takes place
to progressively convert them together with the original
data to a well-formed and linguistically correct final text.

The whole generation process is traditionally
organized in three specific tasks:

– Content determination is the task of deciding
which chunks of content, collected from the input
data source, will make up the final text. Each
chunk of content represents an indivisible
information unit. These content units are usually
grouped in a semantic unit of higher complexity
for a given application domain. A semantic unit is
called message. Considering for instance a system
that generates soccer reports, the sentences
“Brazilian soccer team has beaten the Argentines
last Sunday” and “Sunday soccer report: Victory
of Brazil over Argentine” represent different
linguistic constructions for the same kind of
message: “Victory”.

– Content organization groups the generated
messages appropriately as units for each level of
linguistic hierarchy: the paragraph, the sentence
and the phrase. In addition, it defines element
ordering within a group for each respective level.
Finally, it is in charge of specifying coordination
and subordination dependencies between these
groupings.

– Surface realization is the task of choosing the
appropriated term and the syntactic construction
for each content unit. This choice is constrained
by lexical and grammatical rules of the language.
Punctuation symbols are defined at this stage as
well.

The applications of this area are usually built using
ad-hoc software engineering practices, lacking a well-
defined development process, standard software
architecture, and the use of worldwide programming
languages. A lot of researches have clarified many
fundamentals issues and conceived solutions that are
robust and scalable enough for practical use [Fon08].

Furthermore, opportunities for practical applications
have multiplied with the information inundation from
relevant Web content sources. Unfortunately, TG
techniques remain virtually unknown and unused by
mainstream and professional computing. This situation is
probably due mainly to the fact that until recently, TG
was built using ad-hoc software engineering practices
with no explicit development process and no standard
software architecture. Reliance on special-purpose
esoteric modeling and implementation languages and
tools is another TG issue. Every system is designed and
implemented following specific domain complexities and
needs and little has been done to change the portrayed
situation. Many realization components have been built
based on different grammatical formalisms and theories
used to describe TG [Elh92].

Recent work [Fon08] describes a new development
approach that leverages the most recent programming
languages and standards of modern software engineering
to enhance the practical use of TG applications. This
work proposes an innovative approach to the
development of TG systems, in which the pipeline of text
generation tasks work as a set of consecutive rule base

14 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

for model transformation. Such methodology for building
applications by applying transformations on models in
different levels of abstraction was recently popularized as
a new software engineering paradigm [Omg01].

5 Graph methods
Graph methods are particularly relevant in the area

of CL. Many language processing applications can be
modeled by means of a graph. These data structures have
the ability to encode in a natural way the meaning and
structure of a cohesive text, and follow closely the
associative or semantic memory representations.

One of the most important methods is TextRank
[Mih04, Mih06]. TextRank has been successfully applied
to three natural language processing tasks: keyword
extraction [Mih04], document summarization [Mih06],
word sense disambiguation [Mih06], and text
classification [Has07] with results competitive with those
of state-of-the-art systems. The strength of the model lies
in the global representation of the context and its ability
to model how the co-occurrence between features might
propagate across the context and affect other distant
features.

5.1 Graph representation of text
To enable the application of graph-based ranking

algorithms to natural language texts, a graph that
represents the text is built, and interconnects words or
other text entities with meaningful relations. The graphs
constructed in this way are centered around the target
text, but can be extended with external graphs, such as
off-the-shelf semantic or associative networks, or other
similar structures automatically derived from large
corpora.

Graph Nodes: Depending on the application at hand,
text units of various sizes and characteristics can be
added as vertices in the graph, e.g. words, collocations,
word senses, entire sentences, entire documents, or
others. Note that the graph-nodes do not have to belong
to the same category.

Graph Edges: Similarly, it is the application that
dictates the type of relations that are used to draw
connections between any two such vertices, e.g. lexical
or semantic relations, measures of text cohesiveness,
contextual overlap, membership of a word in a sentence,
and others.

Algorithm: Regardless of the type and characteristics
of the elements added to the graph, the application of the
ranking algorithms to natural language texts consists of
the following main steps:

– Identify text units that best define the task at hand,
and add them as vertices in the graph.

– Identify relations that connect such text units, and
use these relations to draw edges between vertices
in the graph. Edges can be directed or undirected,
weighted or unweighted.

– Apply a graph-based ranking algorithm to find a
ranking over the nodes in the graph. Iterate the
graph-based ranking algorithm until convergence.

Sort vertices based on their final score. Use the
values attached to each vertex for
ranking/selection decisions.

5.2 Graph ranking algorithms
The basic idea implemented by a random-walk

algorithm is that of “voting” or “recommendation.”
When one vertex links to another one, it is basically
casting a vote for that other vertex. The higher the
number of votes that are cast for a vertex, the higher the
importance of the vertex.

Moreover, the importance of the vertex casting a
vote determines how important the vote itself is, and this
information is also taken into account by the ranking
algorithm. While there are several random-walk
algorithms that have been proposed in the past, we focus
on only one such algorithm, namely PageRank [Bri98],
as it was previously found successful in a number of
applications, including Web link analysis, social
networks, citation analysis, and more recently in several
text processing applications.

Given a graph G = (V, E), let In(Vi) be the set of
vertices that point to vertex Vi (predecessors), and
Out(Vi) be the set of vertices that vertex Vi points to
(successors). The PageRank score associated with the
vertex Vi is defined using a recursive function that
integrates the scores of its predecessors:

)()(

)(
*)1()(

ij VInV j

j
i

VOut

VS
ddVS

(1)
where d is a parameter that is set between 0 and 1.
The score of each vertex is recalculated upon each

iteration based on the new weights that the neighboring
vertices have accumulated. The algorithm terminates
when the convergence point is reached for all the
vertices, meaning that the error rate for each vertex falls
below a pre-defined threshold.

This vertex scoring scheme is based on a random-
walk model, where a walker takes random steps on the
graph, with the walk being modeled as a Markov process.
Under certain conditions (when the graph is acyclic and
irreducible) the model is guaranteed to converge to a
stationary distribution of probabilities associated with the
vertices in the graph. Intuitively, the stationary
probability associated with a vertex represents the
probability of finding the walker at that vertex during the
random-walk, and thus it represents the importance of the
vertex within the graph.

Two of the most used algorithms are PageRank
[Bri98] and HITS (Hyperlinked Induced Topic Search)
[Kle99].

Undirected Graphs: Although traditionally applied
on directed graphs, algorithms for node activation or
ranking can be also applied to undirected graphs. In such
graphs, convergence is usually achieved after a larger
number of iterations, and the final ranking can differ
significantly compared to the ranking obtained on
directed graphs.

Weighted Graphs: When the graphs are built from
natural language texts, they may include multiple or

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 15

partial links between the units (vertices) that are
extracted from text. It may be therefore useful to indicate
and incorporate into the model the “strength” of the
connection between two vertices Vi and Vj as a weight
wij added to the corresponding edge that connects the two
vertices. Consequently, we introduce new formulae for
graph-based ranking that take into account edge weights
when computing the score associated with a vertex in the
graph.

5.3 Graph clustering algorithms
The main purpose of graph clustering algorithms is

calculates clusters for large graphs and to extract
concepts from similar graphs. These algorithms can be
applied in various computational linguistics applications.
For example, word sense disambiguation [Sch98], lexical
acquisition [Ngo08], language separation [Bie06],
taxonomy [Ngo09] and ontology extraction [Ngo09], etc.

The idea of graph clustering algorithm [Ngo09] is to
maximize the flow from the border of each cluster to the
nodes within the cluster while minimizing the flow from
the cluster to the nodes outside of the cluster. The
algorithm uses local information for clustering and
archives a soft clustering of the input graph. The first
advantage of this algorithm consists in efficiently
handling large graphs which permits to obtain promising
results for computational linguistics applications. The
second advantage is that it can be used to extract domain-
specific concepts from different corpora and show that it
computes concepts of high purity.

6 Conclusions
In this paper, we presented an overview of recent

advances in selected areas of computational linguistics.
We discussed relation of traditional levels of language –
phonetics/phonology, morphology, syntax, semantics,
pragmatics, and discourse – to the areas of computational
linguistics research.

The discussion about the development of the systems
of automatic morphological analysis was given. We
presented various morphological classifications of
languages, discussed the models that are necessary for
this type of systems, and then showed that an approach
based on “analysis through generation” gives several
advantages during development and the grammar models
that are used.

After this, we discussed some popular application
areas like information retrieval, question answering, text
summarization and text generation.

Finally, he paper dealt with the usage of graph
methods in computational linguistics.

7 References
[Ace06] Aceves-Perez R., Montes-y-Goméz M.,

Villaseñor-Pineda L. Using n-grams models to
Combine Query Translations in Cross-Language
Question Answering. Springer Verlag 3878,
CICLing 2006.

[Ace07] Aceves-Peréz R., Montes y Gómez M.,
Villaseñor Pineda L. Enhancing Cross-
Language Question Answering by Combining
Multiple Question Translations. Lecture Notes
in Computer Science, Springer-Verlag, vol.
4394, pp. 485–493, 2007.

[Bae99] Baeza-Yates R. Modern Informatio Retrieval.
Addison Wesley Longman Publishing Co. Inc.,
1999.

[Bar99] Barzilay R., Elhadad M. Using lexical chains for
text summarization. In: Inderjeet Mani, Mark T.
Maybury (Eds.), Advances in Automatic Text
Summarization, Cambridge/MA,
London/England: MIT Press, pp. 111–121,
1999.

[Bar03] Barzilay R. Information Fusion for Multi
Document Summarization. Ph.D. thesis.
Columbia University, 2003.

[Bar05] Barzilay R., McKeown K. Sentence Fusion for
Multi Document News Summarization.
Computational Linguistics, Vol. 31, Issue 3, pp.
297–328, ISSN: 0891-2017, 2005.

[Bie06] Biemann, C.: Chinese whispers – an afficient
graph clustering algorithm and its application to
natural language processing. Proc. Of the HLT-
NAACL, 2006.

[Bol04a] Bolshakov I., Gelbukh A. Computational
Linguistics: Models, Resources, Applications.
IPN-UNAM-FCE, ISBN 970-36-0147-2, 2004.

[Bol04b] Bolshakov I. Getting One's First Million...
Collocations. Lecture Notes in Computer
Science, Springer-Verlag, ISSN 0302-9743, vol.
2945, pp. 226–239, 2004.

[Bol05] Bolshakov I., Galicia-Haro S., Gelbukh A.
Detection and Correction of Malapropisms in
Spanish by means of Internet Search. 8th
International Conference Text, Speech and
Dialogue (TSD-2005), Czech Rep. Lecture
Notes in Artificial Intelligence (indexed in
SCIE), ISSN 0302-9743, ISBN 3-540-28789-2,
Springer-Verlag, vol. 3658, pp. 115–122, 2005.

[Bol08] Bolshakov I. Various Criteria of Collocation
Cohesion in Internet: Comparison of Resolving
Power. Computational Linguistics and
Intelligent Text Processing (CICLing-2008,
Israel). Lecture Notes in Computer Science,
Springer-Verlag, vol. 4919, pp. 64–72, 2008.

[Bri98] Brin S., Page L. The anatomy of a large-scale
hypertextual Web search engine. Computer
Networks and ISDN Systems, vol. 30, pp. 1–7,
1998.

[Bru01] Brunn M., Chali Y., Pinchak C. Text
Summarization Using Lexical Chains. Proc. of
Document Understanding Conference 2001,
http://duc.nist.gov/pubs.html#2001.

[Car03] Carlson L., Marcu D., Okurowski M. E.
Building a discourse-tagged corpus in the
framework of Rhetorical Structure Theory. In:
Jan van Kuppevelt and Ronnie Smith, editors,
Current Directions in Discourse and Dialogue.
Kluwer Academic Publishers, 2003.

16 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

[Car04] Carberry S., Elzer S., Green N., McCoy K.,
Chester D. Extending Document Summarization
to Information Graphics. Proc. of the ACL-04
Workshop: Text Summarization Branches Out,
pp. 3–9.

[Car06] Carberry S., Elzer S., Demir S. Information
Graphics: An Untapped Recourse for Digital
Libraries. SIGIR’06, ACM 1-59593-369-
7/06/0008, 2006.

[CLEF] http://clef-qa.itc.it
[CICLing] CICLing. Conference on Intelligent Text

Processing and Computational Linguistics
(2000-2009): www.CICLing.org.

[Cor04] Corston-Oliver S., Ringger E., Gamon M.,
Campbell R. Task-focused Summarization of
emails. Proc. of the ACL-04 Workshop: Text
Summarization Branches Out, pp. 43–50.

[Dau04] Daume H., Marcu D. Generic Sentence Fusion
and Ill-defined Summarization Task. Proc. of
ACL Workshop on Summarization, pp.96–103,
2004.

[Dav07] D’Avanzo E., Elia A., Kuflik T., Vietri S.
LAKE System at DUC-2007. Proc. of
Document Understanding Conference 2007.
http://duc.nist.gov/pubs.html#2007.

[Dia06] Dia Q., Shan J. A New Web Page
Summarization Method. SIGIR’06, ACM 1-
59593-369-7/06/0008, 2006.

[Elh92] Elhadad, M. Using argumentation to control
lexical choice: a unification-based
implementation. PhD thesis, Computer Science
Department, Columbia University, 1992.

[Eva05] Evans D., McKeown K. Identifying Similarities
and Differences Across Arabic and English
News. Proc. of the International Conference on
Intelligence Analysis. McLean, VA, 2005.

[Far04] Farzindar A., Lapalme G. Legal Text
Summarization by Exploration of the Thematic
Structure and Argumentative Roles. Proc. of the
ACL-04 Workshop: Text Summarization
Branches Out, pp. 27–33.

[Fer07] Ferrández S., Ferrández A. The Negative Effect
of Machine Translation on Coross–Lingual
Question Answering. Lecture Notes in
Computer Science, Springer-Verlag, vol. 4394,
pp. 494–505, 2007.

[Fon08]Marco Fonseca, Leonardo Junior, Alexandre
Melo, Hendrik Macedo. Innovative Approach
for Engineering NLG Systems: the Content
Determination Case Study. . Springer Verlag
LNCS 4919, pp. 489-460, 2006.

[Fuhr92] Fuhr N. Probabilistic Models in Information
Retrieval, The Computer Journal, 35(3), pp.
243-254, 1992.

[Fut04] Futrelle R. Handling Figures in Document
Summarization. Proc. of the ACL-04 Workshop:
Text Summarization Branches Out, pp. 61–65.

[Gar04] García-Hernández R. A., Martínez-Trinidad J.
F., and Carrasco-Ochoa J. A. A Fast Algorithm
to Find All the Maximal Frequent Sequences in
a Text, 9th Iberoamerican Congress on Pattern

Recognition (CIARP), LNCS vol. 3287, pp.
478–486, Springer-Verlag 2004.

[Gar06] García-Hernández R. A., Martínez-Trinidad J.
F., and Carrasco-Ochoa J. A. A New Algorithm
for Fast Discovery of Maximal Sequential
Patterns in a Document Collection, LNCS 2945,
pp. 514–523, Springer-Verlag 2006.

[Gar08a] René García Hernández, Yulia Ledeneva,
Alexander Gelbukh, Citlalih Gutiérrez-Estrada.
An Assessment of Word Sequence Models for
Extractive Text Summarization. Research in
Computing Science, vol.38, pp. 253-262, ISSN
1870-4069, 2008.

[Gar08b] René García Hernández, Yulia Ledeneva,
Alexander Gelbukh, Erendira Rendon, Rafael
Cruz. Text Summarization by Sentence
Extraction Using Unsupervised methods. LNAI
5317, pp. 133-143, Mexico, Springer-Verlag,
ISSN 0302-9743, 2008.

[Gar09] René García Hernández, Yulia Ledeneva. Word
Sequence Models for Single Text
Summarization. IEEE Computer Society Press,
Cancun México, pp.44-49, ISBN
9780769535296, 2009.

[Gel00] Gelbukh, A. A data structure for prefix search
under access locality requirements and its
application to spelling correction. Proc. of
MICAI-2000: Mexican International Conference
on Artificial Intelligence, Acapulco, Mexico,
2000.

[Gel92] Gelbukh, A. An effectively implementable
model of morphology of an inflective language
(in Russian). J. Nauchno-Tehnicheskaya
Informaciya (NTI), ser. 2, vol. 1, Moscow,
Russia, 1992, pp. 24-31.

[Gel03] Alexander Gelbukh and Grigori Sidorov.
Approach to construction of automatic
morphological analysis systems for inflective
languages with little effort. Lecture Notes in
Computer Science, N 2588, 2003, ISSN 0302-
9743, Springer-Verlag, pp. 215–220

[Gel03a] Gelbukh A., Sidorov G., Sang Yong Han.
Evolutionary Approach to Natural Language
Word Sense Disambiguation through Global
Coherence Optimization. WSEAS Transactions
on Communications, ISSN 1109-2742, Issue 1
Vol. 2, pp. 11–19, 2003.

[Gel03b] Gelbukh A., Bolshakov I. Internet, a true friend
of translator. International Journal of
Translation, ISSN 0970-9819, Vol. 15, No. 2,
pp. 31–50, 2003.

[Hac04] Hachey B., Grover C. A Rhetorical Status
Classifier for Legal Text Summarization. Proc.
of the ACL-04 Workshop: Text Summarization
Branches Out, pp. 35–42.

[Hau99] Hausser, Ronald. Three principled methods of
automatic word form recognition. Proc. of
VEXTAL: Venecia per il Tratamento
Automatico delle Lingue. Venice, Italy, Sept.
1999. pp. 91-100.

RECENT ADVANCES IN COMPUTATIONAL... Informatica 34 (2010) 3–18 17

[Hov03] Hovy E. The Oxford handbook of
Computational Linguistics, Chapter about Text
Summarization, In Mitkov R. (ed.), NY, 2003.

[Hu06] Haiqing Hu, Fuji Ren et. al. A Question
Answering System on Special Domain and the
Implementation of Speech Interface. Springer
Verlag 3878, CICLing 2006.

[Kle99] Kleinberg J. Authoritative sources in a
hyperlinked enviroment. Journal of the ACM,
vol. 46, num. 5, pp. 604–632, 1999.

[Kos83] Koskenniemi, Kimmo. Two-level Morphology:
A General Computational Model for Word-
Form Recognition and Production. University of
Helsinki Publications, N 11, 1983.

[Led08a] Yulia Ledeneva. Effect of Preprocessing on
Extractive Summarization with Maximal
Frequent Sequences. MICAI-08, LNAI 5317,
pp. 123-132, Mexico, Springer-Verlag, ISSN
0302-9743, 2008.

[Led08b] Yulia Ledeneva, Alexander Gelbukh, René
García Hernández. Terms Derived from
Frequent Sequences for Extractive Text
Summarization. CICLing-08, LNCS 4919, pp.
593-604, Israel, Springer-Verlag, ISSN 0302-
9743, 2008.

[Led08c] Yulia Ledeneva, Alexander Gelbukh, René
García Hernández. Keeping Maximal Frequent
Sequences Facilitates Extractive Summarization.
In: G. Sidorov et al (Eds). CORE-2008,
Research in Computing Science, vol. 34, pp.
163-174, ISSN 1870-4069, 2008.

[Lin97] Lin C. Y., Hovy E. Identify Topics by Position.
Proc. of the 5th Conference on Applied NLP,
1997.

[Lin03a] Lin C. Y. ROUGE: A Package for Automatic
Evaluation of Summaries. Proc. of the Human
Technology Conference (HLT-NAACL),
Canada, 2003.

[Lin03b] Lin C. Y., Hovy E. Automatic Evaluation of
Summaries Using N-gram Co-occurrence
Statistics. Proc. of the Human Technology
Conference, Canada, 2003.

[Lin04a] Lin C. Y. Looking for a Few Good Metrics:
Automatic Summarization Evaluation – How
Many Samples Are Enough? Proc. of NTCIR
Workshop, Japan, 2004.

[Lin04b] Lin C. Y., et al. ORANGE: a Method for
Evaluating Automatic Evaluation Metrics for
Machine Translation. In: Proc. of the 20th
International Conference on Computational
Linguistics (COLING), Switzerland.

[Lin04c] Lin C. Y., et al. Automatic Evaluation of
Machine Translation Quality Using Longest
Common Subsequence and Skip-Bigram
Statistics. Proc. of the 42nd Annual Meeting of
the ACL, Spain, 2004.

[Liu06] Liu D., He Yanxiang, and et al. Multi-Document
Summarization Based on BE-Vector Clustering.
CICLing 2006, LNCS, vol. 3878, Springer-
Verlag, pp. 470–479, 2006.

[Li07] Li J., Sun L. A Query-Focused Multi-Document
Summarizer Based on Lexical Chains. Proc. of
Document Understanding Conference 2007.
http://duc.nist.gov/pubs.html#2007.

[Luh57] Luhn H.P. A statistical Approach to Mechanical
Encoding and Searching of literary information.
IBM Journal of Research and Development, pp.
309–317, 1957.

[Mad07] Madnani N., Zajic D., Dorr B., etc. Multiple
Alternative Sentence Compressions for
Automatic Text Summarization. Document
Understanding Conference 2007.
http://duc.nist.gov/pubs.html#2007

[Mal85] Malkovsky, M. G. Dialogue with the artificial
intelligence system (in Russian). Moscow State
University, Moscow, Russia, 1985, 213 pp.

[Man99] Manning C. Foundations of Statistical Natural
Language Processing, MIT Press, London,
1999.

[Man07] Manning C. An Introduction to Information
Retrieval. Cambridge University Press, 2007.

[Mar01] Marcu D. Discourse-based summarization in
DUC-2001. Document Understanding
Conference 2001.
http://duc.nist.gov/pubs.html#2001

[Mck03] McKeown K., Barzilay R., Chen J., Elson D.,
Klavans J., Nenkova A., Schiffman B.,
Sigelman S. Columbia’s Newsblaster: New
Features and Future Directions. Proc. of the
Human Language Technology Conference, vol.
II, 2003.

[Mih04] Mihalcea, R., Tarau, P. TextRank: Bringing
Order into Texts. Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP 2004), Spain, 2004.

[Mih06] Mihalcea R. Ramdom Walks on Text
Structures. CICLing 2006, LNCS, vol. 3878, pp.
249–262, Springer-Verlag 2006.

[Mor91] Morris J., Hirst G. Lexical cohesion computed
by thesaurus relations as an indicator of the
structure of text. Computational Linguistics, vol.
18, pp. 21–45, 1991.

[Nen04] Nenkova A., Passonneau R. Evaluating content
selection in summarization: The pyramid
method. In: Proc. of NLT/NAACL–2004, 2004.

[Nen05a] Nenkova A., Siddharthan A., McKeown K.
Automatically Learning Cognitive Status for
Multi-Document Summarization of Newswire.
Proc. of HLT/EMNLP-05, 2005.

[Nen06] Nenkova A. Understanding the process of multi-
document summarization: content selection,
rewriting and evaluation. Ph.D. Thesis,
Columbia University, 2006.

[Ngo08] Axel-Cyrille Ngonga Ngomo. SIGNUM: A
graph algorithm for terminology extraction.
Springer Verlag, vol. 4919, pp. 85-95, 2008.

[Ngo09] Axel-Cyrille Ngonga Ngomo and Frank
Schumacher. Border Flow: A Local Graph
Clustering Algorithm for Natural Language
Processing. Springer Verlag, vol. 5449, pp. 547-
558, 2009.

18 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

[Omg01] Object Management Group. Model Driven
Architecture (MDA). OMG Document
ormsc/2001.

[Ott06] Otterbacher J., Radev D., Kareem O. News to
Go: Hierarchical Text Summarization for
Mobile Devices. SIGIR’06, ACM 1-59593-369-
7/06/0008.

[Pas05] Passonneau R., Nenkova A., McKeown K.,
Sigleman S. Pyramid evaluation at DUC-05.
Proc. of Document Understanding Conference,
http://duc.nist.gov/pubs.html#2007.

[Peñ06] Anselmo Peñas, Álvaro Rodrigo, Felisa Verdejo:
Overview of the Answer Validation Exercise
2006, CLEF 2006.

[Peñ07] Álvaro Rodrigo, Anselmo Peñas, Felisa Verdejo:
Overview of the Answer Validation Exercise
2007. CLEF 2007: 237-248.

[Peñ08] Anselmo Peñas, Álvaro Rodrigo, Felisa Verdejo:
Overview of the Answer Validation Exercise
2007, CLEF 2008.

[Pin06] David Pinto, Héctor Jiménez-Salazar, and Paolo
Rosso. Clustering Abstracts of Scientific Texts
using the Transition Point Technique. Springer
Verlag, Cicling 2006.

[Raz07] Razmara Marat, Kossein Leila. A Little Known
Fact is … Answering Other Questions Using
Interest-Markers. Springer Verlag 4394,
CICLing 2007.

[Sal88] Salton G., Buckley C. Term-Weighting
Approaches in Automatic Text Retreival,
Information processing and Management, vol.
24, pp. 513–523, 1988.

[Sar05] Sarkar K., et al. Generating Headline Summary
from a Document Set. CICLing, LNCS, vol.
3406, Springer-Verlag, pp. 637–640, 2005.

[Sch98] Schütze, H.: Automatic Word sense
disambiguation. Computational Linguistics
24(1), pp. 97-123, 1998.

[Sed01] Sedlacek R. and P. Smrz, A new Czech
morphological analyzer AJKA. Proc. of TSD-
2001. LNCS 2166, Springer, 2001, pp 100-107.

[Sid96] Sidorov, G. O. Lemmatization in automatized
system for compilation of personal style
dictionaries of literature writers (in Russian). In:
Word by Dostoyevsky (in Russian), Moscow,
Russia, Russian Academy of Sciences, 1996, pp.
266-300.

[Sil02] Silber H., McCoy K. Efficiently computed lexical
chains as an intermediate representation for
automatic text summarization. Computational
Linguistics, 28(4), pp. 487–496, 2002.

[Sor03] Soricut R., Marcu D. Sentence level discourse
parsing using sintactic and lexical information.
In: HLT-NAACL, 2003.

[Teu04a] Teusel S., Halteren H. van. Agreement in
human factoid annotation for summarization
evaluation. Proc. of the 4th Conference on
Language Resources and Evaluation (LREC),
2004.

[Teu04b] Teusel S., Halteren H. van. Evaluating
Information content by factoid analysis: human

annotation and stability. EMNLP, pp. 419–426,
2004.

[Tel08] Tellez-Valero A., Montes-y-Gomez M.,
Villaseñor-Pineda L., Peñas A. Improving
Question Answering by Combining Multiple
Systems via Answer Validation. Springer
Verlag, CICLing 2008.

[TREC] http://trec.nist.gov
[Van04] Vandeghinste V., Pan Y. Sentence Compression

for Automated Subtitling: A Hybrid Approach.
Proc. of ACL Workshop on Summarization,
pp. 89–95, 2004.

[Van08] Thanh-Trung Van, Michel Beigbeder. Hybrid
Method for Personalized Search in Scientific
Digital Libraries. CICLing 2008.

[Vil06] Villatoro-Tello E., Villaseñor- Pineda L., and
Montes-y-Gómez M. Using Word Sequences for
Text Summarization. 9th International
Conference on Text, Speech and Dialogue
(TSD). Lecture Notes in Artificial Intelligence,
Springer-Verlag, 2006.

[Voo04a] Voorhees Ellen M. Overview of the TREC-
2003 question answering task. In: Proc. of the
12th Text Retrieval Conference (TREC-2003),
pp. 54–68, 2004.

[Voo04b] Voorhees E. M. Overview of the TREC 2004
Question Answering Track.

[Voo04c] Voorhees E. M., Buckland L.P. (Eds.)
Proceedings of the 13-th TREC, National
Institute of Standards and Technology (NIST),
2004.

[Voo05a] Voorhees E. M., Dang H.T. Overview of the
TREC 2005 Question Answering Track.

[Voo05b] Voorhees E. M., Buckland L.P. (Eds.)
Proceedings of the 14-th TREC, National
Institute of Standards and Technology (NIST),
2004.

[Wan04] Wan S., McKeown K. Generating “State-of
Affairs” Summaries of Ongoing Email Thread
Discussions. Proc. of Coling 2004, Switzerland,
2004.

[Wan06] Wan X., Yang J., et al. Incorporating Cross-
Document Relationships Between Sentences for
Single Document Summarizations. ECDL,
LNCS, vol. 4172, Springer-Verlag, pp. 403–
414, 2006.

[Yin07] Ying J.-C., Yen S.-J., Lee Y.-S. Language
Model Passage Retrieval for Question-Oriented
Multi Document Summarization. Proc. of
Document Understanding Conference 2007.
http://duc.nist.gov/pubs.html#2007.

[Zho05] Zhou Q., Sun L. IS_SUM: A Multi-Document
Summarizer based on Document Graphics and
Lexical Chains. Proc. of Document
Understanding Conference 2005.
http://duc.nist.gov/pubs.html#2005.

