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Among the many bio-inspired techniques, ant-based clustering algorithms have received special atten-
tion from the community over the past few years for two main reasons. First, they are particularly suit-
able to perform exploratory data analysis and, second, they still require much investigation to improve 
performance, stability, convergence, and other key features that would make such algorithms mature 
tools for diverse applications. Under this perspective, this paper proposes both a progressive vision 
scheme and pheromone heuristics for the standard ant-clustering algorithm, together with a cooling 
schedule that improves its convergence properties. The proposed algorithm is evaluated in a number of 
well-known benchmark data sets, as well as in a real-world bioinformatics dataset. The achieved results 
are compared to those obtained by the standard ant clustering algorithm, showing that significant im-
provements are obtained by means of the proposed modifications. As an additional contribution, this 
work also provides a brief review of ant-based clustering algorithms. 
Povzetek: Članek opisuje izboljšan algoritem grupiranja na osnovi pristopa kolonij mravelj. 

 

1 Introduction 
Over the past few years, several different types of bio-
logically inspired algorithms have been proposed in the 
literature (Paton, 1994; de Castro & Von Zuben, 2004). 
Among these, some have obtained special attention from 
the scientific community, such as those based on swarm 
systems (Bonabeau et al., 1999; Kennedy et al., 2001), 
which are inspired by the social behavior of living organ-
isms. This relatively new field of investigation has origi-
nated different types of algorithms for the solution of 
complex problems in many different domains. Under this 
perspective, the problems usually tackled involve search, 
optimization, and data analysis tasks. The main reasons 
by which swarm based approaches are useful for solving 
such problems are (Bonabeau et al., 1999; Kennedy et 
al., 2001): (i) they require little information about the 
problem at hand (e.g. in clustering problems a data set to 
be grouped); and (ii) they usually can perform both broad 
and parallel searches over the space of potential solutions 
by means of a population (swarm) of candidate solutions.  

Despite the broad usefulness of current bio-inspired 
algorithms, most of them can be further improved, 
mainly to enhance performance and applicability. In this 
sense, this work focuses on ant-based clustering algo-

rithms, whose main underlying concepts are based on the 
way real ants clean their nests and organize dead bodies 
in their colonies. Considering a more practical computa-
tional perspective, these algorithms are basically de-
signed by considering the concept of a 2D grid where 
objects (data) are laid at random and then automatically 
organized. A set of ant-like agents is allowed to move 
throughout the grid, picking up and dropping objects 
(data) based on their similarity degree within a certain 
neighborhood.  

One difficulty in applying ant-clustering algorithms 
to solve complex problems comes from the fact that, in 
most cases, they generate a number of clusters that is 
much larger than the natural number of clusters. Fur-
thermore, these algorithms usually do not stabilize in a 
particular clustering solution; that is, they constantly 
construct and deconstruct clusters during the iterative 
procedure of adaptation. In order to overcome the afore-
mentioned difficulties and, consequently, improve the 
quality of the results obtained, we propose an Adaptive 
Ant-Clustering Algorithm (A2CA), which is more robust 
in terms of the number of clusters found and tends to 
converge into good solutions while the clustering process 
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evolves. To achieve these goals, three main modifica-
tions are introduced in the standard ant-clustering algo-
rithm proposed by Lumer and Faieta (1994): (i) a cooling 
schedule for the parameter that controls the probability of 
ants picking up objects from the grid; (ii) a progressive 
vision field that allows ants to ‘see’ over a wider area; 
and (iii) the use of a pheromone function added to the 
grid as a way to promote reinforcement for the dropping 
of objects at more dense regions of the grid. These modi-
fications favor an adaptive clustering process, in the 
sense that the proposed algorithm tends to converge to 
stable clusters. In addition to the contributions to the al-
gorithm itself, this paper also brings a brief historical 
review of ant-based clustering algorithms, emphasizing 
their main features when compared with the standard ant-
clustering algorithm proposed by Lumer and Faieta 
(1994). 

The paper is organized as follows. Section 2 provides 
a brief review of the standard ant-clustering algorithm 
(Lumer & Faieta, 1994), which, for the sake of brevity, is 
referred to as SACA in this work. In Section 3, we pre-
sent our proposed algorithm (A2CA), which, in Section 4 
is experimentally compared to the SACA in three syn-
thetic and one real-world dataset. Section 5 provides a 
brief survey of related works, whereas Section 6 con-
cludes the paper and points out some avenues for future 
work. 

2 Standard Ant Clustering Algo-
rithm: SACA 

The Standard Ant Clustering Algorithm (SACA), intro-
duced by Lumer and Faieta (1994), assumes that ants 
perform random walks on a two-dimensional grid on 
which objects (data) are laid down at random. Independ-
ently of the dimension of the input data, each datum is 
randomly projected onto a cell of the grid. A grid cell (or 
patch) is thus responsible for hosting the index of a spe-
cific input pattern, indicating the relative position of the 
datum in the two-dimensional grid. The general idea is to 
have items, which are similar in their original N-
dimensional space, in neighboring regions of the grid. In 
other words, data indices that are neighbors in the grid 
indicate patterns that are similar in their original space of 
attributes. In this context, it is assumed that each site or 
cell on the grid can be occupied by at most one object, 
and one of the two following situations may occur: 
(i) one ant holds an object i and evaluates the probability 
of dropping it in its current position; (ii) an ant is 
unloaded and evaluates the probability of picking up an 
object. At each discrete time step, an ant is selected at 
random and can either pick up or drop an object at its 
current location.  

The probability of picking up an object increases with 
low-density neighborhoods and decreases with high simi-
larity among objects in the surrounding area. The prob-
ability of dropping an object, by contrast, increases with 
high densities of similar objects in the neighborhood. 
More specifically, assume that d(i,j) is the Euclidean 
distance between objects i and j in their N-dimensional 
space. The density dependent function for object i, at a 

particular grid location, is defined by the following ex-
pression: 
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where s2 is the number of cells in the surrounding area of 
i, and α is a constant that scales the dissimilarities among 
objects. The maximum value for f(i) is obtained if, and 
only if, all the sites in the neighborhood are occupied by 
equal objects. Assuming the density dependent function 
presented in Eq. (1), the probability of picking up and 
dropping an object i is given by Eqs. (2) and (3), respec-
tively: 
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where the parameters kp and kd are threshold constants 
equal to 0.1 and 0.15, respectively. Note that f(i) ∈ [0,1]. 
Thus, if f(i) << kp, then Ppick ≈ 1, leading to high prob-
abilities of picking up objects in low density regions. 
Similarly, Ppick ≈ 0 if f(i) >> kp, meaning that objects are 
unlikely to be removed from dense regions. In the case of 
Pdrop, it is also possible to observe that if f(i) << kd, 
Pdrop ≈ 0, whereas if f(i) ≥ kd the ant drops the object. 

Whenever a loaded ant decides to drop the object it is 
carrying, it looks for the first empty cell in its vicinity in 
which to do so (its current position can be already occu-
pied by another object). A time step finishes with the 
selected ant moving to one of its four adjacent nodes, 
each direction of motion being equally likely. 

3 Adaptive Ant Clustering Algo-
rithm: A2CA 

The Adaptive Ant Clustering Algorithm (A2CA) was 
developed by taking further inspiration from biological 
systems. In particular, A2CA was inspired by the fact that 
termites, while building their nests, deposit pheromone 
on soil pellets and this serves as a reinforcement signal to 
other termites placing more pellets on the same region of 
the space (Camazine et al., 2001). Another biological 
observation taken into account while developing A2CA 
was the fact that ants can sense not only its immediate 
neighborhood environment, but a broader range that may 
vary from ant to ant and with time. Therefore, A2CA has 
two main modifications in relation to SACA: (i) a pro-
gressive vision scheme, and (ii) the inclusion of phero-
mone on the grid cells. In addition, we adopt a cooling 
schedule for the parameter that drives the picking prob-
ability (kp).  

3.1 Cooling Schedule for kp 
In addition to the modifications that led to the develop-
ment of A2CA, one simple modification was previously 
introduced in SACA so as to improve its convergence 
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properties (Vizine et al., 2005) and it is also adopted in 
our proposed approach (A2CA). In a nutshell, a cooling 
schedule for the parameter that drives the picking prob-
ability kp – Eq. (2) – is employed. The adopted scheme is 
simple: after one cycle (10,000 ant steps) has passed, the 
value of the parameter kp starts being geometrically de-
creased, at each cycle, until it reaches a minimal allowed 
value, kpmin, which corresponds to the stopping criterion 
for the algorithm. In the current implementation, kp is 
cooled based on a geometric scheme presented in Eq. (4). 
It is important to emphasize that the SACA implementa-
tion used in this work also incorporates this extra feature, 
leading to the so-called SACA*. By doing so, more suit-
able and fair comparisons can be performed, in the sense 
that SACA* will also tend to converge to better cluster-
ing solutions. 

kp ← kp×0.98, 
kpmin = 0.001. 

(4) 
 

3.2 Progressive Vision 
In SACA, the value of the density function, f(i), given by 
Eq. (1), depends on the vision field, s2, of each ant. The 
definition of a fixed value for s2 may sometimes cause 
inappropriate behaviors, because a fixed perceptual area 
does not allow distinguishing between clusters of differ-
ent sizes. A small area of vision implies a small percep-
tion of the cluster at a global level. Thus, small clusters 
and large clusters are all the same in this sense, for the 
agent only perceives a limited area of the environment. 
In some problems, the use of a too restrictive perception 
field may be limiting, whereas a too broad vision may 
cause undesirable merging of groups. On the one hand, 
even if a cluster is perfectly homogeneous (with identical 
elements) and sufficiently large, there still exists a small 
probability that an agent picks up a datum from the clus-
ter and drops it somewhere else. On the other hand, a 
large vision field may be inefficient in the initial itera-
tions, when the data elements are scattered at random on 
the grid, because analyzing a broad area may imply in 
analyzing a large number of small clusters simultane-
ously. 

In order to overcome this difficulty, a progressive vi-
sion scheme was proposed for SACA as follows 
(Sherafat et al., 2004a). When an ant perceives a ‘big’ 
cluster, it increments its perception field (si

2) up to a 
maximal size. Now, si

2 is a specific parameter for each 
ant that will be dynamically and independently updated 
while running the algorithm. The question that remains 
is: ‘How can an ant agent detect the size of a cluster so as 
to control the size of its vision field?’ 

We tackled this problem by using the density depend-
ent function f(i) as a control parameter. There is a rela-
tionship between the size of a cluster and its density de-
pendent function: the average value of f(i) increases as 
the clustering proceeds, and this happens because larger 
clusters tend to be formed. When f(i) achieves a value 
greater than a pre-specified threshold θ, the parameter s2 
is incremented by ns units until it reaches its maximum 
value.  

If f(i) > θ   and   s2 ≤ s2
max,  

then s2 ← s2 + ns. 
(5)

where s2
max = 7 × 7 and θ = 0.6  in our implementation. 

3.3 Pheromone Heuristics 
In order to perform data clustering, the SACA takes into 
account the relative distance among all objects within the 
vision field of the ant. A problem with this approach is 
that it does not account for the work in progress at a 
global level. One form of overcoming this difficulty was 
proposed by Sherafat et al. (2004a,b). The method is 
based on the introduction of a local variable φ(i) associ-
ated with each bi-dimensional position, i, on the grid, 
such that the quantity of pheromone in that exact position 
becomes a function of the presence or absence of an ob-
ject at i. Inspired by the way termites use pheromone to 
build their nests, the artificial agents in the modified ant 
clustering algorithm will add some pheromone to the 
objects they carry and this pheromone will be transferred 
to the grid when an object is deposited. During each it-
eration, the artificial pheromone φ(i) at each cell of the 
grid evaporates at a fixed rate. 

Sherafat et al. (2004a,b) introduced a pheromone 
function, Phe(φmax,φmin,P,φ(i)), given by Eq. (6), that in-
fluences the probability of picking up and dropping off 
objects from and on the grid. The proposed pheromone 
function varies linearly with the pheromone level at each 
grid position, φ(i), and depends on a number of user-
defined parameters, such as the φmax and φmin values of 
pheromone perceived by the agent, and the maximal in-
fluence of pheromone allowed, P. 
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To accommodate the addition of pheromone on the grid, 
some variations on the picking and dropping probability 
functions of SACA were proposed in (Sherafat et al., 
2004a,b), as described in Eqs. (7) and (8), respectively: 
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where φmax represents the current largest amount of 
pheromone perceived by this agent; φmin corresponds to 
the current smallest amount of pheromone perceived by 
this agent; P is the maximum influence of the pheromone 
in changing the probability of picking and dropping data 
elements; and φ(i) is the quantity of pheromone in the 
current position i. 

Note that in Eq. (8) the dropping probability origi-
nally derived from the model of Deneubourg et al. (1991) 
was employed. Basically, this choice was made because 
the algorithm presented superior performance when us-
ing the function proposed by Deneubourg et al. (1991) – 
given by Eq. (9) - instead of Eq. (3) for the dropping 
probability. This was also the case for SACA. Therefore, 
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we also adopt this strategy in our present work, namely 
the dropping probability is an inverse function of a pa-
rameter kd: 
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Based on the sensitivity analysis described in Sherafat et 
al. (2004a,b) and on some preliminary experiments, we 
realized that setting the parameters φmax, φmin and P may 
become a difficult task depending on the problem at 
hand. In order to reduce the number of user-defined pa-
rameters and to improve even further the performance of 
the algorithm, we propose to substitute Eqs. (7) and (8) 
by the following equations: 
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where f(i) is the density dependent function, φ(i) is the 
quantity of pheromone in the current position i, and kp 
and kd are the picking and dropping probability constants, 
respectively. Note that, in this new proposal, the only 
new parameter introduced in relation to SACA is the 
pheromone level at each position of the grid. 

According to Eq. (10), the probability that an ant 
picks up an item from the grid is inversely proportional 
to the amount of pheromone at that position and also to 
the density of objects around i. This equation thus ac-
counts for the pheromone reinforcement signal in regions 
of the space filled with similar objects. If the region is 
filled with dissimilar objects, however, the incorporation 
of f(i) multiplying φ(i) counterbalances the effects of 
eventual high pheromone concentrations. By the same 
token, Eq. (11) states that regions with high concentra-
tion levels of pheromone are attractive for the deposition 
of more objects of similar type. 

It is important to observe that a region with a high 
quantity of pheromone tends to be either a recently con-
structed cluster or a cluster under construction. The 
pheromone is a variable of the discrete grid environment, 
i.e. each grid position i has an independent variable φ(i) 
for which pheromone evaporation and diffusion proce-
dures are implemented. The rate at which pheromone 
evaporates is preset, as defined in Eq. (12). Each grid 
position i also has a connection to its neighbors that 
causes a percentage of φ(i) to be diffused to them. This is 
performed in such a way that the pheromone percentage 
for the two closer neighbors in all directions decays 
geometrically in the reason of 1/2, whereas for the third 
closer neighbors in all directions it is set equal to zero. In 
our implementation, the maximum amount of added 
pheromone φ(i) is equal to 0.01. The proposed approach 
increases the probability of deconstruction of relatively 
small clusters and increases the probability of dropping 
data elements in denser clusters. This is directly influ-
enced by the similarity between the data and the cluster. 

This proposal then becomes a sort of density-based clus-
tering procedure (Everitt et al., 2001). 

φ(i) ← φ(i) × 0.99. (12)

4 Performance Evaluation 
In order to assess the performance of the adaptive ant-
clustering algorithm (A2CA) in comparison with the stan-
dard algorithm with cooling and dropping probability 
given by Eq. (9), named here SACA*, both algorithms 
were applied to a number of synthetic data sets and to 
one real-world bioinformatics data set. The parameters 
used to run the algorithms were based on the sensitivity 
analysis performed in Sherafat et al. (2004a) and on 
some preliminary experiments performed here. The 
benchmarks used for evaluation and the respective adap-
tation parameters for the algorithms are summarized be-
low. Further details are provided in each dedicated sec-
tion. Parameters θ = 0.6, kp = 0.20, kd = 0.05 are assumed 
default and were chosen for all experiments. 
• 4Gauss: 100 objects divided into 4 clusters (classes). 

nants = 10, grid = 25×25, and α = 0.35. 
• Ruspini data: 75 objects divided into 4 classes. 

nants = 10, grid = 25×25, and α = 0.35. 
• ANIMALS data set: 16 objects with 13 attributes 

(the number of classes varies based on the grouping 
performed). nants = 1, grid = 15×15, and α = 2.10. 

• Yeast galactose data: 205 objects divided into 4 
classes. nants = 10, grid = 35×35, and α = 1.05.  

Note that the parameters used to run the algorithms are 
almost the same for all data sets; the only ones that 
change are α, the grid size, and the number of ants nants. 
As one grid cell is used to accommodate one object, the 
grid is increased in size in proportion to the size of the 
input data set. The parameter α, by contrast, weighs the 
influence of the distance measure in determining the 
clusters. Its value was linearly varied using a factor 0.35 
for the employed data sets. In the ANIMALS data set, a 
single ant was used because the number of objects is very 
small, only 16. 

4.1 Four Gaussian Distributions 
The first data set used to illustrate the performance of the 
algorithm was a modified version of the well-known four 
classes data set proposed by Lumer and Faieta (1994) to 
study the standard ant-clustering algorithm. The data set 
used here corresponds to four distributions of 25 data 
points each, defined by Gaussian probability density 
functions with various means µ and fixed standard devia-
tion σ = 1.5, G(µ,σ), as follows (Figure 1): 

 
A = [x ∝ G(0,1.5), y ∝ G(0,1.5)]; 
B = [x ∝ G(0,1.5), y ∝ G(8,1.5)]; 
C = [x ∝ G(8,1.5), y ∝ G(0,1.5)]; 
D = [x ∝ G(8,1.5), y ∝ G(8,1.5)]. 
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Figure 1: Gaussian distributions: input data set. 

 
Figure 2(a) depicts some simulation results for the stan-
dard ant-clustering algorithm with the geometric cooling 

schedule for kp described previously (SACA*). The pic-
tures correspond to the output grid of two different simu-
lations generated by the ants after convergence, in this 
case after 273,000 ant steps (27.3 cycles). Each input 
datum is numbered from 0 to 99, where the first 25 (from 
0 to 24) belong to the first cluster, and so on. Note that, 
accordingly with what was previously discussed by 
Lumer and Faieta (1994), the standard ant-clustering 
algorithm (SACA), though capable of correctly cluster-
ing the data, generates a large number of sub-clusters in 
most cases. In our experiments, we observed that, even 
with the use of a cooling procedure (i.e., SACA*), this 
characteristic tends to be maintained. Figure 2(b) shows 
some results for A2CA. It can be noted that the adaptive 
algorithm generates a much smaller number of sub-
clusters; in most cases, only four or five groups of data 
are generated. 
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Figure 2: Two different results for the standard ant-clustering algorithm SACA* (a) and A2CA (b). 
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Figure 3(a) and (b) show, respectively, the evolution of 
the average pheromone level on the grid and the average 
vision of all ants for the simulations depicted in Figure 
2(b-1). In Figure 4(a) we reproduce Figure 2(b-1), for 
convenience, and contrast the final distribution of objects 
onto the grid with the 3D (Figure 4(b)) and 2D (Figure 
4(c)) views of the pheromone distribution on the grid 
after convergence. It is easy to observe the higher con-
centration of pheromone in regions of the grid with large 
data density. It can also be noted from these pictures that 
the average pheromone level on the grid and vision field 
of the ants tend to stabilize after a number of iterations. 
In the particular case of vision, all ants converge to a 
vision field of dimension 7 × 7.  
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Figure 3: Evolution of the average pheromone level on the grid 
(a), and the average vision field of the ants (b) for the experi-
ment depicted in Figure 2(b-1). 
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Figure 4: Objects and pheromone distribution on the grid after 
convergence. (a) Final distribution of objects on the grid after 
convergence (Figure 2(b-1)). Three-dimensional perspective (b) 
and two-dimensional perspective (c) of the pheromone distribu-
tion on the grid after convergence. 
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4.2 Animals Data Set 
This section compares the performance of A2CA with 
SACA* when applied to the ANIMALS data set. This 
high-dimensional data set was originally proposed by 
Ritter and Kohonen (1989) to verify the capability of a 
self-organizing map creating a topographic map of the 
input data based on a symbol set. The data set is com-
posed of 16 input vectors, each representing an animal 

with the binary feature attributes as shown in Table 1. A 
value of 1 in this table corresponds to the presence of an 
attribute, whilst a value of 0 corresponds to the lack of 
this attribute. The authors suggested that the interesting-
ness of this data set lies in the fact that the relationship 
between the different symbols may not be directly de-
tectable from their encoding, thus not presuming any 
metric relations even when the symbols represent similar 
items. 

 

Table 1: Animal data set with their names and binary attributes (after Ritter & Kohonen, 1989). 
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Small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 
Medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 

 
Is 

Big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Two legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
Four legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
Hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
Hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
Mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 

 
 

Has 

Feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
Hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 
Run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 
Fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

 

Likes to 

Swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
 
Table 2 describes the results found by both algorithms 
when applied to the ANIMALS data set. It can be ob-
served that A2CA consistently determined two groups of 
data, one corresponding to the birds and another referring 
to the mammals. In most cases SACA* presented the 
same results as A2CA, but it sometimes separated the 
mammals into two groups that apparently do not make 
much sense. For instance, in run 5, SACA* mixed Lion 

(12) with Horse (13) and Zebra (14). In (Haykin, 1999 – 
p. 476), a self-organizing map for the ANIMALS data set 
is presented with three main groups: birds, peaceful 
mammals and hunters. However, the partition of the out-
put map could also have been made so as to distinguish 
only two different groups, as the results presented by 
SACA* and A2CA. 
 

 

Table 2: Groups found by SACA* and A2CA for the ANIMALS data set. 

 SACA* A2CA 
Run Nc Groups Nc Groups 

1 2 (0-6) (7-15) 2 (0-6) (7-15) 
2 2 (0-6) (7-15) 2 (0-6) (7-15) 
3 2 (0-6) (7-15) 2 (0-6) (7-15) 
4 3 (0-6) (10) (7-9,11-15) 2 (0-6) (7-15) 
5 3 (0,6) (7-11,15) (12-14) 2 (0-6) (7-15) 
6 2 (0-6) (7-15) 2 (0-6) (7-15) 
7 3 (0-6) (7-12,15) (13,14) 2 (0-6) (7-15) 
8 2 (0-6) (7-15) 2 (0-6) (7-15) 
9 2 (0-6) (7-15) 2 (0-6) (7-15) 

10 2 (0-6) (7-15) 2 (0-6) (7-15) 
Av. ± std 2.3 ± 0.48  2 ± 0  

 

4.3 Ruspini Data 
The Ruspini data is a well-known dataset commonly 
used to benchmark clustering algorithms (Kaufman & 

Rousseeuw, 1990). It is formed by 75 objects grouped 
into four clusters, as depicted in Figure 5. Let nc be the 
number of clusters found and Pmc the percentage of mis-
classification. Table 3 summarizes the performance of 
both algorithms when applied to the Ruspini data. The 
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results presented are the average ± standard deviation 
taken during 10 runs of each algorithm. Similarly to the 
results presented in the previous experiments, A2CA con-
sistently found the correct number of clusters with no 
classification errors. 
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Figure 5: Ruspini data. 

Table 3: Performance evaluation for the standard ant clustering 
algorithm with cooling (SACA*) and the adaptive ant cluster-
ing algorithm (A2CA). 

SACA* A2CA  

nc Pmc (%) nc Pmc (%) 

Ruspini 7.4 ± 1.46 1.5 ± 2.72 4.0 ± 0.0 0 ± 0.0 
 

4.4 Yeast Galactose Data 
The last data used for evaluation is the yeast galactose 
data set (Yeung et al., 2003). This is a real-world bioin-
formatics dataset composed of 20 experiments (attrib-
utes) – nine single-gene deletions and one wild-type ex-
periment with galactose and raffinose, nine deletions and 
one wild-type without galactose and raffinose. Similarly 
to Yeung et al. (2003), we used a subset of 205 genes 
(objects), whose expression patterns reflect four func-
tional categories (clusters) formed by 83, 15, 93 and 14 
genes (objects). The dataset used in the simulations re-
ported here take into account four repeated measure-
ments, what may yield more accurate and more stable 
clusters (Yeung et al., 2003). To cluster data with re-
peated measurements, the average expression levels over 
all repeated measurements for each gene and each ex-
periment were taken. 

For this data set, the standard algorithm (SACA*) 
demonstrated to be incapable of correctly grouping the 
data in most simulations. The proposed algorithm, how-
ever, was capable of appropriately grouping the data in 
all runs, but with varying numbers of clusters being 
found each time the algorithm was run. Over 10 runs, 
A2CA presented the following results: nc = 6.9 ± 1.0 and 
Pmc = 3.17% ± 0.93%. Figure 6 depicts one solution for 
the A2CA applied to the yeast data set. This figure also 
depicts the clusters found (within dashed lines) and the 
objects incorrectly grouped (within solid lines).  
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Figure 6: One grid solution for A2CA when applied to the yeast galactose data. 
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5 Ant Clustering Algorithms: A 
Brief Survey 

Several clustering methods based on ant behavior have 
been proposed in the literature, showing the increasing 
importance of this subject. This section provides a brief 
description of these methods, following a chronological 
order.  

In 1991, Deneubourg et al. (1991) introduced a model 
in which simple ants were able to sort into piles objects 
initially strewn randomly across a plane. These ants have 
a sorting behavior based on local rules, i.e. possessing 
only local perceptual capabilities. Gutowitz (1993) called 
these agents basic ants, which have: (i) a finite memory, 
which is a register of length n that records the presence 
or absence of objects at the ant’s previous n locations; 
(ii) an object-manipulation capacity; (iii) a function that 
gives the probability to manipulate an object proportion-
ally to the values in memory and a random variable; and 
(iv) the capability to execute Brownian motion. Besides, 
as previously observed in the Deneubourg’s model, two 
objects can only be either identical or different. Obvi-
ously, this same idea can be easily extended to deal with 
other distance metrics such as the well-known Euclidean 
norm. 

Although the basic ants have only local perceptual 
capabilities, they are able to promote global order. The 
mechanism underlying this phenomenon was carefully 
investigated by Gutowitz (1993). He proposed the com-
plexity-seeking ants, which are variants of the basic ants 
proposed by Deneubourg et al. (1991). The complexity-
seeking ants are allowed to see local complexity and tend 
to perform actions in regions of highest local complexity. 
The neighborhood complexity is the number of faces that 
separate cells of different types, containing or not an ob-
ject. In this sense, all-empty or all-occupied neighbor-
hoods have zero complexity (low entropy), whereas 
checkerboard patterns have complexity equals to 12 (as-
suming a 9-cell neighborhood). Thus, complexity-
seeking ants can calculate the complexity of their local 
environment and are able to accomplish their task more 
efficiently than the basic ants, mainly because they tend 
to manipulate objects in regions of high complexity; that 
is, at intermediate density regions, where the entropy is 
high. 

As previously addressed in Section 2, Lumer and 
Faieta (1994) introduced a method for structuring com-
plex datasets into clusters. The proposed method is in-
spired by the model of Deneubourg et al. (1991), in 
which ant-like agents move at random on a 2-
dimensional grid, where objects are scattered at random. 
Inspired by the biological phenomenon of dead body 
clustering, the ants do not communicate with each other 
and can only perceive their surrounding local environ-
ment. In this context, each ant-like agent can either pick 
up an object from the grid or drop it onto the grid. The 
probability of picking up an object decreases with both 
the density of other objects and the similarity with other 
objects within a given neighborhood. By contrast, the 
probability of dropping an object increases with the simi-

larity and the density of objects within a local region. 
Although the work in (Deneubourg et al., 1991) is re-
stricted to environments made of either identical objects 
or two distinct types of objects, Lumer and Faieta (1994) 
generalized this model to work with objects that differ 
along a continuous similarity measure. This led to the 
algorithm that we have called SACA in our work. 

Monmarché et al. (1999) combined the stochastic and 
exploratory principles of clustering ants with the deter-
ministic and heuristic principles of the popular k-means 
algorithm in order to improve the convergence of the ant-
based clustering algorithm. The proposed hybrid method 
is called AntClass and is based on the work of Lumer and 
Faieta (1994). The AntClass algorithm allows an ant to 
drop more than one object in the same cell, forming 
heaps of objects. It involves four main steps: (i) ant-
based clustering; (ii) k-means algorithm using the initial 
partition provided by ants; (iii) ant-based clustering on 
heaps of objects previously found; (iv) k-means algo-
rithm once more. Another important contribution of the 
AntClass algorithm is that it also makes use of hierarchi-
cal clustering, implemented by allowing ants to carry an 
entire heap of objects. 

Ramos and Merelo (2002) developed an ant cluster-
ing system called ACLUSTER, which was employed for 
textual document clustering. The authors proposed the 
use of bio-inspired spatial transition probabilities, avoid-
ing randomly moving agents, which may explore non-
interesting regions. In this sense, ants do not move ran-
domly like in SACA, but according to transition prob-
abilities that depend on the spatial distribution of phero-
mone across the environment. If a particular cluster dis-
appears, the pheromone tends to evaporate from that lo-
cation. This approach is interesting, because pheromone 
represents the swarm memory and all ants can benefit 
from it. In other words, the ants share a common mem-
ory. Another important difference in relation to the 
SACA refers to the use of combinations of two inde-
pendent response threshold functions; each associated 
with different environmental factors, namely, the number 
of objects in the neighborhood and their similarity. The 
ACLUSTER algorithm was also employed into a digital 
image retrieval problem, and further details about a case 
study within a granite database can be found in (Ramos 
et al., 2002). In a later work, Abraham and Ramos (2003) 
applied the ACLUSTER to discover Web usage patterns 
and thereafter a genetic programming approach to ana-
lyze the visitor trends. 

Handl and Meyer (2002) employed ant-based cluster-
ing as the core of a visual document retrieval system for 
worldwide web searches in which the basic goal is to 
classify online documents by contents’ similarity. The 
authors adopted an idea of short-term memory and em-
ployed ants with different speeds, also allowing them to 
jump. In addition, they introduced an adaptive scaling 
strategy, as well as some further modifications to achieve 
reliable results and to improve efficiency. The proposed 
method starts with a very fine distinction between data 
elements and reduces it only if necessary; that is, if after 
a pre-defined number of steps only few dropping or pick-
ing up occur. The authors also adopted a stagnation con-
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trol similar to the one described in Monmarché et al. 
(1999), in which after a pre-defined number of unsuc-
cessful dropping attempts an ant drops its load regardless 
of the neighborhood’s similarity. Finally, Handl and 
Meyer (2002) used eager ants, which take objects imme-
diately after dropping their loads.  

Labroche et al. (2002) proposed a clustering algo-
rithm, called ANTCLUST, based on a modeling of the 
chemical recognition system of ants. This system allows 
the construction of a colonial odor used for determining 
the ants’ nest membership, such that ants can discrimi-
nate between nest mates and intruders. In the ANT-
CLUST, each object is assigned to an artificial ant and 
represents part of the ant’s odor. At the beginning of the 
clustering process, ants are under the influence of any 
nest and consequently have no label (representative of 
the nest). Then, random meetings between ants are simu-
lated and labels are updated according to behavioral 
rules, which take into account the similarity among data. 
These labels evolve over time until each ant has found its 
best nest, providing a partition of the objects. 

Kanade and Hall (2003) combined the ant based clus-
tering algorithm proposed by Monmarché et al. (1999) 
with the classical Fuzzy C-Means algorithm (FCM) 
(Bezdek, 1981). The ant based clustering algorithm is 
employed to initially create raw clusters, which are then 
refined by the FCM algorithm. In this sense, the corre-
sponding centroids of each initial cluster are taken as 
initial prototypes for the FCM. Then, each object is as-
signed to its best matching fuzzy cluster, i.e. the cluster it 
has the highest membership to. These new clusters can 
be moved and merged by the ants. Finally, the obtained 
clusters are also refined by the FCM. 

Handl et al. (2003) proposed a scheme that enables an 
unbiased interpretation of the clustering solutions ob-
tained by ant based clustering algorithms. The authors 
argue that although many of the results obtained by ant 
algorithms look promising, there is a lack of knowledge 
about the actual performance of such algorithms, i.e. in 
general, the evaluation of the results has been performed 
by means of visual observation. In order to overcome this 
limitation, they propose a technique that allows convert-
ing the implicit clusters found by an ant algorithm into an 
explicit data partitioning. The proposed technique is 
based on the application of an agglomerative hierarchical 
clustering method to the positions of the data items on 
the grid. Taking into consideration the developed 
method, the results achieved by the ant-based clustering 
algorithm proposed by Handl and Meyer (2002) are 
compared, using both synthetic and real datasets, with 
those obtained by two classical algorithms (k-means and 
agglomerative average link), showing that the ant-based 
algorithm performs well when compared with them. 

6 Conclusions and Future Work 
The ant-clustering algorithm is a self-organizing multi-
agent system typically used for clustering unlabelled 
datasets. Its goal is to project the original data into a bi-
dimensional output grid and position those items that are 
similar to each other in their original space of attributes 

in neighbor regions of the output grid. By doing this, the 
algorithm is capable of grouping together items that are 
similar to each other and presenting the result of this 
grouping process on a bi-dimensional display (2D grid) 
that can be easily inspected visually helping the user to 
deal with the overload of information. The advantage of 
visual data exploration is that the user is directly in-
volved in the data mining process (Keim, 2002). This 
results in a device suitable for exploratory data analysis 
even when the input data set lies in a high-dimensional 
space.  

This paper provided a number of contributions to the 
field in two main frontlines. First, several modifications 
were introduced in the standard ant-clustering algorithm 
so as to enhance its performance and convergence prop-
erties. In particular, we proposed a cooling schedule for 
the parameter that controls the rate of picking up objects 
from the grid. This guarantees that the algorithm always 
stabilizes after a number of iteration steps. Furthermore, 
we developed the ideas of progressive vision (Sherafat et 
al., 2004a) and proposed a new form of implementing the 
pheromone heuristics on the grid in such a way that 
groups of data reinforce the attraction to those regions of 
the grid that contain data. The second contribution of this 
article was the presentation of a review from the litera-
ture citing and briefly describing most works and appli-
cations of ant clustering algorithms to date. The proposed 
adaptive algorithm, named A2CA, was applied to a num-
ber of benchmark data sets and to a real world bioinfor-
matics data set. The obtained results were compared to 
the standard ant clustering algorithm with cooling sched-
ule and modified dropping probability, and stress the 
benefits of the modifications introduced in the proposed 
algorithm. Most importantly, A2CA demonstrated a good 
robustness in terms of finding the correct number of clus-
ters in the data set, low variations of the results in terms 
of number of clusters found, and always stabilized after a 
fixed number of iterations automatically defined by the 
algorithm.  

Despite the encouraging results presented here, there 
are still several avenues for investigation that deserve to 
be pursued. For instance, an automatic form of segment-
ing the output grid and counting the number of clusters 
found after convergence can be proposed; the algorithm 
can be transformed into a supervised algorithm, that is, 
information about a set of known classes of data can be 
used to aid the definition of the final configuration of the 
grid; a hierarchical analysis of the input data can be pro-
posed by systematically varying some of the user-defined 
parameters; the use of heaps of objects instead of a one-
object-one-grid-position scheme used here can be per-
formed (though we believe that the addition of phero-
mone to the grid may compensate for the effect of allow-
ing heaps of objects to be formed); the use of local search 
procedures (e.g., k-means) to fine tune the clusters found 
by the ants; and a sensitivity analysis in relation to the 
user-defined parameters can be performed. 
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