
https://doi.org/10.31449/inf.v43i4.2709 Informatica 43 (2019) 551–559 551

Recurrent Neural Network Training using ABC Algorithm for

Traffic Volume Prediction

Adrian Bosire

Department of Computer Science

Kiriri Womens University of Science and Technology, Kasarani, Kenya

E-mail: bosire.adrian@gmail.com

Student paper

Keywords: deep neural network, recurrent neural network, artificial bee colony

Received: March 8, 2019

This study evaluates the use of the Artificial Bee Colony (ABC) algorithm to optimize the Recurrent Neural

Network (RNN) that is used to analyze traffic volume. Related studies have shown that Deep Neural

Networks are superseding the Shallow Neural Networks especially in terms of performance. Here we show

that using the ABC algorithm in training the Recurrent Neural Network yields better results, compared to

several other algorithms that are based on statistical or heuristic techniques that were preferred in earlier

studies. The ABC algorithm is an example of swarm intelligence algorithms which are inspired by nature.

Therefore, this study evaluates the performance of the RNN trained using the ABC algorithm for the

purpose of forecasting. The performance metric used in this study is the Mean Squared Error (MSE) and

ultimately, the outcome of the study may be generalized and extended to suit other domains.

Povzetek: Ocena uspešnosti algoritma umetne kolonije čebelje pri optimizaciji ponavljajoče se nevronske

mreže.

1 Introduction
The Artificial Bee Colony (ABC) algorithm is based on

the intelligent foraging behavior of the honey-bee swarm,

which makes it suitable for optimization problems [14]. In

his proposal of the ABC algorithm, Karaboga aimed to

solve multi-dimensional and multi-modal optimization

problems [12]. A function is considered to be multi-modal

if it has several local optima. Furthermore, it is multi-

dimensional if the local optima are distributed randomly

in the search space, essentially complicating the process

of finding the optimal solution. The ABC algorithm has

been applied to solve many kinds of real-world problems

such as leaf-constrained minimum spanning tree problem,

flow shop scheduling problem, inverse analysis problem

and radial distribution system network reconfiguration

problem among others [21], [29].

Basturk and Karaboga [1] evaluated the ABC

algorithm based on five multi-dimensional benchmark

functions: sphere function, Rosenbrock Valley, Griewank

function, Rastrigin function and Step function. The results

obtained show that the ABC algorithm is quite robust for

multi-modal problems, since it has multi-agents that work

independently and in parallel. This is also echoed by the

results they obtained after comparing the performance of

the ABC with that of the Particle Swarm Optimization

algorithm, Particle Swarm Inspired Evolutionary

Algorithm and Genetic Algorithm [14].

Karaboga et. al. [17] used the ABC algorithm to train

Feed-Forward Artificial Neural Networks with an aim to

overcome drawbacks such as getting stuck in local minima

and computational complexity. They discovered that the

algorithm had good exploration and exploitation

capabilities especially in searching for the optimal weight-

set which is crucial in training Neural Networks. In this

case, exploration refers to the ability to examine the

viability of numerous unknown sections in order to

discover the global optimum in the search space and

exploitation refers to ability to utilize knowledge of the

preceding good solutions to find improved solutions.

The data used in this study in the evaluation of the

optimized neural network represents the vehicle count at

specific junctions of select motorways in the whole of

Britain. However, the optimized neural network can be

trained for any other road network whose data is available.

The rest of this paper is organized as follows: Section

2 begins with an overview on swarm intelligence followed

by Section 3 which explains the fundamental concept of

the ABC algorithm. Later, Section 4 looks at the

implementation of the ABC algorithm in optimizing the

Recurrent Neural Network. In Section 5, we find the

experiments and results. Eventually, a summary of the

findings of this paper is presented in Section 6.

2 Swarm intelligence
Swarm intelligence refers to the collective intelligence

exhibited by the collaborative behavior of social insect

colonies or animal societies in pursuit of a defined

purpose. This means that the entities that collaborate form

a swarm, which is alternatively defined as a set of agents

which act on their environment with an aim of solving a

distributed problem [23]. These entities work together

with a common goal thus increasing their chances of

finding the best or optimal solution to the task at hand. In

mailto:bosire.adrian@gmail.com

552 Informatica 43 (2019) 551–559 A. Bosire

so doing, they inadvertently enhance the exploration and

exploitation of their environment. Furthermore, this

process serves to break down the problem into smaller and

simpler tasks which are easily solved by sub-groups

whose solutions are aggregated to formulate the overall

solution. So, the time used to find a solution is decreased

exponentially with an increase in the agents involved and

also because some of these smaller tasks can be solved

concurrently. The dedicated effort of such agents to a

single, simplified and well-defined task also minimizes

occurrence of errors as may be experienced when a single

agent is tasked with the same problem. Therefore, the

collective effort is useful in cases where a problem can be

compartmentalized into smaller manageable tasks.

Examples of swarm intelligence algorithms include

Artificial Bee Colony, Ant Colony Optimization, Particle

Swarm Optimization, Immune Algorithm, Bacterial

Foraging Optimization, Cat Swarm Optimization, Cuckoo

Search Algorithm, Firefly Algorithm, Gravitational

Search Algorithm among others [15], [23]. These

algorithms are evidence of various assortments of swarms

in the world and their varied level of intelligence but self-

organization and labor division are key features they

collectively possess.

3 Artificial bee colony algorithm
The ABC algorithm is a swarm-based algorithm presented

by Karaboga [12]. This algorithm is inspired by the

intelligent-search behavior of honeybees, known for their

systematic collection of nectar that they process into

honey. Nectar (food) is collected from flowers located in

the neighboring fields (food sources) away from their

hives. The bees communicate with each other by means of

a waggle dance so as to share information about the quality

of food sources. This information shared among the

colony members includes the location and proximity of

the food source to the hive, the quality of food source and

quantity of food. This majorly governs the foraging range

with correct accuracy thus enabling the swarm to direct its

efforts to the best food source. Their mutual dependence

is pegged on their distinct but partially evolving roles that

adapt to the needs of the colony. The needs of the colony,

decentralized decision-making and the age of the bees as

well as their physical structure serve as a control for their

social life. Therefore, self-organization, autonomy,

distributed functioning and division of labor constitute the

swarms’ ability to solve distributed problems as a unit and

adapt to any environment. [23], [24], [27].

The intelligence exhibited by the collective behaviour

of swarms via local interactions may be characterized into

four distinctive features. The firrst one is positive

feedback which refers to the creation of convenient

structures such as recruitment and reinforcement. Then we

have negative feedback that involves counterbalancing of

the positive feedback in order to stabilize the collective

pattern and avoid saturation The third is fluctuations

which involve the variations incurred in form of errors,

random task switching among swarm individuals which

stimulates creativity and discovery of new structures.

Lastly, we have multiple interactions tha refer to the

relationship and cooperation between the various agents in

the swarm that result in the overall development [17], [18].

The honeybee forage selection model is based on

three components: food sources (alternative solutions),

employed foragers (active solution seekers) and

unemployed foragers (passive solution seekers) made up

of onlookers and scouts. In addition, two leading modes of

the behavior are expressed: recruitment to a food source

and abandonment of a food source. Thus, the position of a

food source represents a potential solution to the

optimization problem and the quantity of a food source

corresponds to the calculated fitness value of the

associated solution [12], [13], [14], [26].

In essence, food sources signify the profitability of the

proposed solution in terms of complexity involved in

attaining it. This complexity is evaluated based on

proximity, ease of extraction, energy concentration which

is calculated as a probability value. Employed foragers are

associated with a particular food source or simply a

solution they are working on, whereas, the unemployed

foragers are looking for potential food sources to exploit

or simply looking out for alternative solutions. Thus, the

scouts find alternative food sources while the onlookers

establish viable solutions from the information given to

them by the employed foragers through the waggle dance.

At the beginning, the number of employed bees and

the number of available food sources. Additionally, an

employed bee turns into a scout when the position of a

food source declines after a predetermined limit of

foraging attempts, at that time exploitation ceases. Thus,

the employed and onlooker bees usually perform the

exploitation whereas the scouts perform the exploration of

the search space. This process of foraging can be viewed

as a complex problem broken down into many parts and

the ultimate task is to find a viable solution since there are

many ways in reaching the goal [9], [18], [23]. Let us

examine figure 1 as illustrated by Karaboga [12], for a

better understanding of this foraging behaviour.

Figure 1: The honeybee nectar foraging behavior [12].

Recurrent Neural Network Training using... Informatica 43 (2019) 551–559 553

In figure 1 above, there are two discovered food

sources: A and B. Any potential forager will always start

as an unemployed forager and will not have any

knowledge about the food sources around the nest. This

limits the prospective options for such a bee to the

following:

i. To become a scout and instinctively start

searching around the nest for food (S).

ii. To become a recruit after watching the waggle

dances for the available food sources (R).

This bee then evaluates the available food sources,

memorizes a food source location and immediately starts

exploiting it thus becoming an employed forager. The

foraging bee takes with it a load of nectar from the source

and unloads it to a food store back in the hive after which

the bee takes on one of the three roles below:

i. It recruits other bees (onlookers) and returns to

the same food source (EF1).

ii. It continues to forage at the same food source

without recruiting other bees (EF2).

iii. It becomes an uncommitted follower after

abandoning the food source (UF).

Therefore, this formulates the procedure of the ABC

algorithm which is separated into five distinct phases;

Initialization phase, Employed bee phase, Probabilistic

selection phase, Onlooker bee phase and the Scout bee

phase [12], [23]:

i. Initialization Phase

The Food Source locations are randomly initialized within

the search space as calculated using equation (1) below.

xij = xj
min + rand(0,1)(xj

max − xj
min) (1)

where i = 1, 2, …, SN and SN indicates the number of Food

Sources (equal to half of the bee colony);

j = 1, 2, …, D and D is the dimension of the problem;

𝑥𝑖𝑗 represents the parameter for ith employed bee on jth

dimension, meaning that they are dependent on each other;

𝑥𝑗
𝑚𝑎𝑥 and 𝑥𝑗

𝑚𝑖𝑛 are upper and lower bounds of 𝑥𝑖𝑗 .

ii. Employed Bee Phase

Every Employee Bee is assigned to the resultant Food

Source generated by equation (2) below for further

exploitation.

 𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) (2)

where k is a neighbor of i, i ≠ k;

𝜑𝑖𝑗 is a random number in the range [−1, 1] to control the

production of neighbor solutions around 𝑥𝑖𝑗;

𝑣𝑖𝑗 is the new solution for 𝑥𝑖𝑗 .

The value of the new Food Source is measured using

a fitness value calculated by equation (3) below.

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑎𝑏𝑠𝑓𝑖
, 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖), 𝑓𝑖 < 0

 (3)

where abs𝑓𝑖 is the absolute objective function associated

with each Food Source;

𝑓𝑖𝑡𝑖 is the fitness value.

The two food sources 𝑥𝑖𝑗 (Original Food Source) and

𝑣𝑖𝑗 (New Food Source) are compared and the best is

chosen based on a greedy selection of their fitness values.

iii. Probabilistic Selection Phase

Then, a probability value for each Food Source is

calculated using equation (4) which is useful for Onlooker

Bees when they evaluate the viability of a Food Source

amongst the available options.

 𝑝𝑖 =

𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑁
𝑗=1

 (4)

where 𝑓𝑖𝑡𝑖 is the fitness value of i-th solution;

𝑝𝑖 is the selection probability of i-th solution.

iv. Onlooker Bee Phase

The Employed Bees advertise the viability of their Food

Sources to the Onlooker Bees which select a Food Source

to exploit based on the fitness and probability values

associated with it i.e., the more fitness, the higher the

probability. The Food Sources that are picked are further

exploited using equation (2). This improves the solution

and their fitness values are also calculated using equation

(3). Once again, to yield an improved solution, a greedy

selection process is performed on the original and new

Food Sources, similar to Employed Bee Phase.

v. Scout Bee Phase

The Employed Bee for a Food source that doesn’t generate

better results over time becomes a Scout Bee and the Food

Source is abandoned. This leads to the random generation

of a new Food Source in the search space using equation

(1). Subsequently, the Employed bee phase, Probabilistic

selection phase, Onlooker bee phase and Scout bee phases

will execute until termination criterion is satisfied. The

best food source solution is obtained as output. Note that

the steps of the algorithm presented in section 4 are quite

elaborate than the fore mentioned summary. [12], [13],

[15], [18].

4 RNN training using ABC

algorithm
Artificial Neural Networks are based on the simulated

network of biological neurons in which neurons are the

essential computational units [22]. Hence, the underlying

concept is to train a mathematical model so that it can

reproduce some physical phenomena or make some

predictions. The model is presented with training samples

that are the actual outputs of the studied system

corresponding to the actual inputs of the problem. Later,

the error obtained between the actual and the predicted

value serves as the metric for measuring the performance

of the algorithm in terms of prediction [5].

Artificial Neural Networks can broadly be

categorized into Shallow Neural Network and Deep

Neural Network techniques. Shallow Neural Networks

generally have only one hidden layer as opposed to Deep

Neural Networks which have several levels of hidden

layers. Therefore, Deep Neural Networks utilize functions

whose complexity is of a higher magnitude contrary to

554 Informatica 43 (2019) 551–559 A. Bosire

Shallow Neural Networks, given that all resources remain

constant [3].

Shallow Neural Network (SNN) techniques contain

less than two layers of nonlinear feature transformations.

Examples of the SNN techniques are Conditional Random

Fields (CRFs), Gaussian Mixture Models (GMMs),

Support Vector Machines (SVMs), Maximum Entropy

(MaxEnt) models, Logistic Regression, Kernel

Regression, Multi-Layer Perceptron’s (MLPs) with a

single hidden layer including Extreme Learning Machines

(ELMs). SNN techniques effectively solve well-

constrained problems due to their limited modeling and

representational power which poses a challenge when

dealing with complicated real-world applications. A well-

constrained problem is one for which a function is to be

minimized or maximized with respect to well defined

constraints [3], [6].

Deep Neural Networks (DNN) are Artificial Neural

Networks composed of several interconnected hidden

layers. These hidden layers have multiple hidden

perceptrons between the network input layer and its

network output for computational use. Dynamic

environments require Deep Neural Network techniques

which are useful in extracting complex structure and

building internal representation. Examples of DNNs are

Recurrent Neural Network (RNN), Convolutional Neural

Networks (Conv.Net), Deep Boltzmann Machines

(DBM), Deep Belief Networks (DBN) [30].

So, the basic concept behind Artificial Neural

Networks owes to their imitation of biological neurons as

shown in figure 2 which is an elementary neuron with

several inputs and one output. Here, each input x is fed to

the next layer, in our case an output layer y, with an

appropriate weight w. The sum of the weighted inputs and

the bias forms the input to the transfer function f. The bias

is a threshold that represents the minimum level that a

neuron needs for activating and is represented by b.

Neurons can use any differentiable transfer function f to

generate their output. Therefore, in multi-layer networks,

the input values to the inputs of the first layer, allow the

signals to propagate through the network, and read the

output values where output of the 𝑖 th node can be

described by the function in Eq. 4.1 below [25], [28].

Figure 2: Representation of an Elementary Neuron.

𝑦𝑖 = 𝑓𝑖(∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=1 + 𝑏𝑖) (5)

where 𝑦𝑖 is the output of the node;

𝑥𝑗 is the 𝑗th input to the node;

𝑤𝑖𝑗 is the connection weight between the node and input

𝑥𝑗;

𝑏𝑖 is the threshold (or bias) of the node;

𝑓𝑖 is the node transfer function.

Multilayer networks often use the sigmoid transfer

function which generates outputs between 0 and 1 as the

neuron's net input goes from negative to positive infinity.

This is used for models where we have to predict the

probability as an output. Hence, its suitability because the

probability of real-world entities exist in the range of 0 and

1. Sigmoid output neurons are often used for pattern

recognition, clustering and prediction problems.

The information from a layer to the next one is

transmitted by means of the activation function,

represented in equation (6). The activation function relies

on the weighted sum and bias to make a calculation on

whether a neuron will be activated or not, thus introducing

non-linearity to the network. This non-linear

transformation performed on the inputs and sent through

the network enables it to learn and perform complex tasks.

𝑦 = 𝑓(𝑛) =
1

1 + 𝑒−𝑛 (6)

The main goal is to minimize the cost function by

optimizing the network weights. The fundamental idea of

this optimization approach is to individually interpret and

change the weight values. Also, note that dynamic

environments present a relatively higher network

complexity which suggests the need for Deep Neural

Networks. Therefore, the data presented to the network

has to be split into three sets; training set, validation set

and the testing set. This facilitates the training, verification

and evaluation of the networks’ performance.

Furthermore, the complexity of the challenge is

represented by the Mean Squared Error (MSE) in equation

(7). The MSE is obtained while comparing the target input

against the predicted output could determine the number

of hidden layers. The optimization of the network is

achieved by minimizing the MSE which is essentially a

network error function. Henceforth, the training algorithm

is used to find the optimal weights that are used for

initializing the Neural Network. In this case, the ABC

algorithm is used to find the precise weights that enable

the network connections to make accurate decisions. The

algorithm uses a cost function as a measure for our

progress in determining the right weights [19], [25].

 𝐸(𝑤(𝑡)) =
1

𝑛
 ∑ (𝑑𝑘 − 𝑂𝑘)2𝑛

𝑘=1 (7)

where, 𝐸(𝑤(𝑡)) is the error at the 𝑡𝑡ℎ iteration;

(𝑤(𝑡)), the weights in the connections at the 𝑡𝑡ℎ iteration;

𝑑𝑘 and 𝑂𝑘 represent the desired and the actual values of

𝑘𝑡ℎ output node;

𝑘 is the number of output nodes;

𝑛 is the number of inputs.

A Recurrent Neural Network (RNN) is an extension

of the conventional feed-forward neural network

described above. The major difference is that RNNs have

cyclic connections which make them reliable for modeling

time-series data in dynamic environments. This means

Recurrent Neural Network Training using... Informatica 43 (2019) 551–559 555

that at any given the output is related to the present input

and the input at previous timestamps. Therefore, we build

on the concept above of the elementary neuron in relation

to the RNN. Here, we have the input sequence denoted by

x = (x1, x2, ..., xt), the hidden layer denoted by h = (h1, h2,

..., ht) and the output vector sequence denoted by y = (y1,

y2, ..., yt). Usually the RNN calculates the hidden vector

sequence h using equation (8) and the output vector

sequence y using equation (9) with t = 1 to T [20];

 ℎ𝑡 = 𝑓𝑡 (𝑤𝑥ℎ𝑥𝑡 + 𝑤ℎℎℎ𝑡−1 + 𝑏ℎ) (8)

 𝑦𝑡 = 𝑓𝑡 (𝑤ℎ𝑦ℎ𝑡 + 𝑏𝑦) (9)

where function 𝑓𝑡 is the activation function;

w is a weight matrix;

b is the bias term.

However, the Long Short-Term Memory (LSTM)

architecture is preferable because it resolves the

underlying vanishing and exploding gradient problems of

the traditional RNN. The LSTM – RNN uses three gates

that form a cell which consequently solves the problems

mentioned above thus making the network robust. Thus,

the LSTM cell replaces the recurrent hidden cell in Eq. 4.4

above. The equations to compute the values for the three

gates are described below [11], [20].

𝑖𝑡 = 𝑓𝑡 (𝑤𝑥𝑖𝑥𝑡 + 𝑤ℎ𝑖ℎ𝑡−1 + 𝑤𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (10)

𝑔𝑡 = 𝑓𝑡 (𝑤𝑥𝑔𝑥𝑡 + 𝑤ℎ𝑔ℎ𝑡−1 + 𝑤𝑐𝑔𝑐𝑡−1 + 𝑏𝑔) (11)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑐 tan ℎ (𝑤𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (12)

𝑂𝑡 = 𝑓𝑡 (𝑤𝑥𝑜𝑥𝑡 + 𝑤ℎ𝑜ℎ𝑡−1 + 𝑤𝑐𝑜𝑐𝑡−1 + 𝑏𝑜) (13)

ℎ𝑡 = 𝑂𝑡 tan ℎ (𝑐𝑡) (14)

Where, 𝑓𝑡 is the logistic sigmoid function;

i, g, o and c are respectively the input gate, forget gate,

output gate and cell state;

𝑤𝑐𝑖 , 𝑤𝑐𝑔 and 𝑤𝑐𝑜 are denoted weight matrices for peephole

connections.

In LSTM – RNN, the input gate i, the forget gate g,

and the output gate o control the information flow. The

input gate decides the ratio of input which has an effect

when calculating the cell state, c. The forget gate

calculates the ratio of the previous memory ℎ𝑡−1 using

equation (11) and decides whether to pass it onwards or

not. The result obtained is used for determining the cell

state in equation (12). The output gate which is based on

equation (13) determines whether pass out the output of

the memory cell or not. This process as represented by the

ratios from the three gates is denoted by equation (14) and

also depicted diagrammatically in the figure 3 [20].

Figure 3: Long-Short Term memory Cell.

Therefore, the algorithm below outlines the

optimization process for the deep neural network using the

ABC algorithm [10], [12], [19], [25].

1. Set Cycle=0.

2. Load training samples from dataset.

3. Initialize a population of scout bee with random

solution xi, i = 1,2, …, SN using equation (1).

4. Evaluate fitness (fiti) of the population using equation

(3)

a. Initialize weight and bias for the Recurrent Neural

Network

5. Set Cycle=1: while Maximum cycle not reached,

repeat step 6 – step 12

6. FOR each employed bee {

Produce new solution vi by using equation (2)

Calculate the value fiti on the new population

Apply greedy selection process between xij and

vij}

7. Calculate the probability values pi for the solutions (xi)

using equation (4)

8. FOR each onlooker bee {

Select a solution xi depending on pi

Produce new solution vi

Calculate the value fiti

Apply greedy selection process}

9. If there is an abandoned solution for the scout then

replace it with a new solution which will be randomly

produced by equation (1)

10. Memorize the best solution so far

11. Update new weight and bias for the Recurrent Neural

Network

12. Increment Cycle + 1 until Cycle=MCN

where 𝑥𝑖 represents a solution;

𝑓𝑖𝑡𝑖 is the fitness value of 𝑥𝑖;

𝑣𝑖 indicates a neighbor solution of 𝑥𝑖;

𝑝𝑖 is the probability value of 𝑥𝑖;

𝑀𝐶𝑁 is the maximum cycle number in the algorithm.

Remember that at the beginning, one half of the

colony consists of onlooker bees and the second half

constitutes the employed bees which are equal to the

number of food sources (viable solutions) and any

employed bee whose food source has been exhausted

becomes a scout bee. Therefore, the algorithm starts by

generating a randomly distributed initial population (𝑆𝑁

food source positions), where 𝑆𝑁 denotes the size of

population. Each solution 𝑥𝑖 (𝑖 = 1, 2, ..., 𝑆𝑁) is a 𝐷-

dimensional vector. D being the number of optimization

parameters. After initialization, the population of the

solutions is subjected to repeated cycles, 𝐶 = 1, 2, ..., 𝑀𝐶𝑁,

of the search process until a termination criterion is

achieved. Each cycle of the search consists of three steps:

engaging the employed bees with their food sources and

evaluating their viability; sharing the food sources

viability information with the onlookers which select a

food source and again assess its viability; determining the

scout bees and sending them out randomly to explore new

food sources. An employed bee produces a modification

on the solution in its memory depending on the probability

and fitness tests. Thereby, generating optimal weights that

serve to minimize the cost function and with each cycle

556 Informatica 43 (2019) 551–559 A. Bosire

the RNN is adequately trained with varying parameters

using the ABC algorithm until optimal conditions are met

[10], [18], [19].

5 Experiments and results
During the training phase, the Recurrent Neural Network

is presented with a set of the training data from the dataset

and the input weights are adjusted by using the ABC

algorithm as a learning algorithm. The dataset can be

acquired from the Road Traffic Statistics website for Great

Britain [7]. The purpose of the weight adjustment is to

enable the RNN to learn so that it would adapt to the given

training data [10]. The dataset also has to be split to a

suitable ratio to enable the training of the network,

validation and testing of the results obtained. Thereafter,

the performance of the network is evaluated based on the

Mean Squared Error (MSE) obtained between the desired

output and the actual output thus testing the validity of the

network in terms of its prediction efficiency. Figure 4

below depicts the performance graph obtained on

execution of the algorithm in MATLAB [2].

Figure 4: Performance of the ABC Optimized RNN.

The figure 4 represents the best validation

performance of the network. On several runs of the

algorithm the MSE obtained was 1.1232e3. This is the

value obtained on epoch 9 after which the error gradually

starts to increase due to overfitting but in this case, it

gradually maintains a constant level. In other experiments,

the MSE of the RNN before it was optimized was 3.853e3

[4]. The difference between the two MSEs basically shows

that the ABC algorithm is actually efficient in terms of

optimization. Generally, lower MSEs translate to high

accuracy. Graphically, this is seen in the regression plots

for the dataset in figure 6.

Figure 5 shows the respective regression values of the

three different sets of the dataset. Splitting of the dataset

helps with the early stopping of the network in order to

achieve its generalization capability. The three sets of data

all obtain value greater than 0.9 and the aggregate

regression value is 0.93625 which borders 1. This shows

a high relationship between the desired outputs and the

obtained outputs, which shows a high accuracy in the

networks ability to forecast efficiently. Furthermore, there

is a high cross-correlation between the input data and the

error time-series as depicted in the graph in figure 6 below.

Figure 6: Correlation between the input and the output

error.

The figure 6 above means that the network is able to

model the predictive characteristics of the time-series lag

which is the difference between the expected and the

actual values. This correlation is depicted in the figure and

the values fall in between the acceptable confidence limits

as shown by the dotted red line. This is further exemplified

in the time series plot of figure 7 below which shows the

relationship between the predicted values and the actual

values

The figure 7 above shows the desired output values

plotted against the actual values obtained by the RNN

optimized by the ABC algorithm. This time-series graph

shows the level of accuracy that can be obtained during

prediction with a well-trained RNN. The high efficacy of

the ABC algorithm is also depicted in the graph regardless

of one incorrectly predicted value. However, the other

values fall between the confidence limits and as such with

further training and fine-tuning of the parameters the RNN

can actually produce reliable results. This means that the

generalized model can actually produce accurate

predictions. The values of the RNN after optimization

Figure 5: ABC Optimized RNN regression plot.

Recurrent Neural Network Training using... Informatica 43 (2019) 551–559 557

using the ABC algorithm are illustrated in the table 1

below.

The results in table 1 above reflect the MSEs obtained

during the training, validation and testing phases of the

experiment. The optimal MSE for the training phase was

359.8409, the validation phase had an optimal MSE of

569.0172 and the optimal MSE at the Test phase was

673.4512. These values show that the error rate reduced

gradually with an increase in the number of hidden layers.

Other experiments have been performed using other

algorithms for optimization of the deep neural networks.

These algorithms include the Levenberg-Marquardt

Backpropagation algorithm which had an optimal MSE of

360.2578 at the training phase, the Scaled Conjugate

Gradient Backpropagation algorithm which had a least

MSE of 480.9656 at the validation phase and the Resilient

Backpropagation algorithm which had 467.9015 as the

MSE at the testing phase [4]. The ABC trained RNN has

peak performance when the hidden layer size is between

40 and 80 given an input vector size of 500. In comparison

to the fore-mentioned training algorithms, the ABC

algorithm surpasses the other training algorithms in

similar conditions.

6 Conclusion
It is evident from the results that the ABC algorithm out-

performs the backpropagation algorithms. However, the

parameter settings for the algorithm need to be refined for

the model to be generalized. Moreover, different

architectures of other deep neural networks can be

implemented especially in distributed computing

environments so as to sustain a greater number of the

hidden layers or even produce a sustainable hybrid

thereof. Furthermore, deep neural networks need to be

optimized so as to enhance the practicability of a model

that yields reliable forecasting in dynamic environments.

7 Acknowledgement
This work was supported by Kiriri Womens University of

Science and Technology.

References
[1] Basturk, B., & Karaboga, D. (2006). An Artificial Bee

Colony Algorithm (ABC) for Numeric Function

Optimization. IEEE Swarm Intelligence Symposium.

Indianapolis, Indiana, USA.

[2] Beale, M. H., Hagan, M. T., & Demuth, H. B. (2018,

February). MATLAB R2018a. Neural Network

Toolbox Version 11.1. MathWorks Inc. Retrieved

from: https://www.mathworks.com/products/deep-

learning.html

[3] Bianchini, M., & Scarselli, F. (2014, August). On the

complexity of Neural Network Classifiers: A

Comparison Between Shallow and Deep

Architectures. IEEE Transactions on Neural

Networks and Learning Systems, 25(8), 1553-1565.

Figure 7: Time-series response of the RNN output values.

Training Algorithm Hidden Layer Size
Performance (MSE)

Training Validation Testing

Artificial Bee

Colony (ABC)

Algorithm

20 721.2039 998.2733 1689.7351

40 412.1763 569.0172 673.4512

60 359.8409 920.2444 1.0031e+01

80 492.2976 1.1457e+01 2.4915e+01

100 540.0012 2.4345e+01 2.7031e+02

Table 1: MSEs obtained by the ABC optimized Recurrent Neural Network.

558 Informatica 43 (2019) 551–559 A. Bosire

https://doi.org/10.1109/TNNLS.2013.2293637

[4] Bosire, A., Okeyo, G., & Cheruiyot, W. (2018,

October). Performance of Deep Neural Networks in

the Analysis of Vehicle Traffic Volume.

International Journal of Research and Scientific

Innovation, 5(10), 57-66.

[5] De Luca, G., & Gallo, M. (2017). Artificial Neural

Networks for forecasting user flows in transportation

networks: literature review, limits, potentialities and

open challenges. 2017 5th IEEE International

Conference on Models and Technologies for

Intelligent Transportation Systems (pp. 919-923).

Naples, Italy: IEEE.

https://doi.org/10.1109/MTITS.2017.8005644

[6] Deng, L., & Yu, D. (2013). Deep Learning: Methods

and Applications. Foundations and Trends in Signal

Processing, 7, 197-387.

https://doi.org/10.1561/2000000039

[7] Department for Transport. (2018, June). Traffic

counts. Retrieved June 2018, from Traffic counts:

https://www.dft.gov.uk/traffic-counts/about.php

[8] Garro, B. A., & Vázquez, R. A. (2015). Designing

Artificial Neural Networks Using Particle Swarm

Optimization Algorithms. Computational

Intelligence and Neuroscience.

https://doi.org/10.1155/2015/369298

[9] Haris, P., Gopinathan, E., & Ali, C. (2012, July).

Artificial Bee Colony and Tabu Search Enhanced

TTCM Assisted MMSE Multi-User Detectors for

Rank Deficient SDMA-OFDM System. Wireless

Personal Communications, 65(2), 425-442.

https://doi.org/10.1007/s11277-011-0264-0

[10] Hassim, Y. M., & Ghazali, R. (2012). Training a

Functional Link Neural Network Using an Artificial

Bee Colony for Solving a Classification Problems.

Journal of Computing, 4(9), 110-115.

[11] Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural computation, 9(8), 1735-1780.

https://doi.org/10.1162/neco.1997.9.8.1735

[12] Karaboga, D. (2005). An Idea Based on Honey Bee

Swarm for Numerical Optimization. Technical

Report, Erciyes University, Computer Engineering

Department, Turkey.

[13] Karaboga, D., & Akay, B. (2009, August). A

comparative study of Artificial Bee Colony

algorithm. Applied Mathematics and Computation,

214(1), 108-132.

https://doi.org/10.1016/j.amc.2009.03.090

[14] Karaboga, D., & Basturk, B. (2007). A powerful and

efficient algorithm for numerical function

optimization: Artificial Bee Colony (ABC) algorithm.

https://doi.org/10.1007/s10898-007-9149-x

[15] Karaboga, D., & Basturk, B. (2008). On the

performance of artificial bee colony (ABC)

algorithm. Applied Soft Computing, 687–697.

https://doi.org/10.1016/j.asoc.2007.05.007

[16] Karaboga, D., & Ozturk, C. (2009). Neural Networks

training by Artificial Bee Colony algorithm on pattern

classification. Neural Network World, 19(3), 279–

292.

[17] Karaboga, D., Basturk, B., & Ozturk, C. (2007).

Artificial Bee Colony (ABC) Optimization Algorithm

for Training Feed-Forward Neural Networks. In

Modeling Decisions for Artificial Intelligence (pp.

318-329). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-73729-2_30

[18] Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga,

N. (2012). A comprehensive survey: Artificial Bee

Colony (ABC) algorithm and applications. Artif Intell

Rev, 42, 21–57.

https://doi.org/10.1007/s10462-012-9328-0

[19] Kayabasi, A. (2018). An Application of ANN Trained

by ABC Algorithm for Classification of Wheat

Grains. International Journal of Intelligent Systems

and Applications in Engineering, 6(1), 85-91.

https://doi.org/10.18201/ijisae.2018637936

[20] Kim, J., Kim, J., Thu, H. L., & Kim, H. (2016). Long

Short Term Memory Recurrent Neural Network

Classifier for Intrusion Detection. 1-5.

https://doi.org/10.1109/PlatCon.2016.7456805

[21] Koc, E., Ersoy, N., Andac, A., Camlidere, Z. S.,

Cereci, I., & Kilic, H. (2012). An empirical study

about search-based refactoring using alternative

multiple and population-based search techniques. In

E. Gelenbe, R. Lent, & G. Sakellari (Ed.), Computer

and information sciences II (pp. 59-66). Springer,

London.

https://doi.org/10.1007/978-1-4471-2155-8_7

[22] Kriegeskorte, N. (2015). Deep Neural Networks: A

New Framework for Modeling Biological Vision and

Brain Information Processing. Annual Review of

Vision Science, 1, 417–446.

https://doi.org/10.1146/annurev-vision-082114-

035447

[23] Kumar, A., Kumar, D., & Jarial, S. K. (2017). A

Review on Artificial Bee Colony Algorithms and

Their Applications to Data Clustering. Cybernetics

and Information Technologies, 17(3).

https://doi.org/10.1515/cait-2017-0027

[24] Omkar, S., & Senthilnath, J. (2009). Artificial Bee

Colony for Classification of Acoustic Emission

Signal Source. International Journal of Aerospace

Innovations, 1(3), 129-143.

https://doi.org/10.1260/175722509789685865

[25] Ozturk, C., & Karaboga, D. (2011). Hybrid Artificial

Bee Colony Algorithm for Neural Network Training.

2011 IEEE Congress of Evolutionary Computation

(CEC), 84-88.

https://doi.org/10.1109/CEC.2011.5949602

[26] Seyyed, R. K., Maleki, I., Hojjatkhah, S., &

Bagherinia, A. (2013, August). Evaluation of the

Efficiency of Artificial Bee Colony and Firefly

Algorithm in Solving the Continuous Optimization

Problem. International Journal on Computational

Sciences & Applications, 3(4).

[27] Shukran, M. A., Chung, Y. Y., Yeh, W.-C., Wahid,

N., & Zaidi, A. M. (2011, August). Artificial bee

colony based data mining algorithms for

classification tasks. Modern Applied Science, 5(4),

217–231.

https://doi.org/10.5539/mas.v5n4p217

https://doi.org/10.1109/TNNLS.2013.2293637
https://doi.org/10.1109/MTITS.2017.8005644
https://doi.org/10.1561/2000000039
https://doi.org/10.1155/2015/369298
https://doi.org/10.1007/s11277-011-0264-0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1007/978-3-540-73729-2_30
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.18201/ijisae.2018637936
https://doi.org/10.1109/PlatCon.2016.7456805
https://doi.org/10.1007/978-1-4471-2155-8_7
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1515/cait-2017-0027
https://doi.org/10.1260/175722509789685865
https://doi.org/10.1109/CEC.2011.5949602
https://doi.org/10.5539/mas.v5n4p217

Recurrent Neural Network Training using... Informatica 43 (2019) 551–559 559

[28] Vazquez, R. A., & Garro, B. A. (2015). Training

Spiking Neural Models Using Artificial Bee Colony.

Computational Intelligence and Neuroscience.

https://doi.org/10.1155/2015/947098

[29] Xiangyu, K., Liu, S., & Wang, Z. (2013). An

Improved Artificial Bee Colony Algorithm and Its

Application. International Journal of Signal

Processing, Image Processing and Pattern

Recognition, 6(6), 259-274.

https://doi.org/10.14257/ijsip.2013.6.6.24

[30] Yann, L., & Ranzato, M. (2013). Deep learning

tutorial. Tutorials in International Conference on

Machine Learning (ICML’13).

List of Abbreviations
ABC Artificial Bee Colony

Conv.Net Convolutional Neural Network

CRF Conditional Random Field

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DNN Deep Neural Network

EF Employed Forager

ELM Extreme Learning Machine

GMM Gaussian Mixture Model

LSTM Long-Short Term Memory

MaxEnt Maximum Entropy

MCN Maximum Cycle Number

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NN Neural Network

R Recruited Bee

RNN Recurrent Neural Network

S Scout Bee

SNN Shallow Neural Network

SVM Support Vector Machine

UF Unemployed Forager

https://doi.org/10.1155/2015/947098
https://doi.org/10.14257/ijsip.2013.6.6.24

560 Informatica 43 (2019) 551–559 A. Bosire

