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In this paper, we present an overview of recent advances in selected areas of computational linguistics. 
We discuss relation of traditional levels of language – phonetics/phonology, morphology, syntax, 
semantics, pragmatics, and discourse – to the areas of computational linguistics research. Then the 
discussion about the development of the systems of automatic morphological analysis is given. We 
present various morphological classifications of languages, discuss the models that are necessary for 
this type of systems, and then argue that an approach based on “analysis through generation” gives 
several advantages during development and the grammar models that are used. After this, we discuss 
some popular application areas like information retrieval, question answering, text summarization and 
text generation. Finally, usage of graph methods in computational linguistics is dealt with.

Povzetek: Podan je pregled računalniškega jezikoslovja.

1 Introduction
In this paper, we present an overview of recent advances 
in selected areas of computational linguistics (CL). 

The objective of computational linguistics is to 
develop models of language that can be implemented in 
computers, i.e., the models with certain degree of 
formalism, and to develop applications that deal with 
computer tasks related to human language, like 
development of software for grammar correction, word 
sense disambiguation, compilation of dictionaries and 
corpora, intelligent information retrieval, automatic
translation from one language to another, etc. Thus, 
computational linguistics has two sides: on the one hand, 
it is part of linguistics; on the other hand, it is part of 
computer science.

In this paper, we first discuss the relation of 
traditional levels of language – phonetics/phonology, 
morphology, syntax, semantics, pragmatics, and 
discourse – to the areas of computational linguistics 
research.

Then various issues related to automatic 
morphological analysis are presented. We remind 
morphological classification of languages and discuss the 
models that are necessary for development of the system 
of automatic morphological analysis. We argue that the 
usage of approach known as “analysis through 
generation” can significantly reduce the time and effort 
during development and allows for usage of intuitively 
clear grammar models.

After this we present most popular CL application areas:

 Information Retrieval (IR) consists of finding 
documents of an unstructured nature that satisfies 
an information need from within large collections 
of documents usually in local computer or in the 
Internet. This area overtakes traditional database 
searching, becoming the dominant form of 
information access. Now hundreds of millions of 
people use IR systems every day, when they use a 
web search engine or search their emails. 

 Question Answering (QA) is a complex task that 
combines techniques from NLP, IR and machine 
learning. The main aim of QA is to localize the 
correct answer to a question written in natural 
language in a non-structured collection of 
documents. Systems of QA look like a search 
engine, where the input to the system is a question 
in natural language and the output is the answer to 
the question (not a list of entire documents like in 
IR).

 Text summarization is a popular application that 
allows for reduction of text size without significant 
loose of the content. Extractive and abstractive 
methods are briefly compared; resulting summary 
evaluation problem is addressed.

 Text generation consists in generation of coherent 
text from raw data, usually in a specific domain.

The paper finishes with discussion of application of 
graph methods in computational linguistics. Graph 
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methods are widely used in modern research in CL. Text 
representation as graphs and graph ranking algorithms 
are discussed.

2 Levels of language and areas of 
computational linguistic research

Computational linguistic research is correlated with 
traditional levels of language that are commonly 
accepted in general linguistics. These levels are: 

 Phonetics/phonology, 
 Morphology, 
 Syntax, 
 Semantics, 
 Pragmatics, and 
 Discourse. 

At the phonetic level, we analyze the phones 
(sounds), from two points of view: 1) as a physical 
phenomenon; here we are interested in its spectrum and 
other physical characteristics, 2) as an articulatory 
phenomenon, i.e., the position of the pronunciation 
organs that generate the specific sound (namely, the 
sound with specific physical characteristics). At the 
phonological level, we interpret these physical or 
articulatory features as phonological characteristics and 
their values. For example, the feature “vibration of the 
vocal cords” with the values “vibrating” or “not 
vibrating”; or the feature “mode of the obstacle” with the 
values like “explosive”, “sibilant”, “affricate”, etc. By 
phonological features we mean the features that depend 
on the given phonetic system, for example, long vs. short 
vowels are different phonemes in English, but they are 
not in many other languages, for example, Spanish, 
Russian, etc. So, the vowel duration is phonological 
feature in English and it is not in the mentioned 
languages.

The morphological level deals with word structure 
and grammar categories that exist in languages (or in the 
given language) and the expression of these grammar 
categories within words. 

The syntactic level studies relations between words 
in sentences and functions of words in a sentence, like 
subject, direct object, etc.

The semantic level is related to the concept of 
meaning, its representation and description. Generally 
speaking, the meaning can be found at any other level, 
see below the discussion about the limits of the levels.

At the pragmatic level, the relationship between the 
meaning of the text and the real world is considered. For 
example, in indirect speech acts, when the phrase “Can 
you pass me the salt?” in fact is a polite mode of asking 
the salt, and it is not a question about a physical ability to 
pick it up.

And finally, the discourse level is related to analysis 
of the relationship between sentences in discourse. For 
example, at this level we can find the phenomenon of 
anaphora, when the task is to find out to which possible 
antecedent (noun) a pronoun refers; or phenomenon of 

ellipsis, when some substructure is omitted but can be 
restored by reader on the basis of the previous context.

Note that there are no strict criteria for level 
distinction: these levels are more like focus of research. 
That is why there are many intersections between levels, 
for example, the meaning, being part of the semantic 
level, can be observed at the syntactic or morphological 
levels, but still, if we focus on morphemes or syntactic 
constructions, though they have meaning, we will not 
consider them as belonging to the semantic level. If we 
consider the interpretation of syntactic relations or lexical 
meaning, then we deal with semantics.

Now, let us have a look at the computer side of 
computational linguistics. Among the most widely 
represented modern directions of research in 
computational linguistics we can mention: 

1. Speech recognition and synthesis, 
2. Morphological analysis of a variety of languages 

(say, morphological analysis in English is rather 
simple, but there are languages with much more 
complex morphological structure), 

3. Grammar formalisms that allows for 
development of parsing programs, 

4. Interpretation of syntactic relations as semantic 
roles,

5. Development of specialized lexical resources 
(say, WordNet or FrameNet),

6. Word sense disambiguation, 
7. Automatic anaphora resolution, among others.

The correspondence between these directions of 
research and traditional linguistic levels is pretty 
obvious. For example, the research directions 4, 5, and 6 
are attempts to invoke semantics in text analysis.

It should be mentioned that it is useful to distinguish 
between methods and areas of research. The areas of 
research are related to the mentioned language levels or 
to specific applications, see below. The methods of 
research are related to particular methods that are used. 
The tendency in modern computational linguistics as far 
as methods are concerned is to apply machine learning 
techniques accompanied with processing of huge amount 
of data, available usually in Internet. Note that each 
research area can have additional standard resources 
specific for this area.

Another important dichotomy is related to distinction 
of procedural and declarative knowledge, which in case 
of computational linguistics corresponds to the 
distinction between development of algorithms (or 
methods) and development of language resources (or 
data). 

From the list of the seven mentioned research 
directions, number 5 (development of specialized lexical 
resources) represents a direct development of resources. 
The majority of other research directions are dedicated to 
methods. In case when methods are based on linguistic 
resources, we call these methods knowledge rich. If 
developed algorithms do not use any linguistic resource 
then we call them knowledge poor. Note that purely 
statistic algorithms are knowledge poor when they use 
raw data (raw corpora). If a statistic algorithm uses 
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marked data, then it uses knowledge coded into a corpus, 
and, thus, it becomes knowledge rich.

Note that all these distinctions are basically 
tendencies, i.e., usually there is no clear representative of 
each member of a given class.

3 Automatic morphological analysis
As an example of implementation of a linguistic 
processing task let us discuss a problem of the automatic 
morphological analysis.

There exist many different models of the automatic 
morphological analysis for different languages. One of 
the most famous models is the two-level model 
(KIMMO) suggested by Kimmo Koskenniemi [Kos85]; 
there are other models that focus on different grammar 
phenomena or processing scheme [Gel00, Gel03, Hau99, 
Sid96, Sed01]. 

Morphological analysis is a procedure that has as an 
input a word form, and gives as an output a set of 
grammemes1 that corresponds to this input. Sometimes, it 
is accompanied with normalization (lemmatization), 
when we also obtain lemma (normalized word form), that 
is usually presented as an entry in the dictionaries, for 
example, take is lemma for took, taken, take, taking, 
takes. 

3.1 Morphological classification of 
languages 

First of all, let us discuss the differences related to 
morphological structure of languages, because it is 
directly related to the morphological processing 
algorithms.

There are two well-known classifications of 
languages based on their morphological characteristics. 
The first one is centered on the predominant usage of 
auxiliary words vs. usage of affixes (grammar 
morphemes). According to this classification the 
languages can be analytic, when auxiliary words are 
predominant (say Chinese, English); or synthetic, when 
affixes are used in the majority of cases in the language 
(say Russian, Turk). Sometimes it is said that analytic 
languages have “poor” morphology in a sense that words 
do not have many affixes, while the synthetic languages 
have “rich” morphology. Again, these are tendencies, 
i.e., a language can have some deviations from the 
predominant tendency. 

Sometimes, this classification is enriched by adding 
categories of isolating and polysynthetic languages. A 
language is called isolating if practically no affixes are 
used, like in Chinese. If we compare it with English, the 
latter still keeps using some affixes, for example, for 
plural in nouns, or for past indefinite tense in verbs. 
Polysynthetic languages are languages where not only 
affixes are added to a stem, but also other syntactically 
depending word stems. Thus, several lexical stems are 

                                                          
1 Grammeme is a value of the grammar category, for example, 
singular and plural are grammemes of the category number, 
etc.

combined within one word. An example of these 
languages is Chukchi or some North American Indian 
languages.

Other morphological classification of languages is 
applied to synthetic languages and it is based on the 
predominant morphological technique: agglutination vs. 
flexion. Here once again we are speaking about 
tendencies: a language can have some features from one 
class, and some features from the other class.

We say that the language is agglutinative if:

1. Each grammar morpheme expresses exactly one 
grammeme (value of a grammar category).

2. There are no stem alternations or stem 
alternations are subjected to very regular 
changes that do not presume any knowledge of 
specific stem type, for example, vowel harmony.

3. Morphemes are concatenated mechanically 
(agglutinated).

4. The stem usually exists as a separate word 
without any additional concatenation with 
affixes.

Examples of the agglutinative languages are Turk 
and the similar ones – Kazakh, Kyrgyz, etc., Hungarian.

On the other hand, inflective languages have the 
following features:

1. Each grammar morpheme can express various 
grammemes (values of grammar categories), for 
example, the flexion -mos in Spanish expresses 
grammemes of person(first) and number(plural), among 
others. Usually, only one grammar morpheme exists in a 
word.

2. Stem alternations are not predictable. i.e., we 
should know if this specific stem should be alternated or 
not.

3. Morphemes can be concatenated with certain 
irregular morphonological processes at the connection 
point. 

4. Stem usually does not exist without grammar 
morphemes. Note that in inflective languages it is 
common the usage of  morpheme (empty morpheme), 
that expresses some grammemes by default (usually, 
most common grammemes like singular, third person, 
etc).

Examples of the inflective languages are Slavic 
languages (Russian, Czech, Polish, etc.). 

So, different languages have different morphological 
tendencies. Computer methods of analysis that are 
perfectly suitable for languages with poor morphology 
(like English) or with agglutinative morphology (like 
Turk) can be not the best methods for inflective 
languages (like Russian). 

Note that morphological system of inflective 
languages is finite and it is not very vast, so any method
of analysis gives correct results, but not all methods are 
equally convenient and easy to implement. 

The morphology of agglutinative languages is also 
finite, thought the number of possible word forms is 
much greater than in an inflective language. Still, since 
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the agglutinative morphology is much more regular than 
the inflective morphology, it is easier to develop 
corresponding processing algorithms.

3.2 Models for automatic morphological 
analysis

Our next step is to find out what models or what types of 
models are necessary for morphological processing.

Speaking about automatic morphological analysis, 
we should take into consideration three types of models:

− Model of analysis (procedure of analysis).
− Model of grammar (morphology) of a given 

language. This model consists in assigning of 
grammar classes to words that define the unique 
word paradigm (=set of affixes and stem 
alternations).

− Computer implementation, i.e., the used formalism.

3.2.1 Model of analysis
As far as model of analysis is concerned, there are two 
main possibilities: store all word forms in a database or 
implement some processing algorithm.

One extreme point is storing all grammatical forms 
in a dictionary (database). Such method of analysis is 
known as “bag of words”. This method is useful for 
inflective languages, but it is not recommended for 
agglutinative or polysynthetic ones. Modern computers 
have the possibility of storing large databases containing 
all grammatical forms for inflective languages (a rough 
approximation for Spanish and Russian is 20 to 50 
megabytes). Note that we anyway need an algorithm for 
generation of these word forms.

In our opinion, more sophisticated algorithms that 
allow for reducing the dictionary size to, say, 1 
megabyte, are preferable. Indeed, a morphological 
analyzer is usually used together with a syntactic parser, 
semantic analyzer and reasoning or retrieval engine, so 
freeing physical memory for these modules is highly 
desirable – of course, the use of large virtual memory 
makes simultaneous access to very large data structures 
possible, but it does not make it faster.

Algorithmic (non-“bag-of-words”) solutions have a 
number of additional advantages. For example, such 
algorithms have the possibility to recognize unknown 
(new) words. This is a crucial feature for a 
morphological analyzer since new words constantly 
appear in the languages, not speaking of possible 
incompleteness of the dictionary. 

Obviously, the algorithmic processing implies 
separation of possible flexion and possible stem in the 
input word form. Usually, we use programming cycle 
and try all possible divisions of the input word. After 
that, there are two possibilities for algorithmic 
processing. These possibilities are: 

− Use straight forward processing, i.e., we use 
traditional algorithmic scheme of conditions and 
cycles, or 

− Use a trick known as “analysis through generation” 
(see below), that saves a lot of work in code writing 
and allows the usage of grammar models oriented 
for generation. Note that all traditional grammar 
models are oriented to generation.

Another dichotomy related to the models of analysis is: 
store the stems with the corresponding grammar 
information in the dictionary or our algorithm will guess 
this grammar information. If we store the data then our 
algorithm will be exact. If we try to infer the grammar 
properties of a stem, then our algorithm will guess and it 
will not be exact, i.e., sometimes it will guess incorrectly.

3.2.2 Model of grammar
If we prefer the algorithmic processing, then we should 
have a model of grammar (morphology). It is necessary 
for defining what paradigms (sets of flexions and regular 
stem alternations) are associated with each word.

It is desirable to maintain an existing grammar 
model for a given language, if there is any, of course. It 
makes the algorithm development much easier and faster. 
Note that traditional grammar models are oriented to 
generation process. Usually, the speakers of a language 
consider these models intuitively clear.

As an alternative solution, we can develop an 
algorithm that will transform some traditional 
morphological description into a description that we 
would like to have for our algorithm. Note, that if we 
have an exact algorithm of conversion, these two models 
are equivalent in the sense that they represent the same 
information. Still, the grammar information is presented 
in different ways. Thus, from this point of view of a 
human, the traditional model usually is much more 
comprehensive. Let us remind that they are oriented to 
generation, while the purpose of the morphological 
analysis is analysis, i.e., it is a procedure with exactly 
opposite direction. We will show later that we can avoid 
developing a conversion algorithm using the approach of 
“analysis through generation”. This approach substitutes 
the process of analysis with the process of generation. 
Generally speaking, generation is much simpler than 
analysis because we do not have so many possible 
combinations to process.

3.2.3 Computer implementation
In our opinion, any computer implementation is 

acceptable. It can be direct programming, or finite state 
automata, or transducers, etc. All of them give equivalent 
results. Mainly, the choice of the implementation 
depends on the resources available for the development 
and the programming skills of the developers.

3.3 Method “analysis through generation”
In this section, we discuss how to develop an 

automatic morphological analysis system for an 
inflective language spending less effort and applying 
more intuitive and flexible morphological models. We 
show that the use of not so straightforward method –
analysis through generation – can greatly simplify the 
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analysis procedure and allows using morphological 
models that are much more similar to the traditional 
grammars.

“Analysis through generation” is an approach to 
analysis when some modules formulate hypothesis of 
analysis and other modules verify them using generation.

We first describe the suggested method (types of 
information, types of morphological models, etc.) and 
then briefly discuss its implementation with examples 
from Russian language.

The main idea of analysis through generation applied 
to morphological analysis is to avoid development of 
stem transformation rules in analysis and to use instead 
the generation module. Implementation of this idea 
requires storing in the morphological dictionary of all 
stems for each word with the corresponding information.

As we have mentioned, the main problem of 
automatic morphological analysis of inflective languages 
is usually stem alternations. The direct way to resolve 
this problem is constructing the rules that take into 
account all possible stem alternations during the analysis 
process; for example, for Russian the number of such 
rules is about a thousand [Mal85]. However, such rules 
do not have any correspondence in traditional grammars; 
in addition, they have no intuitive correspondence in 
language knowledge; finally, they are too many. 

Another possibility to handle alternations is to store 
all stems in the dictionary, together with the information 
on their possible grammatical categories; this method 
was used for Russian [Gel92] and for Czech [Sed01]. We 
also adopt this possibility, but propose a different 
technique for treatment of grammatical information: our 
technique is dynamic while the techniques described in 
[Gel92, Sed01] are static. As we mentioned we use 
“analysis through generation” technique. The model 
based on this approach uses 50 grammar classes 
presented in the corresponding traditional grammars, 
while the systems that developed the algorithm for 
grammar classes’ transformation ([Gel92], [Sed01]) had 
about 1,000 classes that do not have any intuitive 
correspondence in traditional grammars.

In the next subsections, we describe the types of 
morphological information we use; then we discuss the 
morphological models (and the corresponding 
algorithms) we have used to implement the method; and 
finally, we describe the functioning of our method: 
analysis, generation, and treatment of unknown (new) 
words.

3.3.1 Types of grammatical information
We use two types of grammatical information: 

 Stem dictionary and 
 List of grammatical categories and corresponding 

grammemes. 

The information about the stems is stored in the 
morphological dictionary. This information is basically 
the data needed for generation, such as:

 Part of speech,
 Presence of alternations,

 Grammatical type (in Russian, there are three genders 
and for each gender there are several word formation 
types: say, for feminine there are 7 types, etc.), 

 Special marks: for example, in Russian some nouns 
have two forms of the prepositional case (шкафу 
versus шкафе ‘(in) wardrobe’ versus ‘(about) 
wardrobe’), which should be marked in the dictionary.

We explicitly store in the dictionary all variants of stems 
as independent forms, together with the stem number 
(first stem, second stem, etc.). In Russian, nouns and 
adjectives with alternations have two possible stems, 
while verbs can have up to four stems.

Another type of information is a list of grammatical 
categories and corresponding grammemes. Thus, any 
word form is characterized by a set of grammemes. For 
example, for a Russian noun this set contains a value of 
case and of number; for a Russian full adjective it is a 
value of case, number, and gender, etc.

3.3.2 Types of morphological models
Three morphological models are used:

 Correspondence between flexions and grammemes,
 Correspondence between stems and grammemes,
 Correspondence between alternating stems of the same 

lexeme.

The first model establishes the correspondence 
between flexions and sets of grammemes, taking into 
account different grammatical types fixed in the 
dictionary. In the process of analysis, we use the 
correspondence “flexions  sets of grammemes”, that is 
used to formulate hypothesis; and in the process of 
generation, the correspondence “sets of grammemes 
flexions”, that is used to verify hypothesis.

A similar correspondence is established between the 
sets of grammemes and the types of stems; however, this 
correspondence is used only for generation. For example, 
if a Russian masculine noun of a certain grammar type 
has a stem alternation, then the first stem is used for all 
forms except for genitive (case) plural, for which the 
second stem is used. Note that corresponding model for 
analysis is unnecessary, which makes our method 
simpler than direct analysis. 

To be able to generate all forms starting from a given 
form, it is necessary to be able to obtain all variants of 
stems from the given stem. There are two ways to do 
this: static and dynamic, which have their own pros and 
contras. The static method implies storing in the 
dictionary together with the stems the correspondence 
between them (e.g., each stem has a unique identifier by 
which stems are linked within the dictionary). Storing the 
explicit links increases the size of the dictionary. 

We propose to do this dynamically. Namely, the 
algorithm of constructing all stems from a given stem is 
to be implemented. In fact, it must be implemented 
anyway since it is used to compile the dictionary of 
stems. It is sufficient to develop the algorithm for 
constructing the first stem (that corresponds to the 
normalized form, such as infinitive) from any other stem, 



8 Informatica 34 (2010) 3–18 Y. Ledeneva et al.

and any other stem from the first stem. In this way, 
starting from any stem we can generate any other stem. 
The difference between static and dynamic method is 
that in the former case, the algorithm is applied during 
the compile time (when the dictionary is built), while in 
the latter case, during runtime.

Note that the rules of these algorithms are different 
from the rules that have to be developed to implement 
analysis directly. For Russian, we use about 50 rules, 
intuitively so clear that in fact any person learning 
Russian is aware of these rules of stem construction. 
Here is an example of a stem transformation rule:

   -VC, *  -C 

which means: if the stem ends in a vowel (V) following 
by a consonant (C) and the stem type contains the 
symbol “*” then remove this vowel. Being applied to the 
first stem of the noun молоток ‘hammer’, the rule gives 
the stem молотк-(а) ‘of hammer’. 

This contrasts with about 1,000 rules necessary for 
direct analysis, which in addition are very superficial and 
anti-intuitive. For example, to analyze a non-first-stem 
word, [Mal85] uses rules that try to invert the effect of 
the mentioned rule: if the stem ends in a consonant, try to 
insert a vowel before it and look up each resulting 
hypothetical stem in the dictionary: for молотк-(а), try 
молотек-, молоток-, etc. This also slows down the 
system performance.

Two considerations are related to the simplicity of 
our rules. First, we use the information about the type of 
the stem stored in the dictionary. Second, often 
generation of a non-first stem from the first one is 
simpler than vice versa. More precisely, the stem that 
appears in the dictionaries for a given language is the one 
that allows simpler generation of other stems.

3.3.3 Data preparation
Our method needs some preliminary work of data 
preparation, carrying out the following main steps:

 Describe and classify all words of the given language 
into unique grammatical classes (fortunately, for many 
languages this work is already done by traditional 
grammar writers);

 Convert the information about words into a stem 
dictionary (generating only the first stem);

 Apply the algorithms of stem generation (from the first 
stem to other stems) to generate all stems;

 Generate the special marks and the stem numbers for 
each (non-first) stem.

To perform the last two steps, the dictionary record 
generated for the first stem is duplicated, the stem is 
transformed into the required non-first stem, and the 
mark with the stem number is added.

3.3.4 Generation process
The generation process is simple. Given the data from 
the dictionary (including the stem and its number) and a 
set of grammemes, it is required to build a word form of 
the same lexeme that has the given set of grammemes. 

Using the models we have constructed, the flexion is 
chosen and the necessary stem is generated (if a non-first 
stem was given, then we generate the first stem and from 
it, the necessary stem). Finally, we concatenate the stem 
and the flexion.

If necessary, this process is repeated several times 
for adding more than one flexion to the stem. For 
example, Russian participles (which are verbal forms) 
have the same flexions as adjectives (which express the 
number and gender) and also special suffixes (which 
indicate that this is a participle), i.e., they are 
concatenation of a stem and two affixes: a suffix and a 
flexion (пис-ать  пиш-ущ-ий ‘writ-e’  ‘writt-en’). 
In this case, we first generate the stem of participle by 
adding the suffix (we use the information from the 
dictionary on the properties of the corresponding verbal 
stem) and then change the dictionary information to the 
information for an adjective of the corresponding type. In 
case of Russian, such recursion is limited to three levels 
(one more level is added due to the reflexive verbs that 
have a postfix morpheme -ся: пиш-ущ-ий-ся ‘is 
written’). 

3.3.5 Analysis process
Given an input string (a word form), we analyze it in the 
following way:

1. The letters are separated one by one from right to 
left to get the possible flexion (the zero flexion is 
tried at first): given stopping, we try - (zero 
flexion); at the next iterations -g, -ng, -ing, -ping, 
etc. are tried.

2. If the flexion (here -ing) is found in the list of 
possible flexions, we apply the algorithm “flexions 
 sets of grammemes”, which gives us a hypothesis 
about the possible set of grammemes. Here it would 
be “verb, participle”.

3. Then we obtain the information for the rest of the 
form, i.e., the potential stem, here stopp- from the 
stem dictionary.

4. Finally, we generate the corresponding grammatical 
form according to our hypothesis and the obtained 
dictionary information. Here, the generated past 
participle of the verbal stem stopp- is stopping.

5. If the obtained result coincides with the input form, 
then the hypothesis is accepted. Otherwise, the 
process repeats from the step 1.

If a word form consists of several morphemes (a stem 
and several affixes), then the analysis process is 
recursive, precisely as generation. In case of Russian, 
there are tree levels of recursion.

As one can see, our method of analysis is simple and 
invokes generation. Additional modules are the model 
“flexions  sets of grammemes” and the module of 
interaction between different models.

3.3.6 Treatment of unknown words
The treatment of unknown words is also simple. We 

apply the same procedure of analysis to single out the 
hypothetical stem. If the stem is not found in the 
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dictionary, we use the longest match stem (matching the 
strings from right to left) compatible with the given set of 
affixes. The longest match stem is the stem present in the 
dictionary that has as long as possible ending substring in
common with the given stem (and is compatible with 
already separated affixes).

In this way, for example, an (unknown) input string 
sortifies will be analyzed as classifies: verb, 3rd person, 
present, singular, given that classifi- is its longest match 
stem for sortifi- (matching by -ifi-) compatible with the 
affix -es.

To facilitate this search, we have another instance of 
the stem dictionary in inverse order, i.e., stems are 
ordered lexicographically from right to left.

Note that the systems like [Gel00, Gel92] based on 
the left-to-right order of analysis (first separating the 
stem and only then analyzing the resting affixes) have to 
imitate this process with a special dictionary of, say, a 
list of 5-letter stem endings, since in such systems the 
main stem dictionary is ordered by direct order (left to 
right, by first letters).

4 Computational linguistic
applications

This section is divided into following subsections
that correspond to each application of CL: Information 
Retrieval, Question Answering, Text Summarization, and 
Text Generation.

4.1 Information retrieval
Information Retrieval (IR) according to [Man07, 

Bae99] consists of finding documents of an unstructured 
nature that satisfies an information need within large 
collections of documents usually on a computer or on the 
internet. This area overtakes traditional database 
searching, becoming the dominant form of information 
access. Now hundreds of millions of people use IR 
systems every day when they use a web search engine or 
search their emails. 

The huge amount of available electronic documents 
in Internet has motivated the development of very good 
information retrieval systems, see NTCIR (NII Test 
Collection for Information Retrieval) and Cross-
Language Evaluation Forum (CLEF) web pages.

Information Retrieval models represent documents 
or collection of documents by weighting terms appearing 
in each document. Then, two directions are traced for 
further advances: new methods for weighting and new 
methods for term selection.

First, we look through classical models briefly, and 
then we describe recently proposed methods. IR classical 
models are:

– Vector Space Model [Sal88],
– Model based on term frequency (tf) [Luh57].
– Model based on inverse document frequency (idf)

[Sal88],
– Model based tf-idf [Sal88],
– Probabilistic Models [Fuhr92],
– Transition Point [Pin06],

– n-grams [Man99].

Recent improvements to the following models should 
be mentioned. As far as term selection is concerned:
MFS [Gar04, Gar06], Collocations [Bol04a, Bol04b, 
Bol05, Bol08], Passages [Yin07].

As far as weighting of terms is concerned: Entropy,
Transition Point enrichment approach.

Various tasks where IR methods can be used are:
– Monolingual Document Retrieval,
– Multilingual Document Retrieval,
– Interactive Cross-Language Retrieval,
– Cross-Language Image, Speech and Video 

Retrieval,
– Cross-Language Geographical Information 

Retrieval,
– Domain-Specific Data Retrieval (Web, Medical, 

Scientific digital corpora) [Van08].

4.2 Question answering 
Question Answering (QA) retrieves the correct 

answer to a question written in natural language from
collection of documents. Systems of QA look like a 
search engine where the input to the system is a question 
in natural language and the output is the answer to the 
question.

The main goals of the state-of-the-art systems are 
targeted to improve QA systems performance, help 
humans in the assessment of QA systems output, 
improve systems self-score, develop better criteria for 
collaborative systems, deal with different types of 
questions.

There are several workshops and forums where main 
tasks of QA are proposed and discussed. For example, 
researchers compete to find the best solution for the 
following tasks proposed in Cross-Language Evaluation 
Forum (CLEF), NTCIR (NII Test Collection for 
Information Retrieval) and Text REtrieval Conference 
(TREC): Monolingual task, Multilingual task, Cross-
Language task, Robust task.

And more specific tasks:
– Answer validation task,
– QA over speech transcription of seminars, 

meetings, telephone conversations, etc.
– QA on speech transcript where the answers to 

factual questions are extracted from spontaneous 
speech transcriptions.

– QA using machine translation systems,
– QA for “Other” questions, i.e. retrieval of other 

interesting facts about a topic,
– Time-constrained task (realized in real time),
– QA using Wikipedia,
– Event-targeted task on a heterogeneous document 

collection of news article and Wikipedia,
– QA using document collections with already 

disambiguated word senses in order to study their 
contribution to QA performance,

– QA using passage retrieval systems, etc.
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Each task can propose different solutions depending on 
the question category. Actually, the following categories 
are considered: factoid, definition, closed list and topic-
related. Factoid questions are fact-based questions, 
asking for the name of a person, location, organization, 
time, measure, count, object, the extent of something, the 
day on which something happened. Definition question 
are questions such as “What/Who is?”, and are divided 
into the following subtypes: person, organization, object, 
and “other” questions. Closed list questions are questions 
that require in one single answer the requested number of 
items. Such questions may contain a temporal restriction.
Topic related questions group questions which are related 
to the same topic and possibly contain co-references 
between one question and the others. Topics can be 
named entities, events, objects, natural phenomena, etc.  

Answer validation task develops and evaluates a 
special module which validates the correctness of the 
answers given by a QA system. The basic idea is that 
once a pair (answer and snippet) is returned by a QA 
system, a hypothesis is built by turning the pair (question 
and answer) into an affirmative form. If the related text 
semantically entails this hypothesis, then the answer is 
expected to be correct [Peñ06, Peñ07, Peñ08, Tel08].

Machine Translation Systems are broadly 
implemented for Cross-Language QA [Ace06]. In recent 
studies, the negative effect of machine translation on the 
accuracy of Cross-Language QA was demonstrated. 
[Fer07]. As a result, Cross-Language QA Systems are 
modified [Ace07, Ace09].

QA over speech transcription provides a framework 
in which QA systems can be evaluated in a real scenario, 
where the answers of oral and written questions (factual 
and definitional) in different languages have to be 
extracted from speech transcriptions (manual and 
automatic transcriptions) in the respective language. The 
particular scenario consists in answering oral and written 
questions related to speech presentations. As an example, 
QA system automatically answers in Chinese about 
travel information. This system integrates a user 
interface, speech synthesis and recognition, question 
analysis, QA database retrieval, document processing 
and preprocessing, and some databases [Hu06].

QA systems for “Other” questions generally use 
question generation techniques, predetermine patterns, 
interesting keywords, combination of methods based on 
patterns and keywords, or exploring external knowledge 
sources like nuggets [Voo04a, Voo04b, Voo04c,
Voo05a, Voo05b, TREC, Raz07].

4.3 Text summarization 
Information retrieval systems (for example, Google) 

show part of the text where the words of the query 
appears. With the extracted part, the user has to decide if 
a document is interesting even if this part does not have
useful information for the user, so it is necessary 
download and read each retrieved document until the 
user finds satisfactory information. A solution for such 
problem is to extract the important parts of the document 
which is the task of automatic text summarization.

More applications of automatic text summarization 
are, for example, summaries of news and scientific 
articles, summaries of electronic mails, summaries of 
different electronic information which later can be sent 
as SMS, summaries of found documents and pages 
returned by a retrieved system. 

From one side, there is a single-document 
summarization which implies to communicate the 
principal information of one specific document, and from 
another side—a multi-document summarization which 
transmits the main ideas of a collection of documents. 
There are two options to achieve a summarization by 
computer: text abstraction and text extraction [Lin97]. 
Text abstraction examines a given text using linguistic 
methods which interpret a text and find new concepts to 
describe it. And then new text is generated which will be 
shorter with the same content of information. Text 
extraction means extract parts (words, sequences, 
sentences, paragraphs, etc.) of a given text based on
statistic, linguistic or heuristic methods, and then join 
them to new text which will be shorter with the same 
content of information. 

According to the classical point of view, there are 
three stages in automated text summarization [Hov03]. 
The first stage is performed by topic identification where 
almost all systems employ several independent modules. 
Each module assigns a score to each unit of input (word, 
sentence, or longer passage); then a combination module 
combines the scores for each unit to assign a single 
integrates score to it; finally, the system returns the n 
highest-scoring units, according to the summary length 
requested by the user. The performance of topic 
identification modules is usually measured using Recall 
and Precision scores. 

The second stage denotes as the stage of 
interpretation. This stage distinguishes extract-type 
summarization systems from abstract-type systems. 
During the interpretation the topics identified as 
important are fused, represented in new terms, and 
expressed using a new formulation, using concepts or 
words not found in the original text. No system can 
perform interpretation without prior knowledge about the 
domain; by definition, it must interpret the input in term 
of something extraneous to the text. But acquisition deep 
enough prior domain knowledge is so difficult that 
summarizers to date have only attempted it in a small 
way. So, the disadvantage of this stage remains blocked 
by the problem of domain knowledge acquisition.

Summary generation is the third stage of text 
summarization. When the summary content has been 
created in internal notation, and thus requires the 
techniques of natural language generation, namely text 
planning, sentence planning, and sentence realization. 

In 2008, new scheme was proposed by Ledeneva 
[Led08a] which include four steps for composing a text 
summary: 

 Term selection: during this step one should decide 
what units will count as terms are, for example, they 
can be words, n-grams or phrases.  
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 Term weighting: this is a process of weighting (or 
estimating) individual terms. 

 Sentence weighting: the process of assigning numerical 
measure of usefulness to the sentence. For example, 
one of the ways to estimate the usefulness of a 
sentence is to sum up usefulness weights of individual 
terms of which the sentence consists.

 Sentence selection: selects sentences (or other units 
selected as final parts of a summary). For example, one 
of the ways to select the appropriate sentences is to 
assign some numerical measure of usefulness of a 
sentence for the summary and then select the best ones.

4.3.1 Extractive text summarization methods
Most works appeared in recent researches are based

on looking for appropriate terms. The most used option is 
select words as terms; however is not the only possible 
option. Liu et al. [Liu06] uses pairs of syntactically 
connected words (basic elements) as atomic features 
(terms). Such pairs (which can be thought of as arcs in 
the syntactic dependency tree of the sentence) have been 
shown to be more precise semantic units than words 
[Kos04]. However, while we believe that trying text units 
larger than a word is a good idea, extracting the basic 
elements from the text requires dependency syntactic 
parsing, which is language-dependent. Simpler statistical 
methods (cf. the use of n-grams as terms in [Vil06]) may 
prove to be more robust and language-independent.

Some approaches of text summaries match semantic 
units such as elementary discourse units [Mar01, Sor03], 
factoids [Teu04a, Teu04b], information nuggets 
[Voo04], basic elements [Liu06], etc. A big disadvantage 
of these semantic units is that the detection of these units 
is realized manually. For example, information nuggets 
are atomic pieces of interesting information about the 
target identified by human annotators as vital (required) 
or non-vital (acceptable but not required) for the 
understanding of the content of a summary.

Factoids are semantic units which represent the 
meaning of a sentence. For instance, the sentence “The 
police have arrested a white Dutch man” by the union of 
the following factoids: “A suspect was arrested”, “The 
police did the arresting”, “The suspect is white”, “The 
suspect is Dutch”, “The suspect is male”. Factoids are 
defined empirically based on the data in the set of 
summaries. Usually they are manually made summaries 
taken from [Duc]. Factoid definition starts with the 
comparison of the information contained in two 
summaries, and factoids get added or split as 
incrementally other summaries are considered. If two 
pieces of information occur together in all summaries 
and within the same sentence, they are treated as one 
factoid, because differentiation into more than one 
factoid would not help us in distinguishing the 
summaries. Factoids are labeled with descriptions in 
natural language; initially, these are close in wording to 
the factoid's occurrence in the first summaries, though 
the annotator tries to identify and treat equally 
paraphrases of the factoid information when they occur 
in other summaries. If (together with various statements 

in other summaries) one summary contains “was killed” 
and another “was shot dead”, we identify the factoids: 
“There was an attack”, “The victim died”, “A gun was 
used”. The first summary contains only the first two 
factoids, whereas the second contains all three. That way, 
the semantic similarity between related sentences can be 
expressed. When factoids are identified in the collection 
of summaries, most factoids turned out to be independent 
of each other. But when dealing with naturally occurring 
documents many difficult cases appear, e.g. ambiguous 
expressions, slight differences in numbers and meaning, 
and inference.

The text is segmented in Elementary Discourse Units 
(EDUs) or non-overlapping segments, generally taken as 
clauses or clauses like units of a rhetorical relation that 
holds between two adjacent spans of text [Mar01, 
Car03]. The boundaries of EDUs are determined using 
grammatical, lexical, syntactic information of the whole 
sentence. 

Other possible option proposed by Nenkova in 
[Nen06] is Semantic Content Units (SCUs). The 
definition of the content unit is somewhat fluid, it can be 
a single word but it is never bigger than a sentence 
clause. The most important evidence of their presence in 
a text is the information expressed in two or more 
summaries, or in other words, is the frequency of the 
content unit in a text. Other evidence is that these 
frequent content units can have different wording (but 
the same semantic meaning) what brings difficulties for 
language-independent solution.  

The concept of lexical chains was first introduced by 
Morris and Hirst. Basically, lexical chains exploit the 
cohesion among an arbitrary number of related words 
[Mor91]. Then, lexical chains are computed in a source 
document by grouping (chaining) sets of words that are 
semantically related (i.e. have a sense flow) [Bar99, 
Sil02]. Identities, synonyms, and hypernym/hyponyms 
are the relations among words that might cause them to 
be grouped into the same lexical chain. Specifically, 
words may be grouped when:

Two noun instances are identical, and are used in the 
same sense. (The house on the hill is large. The house is 
made of wood.)

Two noun instances are used in the same sense (i.e., 
are synonyms). (The car is fast. My automobile is faster.)

The senses of two noun instances have a 
hypernym/hyponym relation between them. (John owns a 
car. It is a Toyota.)

The senses of two noun instances are siblings in the 
hypernym/hyponym tree. (The truck is fast. The car is 
faster.)

In computing lexical chains, the noun instances were 
grouped according to the above relations, but each noun 
instance must belong to exactly one lexical chain. There 
are several difficulties in determining which lexical chain 
a particular word instance should join. For instance, a 
particular noun instance may correspond to several 
different word senses and thus the system must 
determine which sense to use (e.g. should a particular 
instance of “house” be interpreted as sense 1: dwelling or 
sense 2: legislature). In addition, even if the word sense 
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of an instance can be determined, it may be possible to 
group that instance into several different lexical chains 
because it may be related to words in different chains. 
For example, the word’s sense may be identical to that of 
a word instance in one grouping while having a 
hypernym/hyponym relationship with that of a word 
instance in another. What must happen is that the words 
must be grouped in such a way that the overall grouping 
is optimal in that it creates the longest/strongest lexical 
chains. It was observed that contention that words are 
grouped into a single chain when they are “about” the 
same underlying concept. That fact confirms the usage of 
lexical chains in text summarization [Bru01, Zho05, 
Li07]. 

Keyphrases, also known as keywords, are linguistic 
units, usually, longer than a words but shorter than a full 
sentence. There are several kinds of keyphrases ranging 
from statistical motivated keyphrases (sequences of 
words) to more linguistically motivated ones (that are 
defined in according to a grammar). In keyphrases 
extraction task, keyphrases are selected from the body of 
the input document, without a predefined list. Following 
this approach, a document is treated as a set of candidate 
phrases and the task is to classify each candidate phrase 
as either a keyphrase or nonkeyphrase [Dav07]. When 
authors assign keyphrases without a controlled 
vocabulary (free text keywords or free index terms), 
about 70% to 80% of their keyphrases typically appear 
somewhere in the body of their documents [Dav07]. This 
suggests the possibility of using author-assigned free-text 
keyphrases to train a keyphrases extraction system.

D’Avanzo [Dav07] extracts syntactic patterns using 
two ways. The first way focuses on extracting uni-grams 
and bi-grams (for instance, noun, and sequences of
adjective and noun, etc.) to describe a precise and well 
defined entity. The second way considers longer 
sequences of part of speech, often containing verbal 
forms (for instance, noun plus verb plus adjective plus 
noun) to describe concise events/situations. Once all the 
uni-grams, bi-grams, tri-grams, and four-grams are 
extracted from the linguistic pre-processor, they are 
filtered with the patterns defined above. The result of this 
process is a set of patterns that may represent the current 
document.

For multi-document summarization, passages are 
retrieved using a language model [Yin07]. The goal of 
language modeling is to predict the probability of natural 
word sequences; or in other words, to put high 
probability on word sequences those actually occur and 
low probability on word sequences that never occur. The 
simplest and most successful basis for language 
modeling is the n-gram model.

4.3.2 Abstractive text summarization methods
Abstractive summarization approaches use 

information extraction, ontological information, 
information fusion, and compression. Automatically 
generated abstracts (abstractive summaries) moves the 
summarization field from the use of purely extractive 
methods to the generation of abstracts that contain 

sentences not found in any of the input documents and 
can synthesize information across sources. An abstract 
contains at least some sentences (or phrases) that do not 
exist in the original document. Of course, true abstraction 
involves taking the process one step further. Abstraction 
involves recognizing that a set of extracted passages 
together constitute something new, something that is not 
explicitly mentioned in the source, and then replacing 
them in the summary with the new concepts. The 
requirement that the new material not be in the text 
explicitly means that the system must have access to 
external information of some kind, such as an ontology 
or a knowledge base, and be able to perform combinatory 
inference.

Recently, Ledeneva et al. [Led08a, Led08b, Led08c] 
and Garcia et al. [Gar08a, Gar08b, Gar09] have 
successfully employed the word sequences from the self-
text for detecting the candidate text fragments for 
composing the summary. 

Ledeneva et al. [Led08a] suggest a typical automatic 
extractive summarization approach composed by term 
selection, term weighting, sentence weighting and 
sentence selection steps. One of the ways to select the 
appropriate sentences is to assign some numerical 
measure of usefulness of a sentence for the summary and 
then select the best ones; the process of assigning these 
usefulness weights is called sentence weighting. One of 
the ways to estimate the usefulness of a sentence is to 
sum up usefulness weights of individual terms of which 
the sentence consists; the process of estimating the 
individual terms is called term weighting. For this, one 
should decide what the terms are: for example, they can 
be words; deciding what objects will count as terms is 
the task of term selection. Different extractive 
summarization methods can be characterized by how 
they perform these tasks. 

Ledeneva et al. [Led08a, Led08b, Led08c] has 
proposed to extract all the frequent grams from the self-
text, but she only considers those that are not contained 
(as subsequence) in other frequent grams (maximal 
frequent word sequences). In comparison with n-grams, 
the Maximal Frequent Sequences (MFS) are attractive 
for extractive text summarization since it is not necessary 
to define the gram size (n), it means, the length of each 
MFS is determined by the self-text. Moreover, the set of 
all extracted MFSs is a compact representation all 
frequent word sequences, reducing in this way the 
dimensionality in a vector space model.

Garcia et al. [Gar08b, Gar09] have extracted all the 
sequences of n words (n-grams) from the self-text as 
features of its model. In this work, we evaluate the n-
grams and maximal frequent sequences as domain- and 
language- independent models for automatic text 
summarization. In this work, sentences were extracted 
using unsupervised learning approach.

Some other methods are also developed for 
abstractive summarization. For example, techniques of 
sentence fusion [Dau04, Bar03, Bar05], information 
fusion [Bar99], sentence compression [Van04, Mad07],
headline summarization [Sar05], etc.
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4.3.3 Recent applications of text 
summarization

We should mention some systems base on
summarization for the following applications:

– Legal texts [Far04, Har04],
– Emails [Cor04, Shr04, Wan04],
– Web pages [Dia06],
– Web documents using mobile devices [Ott06],
– Figures and graphics [Fut04, Car04, Car06],
– News [Eva05, Mck03, Nen05a].

4.3.4 Methods for evaluation of summaries
Up to date, the most recent evaluation system is 

ROUGE (Recall-Oriented Understudy for Gisting 
Evaluation). ROUGE [Lin03a] was proposed by Lin and 
Hovy [Lin04a, Lin04b, Lin04c]. This system calculates 
the quality of a summary generated automatically by 
comparing to the summary (or several summaries) 
created by humans. Specifically, it counts the number of 
overlapping different units such as word sequences, word 
pairs and n-grams between the computer-generated 
summary to be evaluated and the ideal summaries 
created by humans. ROUGE includes several automatic 
evaluation measures, such as ROUGE-N (n-grams co-
occurrence); ROUGE-L (longest subsequence); ROUGE-
W (weighted longest subsequence); ROUGE-S (skip-
bigram co-occurrence). For each of the measures
(ROUGE-N, ROUGE-L, etc.), ROUGE returns Recall,
Precision and F-measure scores.

Another evaluation schemes was proposed by 
Nenkova et al. [Nen04, Pas05, Nen06]. In this scheme, 
special terms are annotated using the pyramid scheme—a 
procedure specifically designed for comparative analysis 
of the content of several texts. The idea of this scheme is 
to evaluate presence of each term in all documents of the 
collection. The more documents contain the term, the 
more important is this term, and consequently it will 
have higher score. 

4.4 Text generation
Text Generation (TG) automatically produces

linguistically correct texts from a rough data that 
represent information in a specific domain, and that are 
organized in conventional databases, knowledge bases, 
or even being produced as result of some application 
processing.

Text generation process is traditionally seen as a 
goal-driven communication process. As a consequence, 
the final text, being written or spoken, just a single-
clause or a multi-paragraph document, is always an 
attempt to address some communicative goal. Starting 
from a communicative goal, the generator decides which 
information from the original data source should be 
conveyed in the generated text. During the generation 
process, the communicative goal is refined in more 
specific sub-goals and some kind of planning takes place 
to progressively convert them together with the original 
data to a well-formed and linguistically correct final text.

The whole generation process is traditionally 
organized in three specific tasks:

– Content determination is the task of deciding 
which chunks of content, collected from the input 
data source, will make up the final text. Each 
chunk of content represents an indivisible 
information unit. These content units are usually 
grouped in a semantic unit of higher complexity 
for a given application domain. A semantic unit is 
called message. Considering for instance a system 
that generates soccer reports, the sentences 
“Brazilian soccer team has beaten the Argentines 
last Sunday” and “Sunday soccer report: Victory 
of Brazil over Argentine” represent different 
linguistic constructions for the same kind of 
message: “Victory”.

– Content organization groups the generated 
messages appropriately as units for each level of 
linguistic hierarchy: the paragraph, the sentence 
and the phrase. In addition, it defines element 
ordering within a group for each respective level. 
Finally, it is in charge of specifying coordination 
and subordination dependencies between these 
groupings.

– Surface realization is the task of choosing the 
appropriated term and the syntactic construction 
for each content unit. This choice is constrained 
by lexical and grammatical rules of the language. 
Punctuation symbols are defined at this stage as 
well.

The applications of this area are usually built using 
ad-hoc software engineering practices, lacking a well-
defined development process, standard software 
architecture, and the use of worldwide programming 
languages. A lot of researches have clarified many 
fundamentals issues and conceived solutions that are
robust and scalable enough for practical use [Fon08].

Furthermore, opportunities for practical applications 
have multiplied with the information inundation from 
relevant Web content sources. Unfortunately, TG 
techniques remain virtually unknown and unused by
mainstream and professional computing. This situation is 
probably due mainly to the fact that until recently, TG 
was built using ad-hoc software engineering practices
with no explicit development process and no standard 
software architecture. Reliance on special-purpose 
esoteric modeling and implementation languages and 
tools is another TG issue. Every system is designed and 
implemented following specific domain complexities and 
needs and little has been done to change the portrayed
situation. Many realization components have been built 
based on different grammatical formalisms and theories
used to describe TG [Elh92].

Recent work [Fon08] describes a new development 
approach that leverages the most recent programming 
languages and standards of modern software engineering 
to enhance the practical use of TG applications. This 
work proposes an innovative approach to the 
development of TG systems, in which the pipeline of text 
generation tasks work as a set of consecutive rule base
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for model transformation. Such methodology for building 
applications by applying transformations on models in 
different levels of abstraction was recently popularized as 
a new software engineering paradigm [Omg01].

5 Graph methods
Graph methods are particularly relevant in the area 

of CL. Many language processing applications can be 
modeled by means of a graph. These data structures have 
the ability to encode in a natural way the meaning and 
structure of a cohesive text, and follow closely the 
associative or semantic memory representations.

One of the most important methods is TextRank 
[Mih04, Mih06]. TextRank has been successfully applied 
to three natural language processing tasks: keyword 
extraction [Mih04], document summarization [Mih06], 
word sense disambiguation [Mih06], and text 
classification [Has07] with results competitive with those 
of state-of-the-art systems. The strength of the model lies 
in the global representation of the context and its ability 
to model how the co-occurrence between features might 
propagate across the context and affect other distant 
features. 

5.1 Graph representation of text
To enable the application of graph-based ranking 

algorithms to natural language texts, a graph that 
represents the text is built, and interconnects words or 
other text entities with meaningful relations. The graphs 
constructed in this way are centered around the target 
text, but can be extended with external graphs, such as 
off-the-shelf semantic or associative networks, or other 
similar structures automatically derived from large 
corpora.

Graph Nodes: Depending on the application at hand, 
text units of various sizes and characteristics can be 
added as vertices in the graph, e.g. words, collocations, 
word senses, entire sentences, entire documents, or 
others. Note that the graph-nodes do not have to belong 
to the same category.

Graph Edges: Similarly, it is the application that 
dictates the type of relations that are used to draw 
connections between any two such vertices, e.g. lexical 
or semantic relations, measures of text cohesiveness, 
contextual overlap, membership of a word in a sentence, 
and others.

Algorithm: Regardless of the type and characteristics 
of the elements added to the graph, the application of the 
ranking algorithms to natural language texts consists of 
the following main steps:

– Identify text units that best define the task at hand, 
and add them as vertices in the graph.

– Identify relations that connect such text units, and 
use these relations to draw edges between vertices 
in the graph. Edges can be directed or undirected, 
weighted or unweighted.

– Apply a graph-based ranking algorithm to find a 
ranking over the nodes in the graph. Iterate the 
graph-based ranking algorithm until convergence. 

Sort vertices based on their final score. Use the 
values attached to each vertex for 
ranking/selection decisions.

5.2 Graph ranking algorithms 
The basic idea implemented by a random-walk 

algorithm is that of “voting” or “recommendation.” 
When one vertex links to another one, it is basically 
casting a vote for that other vertex. The higher the 
number of votes that are cast for a vertex, the higher the 
importance of the vertex.

Moreover, the importance of the vertex casting a 
vote determines how important the vote itself is, and this 
information is also taken into account by the ranking 
algorithm. While there are several random-walk 
algorithms that have been proposed in the past, we focus 
on only one such algorithm, namely PageRank [Bri98], 
as it was previously found successful in a number of 
applications, including Web link analysis, social 
networks, citation analysis, and more recently in several 
text processing applications.

Given a graph G = (V, E), let In(Vi) be the set of 
vertices that point to vertex Vi (predecessors), and 
Out(Vi) be the set of vertices that vertex Vi points to 
(successors). The PageRank score associated with the 
vertex Vi is defined using a recursive function that 
integrates the scores of its predecessors:
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where d is a parameter that is set between 0 and 1.
The score of each vertex is recalculated upon each 

iteration based on the new weights that the neighboring
vertices have accumulated. The algorithm terminates 
when the convergence point is reached for all the 
vertices, meaning that the error rate for each vertex falls 
below a pre-defined threshold.

This vertex scoring scheme is based on a random-
walk model, where a walker takes random steps on the 
graph, with the walk being modeled as a Markov process. 
Under certain conditions (when the graph is acyclic and 
irreducible) the model is guaranteed to converge to a 
stationary distribution of probabilities associated with the 
vertices in the graph. Intuitively, the stationary 
probability associated with a vertex represents the 
probability of finding the walker at that vertex during the 
random-walk, and thus it represents the importance of the 
vertex within the graph.

Two of the most used algorithms are PageRank 
[Bri98] and HITS (Hyperlinked Induced Topic Search) 
[Kle99].

Undirected Graphs: Although traditionally applied 
on directed graphs, algorithms for node activation or 
ranking can be also applied to undirected graphs. In such 
graphs, convergence is usually achieved after a larger 
number of iterations, and the final ranking can differ 
significantly compared to the ranking obtained on 
directed graphs.

Weighted Graphs: When the graphs are built from 
natural language texts, they may include multiple or 
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partial links between the units (vertices) that are 
extracted from text. It may be therefore useful to indicate 
and incorporate into the model the “strength” of the 
connection between two vertices Vi and Vj as a weight 
wij added to the corresponding edge that connects the two 
vertices. Consequently, we introduce new formulae for 
graph-based ranking that take into account edge weights 
when computing the score associated with a vertex in the 
graph.

5.3 Graph clustering algorithms 
The main purpose of graph clustering algorithms is 

calculates clusters for large graphs and to extract 
concepts from similar graphs. These algorithms can be 
applied in various computational linguistics applications. 
For example, word sense disambiguation [Sch98], lexical 
acquisition [Ngo08], language separation [Bie06], 
taxonomy [Ngo09] and ontology extraction [Ngo09], etc.

The idea of graph clustering algorithm [Ngo09] is to 
maximize the flow from the border of each cluster to the 
nodes within the cluster while minimizing the flow from 
the cluster to the nodes outside of the cluster. The 
algorithm uses local information for clustering and 
archives a soft clustering of the input graph. The first 
advantage of this algorithm consists in efficiently 
handling large graphs which permits to obtain promising 
results for computational linguistics applications. The 
second advantage is that it can be used to extract domain-
specific concepts from different corpora and show that it 
computes concepts of high purity.

6 Conclusions
In this paper, we presented an overview of recent 

advances in selected areas of computational linguistics. 
We discussed relation of traditional levels of language –
phonetics/phonology, morphology, syntax, semantics, 
pragmatics, and discourse – to the areas of computational 
linguistics research. 

The discussion about the development of the systems 
of automatic morphological analysis was given. We 
presented various morphological classifications of 
languages, discussed the models that are necessary for 
this type of systems, and then showed that an approach 
based on “analysis through generation” gives several 
advantages during development and the grammar models 
that are used. 

After this, we discussed some popular application 
areas like information retrieval, question answering, text 
summarization and text generation. 

Finally, he paper dealt with the usage of graph 
methods in computational linguistics.
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