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This study evaluates the use of the Artificial Bee Colony (ABC) algorithm to optimize the Recurrent Neural 

Network (RNN) that is used to analyze traffic volume. Related studies have shown that Deep Neural 

Networks are superseding the Shallow Neural Networks especially in terms of performance. Here we show 

that using the ABC algorithm in training the Recurrent Neural Network yields better results, compared to 

several other algorithms that are based on statistical or heuristic techniques that were preferred in earlier 

studies. The ABC algorithm is an example of swarm intelligence algorithms which are inspired by nature. 

Therefore, this study evaluates the performance of the RNN trained using the ABC algorithm for the 

purpose of forecasting. The performance metric used in this study is the Mean Squared Error (MSE) and 

ultimately, the outcome of the study may be generalized and extended to suit other domains. 

Povzetek: Ocena uspešnosti algoritma umetne kolonije čebelje pri optimizaciji ponavljajoče se nevronske 

mreže. 

1 Introduction 
The Artificial Bee Colony (ABC) algorithm is based on 

the intelligent foraging behavior of the honey-bee swarm, 

which makes it suitable for optimization problems [14]. In 

his proposal of the ABC algorithm, Karaboga aimed to 

solve multi-dimensional and multi-modal optimization 

problems [12]. A function is considered to be multi-modal 

if it has several local optima. Furthermore, it is multi-

dimensional if the local optima are distributed randomly 

in the search space, essentially complicating the process 

of finding the optimal solution. The ABC algorithm has 

been applied to solve many kinds of real-world problems 

such as leaf-constrained minimum spanning tree problem, 

flow shop scheduling problem, inverse analysis problem 

and radial distribution system network reconfiguration 

problem among others [21], [29]. 

Basturk and Karaboga [1] evaluated the ABC 

algorithm based on five multi-dimensional benchmark 

functions: sphere function, Rosenbrock Valley, Griewank 

function, Rastrigin function and Step function. The results 

obtained show that the ABC algorithm is quite robust for 

multi-modal problems, since it has multi-agents that work 

independently and in parallel. This is also echoed by the 

results they obtained after comparing the performance of 

the ABC with that of the Particle Swarm Optimization 

algorithm, Particle Swarm Inspired Evolutionary 

Algorithm and Genetic Algorithm [14].  

Karaboga et. al. [17] used the ABC algorithm to train 

Feed-Forward Artificial Neural Networks with an aim to 

overcome drawbacks such as getting stuck in local minima 

and computational complexity. They discovered that the 

algorithm had good exploration and exploitation 

capabilities especially in searching for the optimal weight-

set which is crucial in training Neural Networks. In this 

case, exploration refers to the ability to examine the 

viability of numerous unknown sections in order to 

discover the global optimum in the search space and 

exploitation refers to ability to utilize knowledge of the 

preceding good solutions to find improved solutions. 

The data used in this study in the evaluation of the 

optimized neural network represents the vehicle count at 

specific junctions of select motorways in the whole of 

Britain. However, the optimized neural network can be 

trained for any other road network whose data is available. 

The rest of this paper is organized as follows: Section 

2 begins with an overview on swarm intelligence followed 

by Section 3 which explains the fundamental concept of 

the ABC algorithm. Later, Section 4 looks at the 

implementation of the ABC algorithm in optimizing the 

Recurrent Neural Network. In Section 5, we find the 

experiments and results. Eventually, a summary of the 

findings of this paper is presented in Section 6.   

2 Swarm intelligence 
Swarm intelligence refers to the collective intelligence 

exhibited by the collaborative behavior of social insect 

colonies or animal societies in pursuit of a defined 

purpose. This means that the entities that collaborate form 

a swarm, which is alternatively defined as a set of agents   

which act on their environment with an aim of solving a 

distributed problem [23]. These entities work together 

with a common goal thus increasing their chances of 

finding the best or optimal solution to the task at hand. In 
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so doing, they inadvertently enhance the exploration and 

exploitation of their environment. Furthermore, this 

process serves to break down the problem into smaller and 

simpler tasks which are easily solved by sub-groups 

whose solutions are aggregated to formulate the overall 

solution. So, the time used to find a solution is decreased 

exponentially with an increase in the agents involved and 

also because some of these smaller tasks can be solved 

concurrently. The dedicated effort of such agents to a 

single, simplified and well-defined task also minimizes 

occurrence of errors as may be experienced when a single 

agent is tasked with the same problem. Therefore, the 

collective effort is useful in cases where a problem can be 

compartmentalized into smaller manageable tasks.  

Examples of swarm intelligence algorithms include 

Artificial Bee Colony, Ant Colony Optimization, Particle 

Swarm Optimization, Immune Algorithm, Bacterial 

Foraging Optimization, Cat Swarm Optimization, Cuckoo 

Search Algorithm, Firefly Algorithm, Gravitational 

Search Algorithm among others [15], [23]. These 

algorithms are evidence of various assortments of swarms 

in the world and their varied level of intelligence but self-

organization and labor division are key features they 

collectively possess. 

3 Artificial bee colony algorithm 
The ABC algorithm is a swarm-based algorithm presented 

by Karaboga [12]. This algorithm is inspired by the 

intelligent-search behavior of honeybees, known for their 

systematic collection of nectar that they process into 

honey. Nectar (food) is collected from flowers located in 

the neighboring fields (food sources) away from their 

hives. The bees communicate with each other by means of 

a waggle dance so as to share information about the quality 

of food sources. This information shared among the 

colony members includes the location and proximity of 

the food source to the hive, the quality of food source and 

quantity of food. This majorly governs the foraging range 

with correct accuracy thus enabling the swarm to direct its 

efforts to the best food source. Their mutual dependence 

is pegged on their distinct but partially evolving roles that 

adapt to the needs of the colony. The needs of the colony, 

decentralized decision-making and the age of the bees as 

well as their physical structure serve as a control for their 

social life. Therefore, self-organization, autonomy, 

distributed functioning and division of labor constitute the 

swarms’ ability to solve distributed problems as a unit and 

adapt to any environment. [23], [24], [27].  

The intelligence exhibited by the collective behaviour 

of swarms via local interactions may be characterized into 

four distinctive features. The firrst one is positive 

feedback which refers to the creation of convenient 

structures such as recruitment and reinforcement. Then we 

have negative feedback that involves counterbalancing of 

the positive feedback in order to stabilize the collective 

pattern and avoid saturation The third is fluctuations 

which involve the variations incurred in form of errors, 

random task switching among swarm individuals which 

stimulates creativity and discovery of new structures. 

Lastly, we have multiple interactions tha refer to the 

relationship and cooperation between the various agents in 

the swarm that result in the overall development [17], [18]. 

The honeybee forage selection model is based on 

three components: food sources (alternative solutions), 

employed foragers (active solution seekers) and 

unemployed foragers (passive solution seekers) made up 

of onlookers and scouts. In addition, two leading modes of 

the behavior are expressed: recruitment to a food source 

and abandonment of a food source. Thus, the position of a 

food source represents a potential solution to the 

optimization problem and the quantity of a food source 

corresponds to the calculated fitness value of the 

associated solution [12], [13], [14], [26]. 

In essence, food sources signify the profitability of the 

proposed solution in terms of complexity involved in 

attaining it. This complexity is evaluated based on 

proximity, ease of extraction, energy concentration which 

is calculated as a probability value. Employed foragers are 

associated with a particular food source or simply a 

solution they are working on, whereas, the unemployed 

foragers are looking for potential food sources to exploit 

or simply looking out for alternative solutions. Thus, the 

scouts find alternative food sources while the onlookers 

establish viable solutions from the information given to 

them by the employed foragers through the waggle dance.  

At the beginning, the number of employed bees and 

the number of available food sources. Additionally, an 

employed bee turns into a scout when the position of a 

food source declines after a predetermined limit of 

foraging attempts, at that time exploitation ceases. Thus, 

the employed and onlooker bees usually perform the 

exploitation whereas the scouts perform the exploration of 

the search space. This process of foraging can be viewed 

as a complex problem broken down into many parts and 

the ultimate task is to find a viable solution since there are 

many ways in reaching the goal [9], [18], [23]. Let us 

examine figure 1 as illustrated by Karaboga [12], for a 

better understanding of this foraging behaviour.  

 

Figure 1: The honeybee nectar foraging behavior [12]. 
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In figure 1 above, there are two discovered food 

sources: A and B. Any potential forager will always start 

as an unemployed forager and will not have any 

knowledge about the food sources around the nest. This 

limits the prospective options for such a bee to the 

following: 

i. To become a scout and instinctively start 

searching around the nest for food (S). 

ii. To become a recruit after watching the waggle 

dances for the available food sources (R). 

This bee then evaluates the available food sources, 

memorizes a food source location and immediately starts 

exploiting it thus becoming an employed forager. The 

foraging bee takes with it a load of nectar from the source 

and unloads it to a food store back in the hive after which 

the bee takes on one of the three roles below: 

i. It recruits other bees (onlookers) and returns to 

the same food source (EF1). 

ii. It continues to forage at the same food source 

without recruiting other bees (EF2). 

iii. It becomes an uncommitted follower after 

abandoning the food source (UF). 

Therefore, this formulates the procedure of the ABC 

algorithm which is separated into five distinct phases; 

Initialization phase, Employed bee phase, Probabilistic 

selection phase, Onlooker bee phase and the Scout bee 

phase [12], [23]:  

i. Initialization Phase 

The Food Source locations are randomly initialized within 

the search space as calculated using equation (1) below.  

xij =  xj
min + rand(0,1)(xj

max −  xj
min)  (1) 

where i = 1, 2, …, SN and SN indicates the number of Food 

Sources (equal to half of the bee colony);  

j = 1, 2, …, D and D is the dimension of the problem; 

𝑥𝑖𝑗  represents the parameter for ith employed bee on jth 

dimension, meaning that they are dependent on each other;  

𝑥𝑗
𝑚𝑎𝑥 and 𝑥𝑗

𝑚𝑖𝑛 are upper and lower bounds of 𝑥𝑖𝑗 . 

ii. Employed Bee Phase 

Every Employee Bee is assigned to the resultant Food 

Source generated by equation (2) below for further 

exploitation.  

 𝑣𝑖𝑗 =  𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 −  𝑥𝑘𝑗)         (2) 

where k is a neighbor of i, i ≠ k;  

𝜑𝑖𝑗  is a random number in the range [−1, 1] to control the 

production of neighbor solutions around 𝑥𝑖𝑗;  

𝑣𝑖𝑗  is the new solution for 𝑥𝑖𝑗 . 

The value of the new Food Source is measured using 

a fitness value calculated by equation (3) below.  

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑎𝑏𝑠𝑓𝑖
, 𝑓𝑖 ≥ 0  

1 + 𝑎𝑏𝑠(𝑓𝑖), 𝑓𝑖 < 0

     (3) 

where abs𝑓𝑖 is the absolute objective function associated 

with each Food Source;  

𝑓𝑖𝑡𝑖 is the fitness value.  

The two food sources  𝑥𝑖𝑗  (Original Food Source) and 

𝑣𝑖𝑗  (New Food Source) are compared and the best is 

chosen based on a greedy selection of their fitness values. 

iii. Probabilistic Selection Phase 

Then, a probability value for each Food Source is 

calculated using equation (4) which is useful for Onlooker 

Bees when they evaluate the viability of a Food Source 

amongst the available options. 

 𝑝𝑖 =  

𝑓𝑖𝑡𝑖

∑   𝑓𝑖𝑡𝑗
𝑁
𝑗=1

     (4) 

where 𝑓𝑖𝑡𝑖 is the fitness value of i-th solution; 

𝑝𝑖  is the selection probability of i-th solution. 

iv. Onlooker Bee Phase 

The Employed Bees advertise the viability of their Food 

Sources to the Onlooker Bees which select a Food Source 

to exploit based on the fitness and probability values 

associated with it i.e., the more fitness, the higher the 

probability. The Food Sources that are picked are further 

exploited using equation (2). This improves the solution 

and their fitness values are also calculated using equation 

(3). Once again, to yield an improved solution, a greedy 

selection process is performed on the original and new 

Food Sources, similar to Employed Bee Phase.  

v. Scout Bee Phase 

The Employed Bee for a Food source that doesn’t generate 

better results over time becomes a Scout Bee and the Food 

Source is abandoned. This leads to the random generation 

of a new Food Source in the search space using equation 

(1). Subsequently, the Employed bee phase, Probabilistic 

selection phase, Onlooker bee phase and Scout bee phases 

will execute until termination criterion is satisfied. The 

best food source solution is obtained as output. Note that 

the steps of the algorithm presented in section 4 are quite 

elaborate than the fore mentioned summary. [12], [13], 

[15], [18]. 

4 RNN training using ABC 

algorithm 
Artificial Neural Networks are based on the simulated 

network of biological neurons in which neurons are the 

essential computational units [22]. Hence, the underlying 

concept is to train a mathematical model so that it can 

reproduce some physical phenomena or make some 

predictions. The model is presented with training samples 

that are the actual outputs of the studied system 

corresponding to the actual inputs of the problem. Later, 

the error obtained between the actual and the predicted 

value serves as the metric for measuring the performance 

of the algorithm in terms of prediction [5]. 

Artificial Neural Networks can broadly be 

categorized into Shallow Neural Network and Deep 

Neural Network techniques. Shallow Neural Networks 

generally have only one hidden layer as opposed to Deep 

Neural Networks which have several levels of hidden 

layers. Therefore, Deep Neural Networks utilize functions 

whose complexity is of a higher magnitude contrary to 
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Shallow Neural Networks, given that all resources remain 

constant [3]. 

Shallow Neural Network (SNN) techniques contain 

less than two layers of nonlinear feature transformations. 

Examples of the SNN techniques are Conditional Random 

Fields (CRFs), Gaussian Mixture Models (GMMs), 

Support Vector Machines (SVMs), Maximum Entropy 

(MaxEnt) models, Logistic Regression, Kernel 

Regression, Multi-Layer Perceptron’s (MLPs) with a 

single hidden layer including Extreme Learning Machines 

(ELMs). SNN techniques effectively solve well-

constrained problems due to their limited modeling and 

representational power which poses a challenge when 

dealing with complicated real-world applications. A well-

constrained problem is one for which a function is to be 

minimized or maximized with respect to well defined 

constraints [3], [6].  

Deep Neural Networks (DNN) are Artificial Neural 

Networks composed of several interconnected hidden 

layers. These hidden layers have multiple hidden 

perceptrons between the network input layer and its 

network output for computational use. Dynamic 

environments require Deep Neural Network techniques 

which are useful in extracting complex structure and 

building internal representation. Examples of DNNs are 

Recurrent Neural Network (RNN), Convolutional Neural 

Networks (Conv.Net), Deep Boltzmann Machines 

(DBM), Deep Belief Networks (DBN) [30]. 

So, the basic concept behind Artificial Neural 

Networks owes to their imitation of biological neurons as 

shown in figure 2 which is an elementary neuron with 

several inputs and one output. Here, each input x is fed to 

the next layer, in our case an output layer y, with an 

appropriate weight w. The sum of the weighted inputs and 

the bias forms the input to the transfer function f. The bias 

is a threshold that represents the minimum level that a 

neuron needs for activating and is represented by b. 

Neurons can use any differentiable transfer function f to 

generate their output. Therefore, in multi-layer networks, 

the input values to the inputs of the first layer, allow the 

signals to propagate through the network, and read the 

output values where output of the 𝑖 th node can be 

described by the function in Eq. 4.1 below [25], [28]. 

 
Figure 2: Representation of an Elementary Neuron.  

𝑦𝑖  = 𝑓𝑖(∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=1 +  𝑏𝑖)    (5) 

where 𝑦𝑖 is the output of the node; 

𝑥𝑗 is the 𝑗th input to the node;  

𝑤𝑖𝑗  is the connection weight between the node and input 

𝑥𝑗;  

𝑏𝑖 is the threshold (or bias) of the node; 

𝑓𝑖 is the node transfer function. 

Multilayer networks often use the sigmoid transfer 

function which generates outputs between 0 and 1 as the 

neuron's net input goes from negative to positive infinity. 

This is used for models where we have to predict the 

probability as an output. Hence, its suitability because the 

probability of real-world entities exist in the range of 0 and 

1. Sigmoid output neurons are often used for pattern 

recognition, clustering and prediction problems. 

The information from a layer to the next one is 

transmitted by means of the activation function, 

represented in equation (6). The activation function relies 

on the weighted sum and bias to make a calculation on 

whether a neuron will be activated or not, thus introducing 

non-linearity to the network. This non-linear 

transformation performed on the inputs and sent through 

the network enables it to learn and perform complex tasks.  

𝑦 =  𝑓(𝑛) =  
1

1 + 𝑒−𝑛      (6) 

The main goal is to minimize the cost function by 

optimizing the network weights. The fundamental idea of 

this optimization approach is to individually interpret and 

change the weight values. Also, note that dynamic 

environments present a relatively higher network 

complexity which suggests the need for Deep Neural 

Networks. Therefore, the data presented to the network 

has to be split into three sets; training set, validation set 

and the testing set. This facilitates the training, verification 

and evaluation of the networks’ performance. 

Furthermore, the complexity of the challenge is 

represented by the Mean Squared Error (MSE) in equation 

(7). The MSE is obtained while comparing the target input 

against the predicted output could determine the number 

of hidden layers. The optimization of the network is 

achieved by minimizing the MSE which is essentially a 

network error function. Henceforth, the training algorithm 

is used to find the optimal weights that are used for 

initializing the Neural Network. In this case, the ABC 

algorithm is used to find the precise weights that enable 

the network connections to make accurate decisions. The 

algorithm uses a cost function as a measure for our 

progress in determining the right weights [19], [25]. 

 𝐸(𝑤(𝑡)) =
1

𝑛
 ∑ (𝑑𝑘 −  𝑂𝑘)2𝑛

𝑘=1    (7) 

where, 𝐸(𝑤(𝑡)) is the error at the 𝑡𝑡ℎ iteration;  

(𝑤(𝑡)), the weights in the connections at the 𝑡𝑡ℎ iteration;  

𝑑𝑘 and 𝑂𝑘  represent the desired and the actual values of  

𝑘𝑡ℎ output node;  

𝑘 is the number of output nodes; 

𝑛 is the number of inputs. 

A Recurrent Neural Network (RNN) is an extension 

of the conventional feed-forward neural network 

described above. The major difference is that RNNs have 

cyclic connections which make them reliable for modeling 

time-series data in dynamic environments. This means 
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that at any given the output is related to the present input 

and the input at previous timestamps. Therefore, we build 

on the concept above of the elementary neuron in relation 

to the RNN. Here, we have the input sequence denoted by 

x = (x1, x2, ..., xt), the hidden layer denoted by h = (h1, h2, 

..., ht) and the output vector sequence denoted by y = (y1, 

y2, ..., yt). Usually the RNN calculates the hidden vector 

sequence h using equation (8) and the output vector 

sequence y using equation (9) with t = 1 to T [20]; 

 ℎ𝑡 = 𝑓𝑡  (𝑤𝑥ℎ𝑥𝑡 +  𝑤ℎℎℎ𝑡−1 + 𝑏ℎ)  (8) 

 𝑦𝑡 = 𝑓𝑡  (𝑤ℎ𝑦ℎ𝑡 + 𝑏𝑦)    (9) 

where function 𝑓𝑡 is the activation function;  

w is a weight matrix; 

b is the bias term. 

However, the Long Short-Term Memory (LSTM) 

architecture is preferable because it resolves the 

underlying vanishing and exploding gradient problems of 

the traditional RNN. The LSTM – RNN uses three gates 

that form a cell which consequently solves the problems 

mentioned above thus making the network robust. Thus, 

the LSTM cell replaces the recurrent hidden cell in Eq. 4.4 

above. The equations to compute the values for the three 

gates are described below [11], [20]. 

𝑖𝑡 = 𝑓𝑡  (𝑤𝑥𝑖𝑥𝑡 + 𝑤ℎ𝑖ℎ𝑡−1 + 𝑤𝑐𝑖𝑐𝑡−1  +  𝑏𝑖)             (10) 

𝑔𝑡 = 𝑓𝑡  (𝑤𝑥𝑔𝑥𝑡 + 𝑤ℎ𝑔ℎ𝑡−1 + 𝑤𝑐𝑔𝑐𝑡−1  +  𝑏𝑔)           (11) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 +  𝑖𝑐 tan ℎ (𝑤𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐ℎ𝑡−1  +  𝑏𝑐)      (12) 

𝑂𝑡 = 𝑓𝑡  (𝑤𝑥𝑜𝑥𝑡 +  𝑤ℎ𝑜ℎ𝑡−1 + 𝑤𝑐𝑜𝑐𝑡−1  +  𝑏𝑜)          (13) 

ℎ𝑡 = 𝑂𝑡 tan ℎ (𝑐𝑡)                (14) 

Where, 𝑓𝑡  is the logistic sigmoid function; 

i, g, o and c are respectively the input gate, forget gate, 

output gate and cell state; 

𝑤𝑐𝑖 , 𝑤𝑐𝑔 and 𝑤𝑐𝑜 are denoted weight matrices for peephole 

connections.  

In LSTM – RNN, the input gate i, the forget gate g, 

and the output gate o control the information flow. The 

input gate decides the ratio of input which has an effect 

when calculating the cell state, c. The forget gate 

calculates the ratio of the previous memory ℎ𝑡−1  using 

equation (11) and decides whether to pass it onwards or 

not. The result obtained is used for determining the cell 

state in equation (12). The output gate which is based on 

equation (13) determines whether pass out the output of 

the memory cell or not. This process as represented by the 

ratios from the three gates is denoted by equation (14) and 

also depicted diagrammatically in the figure 3 [20]. 

 

Figure 3: Long-Short Term memory Cell. 

Therefore, the algorithm below outlines the 

optimization process for the deep neural network using the 

ABC algorithm [10], [12], [19], [25].  

1. Set Cycle=0. 

2. Load training samples from dataset. 

3. Initialize a population of scout bee with random 

solution xi, i = 1,2, …, SN using equation (1). 

4. Evaluate fitness (fiti) of the population using equation 

(3) 

a. Initialize weight and bias for the Recurrent Neural 

Network 

5. Set Cycle=1: while Maximum cycle not reached, 

repeat step 6 – step 12 

6. FOR each employed bee { 

Produce new solution vi by using equation (2) 

Calculate the value fiti on the new population 

Apply greedy selection process between xij and 

vij} 

7. Calculate the probability values pi for the solutions (xi) 

using equation (4) 

8. FOR each onlooker bee { 

Select a solution xi depending on pi 

Produce new solution vi 

Calculate the value fiti 

Apply greedy selection process} 

9. If there is an abandoned solution for the scout then 

replace it with a new solution which will be randomly 

produced by equation (1) 

10. Memorize the best solution so far 

11. Update new weight and bias for the Recurrent Neural 

Network 

12. Increment Cycle + 1 until Cycle=MCN 

where 𝑥𝑖 represents a solution; 

𝑓𝑖𝑡𝑖  is the fitness value of 𝑥𝑖; 

𝑣𝑖  indicates a neighbor solution of 𝑥𝑖;  

𝑝𝑖   is the probability value of 𝑥𝑖; 

𝑀𝐶𝑁 is the maximum cycle number in the algorithm. 

Remember that at the beginning, one half of the 

colony consists of onlooker bees and the second half 

constitutes the employed bees which are equal to the 

number of food sources (viable solutions) and any 

employed bee whose food source has been exhausted 

becomes a scout bee. Therefore, the algorithm starts by 

generating a randomly distributed initial population (𝑆𝑁 

food source positions), where 𝑆𝑁 denotes the size of 

population. Each solution 𝑥𝑖 (𝑖 = 1, 2, ..., 𝑆𝑁) is a 𝐷-

dimensional vector. D being the number of optimization 

parameters. After initialization, the population of the 

solutions is subjected to repeated cycles, 𝐶 = 1, 2, ..., 𝑀𝐶𝑁, 

of the search process until a termination criterion is 

achieved. Each cycle of the search consists of three steps: 

engaging the employed bees with their food sources and 

evaluating their viability; sharing the food sources 

viability information with the onlookers which select a 

food source and again assess its viability; determining the 

scout bees and sending them out randomly to explore new 

food sources. An employed bee produces a modification 

on the solution in its memory depending on the probability 

and fitness tests. Thereby, generating optimal weights that 

serve to minimize the cost function and with each cycle 
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the RNN is adequately trained with varying parameters 

using the ABC algorithm until optimal conditions are met 

[10], [18], [19]. 

5 Experiments and results 
During the training phase, the Recurrent Neural Network 

is presented with a set of the training data from the dataset 

and the input weights are adjusted by using the ABC 

algorithm as a learning algorithm. The dataset can be 

acquired from the Road Traffic Statistics website for Great 

Britain [7]. The purpose of the weight adjustment is to 

enable the RNN to learn so that it would adapt to the given 

training data [10]. The dataset also has to be split to a 

suitable ratio to enable the training of the network, 

validation and testing of the results obtained. Thereafter, 

the performance of the network is evaluated based on the 

Mean Squared Error (MSE) obtained between the desired 

output and the actual output thus testing the validity of the 

network in terms of its prediction efficiency. Figure 4 

below depicts the performance graph obtained on 

execution of the algorithm in MATLAB [2]. 

 

Figure 4: Performance of the ABC Optimized RNN. 

The figure 4 represents the best validation 

performance of the network. On several runs of the 

algorithm the MSE obtained was 1.1232e3. This is the 

value obtained on epoch 9 after which the error gradually 

starts to increase due to overfitting but in this case, it 

gradually maintains a constant level. In other experiments, 

the MSE of the RNN before it was optimized was 3.853e3 

[4]. The difference between the two MSEs basically shows 

that the ABC algorithm is actually efficient in terms of 

optimization. Generally, lower MSEs translate to high 

accuracy. Graphically, this is seen in the regression plots 

for the dataset in figure 6. 

Figure 5 shows the respective regression values of the 

three different sets of the dataset. Splitting of the dataset 

helps with the early stopping of the network in order to 

achieve its generalization capability. The three sets of data 

all obtain value greater than 0.9 and the aggregate 

regression value is 0.93625 which borders 1. This shows 

a high relationship between the desired outputs and the 

obtained outputs, which shows a high accuracy in the 

networks ability to forecast efficiently. Furthermore, there 

is a high cross-correlation between the input data and the 

error time-series as depicted in the graph in figure 6 below. 

 

Figure 6: Correlation between the input and the output 

error. 

The figure 6 above means that the network is able to 

model the predictive characteristics of the time-series lag 

which is the difference between the expected and the 

actual values. This correlation is depicted in the figure and 

the values fall in between the acceptable confidence limits 

as shown by the dotted red line. This is further exemplified 

in the time series plot of figure 7 below which shows the 

relationship between the predicted values and the actual 

values 

The figure 7 above shows the desired output values 

plotted against the actual values obtained by the RNN 

optimized by the ABC algorithm. This time-series graph 

shows the level of accuracy that can be obtained during 

prediction with a well-trained RNN. The high efficacy of 

the ABC algorithm is also depicted in the graph regardless 

of one incorrectly predicted value. However, the other 

values fall between the confidence limits and as such with 

further training and fine-tuning of the parameters the RNN 

can actually produce reliable results. This means that the 

generalized model can actually produce accurate 

predictions. The values of the RNN after optimization 

 

Figure 5: ABC Optimized RNN regression plot. 
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using the ABC algorithm are illustrated in the table 1 

below. 

The results in table 1 above reflect the MSEs obtained 

during the training, validation and testing phases of the 

experiment. The optimal MSE for the training phase was 

359.8409, the validation phase had an optimal MSE of 

569.0172 and the optimal MSE at the Test phase was 

673.4512. These values show that the error rate reduced 

gradually with an increase in the number of hidden layers. 

Other experiments have been performed using other 

algorithms for optimization of the deep neural networks. 

These algorithms include the Levenberg-Marquardt 

Backpropagation algorithm which had an optimal MSE of 

360.2578 at the training phase, the Scaled Conjugate 

Gradient Backpropagation algorithm which had a least 

MSE of 480.9656 at the validation phase and the Resilient 

Backpropagation algorithm which had 467.9015 as the 

MSE at the testing phase [4]. The ABC trained RNN has 

peak performance when the hidden layer size is between 

40 and 80 given an input vector size of 500. In comparison 

to the fore-mentioned training algorithms, the ABC 

algorithm surpasses the other training algorithms in 

similar conditions.  

6 Conclusion 
It is evident from the results that the ABC algorithm out-

performs the backpropagation algorithms. However, the 

parameter settings for the algorithm need to be refined for 

the model to be generalized. Moreover, different 

architectures of other deep neural networks can be 

implemented especially in distributed computing 

environments so as to sustain a greater number of the 

hidden layers or even produce a sustainable hybrid 

thereof. Furthermore, deep neural networks need to be 

optimized so as to enhance the practicability of a model 

that yields reliable forecasting in dynamic environments. 
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