
https://doi.org/10.31449/inf.v43i1.2693 Informatica 43 (2019) 19–22 19

Construction of Orthogonal CC-sets
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In this paper we present a graph-theoretical method for computing the maximum orthogonal subset of a set
of coiled-coil peptides. In chemistry, an orthogonal set of peptides is defined as a set of pairs of peptides,
where the paired peptides interact only mutually and not with any other peptide from any other pair.
The main method used is a reduction to the maximum independent set problem. Then we use a relatively
well-known maximum independent set solving algorithm which turned out to be the best suited for our
problem. We obtained an orthogonal set consisting of 29 peptides (homodimeric and heterodimeric) from
initial 5-heptade set. If we allow only heterodimeric interactions we obtain an orthogonal set of 26 peptides.

Povzetek: V članku je predstavljen izračun največje ortogonalne množice peptidov z uporabo metod teorije
grafov. Za elemente ortogonalne množice velja, da, če dva elementa vzajemno delujeta, potem ne delujeta
z nobenim drugim elementom množice. Algoritem, ki uporablja prevedbo na problem največje neodvisne
množice, je bil uporabljena v praksi.

1 Motivation

In the last 30 years, impressive 3D structures have been
built using DNA, in a field called DNA origami [5]. Com-
plex structures built from proteins would have many advan-
tages, since amino acids provide much more functionality.
The main problem is that the simple Watson-Crick paring
rules present in DNA have no simple analogue for proteins.
Using a special class of polypeptides, called coiled-coil
polypeptides, the orthogonal binding rules of DNA can be
emulated [2, 4]. By specifying only the primary structure
of those polypeptides (the order of amino acids), complex
3D structures can be built, such as the recent protein tetra-
hedron [3]. More specifically, that structure is determined
by taking the wireframe of the desired object, doubling ev-
ery edge, and performing an Euler traversal of the obtained
graph. Then, we know that the peptides associated with
edges that were initially parallel must bind, and all others
must not.

Essential for such designs is that each pair of peptides
interacts only mutually, and not with any other pair. Thus,
the notion of an orthogonal set is introduced. Obviously,
the greater our orthogonal set is, the more complex are the
structures we can create. Currently the limiting factor in
designing larger structures is the small set of available pep-
tides.

In this paper, we describe a method for determining an
orthogonal set of maximum size, from a given set of ad-
missible peptides. Also, in section 6 we present a possible

approach for extending a given orthogonal set.

2 Problem description
As input we are given a set of peptides P = p1, p2, . . . pn
(their primary structures – given as strings of fixed length)
and interaction matrix I . If Ii,j = 1, then pi interacts with
pj and if it is 0 they do not interact. We have to construct
a set of pairs S, where (pi, pj) ∈ S, iff Ii,j = 1 and for all
other pk that are in any pair of S Ii,k = 0. Moreover, if i =
j in (pi, pj) we are talking of homodimer and otherwise of
heterodimer.

We can model this problem as a graph-theoretical one:
First, an undirected graphG = (V,E) where V is the set of
peptides P , and the edge set E contains an edge pipj (or a
loop at pi, denoted by pipi) if and only if pi and pj interact.
Given that graph, we want to find a subset of non-adjacent
edges whose vertices are also non-adjacent. More formally,
and more conveniently for later consideration, our problem
can be defined as follows:

Definition (Maximum Independent Set of Pairs (MISP)).
Let G = (V,E) be an undirected graph and let k be a posi-
tive integer. Does there exist set a S ⊆ E such that for any
u1v1, u2v2 ∈ S

{u1, v1} ∩ {u2, v2} = ∅,

{{u1, u2}, {u1, v2}, {v1, u2}, {v1, v2}} ∩ E = ∅
and |S| > k?
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3 Hardness of the problem
In order to determine the best possible solution of our
problem, in this section we will prove that MISP is NP-
complete.

Theorem 1. Maximum independent set of pairs is NP-
complete.

Proof.

Algorithm 1 NP certifier

1: S← given set of pairs
2: if |S| < k then
3: return No
4: for u1v1 ∈ S do
5: for u2v2 ∈ S − u1v1 do
6: if u1u2 ∈ E ∨ u1v2 ∈ E ∨ v1u2 ∈ E ∨ v1v2 ∈
E ∨ u1v1 6∈ E then

7: return No
8: return Yes

The problem is easily seen to be in NP, and Algorithm 1
is its polynomial certifier.

Now we will reduce the independent set problem to
MISP in order to show that MISP is NP-hard.

Let G = (V,E) be a graph, for which we want to check
if there exists an independent set of size greater than k.
Define a new graph G′ = (V ′, E′) as follows. Initially, let
V ′ = V and E′ = E. Then, for each vertex v ∈ V add
another vertex v′ (a copy of v) to V ′ and add the edge vv′

to E′.

Lemma 1. Every maximal independent set of pairs in G′

consists only of the edges of the form vv′.

Proof. Let S be a MISP in G′. Suppose the contrary, i.e.,
there is a pair uv ∈ S which is not of the form ww′ for
w ∈ V . Then, for all u1v1 ∈ S we have u1u 6∈ E′, u1v 6∈
E′, v1u 6∈ E′, v1v 6∈ E′. Then we can delete the pair
uv from S and add pairs uu′ and vv′ where u′ and v′ are
copies of u and v, respectively. We can do this since the
only neighbors of u′ and v′ are u and v, respectively. We
obtained an independent set of pairs, with more more than
|S| elements, a contradiction.

Now we will prove that there is an independent set |S| ≥
k in G if and only if there is an independent set of pairs
|SP | ≥ k in G′.

(⇒) Suppose that S is an independent set in G with
|S| ≥ k. Then, define the independent set of pairs SP
in G′ on the following way:

SP = {vv′ | v ∈ S}.

It is easy to verify that this is independent set of pairs ac-
cording to the definition above. Then |SP | = |S| ≥ k.

(⇐) For the other direction, suppose that SP is an in-
dependent set of pairs in G′ with |SP | ≥ k. Then, by the

previous lemma, we can define the following independent
set S in G:

S = {v ∈ V | vv′ ∈ SP }.

By the construction of graph G′ and by the lemma, one can
show that S is an independent set ofG. Then |S| = |SP | ≥
k which completes proof that MISP is NP-hard.

Combining the NP-hardness with the earlier fact
that MISP is in NP, we conclude that MISP is NP-
complete.

4 Reducing MISP to the maximum
independent set

Now that we know that MISP is NP-complete, we can use
one of the vast number of algorithms already developed for
solving various NP-hard problems, once we reduce MISP
to that problem. The most natural choice is the maximum
independent set problem [1, 6, 7].

Based on the MISP graph G = (V,E), we construct a
new graph G∗ = (V ∗, E∗), where V ∗ = E, and two ver-
tices are connected (in G∗) if and only if their correspond-
ing edges in G share a common vertex or have two of their
vertices connected by an edge. It is easy to see that finding
an independent set in G∗ will give us an independent set of
pairs, according to the definition in section 2. Moreover,
due to our construction, an independent set of pairs in G
also gives us an unique independent set in G∗.

Thus, we have obtained a bijection between the indepen-
dent sets of G∗ and the independent sets of pairs of G.

5 Results
We use results from the previous section to solve the MISP
of the input graph G which is constructed from the input
set of peptides P = p1, p2, . . . , pn in several steps.

1. Based on previous work by [4], we calculate the in-
teraction scores sij for each pair of peptides pipj (in-
cluding homodimers pipi), and store that matrix for
the following steps.

2. Choose a threshold t based on which we decide
whether peptides pi and pj with interaction score sij
will interact. If sij < t, we declare that pi and pj
are not interacting (or, more precisely, interacting in a
negligibly small proportion), and likewise, if sij ≥ t,
pi and pj interact. For practical purposes, we might
want to introduce two thresholds ts (strong interaction
threshold) and tw (weak interaction threshold) such
that ts − tw is a positive “safety margin” accounting
for the inexactness of the scoring function from the
previous step. Then, the vertices of G∗ would be just
the pairs that interact strongly, but they will be con-
nected even if they interact weakly. However, such
considerations are outside the scope of this paper.
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3. Construct the graph G on the set of peptides by con-
necting the interacting ones, as described in section
2.

4. Reduce G to G∗, suitable for computing the indepen-
dent set, as described in section 4.

5. Find the maximum independent set in G∗. As shown
before, it corresponds to the MISP (or, orthogonal set)
in G. We use the (exact) maximum clique solving al-
gorithm presented in [1], which is based on greedy
graph colorings – i.e. if we can color a particular sub-
graph with k colors, we know that that the maximum
clique in that subgraph has size at most k.

In order to test our algorithm, we generated synthetic ini-
tial sets of peptides, based on two observations: Firstly, the
interaction scoring function is designed to consider only 4
positions in each heptad. Secondly, using electrostatic ar-
guments about individual amino acids and their positions
in the coiled-coil, we reduced the variation even further,
by allowing only 2 different amino acids on 3 of those 4
positions, and completely fixing the remaining amino acid.
Thus, we obtain 8 essentially different heptads, which we
use to build up larger peptides. Our main result is the cal-
culation of a 29-peptide orthogonal subset of the 5-heptad
initial set (215) peptides (generated as described above), as
well as a 26-peptide purely heterodimeric orthogonal sub-
set of the same initial set. The interaction score heatmap
can be seen on Figures 1 and 2.

Figure 1: 5-heptad orthogonal set, no restriction

The peptidets which belong to orthogonal set are in both
figures colored in dark red.

6 Future work
Up to now, we have only considered orthogonal sets de-
rived from synthetically generated peptides, as described

Figure 2: 5-heptad orthogonal set, heterodimers only

in the previous section. To actually use such an orthogonal
set, we had to manually synthesize all of those peptides.

An alternative would be to construct a maximal orthogo-
nal set from the set of all natural tetraheptads (coiled-coils
where each of the 4 heptads occurs naturally). Since there
are 1171 known natural heptads, we can combine them
to get 11714 = 1 880 301 880 081 possible tetraheptads.
Finding a maximal orthogonal subset of this set would re-
quire finding the maximum independent set of a graph with
more than 1012 vertices – a task clearly impossible to do in
a reasonable amount of time.

Either way, we generate a large number of “useless” pep-
tides, that will be discarded later, and not used in the (much
smaller) orthogonal set.

Our idea is to use a heuristic to reduce the initial set to
a more manageable size: since it is possible to calculate
the interaction matrix for single natural heptads, we can
approximate scores for tetraheptads as shown at Figure 3.
More specifically, we will add up the precalculated scores
between (adjacent) heptads which are connected as on fig-
ure 3. Of course, some interactions will be left unaccounted
for in the final score, for example the last amino acid in
heptad 1 on 3 may interact with first amino acid of heptad
7 which is not added to the final score.

This observation enables us to construct more meaning-
ful initial peptide sets consisting of longer peptides, based
on the already-calculated orthogonal sets of shorter pep-
tides.

7 Concluding remarks

In this paper, we presented an exact method for determin-
ing an orthogonal set of coiled-coil polypeptides, if we are
given a numeric measure of their interaction strength. Our
approach has been demonstrated to be successful for mod-
erately large initial peptide sets (tens of thousands), and has
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Figure 3: Proposed way of scoring

given us optimal orthogonal sets that could not have been
calculated by hand.

Unfortunately, for even larger initial sets, the maximum-
clique solver becomes an apparent bottleneck, as it has to
operate on graphs of size O(n4), where n is the size of the
initial set. In that case, we suggest investigating a bottom-
up method described in the section 6.
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