
https://doi.org/10.31449/inf.v43i2.2687 Informatica 43 (2019) 199–207 199

Some Remarks and Tests on the DH1 Cryptosystem Based on Automata
Compositions

Pál Dömösi
Institute of Mathematics and Informatics, University of Nyíregyháza
H-4400 Nyíregyháza, Sóstói út 31/B, Hungary

Faculty of Informatics, University of Debrecen
H-4028 Debrecen, Kassai út 26, Hungary
E-mail: domosi@unideb.hu

József Gáll, Géza Horváth
Faculty of Informatics, University of Debrecen
H-4028 Debrecen, Kassai út 26, Hungary
E-mail: gall.jozsef@inf.unideb.hu, horvath.geza@inf.unideb.hu

Norbert Tihanyi
Faculty of Informatics, Eötvös Loránd University
H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
E-mail: tihanyi.pgp@gmail.com

Keywords: automata network, NIST test, block cipher, statistics

Received: February 17, 2019

In this paper we discuss NIST test results of a previously introduced cryptosystem based on automata
compositions. We conclude that the requirements of NIST test are all fulfilled by the cryptosystem.

Povzetek: Analiziran je kriptirni sistem DH1 na osnovi končnih avtomatov s testom NIST.

1 Introduction and problem
statement

Dömösi and Horváth in their previous
works (see [Dömösi and Horváth, 2015a] and
[Dömösi and Horváth, 2015b]) introduced new block
ciphers based on Gluškov-type product of automata.
In what follows we will refer to the cipher in
[Dömösi and Horváth, 2015a] as the first Dömösi-
Horváth cryptosystem, or in short, DH1-cipher, whereas to
the cipher in [Dömösi and Horváth, 2015b] as the second
Dömösi-Horváth cryptosystem, or in short, DH2-cipher.
In this paper we investigate some properties of the DH1-
cipher. However, we do not discuss all details of definition
and motivation regarding DH1-chipers in this paper.

Both systems use the following simple idea: consider
a giant-size permutation automaton such that the set of
states and the set of inputs consisting of all given length
of strings over a non-trivial alphabet as all possible plain-
text/ciphertext blocks. Moreover consider a cryptograph-
ically secure pseudo random number generator with large
periodicity having the property that, getting its really ran-
dom kernel, it serves a sequence of pseudo random strings
as inputs for the automaton. For each plaintext block the
system calculates the new state into which the actual pseu-
dorandom string takes the automaton from the state which

is identified as the actual plaintext block. The string –
identified as the new state– will be the ciphertext block
ordered to the considered plaintext block. Of course, the
ciphertext will be the concatenation of the generated ci-
phertext blocks. The giant size of the automaton makes
it infeasible to break the system by brute-force method.

For all notions and notations not defined in this paper
we refer to the monographs [Dömösi and Nehaniv, 2005,
Mezenes and Vanstone, 1996]. The cryptosystem dis-
cussed here is a block cipher. Since the key automaton is
a permutation automaton, for every ciphertext there exists
exactly one plaintext making the encryption and decryption
unambiguous. Moreover, there is a huge number of corre-
sponding encoded messages to each plaintext so that sev-
eral encryptions of the same plaintext yield several distinct
ciphertexts.

Given the cryptosystem DH1-cipher described above a
natural question is the investigation of the statistical prop-
erties of the system from many perspectives. For in-
stance, the avalanche effect of the system –as a natu-
ral property required in the profession– may be tested by
several classical hypothesis tests. Some early results are
given in [Dömösi et al., 2017] where they confirm that the
avalanche effect is fulfilled. However, further tests can and
should also be used, in particular the ones used for testing
whether the output of it can be distinguished from ’true’
random sources. That is why we turned to the well known

200 Informatica 43 (2019) 199–207 P. Dömösi et al.

NIST package of statistical tests in this paper, which can be
considered as a ’standard’ in the profession for such pur-
poses. Our main aim is to give the results of the NIST test
regarding the cryptosystem at issue (Section 5). For this
we describe the system (Section 3) together with some the-
oretical background (Section 2), as well as the necessary
details, of course, of our experimental analysis done for the
tests (Section 4). We show in this paper that the system we
discuss has passed all statistical tests in the NIST package.

2 Theoretical background
The automata are systems that can be used for the transmis-
sion of information of certain type. In wider sense, every
system that accepts signals from its environment and, as a
result, changes its internal state, can be considered as an au-
tomaton. By an automaton we mean a deterministic finite
automaton without outputs. The automaton A = (A,Σ, δ)
consists of the finite set of states A, the finite set of in-
put signals Σ, and the transition function δ, which is often
written in a matrix form. The transition matrix of the au-
tomaton A = (A,Σ, δ) consists of its states such that it
has as many rows as input signals, and there are as many
columns as states of the automaton. For the sake of sim-
plicity we assume that A and Σ are ordered sets. The j-th
element of the i-th row of the transition matrix will be the
state which is assigned by the transition function to the pair
consisting of j-th state and i-th input signal. We say about
this element a of the i-th row and j-th column of the tran-
sition matrix that the i-th input signal takes the automaton
from its j-th state to state a. (In fact, in this case it is also
usual to say that the automaton goes from its j-th state to
state a by the effect of the i-th input signal.) The rows of
the transition matrix can be identified with the input signals
of the automaton, and its columns with its states, while the
transition matrix itself with the transition.

If all the rows of the transition matrix are permutations
of the state set then we have a permutation automaton.

Lemma 1. An automaton A = (A,Σ, δ) is a permutation
automaton if and only if for any a, b ∈ A, x ∈ Σ, δ(a, x) =
δ(b, x) implies a = b.

Proof. Suppose that A is a permutation automaton. Then
all rows in its transition matrix are permutations of the state
set. But then none of the rows of the transition matrix has a
repetition. Therefore, for any states a, b ∈ A and input
x ∈ Σ, δ(a, x) = δ(b, x) implies a = b. Conversely,
assume that for any states a, b ∈ A and input x ∈ Σ,
δ(a, x) = δ(b, x) implies a = b. Then none of the rows
of the transition matrix has a repetition. Therefore all of its
rows are permutations of the state set. This completes the
proof.
The Gluškov-type product of the automata Ai
with respect to the feedback functions ϕi (i ∈
{1, . . . , n}) is defined to be the automaton
A = A1 × · · · × An(Σ, (ϕ1, . . . , ϕn)) with state set

Figure 1: Gluškov-type product.

A = A1×· · ·×An, input set Σ, transition function δ given
by δ((a1, . . . , an), x) = (δ1(a1, ϕ1(a1, . . . , an, x)), . . . ,
δn(an, ϕn(a1, . . . , an, x))) for all (a1, . . . , an) ∈ A and
x ∈ Σ (see also Figure 1). In particular, if A1 = . . . = An
then we say that A is a Gluškov-type power.

We shall use the feedback functions ϕi, i = 1, . . . , n in
an extended sense as mappings ϕ∗i : A1 × · · · × An × Σ∗,
where ϕ∗i (a1, . . . , an, λ) = λ and ϕ∗i (a1, . . . , an, px) =
ϕ∗i (a1, . . . , an, p)ϕi(δ1(a1, ϕ

∗
1(a1, . . . , an, p)), . . . ,

δn(an, ϕ
∗
n(a1, . . . , an, p)), x), ai ∈ Ai, i = 1, . . . , n, p ∈

Σ∗, x ∈ Σ. In the sequel, ϕ∗i , i ∈ {1, . . . , n} will also be
denoted by ϕi.

Next we define the concept of temporal product of au-
tomata. It is a model for multichannel automata networks
where the network may cyclically change its internal struc-
ture during its work on each channel.

Let At = (A,Σt, δt), t = 1, 2 be automata having
a common state set A. Take a finite nonvoid set Σ and
a mapping ϕ of Σ into Σ1 × Σ2. Then the automaton
A = (A,Σ, δ) is a temporal product (t-product) of A1 by
A2 with respect to Σ and ϕ if for any a ∈ A and x ∈ Σ,
δ(a, x) = δ2(δ1(a, x1), x2), where (x1, x2) = ϕ(x) (see
also Figure 2). The concept of temporal product is gener-
alized in the natural way to an arbitrary finite family of
n > 0 automata At (t = 1, . . . , n), all with the same
state set A, for any mapping ϕ : Σ →

∏n
t=1 Σt, by

defining δ(a, x) = δn(· · · δ2(δ1(a, x1), x2), · · · , xn) when
ϕ(x) = (x1, . . . , xn). In particular, a temporal product of
automata with a single factor is just a (one-to-many) rela-
beling of the input letters of some input-subautomaton of
its factor.

Lemma 2. Every temporal product of permutation au-
tomata is a permutation automaton.

Proof. It is clear from the above mentioned remark that
every temporal product of permutation automata with a
single factor is a permutation automaton. Now let At =
(A,Σt, δt), t = 1, 2 be permutation automata with the
same state set A. Consider a temporal product of A1 and
A2 with respect to an arbitrary input set Σ and mapping
ϕ : Σ→ Σ1 ×Σ2. Prove that for any a, b ∈ A, z ∈ Σ with
ϕ(z) = (x, y), δ2(δ1(a, x), y) = δ2(δ1(b, x), y) implies
a = b.

Some Remarks and Tests on the DH1. . . Informatica 43 (2019) 199–207 201

Figure 2: Temporal product.

Indeed, let δ1(a, x) = c and δ1(b, x) = d. Recall that
A2 is a permutation automaton. Therefore, by Lemma 1,
δ2(c, y) = δ2(d, y) implies c = d. On the other hand, A1

is also a permutation automaton. Thus, by Lemma 1, c = d
with δ1(a, x) = c and δ1(b, x) = d imply a = b. Apply-
ing Lemma 1 again, we receive that the temporal product
of A1 and A2 with respect to Σ and ϕ is a permutation
automaton. Therefore our statement holds for all temporal
products having two factors. Now we consider a temporal
product of permutation automata A1, . . . ,An, n > 2 with
respect to a given set Σ and mapping ϕ.

Define the mappings ϕ1 : Σ → Σ1 ×
Σ2, ϕ2 : Σ → (Σ1 × Σ2) × Σ3, . . . ,
ϕn−1 : Σ → (...(Σ1 × Σ2) × . . . ×
Σn−1) × Σn with ϕ1(x) = (x1, x2),
ϕ2(x) = ((x1, x2), x3), . . . , ϕn−1(x) =
((...((x1, x2), x3)...), xn) whenever
ϕ(x) = (x1, . . . , xn). Let B1 denote the temporal
product of A1 and A2 with respect to Σ and ϕ1, B2 denote
the temporal product of B1 and A3 with respect to Σ and
ϕ2, . . . , Bn−1 denote the temporal product of Bn−2 and
An with respect to Σ and ϕn, respectively.

Then using the fact that our statement holds for all
temporal products with two factors we obtain that all of
B1, . . . ,Bn−1 are permutation automata. On the other
hand, it is clear that Bn−1 is equal to the temporal prod-
uct of permutation automata A1, . . . ,An with respect to Σ
and ϕ. Thus the proof is complete.

Given a function f : X1 × · · · × Xn → Y, we say that
f is really independent of its i-th variable if for every
pair (x1, . . . , xn), (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∈ X1 × · · · × Xn, f(x1, . . . , xn) =
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). Otherwise we say

that f really depends on its i-th variable.
A (finite) directed graph (or, in short, a digraph) D =

(V,E) (of order n > 0) is a pair consisting of sets of ver-
tices V = {v1, . . . , vn} and edges E ⊆ V × V. Elements
of V are sometimes called nodes. An edge (v, v′) ∈ E
is said to have a source v and a target v′. Moreover, we
say that v ∈ V is a source if there exists a v′ ∈ V hav-
ing (v, v′) ∈ E, and v′ ∈ V is a target if there exists a
v ∈ V with (v, v′) ∈ E . The pair (v, v′), (v′′, v′′′) is
called a branch if v = v′′ and v′ 6= v′′′. In addition,the pair
(v, v′), (v′′, v′′′) is called a collapse if v 6= v′′ and v′ = v′′′.
If |V | = n then we also say that D is a digraph of order n.
If V can be decomposed into two disjoint (nonempty) sub-
sets V1, V2 such that V1 is the set of all targets and V2 is the

set of all sources then we say that D is a bipartite digraph.
If the bipartite graph D has neither branches nor collapses
then we say that D is a simple bipartite digraph.

Let Σ be the set of all binary strings with a given
length ` > 0 and let n be a positive integer power of 2,
let A1 = (Σ,Σ × Σ, δA1

) be a permutation automaton
such that for every a, x, x′, y, y′ ∈ Σ, δA1(a, (x, y)) 6=
δA1(a(x′, y)), δA1(a, (x, y)) 6= δA1(a(x, y′)), and let
Ai = (Σ,Σ × Σ, δAi

), i = 2, . . . , n be state-isomorphic
copies ofA1 such thatA1, . . . ,An are not necessarily pair-
wise distinct, and let n be a power of 2. Consider the fol-
lowing simple bipartite digraphs:
D1 = ({1, . . . , n}, {(n/2 + 1, 1), (n/2 +

2, 2), . . . , (n, n/2)}),
D2 = ({1, . . . , n}, {(n/4 + 1, 1), (n/4 +

2, 2), . . . , (n/2, n/4),
(3n/4 + 1, n/2 + 1), (3n/4 + 2, n/2 +

2), . . . , (n, 3n/4)}),
. . .,
Dlog2n−1 = ({1, . . . , n}, {(3, 1), (4, 2), (7, 5), . . . ,
(8, 6), (n− 1, n− 3), (n, n− 2)}),
Dlog2n = ({1, . . . , n}, {(2, 1), (4, 3), . . . , (n, n− 1)}),
Dlog2n+1 = D1,
. . . ,
D2log2n = Dlog2n.
For every digraph D = (V,E) with D ∈

{D1, . . . ,D2log2n} let us define the Gluškov-
type product, called two-phase D-product,
AD = A1 × · · · × An(Σn, (ϕ1, . . . , ϕn)) of
A1, . . . ,An so that for every (a1, . . . , an), (x1, . . . , xn)
∈ Σn, i ∈ {1, . . . , n}, ϕi(a1, . . . , an, (x1, . . . , xn)) =
(aj ⊕xj , xi), if (j, i) ∈ E, and aj ⊕xj is the bitwise addi-
tion modulo 2 of aj and xj , ϕj(a1, . . . , an, (x1, . . . , xn))
= (a′i⊕xi, xj), if (j, i) ∈ E, a′i denotes the state into which
ϕi(a1, . . . , an, (x1, . . . , xn)) takes the automaton Ai from
its state aj , and a′i ⊕ xi is the bitwise addition modulo 2 of
a′i and xi. 1

Let B = (Σn, (Σn)2log2n, δB) be the temporal prod-
uct of AD1 , . . . ,AD2log2n

with respect to (Σn)2log2n and
the identity map ϕ : (Σn)2log2n → (Σn)2log2n. We say
that B is a key-automaton with respect to A1, . . . ,An.2

Obviously, B is unambigously defined by the transition
matrix of A1 and the bijective mappings τ1 : Σ →
Σ, . . . , τn : Σ → Σ which represent the state isomor-
phisms of A1, . . . ,An to A.

An important property of key-automata is explained in
the following result.

Theorem 1. Every key-automaton is a permutation au-
tomaton.

Proof. Let B = (Σn, (Σn)2log2n, δB) be a key-
automaton. By definition, it is a temporal product of au-
tomata AD1

, . . . ,AD2log2n
with respect to (Σn)2log2n and

1We remark, that for every j ∈ V2 there exists exactly one i ∈ V1
with (j, i) ∈ E, and conversely, for every i ∈ V1 there exists exactly one
j ∈ V2 with (j, i) ∈ E. Therefore, all of ϕ1, . . . , ϕn are well-defined.

2Recall that n should be a positive integer power of 2.

202 Informatica 43 (2019) 199–207 P. Dömösi et al.

the identity map ϕ : (Σn)2log2n → (Σn)2log2n as defined
above. By Lemma 2, it is enough to prove that each of
AD1 , . . . ,AD2log2n

is a permutation automaton.
Consider an automaton AD = (Σn,Σn, δD) with AD ∈

{AD1
, . . . ,AD2log2n

} and the simple bipartite digraphD =
(V,E) assigned toAD. Let V1 denote the set of targets and
V2 denote the set of sources of D as before.

By Lemma 1 it is enough to prove that
for any states (a1, . . . , an), (a′1, . . . , a

′
n)

∈ Σn and input (x1, . . . , xn) ∈
Σn, δD((a1, . . . , an), (x1, . . . , xn))
= δD((a′1, . . . , a

′
n), (x1, . . . , xn)) implies (a1, . . . , an) =

(a′1, . . . , a
′
n).

Suppose δD((a1, . . . , an), (x1, . . . , xn)) =
δD((a′1, . . . , a

′
n), (x1, . . . , xn)) = (b1, . . . , bn) for

some state (b1, . . . , bn) of AD and let (i, j) ∈ E. Observe
that for every i ∈ V1 there exists exactly one j ∈ V2 with
(j, i) ∈ E, and vice versa, for every j ∈ V2 there exists
exactly one i ∈ V1 with (j, i) ∈ E. This means that the
transitions in the i-th and j-th component automata depend
only on the i-th and j-th state and input components.

Then, by the effect of its input (aj⊕xj , xi) the i-th com-
ponent of AD goes from its state ai into state bi, and sim-
ilarly, by the effect of its input (bi ⊕ xi, xj) the j-th com-
ponent of AD goes from its state aj into state bj .

But then by the effect of its input (a′j ⊕ xj , xi), the i-th
component of AD goes from its state a′i into state bi, and
similarly, by the effect of its input (bi ⊕ xi, xj), the j-th
component of AD goes from its state a′j into state bj .

Recall that Aj is a permutation automaton. Therefore,
applying Lemma 1, aj = a′j . Therefore, using our previous
assumptions we can derive that by the effect of its input
(aj ⊕ xj , xi) the i-th component of AD goes from its state
a′i into state bi. On the other hand, we assumed that by the
effect of its input (aj ⊕ xj , xi), the i-th component of AD
goes from its state ai into state bi.Applying Lemma 1 again
we obtain that ai = a′i.

Applying the above treatment to ev-
ery (i, j) ∈ E, we receive (a1, . . . , an)
= (a′1, . . . , a

′
n). This completes the proof.

The basic idea of DH1 cryptosystem is to use a fi-
nite automaton and a pseudo random generator. The set
of states of the automaton consists of all possible plain-
text/cyphertext blocks and the input set of the automaton
contains all possible pseudo random blocks. The size of the
pseudo random blocks are the same as the size of the plain-
text/cyphertext blocks. For each plaintext block the pseudo
random generator generates the next pseudo random block
and the automaton transforms the plaintext block into a
cyphertext block by the effect of the pseudo random block.
The key is the transformation matrix of the automaton.

It is easy to see that the key must be a permutation au-
tomaton, since this property grants an unambiguous de-
cryption. This condition is satisfied by Theorem 1.

On the other hand we can have more than one cor-
responding ciphertext for each plaintext even if we use
the same key-automaton. The reason for this is that we

can change the pseudo random numbers generated by the
pseudo random generator. We can save a secret number n
–as a part of the key– and before encryption we can choose
a (public) random number m. This number m will be the
first block of the ciphertext, and before encryption and de-
cryption, the seed of the pseudo random number generator
can be calculated with an XOR operation from n and m
(n ⊕m). This way each encryption process uses different
pseudo random numbers and results different ciphertext for
the same plaintext.

The problem with this idea is the following. Modern
block ciphers operate on fixed-length groups of bits called
blocks. The size of the blocks is at least 128 bits (16 bytes),
so the size of the transition matrix of the automaton is huge,
namely 2128 × 2128 × 16 bytes, which is impossible to be
stored in the memory or on a hard disk. The solution is
to use an automata network. Gluškov-type product of au-
tomata consists of smaller component automata and it is
able to simulate the operation of a huge automaton. In this
case we should store only the transition matrix of the iso-
morphic component-automata, the structure of the compo-
sition and the secret number n to calculate the seed of the
pseudo random number generator.

3 Encryption and decryption
A symmetric cryptosystem consists of the following:

– a set of plaintexts P ,

– a set of ciphertexts C,

– a key space K,

– an encryption function e : P ×K → C, and

– a decryption function d : C × K → P .

Furthermore, the following property must hold for each
x ∈ P and k ∈ K: d((e(x, k), k) = x. Moreover, the cryp-
tosystem is called approved block cipher if and only if the
elements of the set of plaintexts and the set of ciphertexts
are at least 128 bit long (|P| ≥ 2128 and |C| ≥ 2128).

Our cryptosystem is a block cipher one. Both of the en-
cryption and decryption apparatus have a pseudo random
generator and a key-automaton.

The encryption procedure is the following. Before the
encryption procedure, the pseudo random generator gets its
initialization vector as a true random string r1 . . . rn ∈ Σn,
where the pseudo random alphabet Σ is also the plaintext
and the ciphertext alphabet simultaneously. This initializa-
tion vector will also be the first block of the ciphertext.

Then the apparatus reads the plaintext block-by-block
and, after reading the next plaintext block a1 · · · an ∈ Σn

(the first block first), it generates the second, third, and the
further blocks of the ciphertext in the following way.

The apparatus takes the key-automaton B =
(Σn, (Σn)2log2n, δB) into the state a1 · · · an ∈ Σn

Some Remarks and Tests on the DH1. . . Informatica 43 (2019) 199–207 203

which coincides with the actual one, i.e. the last received
plaintext block.

Next the pseudo random number generator gener-
ates a 2log2n long number of pseudo random se-
quences w1, . . . , w2log2n ∈ Σn such that each of them
takes the next temporal component (the first one first)
AD = (Σn,Σn, δD) (AD ∈ {AD1

, . . . ,AD2log2n
})

of the key automaton into the state ak,1 · · · ak,n
= δD(ak−1,1 · · · ak−1,n, wk), k = 1, . . . , 2log2n, where
a0,1 · · · a0,n denotes the actual plaintext block.

The last state a2log2n,1 · · · a2log2n,n will be the generated
ciphertext block of the plaintext block a1 · · · an.

The i-th transition ai,1 · · · ai,n =
δD(ai−1,1 · · · ai−1,n, wi) will be performed in the
following way.

Recall that D is a Gluškov product AD = A1 ×
· · ·×An(Σn, (ϕ1, . . . , ϕn)) of appropriate permutation au-
tomata Am = (Σ,Σ2, δm),m = 1, . . . , n that are state
isomorphic to each other so that for an appropriate bipar-
tite digraph D = (V,E) with the set V1 of targets and V2
of sources we have as follows:
δi(ak−1,i, ϕi(ak−1,1, · · · , ak−1,n, (x1, . . . , xn)) =

ak,i, where ak,i = δi(ak−1,i, (ak−1,j ⊕ xj , xi)), if
(j, i) ∈ E, and ak,i = δi(ak−1,i, (ak,j ⊕ xj , xi)), if
(i, j) ∈ E, and ak,j = δi(ak−1,i, (ak−1,j ⊕ xj , xi)),

(1)

where wm = x1 · · ·xn ∈ Σn is the actual pseudo ran-
dom string. Obviously, using the transition matrix of Ai,
from ak−1,i, ak−1,j , xi, xj we can determine ak,i for ev-
ery i ∈ V1, (j, i) ∈ E. Moreover, after calculating
the values ai(i ∈ V1), using the transition table of Ai,
from ak−1,j , ak,i, xi, xj we can determine ak,j for every
i ∈ V2, (i, j) ∈ E.

Then, concatenating the calculated blocks, we will get
the ciphertext.

The decryption procedure is the following. Similarly as
before, before the decryption procedure the pseudo random
generator gets the first ciphertext block as its initialization
vector r1 . . . rn ∈ Σn.

Then the apparatus reads the ciphertext block-by-block
and, after reading the next ciphertext block c1 · · · cn ∈ Σn

(the first block first), it generates the second, third and the
further blocks of the plaintext in the following way.

The apparatus determines the state
a1 · · · an ∈ Σn of key-automaton
B = (Σn, (Σn)2log2n, δB) into which the automaton
B is taken from the state a1 · · · an ∈ Σn by the effect of
2log2n consecutive strings in Σn generated by the pseudo
random generator.

Thus the pseudo random generator should generate
a 2log2n -long number of pseudo random sequences
w1, . . . , w2log2n ∈ Σn and going back from the last mem-
ber w2log2n to the first one w1 the following procedure is
performed.

Each of them takes the next temporal com-
ponent (in opposite direction, i.e., the last one

first and the first one last) AD = (Σn,Σn, δD)
(AD ∈ {AD1

, . . . ,AD2log2n
}) of the key automa-

ton into the state ak−1,1 · · · ak−1,n back from the
state ak,1 · · · ak,n = δD(ak−1,1 · · · ak−1,n, wk), k =
1, . . . , 2log2n, where a2log2n,1 · · · a2log2n,n denotes the
actual ciphertext block c1 · · · cn.

The last state a0,1 · · · a0,n will be the generated plaintext
block of the ciphertext block c1 · · · cn.

The state ai−1,1 · · · ai−1,n obtained
from the i-th state transition ai,1 · · · ai,n
= δD(ai−1,1 · · · ai−1,n, wi) will be performed in the
following way.

Recall again that D is a Gluškov product
AD = A1 × · · · × An(Σn, (ϕ1, . . . , ϕn)) of appro-
priate permutation automata Am = (Σ2,Σ, δm),m =
1, . . . , n that are state isomorphic to each other
so that for an appropriate bipartite digraph
D = (V,E) with the set V1 of targets and V2 of
sources, we conclude as in (1).

Recall also that all of A1, . . . ,An are permutation
automata. Therefore, for every ak,i, ak,j , xi, xj , j ∈
V2, (j, i) ∈ E, there exists only one ak−1,j with ak,j =
δi(ak−1,j , (ak,i ⊕ xi, xj)). Thus, using the transition
table we can unambiguously determine ak−1,j for ev-
ery j ∈ V2. Moreover, for every ak,i, ak−1,j , xi, xj ,
i ∈ V1, (j, i) ∈ E, there exists exactly one ak−1,i with ak,i
= δi(ak−1,i, (ak−1,j ⊕ xj , xi)). Therefore, using the tran-
sition table again we can unambiguously determine ak−1,i
as well for every i ∈ V1.

Then by concatenating the determined plaintext blocks
we will get the plaintext back.

To sum up, the discussed cryptosys-
tem is a block cipher. Because of
Theorem 1, for every ciphertext there exists exactly
one plaintext making the encryption and decryption
unambiguous. Moreover, there is a huge number of
corresponding encoded messages to each plaintext so that
several encryptions of the same plaintext yield several
distinct ciphertexts.

4 Experimental results
The practical test was done using 16 byte (128 bit) long in-
put blocks, output blocks and pseudo random blocks. First
we present the size of the keyspace, then we continue our
investigation with the test results of the the speed of the
algorithm, and finally the effectiveness of the avalanche ef-
fect.

Using the above mentioned parameters with 256 possi-
ble states (1 byte long states) we need 16 automata having
a transition matrix of 216 = 65536 lines and 28 = 256
columns. Each cell of the automaton contains 1 byte long
data (One state). The size of the matrix is 16 megabytes
and the number of possible matrices is 256!65536, where the
exclamation mark means the factorial operation. This pro-
tection is much more than good enough against brute-force

204 Informatica 43 (2019) 199–207 P. Dömösi et al.

attacks. When we use isomorphic automata this huge num-
ber should be further increased to have 256!65536∗256!15 =
256!65551 possible keys. Using the above mentioned pa-
rameters with half byte (4bits) long states, we need 32 au-
tomata having a transition matrix of 28 = 256 lines and
24 = 16 columns and each cell of the automaton contains
half byte long data. In this case the size of the matrix is
only 2 kilobytes and the number of possible matrices is
16!256. Using permutation automata this can be increased
to 16!287 possible keys, which is still more than enough
against brute-force attacks. However, we recommend the 8
bit version, because the number of calculations during the
encoding and decoding process is less and the effectiveness
of the avalanche effect is better.

The practical test of the encoding and decoding algo-
rithm was done on an average desktop PC, (3,1 GHz Intel
Core I3-2100 processor, 4 Gigabyte RAM). The program
we used was a well written C# implementation. The results
of the speed tests of the 8 bit version can be seen in Table
1.

The results of the speed tests show that using an average
PC the encoding time is more than 4 megabytes per second,
and decoding time is about the same.

The avalanche effect is a very important property of
block ciphers. The block cipher is said to have avalanche
effect when a small change in the plaintext block results in
a significant change in the corresponding ciphertext block,
further, a small change in the ciphertext block results in a
significant change in the corresponding plaintext block. We
tested the avalanche effect in the following way. We chose
1000000 random plaintext blocks, encoded them and then
we changed 1 bit in each plaintext block, encoded again,
then we calculated the number of different bytes in the ci-
phertext blocks pair-wise. We also tested the opposite case,
namely, we chose 1000000 random ciphertext blocks, de-
coded them and then we changed 1 bit in each ciphertext
block, decoded again and calculated the number of differ-
ent bytes in each plaintext block pair-wise. During the first
test we used just the first two rounds of encoding and de-
coding. The results can be seen in Table 2. When we
change only one bit in the plaintext block the difference
between the corresponding ciphertext blocks will be really
huge in the majority of cases. The same effect can be seen
in the opposite case: changing one bit in the ciphertext
block results in a huge difference in the plaintext block as
well. Although it was a good result, we also made a fur-
ther test with the full 4-round algorithm. The results can be
seen in Table 3.

Furthermore, we calculated the optimal avalanche effect.
For this, we chose 2×1000000 completely random blocks
and then calculated the difference between them pair-wise.
The results are in Table 4

We can assume that using the 8-bit version of the algo-
rithm with 128 bit long blocks and 4 rounds the algorithm
has the maximal avalanche effect and an appropriate speed
(4 megabyte/s). Of course the speed of the algorithm de-
pends on the hardware, the programming language and the

actual program code as well.

5 The NIST test

The National Institute of Standards and Technology (NIST)
published a statistical package consisting of 15 statistical
tests that were developed to test the randomness of arbi-
trarily long binary sequences produced by either hardware
or software based cryptographic random or pseudo random
number generators. In case of each statistical test a set of
P-values was produced. Given a significance level α, if the
P-value is less than or equal to α then test suggests that
the observed data is inconsistent with our null hypothesis,
i.e. the ’hypothesis of randomness’, so we reject it. We
used α = 0.01 as it is common in such problems in cryp-
tography. An α of 0.01 indicates that one would expect
1 sequence in 100 sequences to be rejected under the null
hypothesis. Hence a P-value exceeding 0.01 would mean
that the sequence would be considered to be random, and
P-value less than or equal to 0.01 would lead to the conclu-
sion that the sequence is non-random.

One of the criteria used to evaluate the AES candidate
algorithms was their demonstrated suitability as random
number generators. That is, the evaluation of their out-
put utilizing statistical tests should not provide any means
by which to distinguish them computationally from a truly
random source. Randomness testing was performed using
the same parameters as for the AES candidates in order
to achieve the most reliable and comparable results. First
the input parameters –such as the sequence length, sample
size, and significance level– were fixed. Namely, these pa-
rameters were set at 220 bits, 300 binary sequences, and
α = 0.01, respectively. Furthermore, Table 5 shows the
length parameters we used.

In order to analyze the output of the algorithm
we encrypted the Rockyou database, which contains
more than 32 millions of cleartext passwords (see e.g:
[Tihanyi et al., 2015]). Applying the NIST test for the en-
crypted file it has turned out that the output of the algo-
rithm can not be distinguished in polynomial time from
true random sources by statistical tests. The exact p-values
of the evaluation of the ciphertext are shown in Table (6).
We also tested the uniformity of the distribution of the p-
values obtained by the statistical tests included in NIST,
which is a usual requirement in the literature (see e.g.
[Rukhin et al., 2010]). The uniformity of p-values provide
no additional information about the type of the cryptosys-
tem. We have also shown that the proportions of binary
sequences which passed the 0.01 level lie in the required
confidence interval (see e.g. [Rukhin et al., 2010]).

6 Conclusions

The output of our crypto algorithm has passed all statisti-
cal tests of the NIST suite we performed and we were not

Some Remarks and Tests on the DH1. . . Informatica 43 (2019) 199–207 205

Table 1: Encoding and decoding spped test.

Type of the plaintext Size Encoding time Decoding time Encoded bytes per second
Image:JPG 205216 00:00.0470960 00:00.0456500 4357397.6558519

Document:PDF 204768 00:00.0459240 00:00.0454752 4458845.0483407
Text:TXT 204848 00:00.0467470 00:00.0461294 4382056.6025627

Compressed:RAR 204848 00:00.0471470 00:00.0454830 4344878.7833796
Compressed:RAR 104883392 00:25.9539778 00:27.2784568 4041129.7569962
Compressed:RAR 524613552 02:10.6843636 02:08.6140492 4014355.9454882
Compressed:RAR 1102971104 04:28.121944 04:08.2624464 4442762.5683785

Table 2: Character differences after 2 rounds of encoding.

different characters in one block encoding decoding
0 0 0
1 0 0
2 1 1
3 0 0
4 36 40
5 3 1
6 72 89
7 125 136
8 5574 5594
9 11 4

10 179 225
11 410 396
12 11050 11064
13 880 921
14 22670 22397
15 43064 42710
16 915924 916422

Table 3: Character differences after 4 rounds of encoding.

different characters in one block encoding decoding
0-12 0 0
13 37 28
14 1717 1746
15 59403 59145
16 938842 939081

Table 4: Optimal avalanche effect.

different characters in one block
0-12 0
13 32
14 1693
15 58681
16 939594

206 Informatica 43 (2019) 199–207 P. Dömösi et al.

Table 5: Parameters used for NIST Test Suite.
Test Name Block length

Block Frequency 128

Non-overlapping Template 9

Overlapping Template 9

Approximate Entropy 10

Serial 16

Linear Complexity 500

able to distinguish it from true random sources by sta-
tistical methods. Statistical analyses of a cryptosystem is a
must-have requirement, and these test results are good in-
dicators that further analyses can and should be done in or-
der to check further properties. Cryptanalysis methods like
chosen-plaintext, known-plaintext and related-key attack
techniques will be used to prove or disprove the strength
of the cryptosystem. These problems are the subject of our
future research.

Many information systems such as computers and com-
puter networks may be simulated by means of a queue-
ing system. In general, queueing systems model is de-
veloped assuming the arrival rate and service intensity to
be in the equilibrium state. The well-known methods of
the queueing system investigation are based on the station-
ary behaviour of the input flow and service duration. Tak-
ing into account these characteristics as well as technical-
economical criteria, the optimal system performance pa-
rameters are determined.

In real conditions the input flow arrival rate is affected by
the step-by-step influence and the system state can essen-
tially differ from the desired one. Here we come across the
problem of compensating these differences with the pur-
pose of equalizing the real value of output of customers’
flow to the desirable one.

The main idea of this work lies in the identification of
the queueing system as the control object with further con-
struction of discrete control closed scheme.

7 Acknowledgments
This work was supported by the National Research, Devel-
opment and Innovation Office of Hungary under Grant No.
TÉT 16-1-2016-0193.

References
[Dömösi and Horváth, 2015a] Dömösi, P. and Horváth, G.

(2015). A novel cryptosystem based on abstract au-
tomata and Latin cubes. Studia Scientiarum Math-
ematicarum Hungarica, 52(2):221–232. https://
doi.org/10.1556/012.2015.52.2.1309

[Dömösi and Horváth, 2015b] Dömösi, P. and Horváth, G.
(2015). A novel cryptosystem based on Gluškov
product of automata. Acta Cybernetica, 22:359–371.
https://doi.org/10.14232/actacyb.
22.2.2015.8

[Dömösi et al., 2017] Dömösi, P., Gáll, J., Horváth, G
and Tihanyi, N. (2017). Statistical Analysis of
DH1 Cryptosystem. Acta Cybrnetica, 23:371–378.
https://doi.org/10.14232/actacyb.
23.1.2017.20

[Dömösi and Nehaniv, 2005] Dömösi, P. and Ne-
haniv,C.L. (2005). Algebraic theory of automata
networks: An introduction. ser. SIAM monographs
on Discrete Mathematics and Applications, vol.
11, Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA. https:
//doi.org/10.1137/1.9780898718492

[Mezenes and Vanstone, 1996] Menezes, P. C. O. A. J.
and Vanstone, S. A. (1996). Handbook of Applied
Cryptography ser. Discrete Mathematics and Its Ap-
plications. CRC Press. https://doi.org/10.
1201/9781439821916

[Rukhin et al., 2010] Rukhin, A., Soto, J., Nechvatal, J.,
Smid, M., Barker, E., Leigh, S., Levenson, M., Van-
gel, M., Banks, D., Heckert, A., Dray, J., Vo, S.
(2010). NIST Special Publication 800-22: A Sta-
tistical Test Suite for Random and Pseudo Ran-
dom Number Generators for Cryptographic Applica-
tions. National Institute of Standards and Technology,
https://nvlpubs.nist.gov/nistpubs/legacy/sp/
nistspecialpublication800-22r1a.pdf, downloaded in
August 2016. https://doi.org/10.6028/
nist.sp.800-22

[Tihanyi et al., 2015] Tihanyi, N., Kovács, A., Vargha, G.,
Lénárt, Á. Unrevealed Patterns in Password
Databases Part One: Analyses of Cleartext Pass-
words. Technology and Practice of Passwords.
PASSWORDS 2014. Lecture Notes in Computer
Science, vol 9393. https://doi.org/10.
1007/978-3-319-24192-0_6

Some Remarks and Tests on the DH1. . . Informatica 43 (2019) 199–207 207

Table 6: Results for the uniformity of p-values and the proportion of passing sequences.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-value PRO- STATISTICAL TEST

PORTION

28 35 23 33 43 34 32 23 26 23 0.162606 296/300 Frequency

25 29 35 38 27 23 26 27 31 39 0.407091 298/300 BlockFrequency

28 37 26 37 32 28 25 36 25 26 0.574903 297/300 CumulativeSums

26 30 31 30 33 27 24 38 28 33 0.840081 295/300 CumulativeSums

33 20 33 26 32 28 44 25 30 29 0.205897 297/300 Runs

23 33 40 24 31 22 31 29 38 29 0.284959 297/300 LongestRun

24 28 40 32 24 30 30 27 37 28 0.527442 297/300 Rank

34 35 23 33 30 35 27 34 23 26 0.623240 298/300 FFT

35 31 30 29 30 29 32 28 23 33 0.958773 295/300 NonOverlapping−

Template

.

· ·

25 27 25 29 40 39 29 33 26 27 0.419021 299/300 OverlappingTemplate

32 29 21 20 29 37 34 28 30 40 0.220931 298/300 Universal

35 33 28 34 26 26 27 30 33 28 0.935716 299/300 ApproximateEntropy

21 17 24 23 15 15 18 12 15 17 0.516465 171/177 RandomExcursions

.

· ·

23 16 15 16 14 26 12 18 18 19 0.384836 172/177 RandomExcursions−

V ariant

.

· ·

23 27 38 25 27 43 41 24 24 28 0.042808 298/300 Serial

28 28 25 24 45 32 32 33 28 25 0.253551 296/300 Serial

32 25 33 34 40 20 31 35 15 35 0.039244 295/300 LinearComplexity

208 Informatica 43 (2019) 199–207 P. Dömösi et al.

