
https://doi.org/10.31449/inf.v43i1.2679 Informatica 43 (2019) 45–51 45

Incremental 2-D Nearest-Point Search with Evenly Populated Strips

David Podgorelec and Denis Špelič

University of Maribor, Faculty of Electrical Engineering and Computer Science

Koroška cesta 46, SI-2000 Maribor, Slovenia

E-mail: david.podgorelec@um.si, https://gemma.feri.um.si/

Keywords: incremental nearest-point search, dynamic partition, deterministic skip list

Received: October 30, 2018

The incremental nearest-point search successively inserts query points into the space partition data

structure, and the nearest point for each of them is simultaneously found among the previously inserted

ones. The paper introduces a new approach which solves this task in 2-D space in a nearly optimal

manner. The proposed dynamic partition into parallel strips, each containing a limited number of points

structured in the deterministic skip list, successfully prevents situations with over-populated strips, while

its further advanced version with two perpendicular partitions and four categories of deterministic skip

lists efficiently decreases the number of strips to be examined in a great majority of practical cases.

Povzetek: V članku je predstavljen algoritem za reševanje inkrementalnega problema najbližje točke, ki z

dinamično delitvijo ravnine v vzporedne trakove preprečuje prenaseljenost le-teh, z dodatno delitvijo,

pravokotno na prvo, pa se večinoma izogne tudi preiskovanju prevelikega števila trakov.

1 Introduction
Let us assume a set S of points in a space M and a query

point p  M. The nearest-point search (NPS) aims to find

the point in S being the closest to p. In its most common

form, M is a d-dimensional vector space (2-D in this

paper), points correspond to their position vectors, and

closeness is expressed with Euclidean distance.

Applications can be found in a variety of domains, such as

computational geometry [2, 20], geographic information

systems – GIS [18], bioinformatics [21], image and video

compression [3, pattern recognition [16], computer vision

[12], robot motion planning [14]], telecommunications

[9], and computer graphics [6]. There are a number of

versatile generalizations where the distance metric

between spatial points is extended to any quantitative

measure of similarity between two generic objects, as one

may also measure closeness of pairs of polygons, text

strings, images, audio sequences etc.

If the distance is computable in Θ(1) time, the brute-

force NPS is trivially handled in Θ(n) time, but the

problem becomes more demanding in a recurring NPS

where a larger set of query points has to be considered. A

straightforward repetition of the brute-force approach

results in Θ(n2) time when applied to Θ(n) query points. In

spatial domains, space partitioning can be used to bound

the number of possible nearest-point candidates in each

iteration [19]. The partition is accomplished by

constructing a hierarchical or a grid data structure,

typically a tree [7], the Voronoi diagram [10], a regular

grid [4], or a multi-level organization of these structures

[19]. Such a data structure is aimed to accelerate solving

the point-location problem i.e. determination of the region

where a query point lies. The methodology is based on the

assumption that the points in the same region or those in

adjacent regions are closer to each other than the points in

more distinct regions. A static partition does not depend

on point distribution or, eventually, it only utilizes the

bounding box and/or the number of points in S. On the

contrary, a dynamic partition maintains the numbers of

points in all regions within the previously determined

limits. Particularly in higher dimensions, where either the

query time or storage space must be sacrificed, a user may

also be satisfied by approximate solutions provided by the

reasonably fast locality sensitive hashing technique, for

example [17].

The all nearest-points pairs problem represents a

special form of the recurring NPS, where the set of target

points S and the set of query points coincide. For each

point pi  S, we have to find pj  S, such that i ≠ j and the

distance |pi pj| is minimal. Two different approaches can

be distinguished.

(a) The two-phase preliminary points arrangement

approach firstly arranges all the points into the

adequate regions of the space partition data structure.

Then, in the second phase, this preliminary points

arrangement is utilized to determine the nearest point

for every query point.

(b) The incremental nearest-point search successively

inserts points p1, ..., pn into the space partition data

structure and simultaneously searches for their

nearest points. The nearest point for pi, 1 < i ≤ n, is

determined among previously inserted points from Si

= {p1, ..., pi – 1} only. Note that S1 = .

In this paper, we introduce an original dynamic plane

partition into parallel strips and utilize it to handle the

incremental NPS in 2-D space. The incremental search

adequately models interactive processing of database

queries where the results of previous queries are usually

irrelevant for processing the current one. In an expressive

everyday life example, a new house is connected to the

mailto:david.podgorelec@um.si

46 Informatica 43 (2019) 45–51 D. Podgorelec et al.

electrical grid, water supply, road and telecommunication

systems in a currently optimal way, although this solution

could prove far from optimal after ten more houses are

built in the neighbourhood. In computational geometry, a

remarkably fast incremental Delaunay triangulation

algorithm is based on the incremental NPS [20].

Details on the new algorithm and the problem itself

are described in Section 2. Section 3 analyses the time

complexity, compares the method with an older algorithm

based on static strips, and introduces some additional

improvements. Finally, the presented work is briefly

summarized and some challenges for further research are

discussed in Section 4.

2 The DP-DSL approach to the

incremental nearest-point search
Subquadratic-time methods for the preliminary points

arrangement approach are well-known. Utilization of the

Voronoi diagram, together with efficient solutions of the

point-location problem, for example, leads to an obvious

O(n log n) time solution [1, 11], where n is the number of

points in S. On the other hand, utilization of the Voronoi

diagram in the incremental NPS requires some of the

incremental Voronoi diagram construction algorithms

which all, although fast on average, require quadratic time

in the worst case [8]. For this reason and because of a

relatively complex maintenance of the Voronoi diagrams,

we preferably study other space partitioning techniques.

First of all, we wish to keep practical advantages of the

HT-DSL approach [19] and, simultaneously, to improve

its theoretical behaviour. The pioneering HT-DSL

approach represents even nowadays the only work where

the incremental NPS is explicitly considered. It is based

on a uniform plane subdivision into parallel strips. These

static strips are directly accessible in O(1) time through a

hash table (HT). On the other hand, our method named the

DP-DSL approach uses a dynamic partition (DP) into

evenly populated strips. In both methods, the points in a

particular strip are stored in (a, b)-deterministic skip list

(DSL) [13], providing a point insertion in O(log n) time

and, on the average, efficient NPS inside the strip. The

DP-DSL approach must additionally provide the

functionality of DSL splitting as an over-populated strip

has to be split into two (or three) strips.

2.1 Deterministic skip lists

Our implementation of (a, b)-DSL, inherited from [19],

consists of a doubly linked list of points sorted in non-

descending order on the x-coordinate. If more points share

the same x-coordinate, then the y-coordinate is decisive.

Double connectivity assures that the move from an

arbitrary point to its direct predecessor or successor takes

O(1) time. This list represents the basic level (level 1) of

the DSL. Its nodes (leaves) are accessible from simply

linked lists of the internal nodes at higher levels. Each

parent node P (see Fig. 1) at level h, h > 1, points to a

single child node C followed by the remaining children

nodes of P, forming a gap. The first node C′ after the gap

represents the leading (the one with the lowest x-

coordinate) child node of the successive parent node (P′)

of P. The gap size must be in range [a, b], except the gap

behind the last child node. Access to a particular leaf

requires O(b log n) worst time. By keeping b small, the

logarithmic access time is provided. Typical pairs (a, b) in

practice are (1, 2), (1, 3), (2, 5), and (3, 7). Fig. 1 shows

an example of (1, 3)-DSL. Values stored in a gap are lower

or equal to the value in the parent node. Consequently, M

at the root level must be set to some "safely" high value.

The actual search for the nearest point to the query

point p was also inherited from [19]. Once it determines a

candidate of the nearest-point to p and its distance d to p,

it limits the search for better candidates to the interior of

the circle with the centre p and radius d. The search

consists of the local search in the strip where p was

inserted, and the inter-strip search which progresses up

and/or down through the adjacent strips within the

distance of current d. The local search time is the time

needed to perform local search for a single query point,

while the total local search time is the time spent for local

search operations for all query points. In an analogous

manner, the inter-strip search time and the total inter-strip

search time can be introduced, while the total search time

refers to the sum of both, the total local search time and

the total inter-strip search time. Finally, the total time is

the sum of the total search time and the time spent for the

dynamic partition construction.

Figure 1: An example of (1, 3)-deterministic skip list.

2.2 Dynamic partition

The HT-DSL is remarkably fast for nearly uniform point

distributions. However, examples with much slower

performance and also strongly affected by the points

ordering can effortlessly be constructed and, not rarely,

also met in practice. Example in Fig. 2 consists of a cloud

of points with rather favourable Gaussian distribution

which alone does not result in highly over-populated

strips. However, an isolated point concentrates all other

points on the opposite end of the region of interest,

resulting in a considerable number of empty strips and in

the increased population density of those few strips

containing the entire point cloud (Fig. 2a). The DP-DSL

approach is directly designed to prevent from such

situations. The idea is straightforward: when a particular

strip contains too many points (the number of points in a

strip is labelled q in continuation), the algorithm splits it

into a pair of strips, each containing half of the points of

the original strip. Under certain conditions, splitting may

also result in three strips. The point cloud in Fig. 2b is cut

by many narrow strips, while a wide undivided strip is left

around the isolated point. Another, more realistic

Incremental 2-D Nearest-Point Search with... Informatica 43 (2019) 45–51 47

demonstration of the advantageous behaviour of the DP-

DSL approach is given in Fig. 3.

Figure 2: Gaussian distribution with additional point in: a)

HT-DSL static partition with uniform strip width, and b)

DP-DSL approach with evenly populated strips of variable

widths.

Figure 3: a) HT-DSL and b) DP-DSL approach employed

on clusters of points.

The DP-DSL approach requires additional data

structure to store the strips’ borders i.e. minimum y-

coordinates for each strip. We use an additional DSL

named Borders for this purpose. It plays the same role as

the hash table in the HT-DSL approach, but requires

longer search time (logarithmic instead of constant) and

dynamic construction.

Two types of strips are stored in Borders. A line strip

SoPi is the horizontal line y = Bordersi, and an interval

strip SoPj is a region between two horizontal lines. The

lower borderline is also a part of the interval strip i.e. SoPj

= {p(x, y); Bordersj  y < Bordersj + 1}. Exceptionally, the

unbounded first and last strip are also the interval strips.

Another exception is met when the interval strip SoPj lies

directly above a line strip SoP j–1. Then the lower

borderline cannot be a part of SoPj since it represents an

independent line strip. A line strip is introduced when the

y-coordinates of two or more points correspond to the

splitting threshold.

Points in each DSL are sorted according to x-

coordinates, but an over-populated strip should be split

with regard to y. Splitting is only sensible for the interval

strips. A line strip may therefore have O(n) points, but the

local search has to examine only the predecessor and

successor of the query point while, on the other hand, the

entire interval strip should be examined in the worst case.

The role of the line strips is, therefore, to keep the sizes of

the interval strips limited.

The splitting algorithm must firstly determine the

splitting threshold. We utilize the well-known SELECT

algorithm [5] which finds the i-th largest element in the set

with q points in Θ(q) time. Simultaneously, the types of

the output strips and the numbers of points in each of them

are determined. Three diverse output situations can be

met: (1) two interval strips, (2) two interval strips and the

separating line strip, and (3) an interval strip above a line

strip where the latter coincides with the bottom line of the

input strip.

The strip splitting is completed by physically splitting

the DSL into two or three separate skip lists. An intuitive

solution rests on the O(log n)-time skip list splitting

algorithm [15] which cuts the input DSL at the determined

splitting threshold into two separate DSLs. Of course three

DSLs may be obtained, when necessary, by performing

two cuts. The structure of the input DSL is mostly

preserved in the separated DSLs, except that the gaps on

the right side along the cut usually require some minor

O(b)-time corrections. The values of q nodes are

maintained in Θ(q) time afterwards. The method has

several desired properties, including the aforementioned

inherited structure of higher levels and the ability to reuse

allocated nodes of the input DSL. However, the inherited

gaps in the output DSLs, varying in size from a to b, are

often too short for optimal further exploitation.

Furthermore, additional short gaps on both sides along a

cut are typically produced. In continuation, we propose an

original approach, which gives full control over the gap

size to the user.

The bricklaying approach firstly constructs level 1 for

each of the two or three separate DSLs. This is achieved

by moving the leaves of the input DSL, one after another,

to the end of the corresponding separate list. Upper levels

are then built from the elements of the simply linked

global list of recyclable nodes. At each level, the nodes are

grouped into gaps of size b – gsc, where gsc is a user-

selected gap size correction parameter. A compromise

must be found since shorter gaps accelerate later insertions

(less gap rearrangements needed), while longer gaps

reduce the numbers of nodes at higher levels and

consequently decrease the search times.

The global list of recyclable nodes may contain nodes

from three different sources, as shown in Fig. 4a. Firstly,

eventual unused nodes from previous splitting operations

are included. Although the output lists usually contain

more internal nodes in total than the input DSL did, the

opposite is also possible because of typically longer gaps

in split DSLs. The second source consists of the input

DSL’s internal nodes. They are firstly organized into the

48 Informatica 43 (2019) 45–51 D. Podgorelec et al.

linked list, such that the last element of level k is connected

to the first one at level k - 1, and this is then appended to

the end of the global list. Finally, the third part contains

eventual additional nodes allocated just before the actual

splitting operation starts. Fig. 4b shows how the nodes of

the global list are distributed across three output DSLs.

The situation with two output strips is handled in nearly

the same manner.

Figure 4: Bricklaying DSL splitting approach: a) global

list of recyclable nodes, and b) three output DSLs.

3 Results and analysis
The number of strips in the HT-DSL approach was

experimentally set in the range m = Θ(n). Consequently,

the number of points in a strip is q = O(n) in an optimal

uniform point distribution. We have retained this result in

the DP-DSL approach, and experimentally determined the

best performance by splitting the strips reaching q = 3n

points. We use (1, 3)-DSLs in the HT-DSL approach, and

(2, 5)-DSLs in the DP-DSL approach. The best long-term

performance was achieved by using the gap size

correction parameter gsc = 1.

In Table 1, expected time complexities for handling

the considered representative cases by the HT-DSL and

DP-DSL approach are given. We consider Gaussian

distribution of points with an additional isolated point

(Fig. 2), few non-uniformly distributed clusters (Fig. 3),

uniform distribution (Fig. 5a), grid (Fig. 5b), two GIS

datasets (Figs. 5c and 5d), and the so-called ladder with

an additional isolated point (Fig. 6b). The time ratios in

the second column were obtained for configurations of

5.000.000 points. Much lower cardinalities were used in

figures (except Fig. 5) to maintain clarity. The realistic

examples in Figs. 5c-d consist of 70.334 and 193.360

points, respectively.

By choosing the number of strips in the range m =

Θ(n), the average horizontal distance between two

successive points in the DSL of an interval strip may be

considered similar to the average strip width.

Consequently, the local search mostly examines only a

few nearest-point candidates, while the inter-strip search

also traverses only a few strips. Both numbers may be

considered O(1) and thus, the expected total search time

for n query points does not exceed O(n). The expected

total times O(n log n) for the first six examples in Table 1

are therefore determined by the construction phase (see

Table 2). Exceptionally, the HT-DSL approach in the first

two examples (Figs. 2 and 3) collects n - 1 points in a

single strip, and the local search time can be hardly

considered O(1). Significantly slower performance can be

noticed in comparison to the DP-DSL approach, although

the theoretical worst-case time complexity Θ(n2) is not

reached in this two cases.

Figure 5: Dynamic partition into strips for: a) uniform

points distribution, b) grid, and c-d) two GIS datasets.

While the order of inserting the points was considered

random in the above six examples, the ladder illustrated in

Fig. 6 and analysed in the last two rows of Table 1 was

synthetically generated and represents the worst-case for

the local search, which requires Θ(r) time if there are 2r

points in an interval strip (see Fig. 6a). The condition w <

h assures that the nearest point of any pr+i  l2 is exactly

the other end of the same ladder rung i.e. pi  l1. Another

requirement w > xr – x1 provides the arrangement xj < xj+1

for every j < 2r. Consequently, exactly r points pr+i–1, pr+i–

2, …, pi have to be examined for every query point pr+i on

l2, 0 < i ≤ r. Thus, the HT-DSL approach requires Θ(n2)

total local search time to handle the case in Fig. 6b with 2r

= n – 1 points. The DP-DSL approach handles the same

case in Θ(nn) time in a similar manner as the example

from Fig. 6c is handled.

Incremental 2-D Nearest-Point Search with... Informatica 43 (2019) 45–51 49

Figure 6: A ladder: a) point organization, b) HT-DSL case

with Θ(n2) total local search time, and c) case requiring

O(nn) time in both approaches.

Fig. HT-DSL/DP-

DSL

HT-DSL time DP-DSL time

2 9.91 Θ(n log n) to

O(n2)

Θ(n log n)

3 7.21 Θ(n log n) to

O(n2)

Θ(n log n)

5a 0.79 Θ(n log n) Θ(n log n)

5b 0.84 Θ(n log n) Θ(n log n)

5c 0.50 Θ(n log n) Θ(n log n)

5d 0.47 Θ(n log n) Θ(n log n)

6b 203.73 Θ(n2) Θ(nn)

6c 0.59 Θ(nn) Θ(nn)

Table 1: Expected time complexities of HT-DSL and DP-

DSL approaches in considered representative examples.

3.1 Theoretical time complexity analysis

Table 2 lists theoretical worst-case time complexities of

all phases of both approaches. The construction of strips

and maintenance of DSLs are optimal in both cases, while

the total local and total inter-strip search time do not

provide the desired O(n log n) total time and require

further consideration.

Besides other interesting cases, we have managed to

construct one which requires Θ(n2) inter-strip search time

in the DP-DSL approach. In Fig. 7, points p1, …, pr are

placed on slightly descending vectors in strips SoP2 to

SoPm, and pr+1, …, pn are arranged from left to right in

SoP1. These latter (pi, i > r) further fulfil the following

conditions.

1. In each SoPj, j > 1, distances to pi descend from left

to right along the bold line segment (the nearest point

to pi is the rightmost and the bottommost one).

2. pu  SoPj+1, pv  SoPj, j > 1  |pi pu| < |pi pv| i.e. upper

bold segments are closer to pi than lower ones.

3. Point pi+1 is closer to any point in Sr+1 than to pi.

We use auxiliary pairs of circular arcs to graphically

emphasize the above conditions 1 and 2. The left and right

arc in each pair are centred in pn and pr+1, respectively. The

third condition is fulfilled by halving the horizontal

distance between the query point and the farthest target

point candidate pFAR from Sr+1 in each iteration. For each

point from SoP1, all r points from Sr+1 have to be examined

until the nearest point pNEAR is found, thus the total time is

raised for Θ((n – r)r). Selection r  n/2 obviously leads to

Θ(n2) time. Note that SoP1 represents a line strip in the DP-

DSL approach and thus it is allowed to contain O(n)

points. Anyway, x-coordinates of pr+1, …, pn–1 in the

considered example represent a geometric progression

with ratio 2. Even with relatively low n and really small d,

the exponential growth quickly produces x-coordinates

out of the range of the IEEE 754 floating-point

specification. If we choose d = 1, n = 1000, r = 500 and

x501 = 0, for example, then we get x1000 = 2499  1.6*10150,

which is usually far beyond the expected range in

industrial, GIS and other practical applications.

Phase HT-DSL DP-DSL

Construction

Strip identification O(n) O(n log n)

Point insertion Θ(n log n) Θ(n log n)

DSL splitting 0 O(n)

Maintenance of Borders 0 O(n log n)

Quering

Local search Θ(n2) Θ(nn)

Inter-strip search Θ(n2) Θ(n2)

Table 2: Worst-case time complexities of particular

phases in the HT-DSL and DP-DSL approach.

Figure 7: Construction of the Θ(n2) time example based on

geometric progression.

Note that the total local search time of the DP-DSL

approach could be improved from O(nn) to O(n log n) by

splitting the strips of size q = O(log n) instead of current q

= 3n. Although this change does not critically increase

theoretical worst-case time complexities of other phases,

it usually results in slower practical performance due to

the increased number of DSL splits and initial positioning

operations in much more DSLs during the inter-strip

search.

50 Informatica 43 (2019) 45–51 D. Podgorelec et al.

3.2 DP-4DSLs approach

We have recently developed an engineering solution

which handles the considered problematic examples in the

desired (optimal) time bounds. It additionally performs the

vertical DP. In each strip, two orthogonal DSLs are

constructed, the horizontal one sorted by the x-coordinate,

and the vertical one sorted by the y-coordinate. Each point

is therefore placed into four DSLs: XH-DSL (also in the

DP-DSL approach) and YH-DSL are assigned to each

horizontal strip, and XV-DSL and YV-DSL are

constructed in each vertical strip (see Fig. 8). Note that the

strip splitting threshold can be found by help of the

orthogonal DSL in a quicker way than with the

aforementioned SELECT algorithm.

In each iteration of the local search, the method

performs one move in each DSL which are all addressing

the same radius d. The nearest point is found when the first

DSL (the winner) examines all the points within the

distance d around the query point. We have not managed

to theoretically prove optimal time complexity but the

performance in the considered cases (I to VI in Table 3)

appears promising.

• The cases I and II were already considered in Table 1.

In the DP-4DSLs approach, the nearest-point of any

point p is its direct predecessor in the YH-DSL. The

total local search and inter-strip times are both Θ(n)

and thus the total time Θ(n log n) is determined by the

construction phase.

• In the ladder example rotated 90 degrees (case III),

the local search in the HT-DSL and the DP-DSL

approach examines at most two points, but the inter-

strip search traverses Θ(n) strips for half of the query

points, resulting in Θ(nn) total time. In the DP-

4DSLs approach, XV-DSL has the same role as YH-

DSL has in cases I and II, resulting in Θ(n log n) total

time.

• Case IV was addressed by the HT-DSL and DP-DSL

approach in Section 3.1 already. In the DP-4DSLs

approach, however, XV-DSL provides O(1) local

search and inter-strip search times and thus the total

time Θ(n log n) is determined by the construction

phase.

• In case V where the configuration from case IV is

rotated 90 degrees, YH-DSL has the same role as XV-

DSL has in case IV, and optimal Θ(n log n) is again

achieved. For the HT-DSL and the DP-DSL

approaches, the same conclusions can be made as in

case II.

• “Regular” cases (VI) refer to those configurations,

where an optimal Θ(n log n) time complexity is

expected (see Fig. 5 and Table 1) within both, HT-

DSL and DP-DSL approach. Of course, the same

optimal time complexity is expected by the DP-

4DSLs approach because the winner can either be

XH-DSL (also used in the HT-DSL and DP-DSL

approaches) or some other DSL outperforming XH-

DSL. Note that the HT-DSL and DP-DSL approaches

usually outperform the DP-4DSLs approach in

“regular” cases as maintenance of two partitions and

four DSLs is quite expensive.

• Note that the remaining YV-DSL, which is not met in

the considered examples, is also necessary. It is for

example the winner if a “regular” case won by XH-

DSL is rotated 90 degrees.

Figure 8: A query point (filled grey) is in four DSLs: a)

XH-DSL, b) YH-DSL, c) YV-DSL, and d) XV-DSL.

Case HT-DSL DP-DSL DP-4DSLs Winner

I Θ(n2) Θ(nn) Θ(n log n) YH

II Θ(nn) Θ(nn) Θ(n log n) YH

III Θ(nn) Θ(nn) Θ(n log n) XV

IV Θ(n2) Θ(n2) Θ(n log n) XV

V Θ(nn) Θ(nn) Θ(n log n) YH

VI Θ(n log n) Θ(n log n) Θ(n log n) various

Table 3: Comparison of the three approaches in the

considered cases: I – ladder with an isolated point, II –

ladder, III – ladder rotated 90 degrees, IV – geometric-

progression-based case from Fig. 7, V – case from Fig. 7

rotated 90 degrees, and VI – “regular case”.

4 Conclusion
The paper considers a new (DP-DSL) approach to the

incremental nearest-point search in 2-D. It guarantees

Θ(n) interval strips, each containing Θ(n) points and,

therefore, successfully prevents situations with over-

populated interval strips and decreases the total local

search time from O(n2) to O(n n). In our opinion, this is

an important acceleration, although the algorithm still fails

to achieve an optimal O(n log n) time performance

characteristic for the preliminary points arrangement

approach. In addition, examples can be constructed

(although hardly met in practice) which, just as the

“traditional” HT-DSL approach still achieve quadratic

inter-strip search time. The DP-4DSLs variant seems to

solve the considered problematic examples in optimal

time, but a formal proof is still missing. Construction of

the Voronoi diagram on Θ(n) points and utilization of

Incremental 2-D Nearest-Point Search with... Informatica 43 (2019) 45–51 51

two perpendicular DSLs in each Voronoi cell could have

a potential, but one should first prove that such dynamic

partition is generally possible, and then provide an

efficient region splitting algorithm.

Acknowledgement

This work was partially supported by the Slovenian

Research Agency (research programme P2-0041).

References
[1] F. Aurenhammer F. (1991). Voronoi diagrams – a

survey of a fundamental geometric data structure,

ACM Computing Surveys, ACM, vol. 23, iss. 3, pp.

345-405.

[2] Chan T. M.; Rahmati Z. (2017). Approximating the

minimum closest pair distance and nearest neighbor

distances of linearly moving points. Computational

Geometry, Elsevier Science, vol. 60, Jan. 2017, pp.

2-7. https://doi.org/10.1016/j.comgeo.2016.04.001

[3] Chaurasia V.; Chaurasia V. (2016). Statistical

feature extraction based technique for fast fractal

image compression. Journal of Visual

Communication and Image Representation, Elsevier

Science, vol. 41, Nov. 2016, pp. 87-95.

https://doi.org/10.1016/j.jvcir.2016.09.008

[4] Cleary J. G. (1979). Analysis of an Algorithm for

Finding Nearest Neighbors in Euclidean Space.

ACM Transactions on Mathematical Software,

ACM, vol. 5, iss. 2, pp. 183-192.

https://doi.org/10.1145/355826.355832

[5] Cormen T. H.; Leiserson C. E.; Rivest R. L.; Stein

C. (2001). Introduction to Algorithms, 2nd Edition,

MIT Press and McGraw-Hill.

[6] de Gomensoro Malheiros M.; Walter M. (2016).

Spatial sorting: an efficient strategy for approximate

nearest neighbor searching. Computers & Graphics,

Elsevier Science, vol. 57, June 2016, pp. 112-126.

https://doi.org/10.1016/j.cag.2016.03.006

[7] Gómez-Ballester E.; Micó L.; Oncina J. (2006).

Some approaches to improve tree-based nearest

neighbour search algorithms. Pattern Recognition,

Elsevier Science, vol. 39, iss. 2, pp. 171-179.

https://doi.org/10.1016/j.patcog.2005.06.007

[8] Guibas L. J.; Knuth D. E.; Sharir M. (1992).

Randomized incremental construction of Delaunay

and Voronoi diagrams. Algorithmica, Springer, vol.

7, iss. 4, pp. 381-413.

https://doi.org/10.1007/BF01758770

[9] Han Y.; Tang J.; Zhou Z.; Xiao M.; Sun L.; Wang Q.

(2014). Novel itinerary-based KNN query algorithm

leveraging grid division routing in wireless sensor

networks of skewness distribution. Personal and

Ubiquitous Computing, Springer, vol. 18, iss. 8, pp.

1989-2001.

https://doi.org/10.1007/s00779-014-0795-y

[10] Kanda T.; Sugihara K. (2002). Comparison of

various trees for nearest-point search with/without

the Voronoi diagram. Information Processing

Letters, Elsevier Science, vol. 84, iss. 1, pp. 17-22.

https://doi.org/10.1016/S0020-0190(02)00221-1

[11] Kirkpatrick, D. G. (1983). Optimal search in planar

subdivisions, SIAM J. Comput., vol 12, iss. 1, pp. 28-

35. https://doi.org/10.1137/0212002

[12] Long Y.; Zhu F.; Shao L. (2016). Recognising

occluded multi-view actions using local nearest

neighbour embedding. Computer Vision and Image

Understanding, Elsevier Science, vol. 144, March

2016, pp. 36-45.

https://doi.org/10.1016/j.cviu.2015.06.003

[13] Munro J. I.; Papadakis T.; Sedgewick R. (1992).

Deterministic skip lists. Proceedings of the Third

ACM-SIAM Symposium on Discrete Algorithms,

Society for Industrial and Applied Mathematics,

Orlando, USA, pp. 367-375.

[14] Nagasue J.; Konishi Y; Araki N.; Sato T.; Ishigaki

H. (2009). Slope-Walking of a Biped Robot with K

Nearest Neighbor Method. Proceedings of the 2009

Fourth International Conference on Innovative

Computing, Information and Control, IEEE

Computer Society, Kaohsiung, Taiwan, pp. 173-176.

https://doi.org/10.1109/ICICIC.2009.333

[15] Pugh W. (1990). Skip lists: A probabilistic

alternative to balanced trees. Communications of the

ACM, ACM, vol. 33, iss. 6, pp. 668-676.

https://doi.org/10.1145/78973.78977

[16] Savchenko A. V. (2017). Maximum-likelihood

approximate nearest neighbor method in real-time

image recognition. Pattern Recognition, Elsevier,

vol. 61, Jan. 2017, pp. 459-469.

https://doi.org/10.1016/j.patcog.2016.08.015

[17] Wang. H.; Cao J.; Shu L.; Rafiei D. (2013). Locality

sensitive hashing revisited: filling the gap between

theory and algorithm analysis. Proceedings of the

22nd ACM international conference on Information

& Knowledge Management, ACM, San Francisco,

USA, pp. 1969-1978.

https://doi.org/10.1145/2505515.2505765

[18] Wei-Kleiner F. (2016). Tree decomposition-based

indexing for efficient shortest path and nearest

neighbors query answering on graphs. Journal of

Computer and System Sciences, Elsevier Science,

vol. 82, iss. 1, part A, pp. 23–44.

https://doi.org/10.1016/j.jcss.2015.06.008

[19] Zadravec M.; Brodnik A.; Mannila M.; Wanne M.;

Žalik B. (2008). A practical approach to the 2D

incremental nearest-point problem suitable for

different point distributions. Pattern Recognition,

Elsevier Science, vol. 41, iss. 2, pp. 646-653.

https://doi.org/10.1016/j.patcog.2007.06.031

[20] Zadravec M.; Žalik B. (2005). An almost

distribution-independent incremental Delaunay

triangulation algorithm. Visual Computer, Springer,

vol. 21, iss. 6, pp. 384-396.

https://doi.org/10.1007/s00371-005-0293-3

[21] Zheng R. Y. (2010). Machine Learning Approaches

to Bioinformatics, World Scientific Publishing Co.,

Inc. https://doi.org/10.1142/7454

https://doi.org/10.1016/j.comgeo.2016.04.001
https://doi.org/10.1016/j.jvcir.2016.09.008
https://doi.org/10.1145/355826.355832
https://doi.org/10.1016/j.cag.2016.03.006
https://doi.org/10.1016/j.patcog.2005.06.007
https://doi.org/10.1007/BF01758770
http://dl.acm.org/author_page.cfm?id=99658654570&CFID=703261933&CFTOKEN=91571167
http://dl.acm.org/citation.cfm?id=2687481&CFID=703261933&CFTOKEN=91571167
http://dl.acm.org/citation.cfm?id=2687481&CFID=703261933&CFTOKEN=91571167
http://dl.acm.org/citation.cfm?id=2687481&CFID=703261933&CFTOKEN=91571167
https://doi.org/10.1007/s00779-014-0795-y
https://doi.org/10.1016/S0020-0190(02)00221-1
https://doi.org/10.1137/0212002
http://www.sciencedirect.com/science/article/pii/S1077314215001319
http://www.sciencedirect.com/science/article/pii/S1077314215001319
http://www.sciencedirect.com/science/article/pii/S1077314215001319
https://doi.org/10.1016/j.cviu.2015.06.003
https://doi.org/10.1109/ICICIC.2009.333
https://doi.org/10.1145/78973.78977
https://doi.org/10.1016/j.patcog.2016.08.015
https://doi.org/10.1145/2505515.2505765
https://doi.org/10.1016/j.jcss.2015.06.008
https://doi.org/10.1016/j.patcog.2007.06.031
https://doi.org/10.1007/s00371-005-0293-3
https://doi.org/10.1142/7454

52 Informatica 43 (2019) 45–51 D. Podgorelec et al.

