
 Informatica 29 (2005) 143–154 143

Towards Improving Clustering Ants:
An Adaptive Ant Clustering Algorithm
André L. Vizine1,2, Leandro N. de Castro1,2, Eduardo R. Hruschka1, Ricardo R. Gudwin2

1Catholic University of Santos (UniSantos)
R. Carvalho de Mendonça, 144, 11070-906, Santos/SP, Brasil
{vizine,lnunes,erh}@unisantos.br

2State University of Campinas (Unicamp)
DCA–FEEC–UNICAMP, Cx. Postal 6101, 13083-852, Campinas /SP, Brazil.
gudwin@dca.fee.unicamp.br

Keywords: Ant clustering algorithm, data clustering, visual data mining

Received: July 15, 2004

Among the many bio-inspired techniques, ant-based clustering algorithms have received special atten-
tion from the community over the past few years for two main reasons. First, they are particularly suit-
able to perform exploratory data analysis and, second, they still require much investigation to improve
performance, stability, convergence, and other key features that would make such algorithms mature
tools for diverse applications. Under this perspective, this paper proposes both a progressive vision
scheme and pheromone heuristics for the standard ant-clustering algorithm, together with a cooling
schedule that improves its convergence properties. The proposed algorithm is evaluated in a number of
well-known benchmark data sets, as well as in a real-world bioinformatics dataset. The achieved results
are compared to those obtained by the standard ant clustering algorithm, showing that significant im-
provements are obtained by means of the proposed modifications. As an additional contribution, this
work also provides a brief review of ant-based clustering algorithms.
Povzetek: Članek opisuje izboljšan algoritem grupiranja na osnovi pristopa kolonij mravelj.

1 Introduction
Over the past few years, several different types of bio-
logically inspired algorithms have been proposed in the
literature (Paton, 1994; de Castro & Von Zuben, 2004).
Among these, some have obtained special attention from
the scientific community, such as those based on swarm
systems (Bonabeau et al., 1999; Kennedy et al., 2001),
which are inspired by the social behavior of living organ-
isms. This relatively new field of investigation has origi-
nated different types of algorithms for the solution of
complex problems in many different domains. Under this
perspective, the problems usually tackled involve search,
optimization, and data analysis tasks. The main reasons
by which swarm based approaches are useful for solving
such problems are (Bonabeau et al., 1999; Kennedy et
al., 2001): (i) they require little information about the
problem at hand (e.g. in clustering problems a data set to
be grouped); and (ii) they usually can perform both broad
and parallel searches over the space of potential solutions
by means of a population (swarm) of candidate solutions.

Despite the broad usefulness of current bio-inspired
algorithms, most of them can be further improved,
mainly to enhance performance and applicability. In this
sense, this work focuses on ant-based clustering algo-

rithms, whose main underlying concepts are based on the
way real ants clean their nests and organize dead bodies
in their colonies. Considering a more practical computa-
tional perspective, these algorithms are basically de-
signed by considering the concept of a 2D grid where
objects (data) are laid at random and then automatically
organized. A set of ant-like agents is allowed to move
throughout the grid, picking up and dropping objects
(data) based on their similarity degree within a certain
neighborhood.

One difficulty in applying ant-clustering algorithms
to solve complex problems comes from the fact that, in
most cases, they generate a number of clusters that is
much larger than the natural number of clusters. Fur-
thermore, these algorithms usually do not stabilize in a
particular clustering solution; that is, they constantly
construct and deconstruct clusters during the iterative
procedure of adaptation. In order to overcome the afore-
mentioned difficulties and, consequently, improve the
quality of the results obtained, we propose an Adaptive
Ant-Clustering Algorithm (A2CA), which is more robust
in terms of the number of clusters found and tends to
converge into good solutions while the clustering process

144 Informatica 29 (2005) 143–154 A.L. Vizine et al.

evolves. To achieve these goals, three main modifica-
tions are introduced in the standard ant-clustering algo-
rithm proposed by Lumer and Faieta (1994): (i) a cooling
schedule for the parameter that controls the probability of
ants picking up objects from the grid; (ii) a progressive
vision field that allows ants to ‘see’ over a wider area;
and (iii) the use of a pheromone function added to the
grid as a way to promote reinforcement for the dropping
of objects at more dense regions of the grid. These modi-
fications favor an adaptive clustering process, in the
sense that the proposed algorithm tends to converge to
stable clusters. In addition to the contributions to the al-
gorithm itself, this paper also brings a brief historical
review of ant-based clustering algorithms, emphasizing
their main features when compared with the standard ant-
clustering algorithm proposed by Lumer and Faieta
(1994).

The paper is organized as follows. Section 2 provides
a brief review of the standard ant-clustering algorithm
(Lumer & Faieta, 1994), which, for the sake of brevity, is
referred to as SACA in this work. In Section 3, we pre-
sent our proposed algorithm (A2CA), which, in Section 4
is experimentally compared to the SACA in three syn-
thetic and one real-world dataset. Section 5 provides a
brief survey of related works, whereas Section 6 con-
cludes the paper and points out some avenues for future
work.

2 Standard Ant Clustering Algo-
rithm: SACA

The Standard Ant Clustering Algorithm (SACA), intro-
duced by Lumer and Faieta (1994), assumes that ants
perform random walks on a two-dimensional grid on
which objects (data) are laid down at random. Independ-
ently of the dimension of the input data, each datum is
randomly projected onto a cell of the grid. A grid cell (or
patch) is thus responsible for hosting the index of a spe-
cific input pattern, indicating the relative position of the
datum in the two-dimensional grid. The general idea is to
have items, which are similar in their original N-
dimensional space, in neighboring regions of the grid. In
other words, data indices that are neighbors in the grid
indicate patterns that are similar in their original space of
attributes. In this context, it is assumed that each site or
cell on the grid can be occupied by at most one object,
and one of the two following situations may occur:
(i) one ant holds an object i and evaluates the probability
of dropping it in its current position; (ii) an ant is
unloaded and evaluates the probability of picking up an
object. At each discrete time step, an ant is selected at
random and can either pick up or drop an object at its
current location.

The probability of picking up an object increases with
low-density neighborhoods and decreases with high simi-
larity among objects in the surrounding area. The prob-
ability of dropping an object, by contrast, increases with
high densities of similar objects in the neighborhood.
More specifically, assume that d(i,j) is the Euclidean
distance between objects i and j in their N-dimensional
space. The density dependent function for object i, at a

particular grid location, is defined by the following ex-
pression:

⎪⎩

⎪
⎨
⎧ >−

= ∑
otherwise. 0

 0)(if)α/),(1(1
)(2 j

ifjid
sif , (1)

where s2 is the number of cells in the surrounding area of
i, and α is a constant that scales the dissimilarities among
objects. The maximum value for f(i) is obtained if, and
only if, all the sites in the neighborhood are occupied by
equal objects. Assuming the density dependent function
presented in Eq. (1), the probability of picking up and
dropping an object i is given by Eqs. (2) and (3), respec-
tively:

2

)(
)(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

ifk
k

iP
p

p
pick

, (2)

⎩
⎨
⎧ <

=
.otherwise 1

;)(if)(2
)(d

drop

kifif
iP , (3)

where the parameters kp and kd are threshold constants
equal to 0.1 and 0.15, respectively. Note that f(i) ∈ [0,1].
Thus, if f(i) << kp, then Ppick ≈ 1, leading to high prob-
abilities of picking up objects in low density regions.
Similarly, Ppick ≈ 0 if f(i) >> kp, meaning that objects are
unlikely to be removed from dense regions. In the case of
Pdrop, it is also possible to observe that if f(i) << kd,
Pdrop ≈ 0, whereas if f(i) ≥ kd the ant drops the object.

Whenever a loaded ant decides to drop the object it is
carrying, it looks for the first empty cell in its vicinity in
which to do so (its current position can be already occu-
pied by another object). A time step finishes with the
selected ant moving to one of its four adjacent nodes,
each direction of motion being equally likely.

3 Adaptive Ant Clustering Algo-
rithm: A2CA

The Adaptive Ant Clustering Algorithm (A2CA) was
developed by taking further inspiration from biological
systems. In particular, A2CA was inspired by the fact that
termites, while building their nests, deposit pheromone
on soil pellets and this serves as a reinforcement signal to
other termites placing more pellets on the same region of
the space (Camazine et al., 2001). Another biological
observation taken into account while developing A2CA
was the fact that ants can sense not only its immediate
neighborhood environment, but a broader range that may
vary from ant to ant and with time. Therefore, A2CA has
two main modifications in relation to SACA: (i) a pro-
gressive vision scheme, and (ii) the inclusion of phero-
mone on the grid cells. In addition, we adopt a cooling
schedule for the parameter that drives the picking prob-
ability (kp).

3.1 Cooling Schedule for kp
In addition to the modifications that led to the develop-
ment of A2CA, one simple modification was previously
introduced in SACA so as to improve its convergence

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 145

properties (Vizine et al., 2005) and it is also adopted in
our proposed approach (A2CA). In a nutshell, a cooling
schedule for the parameter that drives the picking prob-
ability kp – Eq. (2) – is employed. The adopted scheme is
simple: after one cycle (10,000 ant steps) has passed, the
value of the parameter kp starts being geometrically de-
creased, at each cycle, until it reaches a minimal allowed
value, kpmin, which corresponds to the stopping criterion
for the algorithm. In the current implementation, kp is
cooled based on a geometric scheme presented in Eq. (4).
It is important to emphasize that the SACA implementa-
tion used in this work also incorporates this extra feature,
leading to the so-called SACA*. By doing so, more suit-
able and fair comparisons can be performed, in the sense
that SACA* will also tend to converge to better cluster-
ing solutions.

kp ← kp×0.98,
kpmin = 0.001.

(4)

3.2 Progressive Vision
In SACA, the value of the density function, f(i), given by
Eq. (1), depends on the vision field, s2, of each ant. The
definition of a fixed value for s2 may sometimes cause
inappropriate behaviors, because a fixed perceptual area
does not allow distinguishing between clusters of differ-
ent sizes. A small area of vision implies a small percep-
tion of the cluster at a global level. Thus, small clusters
and large clusters are all the same in this sense, for the
agent only perceives a limited area of the environment.
In some problems, the use of a too restrictive perception
field may be limiting, whereas a too broad vision may
cause undesirable merging of groups. On the one hand,
even if a cluster is perfectly homogeneous (with identical
elements) and sufficiently large, there still exists a small
probability that an agent picks up a datum from the clus-
ter and drops it somewhere else. On the other hand, a
large vision field may be inefficient in the initial itera-
tions, when the data elements are scattered at random on
the grid, because analyzing a broad area may imply in
analyzing a large number of small clusters simultane-
ously.

In order to overcome this difficulty, a progressive vi-
sion scheme was proposed for SACA as follows
(Sherafat et al., 2004a). When an ant perceives a ‘big’
cluster, it increments its perception field (si

2) up to a
maximal size. Now, si

2 is a specific parameter for each
ant that will be dynamically and independently updated
while running the algorithm. The question that remains
is: ‘How can an ant agent detect the size of a cluster so as
to control the size of its vision field?’

We tackled this problem by using the density depend-
ent function f(i) as a control parameter. There is a rela-
tionship between the size of a cluster and its density de-
pendent function: the average value of f(i) increases as
the clustering proceeds, and this happens because larger
clusters tend to be formed. When f(i) achieves a value
greater than a pre-specified threshold θ, the parameter s2
is incremented by ns units until it reaches its maximum
value.

If f(i) > θ and s2 ≤ s2
max,

then s2 ← s2 + ns.
(5)

where s2
max = 7 × 7 and θ = 0.6 in our implementation.

3.3 Pheromone Heuristics
In order to perform data clustering, the SACA takes into
account the relative distance among all objects within the
vision field of the ant. A problem with this approach is
that it does not account for the work in progress at a
global level. One form of overcoming this difficulty was
proposed by Sherafat et al. (2004a,b). The method is
based on the introduction of a local variable φ(i) associ-
ated with each bi-dimensional position, i, on the grid,
such that the quantity of pheromone in that exact position
becomes a function of the presence or absence of an ob-
ject at i. Inspired by the way termites use pheromone to
build their nests, the artificial agents in the modified ant
clustering algorithm will add some pheromone to the
objects they carry and this pheromone will be transferred
to the grid when an object is deposited. During each it-
eration, the artificial pheromone φ(i) at each cell of the
grid evaporates at a fixed rate.

Sherafat et al. (2004a,b) introduced a pheromone
function, Phe(φmax,φmin,P,φ(i)), given by Eq. (6), that in-
fluences the probability of picking up and dropping off
objects from and on the grid. The proposed pheromone
function varies linearly with the pheromone level at each
grid position, φ(i), and depends on a number of user-
defined parameters, such as the φmax and φmin values of
pheromone perceived by the agent, and the maximal in-
fluence of pheromone allowed, P.

P
.P.

)i(P.(.)Phe
minmax

max

minmax
+

−
−

−
=

φφ
φ

φ
φφ

22 ,
(6)

To accommodate the addition of pheromone on the grid,
some variations on the picking and dropping probability
functions of SACA were proposed in (Sherafat et al.,
2004a,b), as described in Eqs. (7) and (8), respectively:

2

maxmin)(
)))(,,,(1()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−=

ifk
k

iPPheiP
p

p
pick φφφ . (7)

2

maxmin)(
)()))(,,,(1()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

×+=
ifk

ifiPPheiP
d

drop φφφ . (8)

where φmax represents the current largest amount of
pheromone perceived by this agent; φmin corresponds to
the current smallest amount of pheromone perceived by
this agent; P is the maximum influence of the pheromone
in changing the probability of picking and dropping data
elements; and φ(i) is the quantity of pheromone in the
current position i.

Note that in Eq. (8) the dropping probability origi-
nally derived from the model of Deneubourg et al. (1991)
was employed. Basically, this choice was made because
the algorithm presented superior performance when us-
ing the function proposed by Deneubourg et al. (1991) –
given by Eq. (9) - instead of Eq. (3) for the dropping
probability. This was also the case for SACA. Therefore,

146 Informatica 29 (2005) 143–154 A.L. Vizine et al.

we also adopt this strategy in our present work, namely
the dropping probability is an inverse function of a pa-
rameter kd:

2

)(
)()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
ifk

ifiP
d

drop
. (9)

Based on the sensitivity analysis described in Sherafat et
al. (2004a,b) and on some preliminary experiments, we
realized that setting the parameters φmax, φmin and P may
become a difficult task depending on the problem at
hand. In order to reduce the number of user-defined pa-
rameters and to improve even further the performance of
the algorithm, we propose to substitute Eqs. (7) and (8)
by the following equations:

2

)()()(
1)(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

ifk
k

iif
iP

p

p
pick φ

. (10)

2

)(
)()()()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
ifk

ifiifiP
d

drop φ . (11)

where f(i) is the density dependent function, φ(i) is the
quantity of pheromone in the current position i, and kp
and kd are the picking and dropping probability constants,
respectively. Note that, in this new proposal, the only
new parameter introduced in relation to SACA is the
pheromone level at each position of the grid.

According to Eq. (10), the probability that an ant
picks up an item from the grid is inversely proportional
to the amount of pheromone at that position and also to
the density of objects around i. This equation thus ac-
counts for the pheromone reinforcement signal in regions
of the space filled with similar objects. If the region is
filled with dissimilar objects, however, the incorporation
of f(i) multiplying φ(i) counterbalances the effects of
eventual high pheromone concentrations. By the same
token, Eq. (11) states that regions with high concentra-
tion levels of pheromone are attractive for the deposition
of more objects of similar type.

It is important to observe that a region with a high
quantity of pheromone tends to be either a recently con-
structed cluster or a cluster under construction. The
pheromone is a variable of the discrete grid environment,
i.e. each grid position i has an independent variable φ(i)
for which pheromone evaporation and diffusion proce-
dures are implemented. The rate at which pheromone
evaporates is preset, as defined in Eq. (12). Each grid
position i also has a connection to its neighbors that
causes a percentage of φ(i) to be diffused to them. This is
performed in such a way that the pheromone percentage
for the two closer neighbors in all directions decays
geometrically in the reason of 1/2, whereas for the third
closer neighbors in all directions it is set equal to zero. In
our implementation, the maximum amount of added
pheromone φ(i) is equal to 0.01. The proposed approach
increases the probability of deconstruction of relatively
small clusters and increases the probability of dropping
data elements in denser clusters. This is directly influ-
enced by the similarity between the data and the cluster.

This proposal then becomes a sort of density-based clus-
tering procedure (Everitt et al., 2001).

φ(i) ← φ(i) × 0.99. (12)

4 Performance Evaluation
In order to assess the performance of the adaptive ant-
clustering algorithm (A2CA) in comparison with the stan-
dard algorithm with cooling and dropping probability
given by Eq. (9), named here SACA*, both algorithms
were applied to a number of synthetic data sets and to
one real-world bioinformatics data set. The parameters
used to run the algorithms were based on the sensitivity
analysis performed in Sherafat et al. (2004a) and on
some preliminary experiments performed here. The
benchmarks used for evaluation and the respective adap-
tation parameters for the algorithms are summarized be-
low. Further details are provided in each dedicated sec-
tion. Parameters θ = 0.6, kp = 0.20, kd = 0.05 are assumed
default and were chosen for all experiments.
• 4Gauss: 100 objects divided into 4 clusters (classes).

nants = 10, grid = 25×25, and α = 0.35.
• Ruspini data: 75 objects divided into 4 classes.

nants = 10, grid = 25×25, and α = 0.35.
• ANIMALS data set: 16 objects with 13 attributes

(the number of classes varies based on the grouping
performed). nants = 1, grid = 15×15, and α = 2.10.

• Yeast galactose data: 205 objects divided into 4
classes. nants = 10, grid = 35×35, and α = 1.05.

Note that the parameters used to run the algorithms are
almost the same for all data sets; the only ones that
change are α, the grid size, and the number of ants nants.
As one grid cell is used to accommodate one object, the
grid is increased in size in proportion to the size of the
input data set. The parameter α, by contrast, weighs the
influence of the distance measure in determining the
clusters. Its value was linearly varied using a factor 0.35
for the employed data sets. In the ANIMALS data set, a
single ant was used because the number of objects is very
small, only 16.

4.1 Four Gaussian Distributions
The first data set used to illustrate the performance of the
algorithm was a modified version of the well-known four
classes data set proposed by Lumer and Faieta (1994) to
study the standard ant-clustering algorithm. The data set
used here corresponds to four distributions of 25 data
points each, defined by Gaussian probability density
functions with various means µ and fixed standard devia-
tion σ = 1.5, G(µ,σ), as follows (Figure 1):

A = [x ∝ G(0,1.5), y ∝ G(0,1.5)];
B = [x ∝ G(0,1.5), y ∝ G(8,1.5)];
C = [x ∝ G(8,1.5), y ∝ G(0,1.5)];
D = [x ∝ G(8,1.5), y ∝ G(8,1.5)].

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 147

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Gaussian distributions: input data set.

Figure 2(a) depicts some simulation results for the stan-
dard ant-clustering algorithm with the geometric cooling

schedule for kp described previously (SACA*). The pic-
tures correspond to the output grid of two different simu-
lations generated by the ants after convergence, in this
case after 273,000 ant steps (27.3 cycles). Each input
datum is numbered from 0 to 99, where the first 25 (from
0 to 24) belong to the first cluster, and so on. Note that,
accordingly with what was previously discussed by
Lumer and Faieta (1994), the standard ant-clustering
algorithm (SACA), though capable of correctly cluster-
ing the data, generates a large number of sub-clusters in
most cases. In our experiments, we observed that, even
with the use of a cooling procedure (i.e., SACA*), this
characteristic tends to be maintained. Figure 2(b) shows
some results for A2CA. It can be noted that the adaptive
algorithm generates a much smaller number of sub-
clusters; in most cases, only four or five groups of data
are generated.

0

C1 C1

C1

C2

C2

C3

C3

C2

C4

0

C1

C4

C4

C3

C3

C3 C2

C4

C4

C4

(a-1) (a-2)

 0 C1

C4

C3

C2

0

C1

C2

C4

C3

C3

(b-1) (b-2)

Figure 2: Two different results for the standard ant-clustering algorithm SACA* (a) and A2CA (b).

148 Informatica 29 (2005) 143–154 A.L. Vizine et al.

Figure 3(a) and (b) show, respectively, the evolution of
the average pheromone level on the grid and the average
vision of all ants for the simulations depicted in Figure
2(b-1). In Figure 4(a) we reproduce Figure 2(b-1), for
convenience, and contrast the final distribution of objects
onto the grid with the 3D (Figure 4(b)) and 2D (Figure
4(c)) views of the pheromone distribution on the grid
after convergence. It is easy to observe the higher con-
centration of pheromone in regions of the grid with large
data density. It can also be noted from these pictures that
the average pheromone level on the grid and vision field
of the ants tend to stabilize after a number of iterations.
In the particular case of vision, all ants converge to a
vision field of dimension 7 × 7.

0 5 10 15 20 25 30

1

1.1

1.2

1.3

1.4

1.5

Cycles

φ a
v(i

)

(a)

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5

0 5 10 15 20 25 30
Cycles

V
is

io
n a

v

 (b)

Figure 3: Evolution of the average pheromone level on the grid
(a), and the average vision field of the ants (b) for the experi-
ment depicted in Figure 2(b-1).

 0 C1

C2

C3 C4

(a)

(b)

 (c)

Figure 4: Objects and pheromone distribution on the grid after
convergence. (a) Final distribution of objects on the grid after
convergence (Figure 2(b-1)). Three-dimensional perspective (b)
and two-dimensional perspective (c) of the pheromone distribu-
tion on the grid after convergence.

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 149

4.2 Animals Data Set
This section compares the performance of A2CA with
SACA* when applied to the ANIMALS data set. This
high-dimensional data set was originally proposed by
Ritter and Kohonen (1989) to verify the capability of a
self-organizing map creating a topographic map of the
input data based on a symbol set. The data set is com-
posed of 16 input vectors, each representing an animal

with the binary feature attributes as shown in Table 1. A
value of 1 in this table corresponds to the presence of an
attribute, whilst a value of 0 corresponds to the lack of
this attribute. The authors suggested that the interesting-
ness of this data set lies in the fact that the relationship
between the different symbols may not be directly de-
tectable from their encoding, thus not presuming any
metric relations even when the symbols represent similar
items.

Table 1: Animal data set with their names and binary attributes (after Ritter & Kohonen, 1989).

0.
 D

ov
e

1.
 H

en

2.
 D

uc
k

3.
 G

oo
se

4.

 O
w

l
5.

 H
aw

k
6.

 E
ag

le

7.
 F

ox

8.
 D

og

9.
 W

ol
f

10
. C

at

11
. T

ig
er

12

. L
io

n
13

. H
or

se

14
. Z

eb
ra

15

. C
ow

Small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
Medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

Is

Big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
Two legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Four legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

Has

Feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
Run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
Fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

Likes to

Swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 describes the results found by both algorithms
when applied to the ANIMALS data set. It can be ob-
served that A2CA consistently determined two groups of
data, one corresponding to the birds and another referring
to the mammals. In most cases SACA* presented the
same results as A2CA, but it sometimes separated the
mammals into two groups that apparently do not make
much sense. For instance, in run 5, SACA* mixed Lion

(12) with Horse (13) and Zebra (14). In (Haykin, 1999 –
p. 476), a self-organizing map for the ANIMALS data set
is presented with three main groups: birds, peaceful
mammals and hunters. However, the partition of the out-
put map could also have been made so as to distinguish
only two different groups, as the results presented by
SACA* and A2CA.

Table 2: Groups found by SACA* and A2CA for the ANIMALS data set.

 SACA* A2CA
Run Nc Groups Nc Groups

1 2 (0-6) (7-15) 2 (0-6) (7-15)
2 2 (0-6) (7-15) 2 (0-6) (7-15)
3 2 (0-6) (7-15) 2 (0-6) (7-15)
4 3 (0-6) (10) (7-9,11-15) 2 (0-6) (7-15)
5 3 (0,6) (7-11,15) (12-14) 2 (0-6) (7-15)
6 2 (0-6) (7-15) 2 (0-6) (7-15)
7 3 (0-6) (7-12,15) (13,14) 2 (0-6) (7-15)
8 2 (0-6) (7-15) 2 (0-6) (7-15)
9 2 (0-6) (7-15) 2 (0-6) (7-15)

10 2 (0-6) (7-15) 2 (0-6) (7-15)
Av. ± std 2.3 ± 0.48 2 ± 0

4.3 Ruspini Data
The Ruspini data is a well-known dataset commonly
used to benchmark clustering algorithms (Kaufman &

Rousseeuw, 1990). It is formed by 75 objects grouped
into four clusters, as depicted in Figure 5. Let nc be the
number of clusters found and Pmc the percentage of mis-
classification. Table 3 summarizes the performance of
both algorithms when applied to the Ruspini data. The

150 Informatica 29 (2005) 143–154 A.L. Vizine et al.

results presented are the average ± standard deviation
taken during 10 runs of each algorithm. Similarly to the
results presented in the previous experiments, A2CA con-
sistently found the correct number of clusters with no
classification errors.

0 20 40 60 80 100 120
0

20
40
60
80

100
120
140
160

Figure 5: Ruspini data.

Table 3: Performance evaluation for the standard ant clustering
algorithm with cooling (SACA*) and the adaptive ant cluster-
ing algorithm (A2CA).

SACA* A2CA

nc Pmc (%) nc Pmc (%)

Ruspini 7.4 ± 1.46 1.5 ± 2.72 4.0 ± 0.0 0 ± 0.0

4.4 Yeast Galactose Data
The last data used for evaluation is the yeast galactose
data set (Yeung et al., 2003). This is a real-world bioin-
formatics dataset composed of 20 experiments (attrib-
utes) – nine single-gene deletions and one wild-type ex-
periment with galactose and raffinose, nine deletions and
one wild-type without galactose and raffinose. Similarly
to Yeung et al. (2003), we used a subset of 205 genes
(objects), whose expression patterns reflect four func-
tional categories (clusters) formed by 83, 15, 93 and 14
genes (objects). The dataset used in the simulations re-
ported here take into account four repeated measure-
ments, what may yield more accurate and more stable
clusters (Yeung et al., 2003). To cluster data with re-
peated measurements, the average expression levels over
all repeated measurements for each gene and each ex-
periment were taken.

For this data set, the standard algorithm (SACA*)
demonstrated to be incapable of correctly grouping the
data in most simulations. The proposed algorithm, how-
ever, was capable of appropriately grouping the data in
all runs, but with varying numbers of clusters being
found each time the algorithm was run. Over 10 runs,
A2CA presented the following results: nc = 6.9 ± 1.0 and
Pmc = 3.17% ± 0.93%. Figure 6 depicts one solution for
the A2CA applied to the yeast data set. This figure also
depicts the clusters found (within dashed lines) and the
objects incorrectly grouped (within solid lines).

0

C 3

C 1
C 1

C 2

C 4

Figure 6: One grid solution for A2CA when applied to the yeast galactose data.

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 151

5 Ant Clustering Algorithms: A
Brief Survey

Several clustering methods based on ant behavior have
been proposed in the literature, showing the increasing
importance of this subject. This section provides a brief
description of these methods, following a chronological
order.

In 1991, Deneubourg et al. (1991) introduced a model
in which simple ants were able to sort into piles objects
initially strewn randomly across a plane. These ants have
a sorting behavior based on local rules, i.e. possessing
only local perceptual capabilities. Gutowitz (1993) called
these agents basic ants, which have: (i) a finite memory,
which is a register of length n that records the presence
or absence of objects at the ant’s previous n locations;
(ii) an object-manipulation capacity; (iii) a function that
gives the probability to manipulate an object proportion-
ally to the values in memory and a random variable; and
(iv) the capability to execute Brownian motion. Besides,
as previously observed in the Deneubourg’s model, two
objects can only be either identical or different. Obvi-
ously, this same idea can be easily extended to deal with
other distance metrics such as the well-known Euclidean
norm.

Although the basic ants have only local perceptual
capabilities, they are able to promote global order. The
mechanism underlying this phenomenon was carefully
investigated by Gutowitz (1993). He proposed the com-
plexity-seeking ants, which are variants of the basic ants
proposed by Deneubourg et al. (1991). The complexity-
seeking ants are allowed to see local complexity and tend
to perform actions in regions of highest local complexity.
The neighborhood complexity is the number of faces that
separate cells of different types, containing or not an ob-
ject. In this sense, all-empty or all-occupied neighbor-
hoods have zero complexity (low entropy), whereas
checkerboard patterns have complexity equals to 12 (as-
suming a 9-cell neighborhood). Thus, complexity-
seeking ants can calculate the complexity of their local
environment and are able to accomplish their task more
efficiently than the basic ants, mainly because they tend
to manipulate objects in regions of high complexity; that
is, at intermediate density regions, where the entropy is
high.

As previously addressed in Section 2, Lumer and
Faieta (1994) introduced a method for structuring com-
plex datasets into clusters. The proposed method is in-
spired by the model of Deneubourg et al. (1991), in
which ant-like agents move at random on a 2-
dimensional grid, where objects are scattered at random.
Inspired by the biological phenomenon of dead body
clustering, the ants do not communicate with each other
and can only perceive their surrounding local environ-
ment. In this context, each ant-like agent can either pick
up an object from the grid or drop it onto the grid. The
probability of picking up an object decreases with both
the density of other objects and the similarity with other
objects within a given neighborhood. By contrast, the
probability of dropping an object increases with the simi-

larity and the density of objects within a local region.
Although the work in (Deneubourg et al., 1991) is re-
stricted to environments made of either identical objects
or two distinct types of objects, Lumer and Faieta (1994)
generalized this model to work with objects that differ
along a continuous similarity measure. This led to the
algorithm that we have called SACA in our work.

Monmarché et al. (1999) combined the stochastic and
exploratory principles of clustering ants with the deter-
ministic and heuristic principles of the popular k-means
algorithm in order to improve the convergence of the ant-
based clustering algorithm. The proposed hybrid method
is called AntClass and is based on the work of Lumer and
Faieta (1994). The AntClass algorithm allows an ant to
drop more than one object in the same cell, forming
heaps of objects. It involves four main steps: (i) ant-
based clustering; (ii) k-means algorithm using the initial
partition provided by ants; (iii) ant-based clustering on
heaps of objects previously found; (iv) k-means algo-
rithm once more. Another important contribution of the
AntClass algorithm is that it also makes use of hierarchi-
cal clustering, implemented by allowing ants to carry an
entire heap of objects.

Ramos and Merelo (2002) developed an ant cluster-
ing system called ACLUSTER, which was employed for
textual document clustering. The authors proposed the
use of bio-inspired spatial transition probabilities, avoid-
ing randomly moving agents, which may explore non-
interesting regions. In this sense, ants do not move ran-
domly like in SACA, but according to transition prob-
abilities that depend on the spatial distribution of phero-
mone across the environment. If a particular cluster dis-
appears, the pheromone tends to evaporate from that lo-
cation. This approach is interesting, because pheromone
represents the swarm memory and all ants can benefit
from it. In other words, the ants share a common mem-
ory. Another important difference in relation to the
SACA refers to the use of combinations of two inde-
pendent response threshold functions; each associated
with different environmental factors, namely, the number
of objects in the neighborhood and their similarity. The
ACLUSTER algorithm was also employed into a digital
image retrieval problem, and further details about a case
study within a granite database can be found in (Ramos
et al., 2002). In a later work, Abraham and Ramos (2003)
applied the ACLUSTER to discover Web usage patterns
and thereafter a genetic programming approach to ana-
lyze the visitor trends.

Handl and Meyer (2002) employed ant-based cluster-
ing as the core of a visual document retrieval system for
worldwide web searches in which the basic goal is to
classify online documents by contents’ similarity. The
authors adopted an idea of short-term memory and em-
ployed ants with different speeds, also allowing them to
jump. In addition, they introduced an adaptive scaling
strategy, as well as some further modifications to achieve
reliable results and to improve efficiency. The proposed
method starts with a very fine distinction between data
elements and reduces it only if necessary; that is, if after
a pre-defined number of steps only few dropping or pick-
ing up occur. The authors also adopted a stagnation con-

152 Informatica 29 (2005) 143–154 A.L. Vizine et al.

trol similar to the one described in Monmarché et al.
(1999), in which after a pre-defined number of unsuc-
cessful dropping attempts an ant drops its load regardless
of the neighborhood’s similarity. Finally, Handl and
Meyer (2002) used eager ants, which take objects imme-
diately after dropping their loads.

Labroche et al. (2002) proposed a clustering algo-
rithm, called ANTCLUST, based on a modeling of the
chemical recognition system of ants. This system allows
the construction of a colonial odor used for determining
the ants’ nest membership, such that ants can discrimi-
nate between nest mates and intruders. In the ANT-
CLUST, each object is assigned to an artificial ant and
represents part of the ant’s odor. At the beginning of the
clustering process, ants are under the influence of any
nest and consequently have no label (representative of
the nest). Then, random meetings between ants are simu-
lated and labels are updated according to behavioral
rules, which take into account the similarity among data.
These labels evolve over time until each ant has found its
best nest, providing a partition of the objects.

Kanade and Hall (2003) combined the ant based clus-
tering algorithm proposed by Monmarché et al. (1999)
with the classical Fuzzy C-Means algorithm (FCM)
(Bezdek, 1981). The ant based clustering algorithm is
employed to initially create raw clusters, which are then
refined by the FCM algorithm. In this sense, the corre-
sponding centroids of each initial cluster are taken as
initial prototypes for the FCM. Then, each object is as-
signed to its best matching fuzzy cluster, i.e. the cluster it
has the highest membership to. These new clusters can
be moved and merged by the ants. Finally, the obtained
clusters are also refined by the FCM.

Handl et al. (2003) proposed a scheme that enables an
unbiased interpretation of the clustering solutions ob-
tained by ant based clustering algorithms. The authors
argue that although many of the results obtained by ant
algorithms look promising, there is a lack of knowledge
about the actual performance of such algorithms, i.e. in
general, the evaluation of the results has been performed
by means of visual observation. In order to overcome this
limitation, they propose a technique that allows convert-
ing the implicit clusters found by an ant algorithm into an
explicit data partitioning. The proposed technique is
based on the application of an agglomerative hierarchical
clustering method to the positions of the data items on
the grid. Taking into consideration the developed
method, the results achieved by the ant-based clustering
algorithm proposed by Handl and Meyer (2002) are
compared, using both synthetic and real datasets, with
those obtained by two classical algorithms (k-means and
agglomerative average link), showing that the ant-based
algorithm performs well when compared with them.

6 Conclusions and Future Work
The ant-clustering algorithm is a self-organizing multi-
agent system typically used for clustering unlabelled
datasets. Its goal is to project the original data into a bi-
dimensional output grid and position those items that are
similar to each other in their original space of attributes

in neighbor regions of the output grid. By doing this, the
algorithm is capable of grouping together items that are
similar to each other and presenting the result of this
grouping process on a bi-dimensional display (2D grid)
that can be easily inspected visually helping the user to
deal with the overload of information. The advantage of
visual data exploration is that the user is directly in-
volved in the data mining process (Keim, 2002). This
results in a device suitable for exploratory data analysis
even when the input data set lies in a high-dimensional
space.

This paper provided a number of contributions to the
field in two main frontlines. First, several modifications
were introduced in the standard ant-clustering algorithm
so as to enhance its performance and convergence prop-
erties. In particular, we proposed a cooling schedule for
the parameter that controls the rate of picking up objects
from the grid. This guarantees that the algorithm always
stabilizes after a number of iteration steps. Furthermore,
we developed the ideas of progressive vision (Sherafat et
al., 2004a) and proposed a new form of implementing the
pheromone heuristics on the grid in such a way that
groups of data reinforce the attraction to those regions of
the grid that contain data. The second contribution of this
article was the presentation of a review from the litera-
ture citing and briefly describing most works and appli-
cations of ant clustering algorithms to date. The proposed
adaptive algorithm, named A2CA, was applied to a num-
ber of benchmark data sets and to a real world bioinfor-
matics data set. The obtained results were compared to
the standard ant clustering algorithm with cooling sched-
ule and modified dropping probability, and stress the
benefits of the modifications introduced in the proposed
algorithm. Most importantly, A2CA demonstrated a good
robustness in terms of finding the correct number of clus-
ters in the data set, low variations of the results in terms
of number of clusters found, and always stabilized after a
fixed number of iterations automatically defined by the
algorithm.

Despite the encouraging results presented here, there
are still several avenues for investigation that deserve to
be pursued. For instance, an automatic form of segment-
ing the output grid and counting the number of clusters
found after convergence can be proposed; the algorithm
can be transformed into a supervised algorithm, that is,
information about a set of known classes of data can be
used to aid the definition of the final configuration of the
grid; a hierarchical analysis of the input data can be pro-
posed by systematically varying some of the user-defined
parameters; the use of heaps of objects instead of a one-
object-one-grid-position scheme used here can be per-
formed (though we believe that the addition of phero-
mone to the grid may compensate for the effect of allow-
ing heaps of objects to be formed); the use of local search
procedures (e.g., k-means) to fine tune the clusters found
by the ants; and a sensitivity analysis in relation to the
user-defined parameters can be performed.

TOWARD IMPROVING CLUSTERING ANTS... Informatica 29 (2005) 143–154 153

Acknowledgement
The authors thank UniSantos, CNPq and FAPESP for the
financial support.

References
[1] Abraham, A., Ramos, V. (2003). Web Usage Mining

Using Artificial Ant Colony Clustering and Genetic
Programming. Proc. of the Congress on Evolution-
ary Computation (CEC 2003), Canberra, pp. 1384-
1391, IEEE Press.

[2] Bezdek, J.C., (1981). Pattern Recognition with
Fuzzy Objective Function Algorithm, Plenum Press.

[3] Bonabeau, E., Dorigo, M. and Théraulaz, G. (1999).
Swarm Intelligence from Natural to Artificial Sys-
tems: Oxford University Press.

[4] Camazine, S., Deneubourg, J.-L., Franks, N. R.,
Sneyd, J., Theraulaz, G. and Bonabeau, E. (2001).
Self-Organization in Biological Systems: Princeton
University Press.

[5] de Castro, L. N. & Von Zuben, F. J. (2004), Recent
Developments in Biologically Inspired Computing,
Idea Group Inc.

[6] Deneubourg, J. -L., Goss, S., Sendova-Franks, N.,
A., Detrain, C. and Chrétien, L. (1991). The Dynam-
ics of Collective Sorting: Robot-Like Ant and Ant-
Like Robot. In J. A. Meyer and S. W. Wilson (eds.).
Simulation of Adaptive Behavior: From Animals to
Animats: MIT Press/Bradford Books, 356-365.

[7] Everitt, B.S., Landau, S., Leese, M., (2001). Cluster
Analysis: Arnold Publishers, London.

[8] Gutowitz, H. (1993). Complexity-Seeking Ants.
Proceedings of the Third European Conference on
Artificial Life.

[9] Handl, J., Knowles, J., Dorigo, M. (2003). On the
performance of ant-based clustering. Proc. of the 3rd
International Conference on Hybrid Intelligent Sys-
tems, Design and Application of Hybrid Intelligent
Systems, pp. 204-213, IOS Press.

[10] Handl, J., Meyer, B. (2002). Improved Ant-Based
Clustering and Sorting in a Document Retrieval In-
terface. In J.J. Merelo, J.L.F. Villacañas, H.G.
Beyer, P. Adamis Eds.: Proceedings of the PPSN
VII – 7th Int. Conf. on Parallel Problem Solving from
Nature, Granada, Spain, Lecture Notes in Computer
Science 2439, pp. 913-923, Springer-Verlag, Berlin.

[11] Kanade, P., Hall, L.O. (2003). Fuzzy ants as a clus-
tering concept. Proc. of the 22nd International Con-
ference of the North American Fuzzy Information
Processing Society (NAFIPS), pp. 227-232.

[12] Kaufman, L., Rousseeuw, P.J. (1990), Finding
Groups in Data – An Introduction to Cluster Analy-
sis, Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons Inc.

[13] Keim, D.A. (2002), Information Visualization and
Visual Data Mining: IEEE Transactions on Visuali-

zation and Computer Graphics, vol. 7, n.1, pp. 100-
107.

[14] Kennedy, J., Eberhart, R. and Shi. Y. (2001). Swarm
Intelligence: Morgan Kaufmann Publishers.

[15] Labroche, N., Monmarché, N., Venturini, G. (2002).
A new clustering algorithm based on the chemical
recognition system of ants. Proc. of the 15th Euro-
pean Conference on Artificial Intelligence, France,
pp. 345-349, IOS Press.

[16] Lumer, E.D. and Faieta, B. (1994). Diversity and
Adaptation in Populations of Clustering Ants. Pro-
ceedings of the Third International Conference On
the Simulation of Adaptive Behavior: From Animals
to Animats 3: MIT Press, 499-508.

[17] Monmarché, N., Slimane, M., Venturini, G., (1999).
On Improving Clustering in Numerical Databases
with Artificial Ants. Advances in Artificial Life, D.
Floreano, J.D. Nicoud, and F. Mondala Eds., Lecture
Notes in Computer Science 1674, pp. 626-635,
Springer-Verlag, Berlin.

[18] Paton, R. (Ed.) (1994). Computing with Biological
Metaphors: Chapman & Hall.

[19] Ramos, V., Merelo, J.J.. (2002). Self-Organized
Stigmergic Document Maps: Environment as a
Mechanism for Context Learning. In E. Alba, F.
Herrera, J.J. Merelo et al. Eds., AEB´2002, First
Spanish Conference on Evolutionary and Bio-
Inspired Algorithms, 284-293, Spain.

[20] Ramos, V., Muge, F., Pina, P. (2002). Self-
Organized Data and Image Retrieval as a Conse-
quence of Inter-Dynamic Synergistic Relationships
in Artificial Ant Colonies. In J. Ruiz-del-Solar, A.
Abrahan and M. Köppen Eds., Soft-Computing Sys-
tems - Design, Management and Applications, Fron-
tiers in Artificial Intelligence and Applications: IOS
Press, v. 87, 500-509, Amsterdam.

[21] Ritter, H. & Kohonen, T. (1989). Self-Organizing
Semantic Maps. Biol. Cybern., 61, pp. 241-254.

[22] Sherafat, V., de Castro, L. N. & Hruschka, E. R.
(2004a). TermitAnt: An Ant Clustering Algorithm
Improved by Ideas from Termite Colonies. In Proc.
of ICONIP 2004, Special Session on Ant Colony
and Multi-Agent Systems, Lecture Notes in Com-
puter Science, v. 3316, pp. 1088-1093.

[23] Sherafat, V., de Castro, L. N. & Hruschka, E. R.
(2004b). The Influence of Pheromone and Adaptive
Vision on the Standard Ant Clustering Algorithm.
In: L. N. de Castro and F. J. Von Zuben, Recent De-
velopments in Biologically Inspired Computing,
Chapter IX, pp. 207-234. Idea Group Inc.

[24] Vizine, A. L., de Castro, L. N., Gudwin, R. R.
(2005). Text Document Classification using Swarm
Intelligence. In Proc. of KIMAS 2005, CD ROM.

[25] Yeung, K.Y., Medvedovic, M., Bumgarner, R.E.
(2003), Clustering gene-expression data with re-
peated measurements, Genome Biology, v.4, issue 5,
article R34.

154 Informatica 29 (2005) 143–154 A.L. Vizine et al.

