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The incremental nearest-point search successively inserts query points into the space partition data 

structure, and the nearest point for each of them is simultaneously found among the previously inserted 

ones. The paper introduces a new approach which solves this task in 2-D space in a nearly optimal 

manner. The proposed dynamic partition into parallel strips, each containing a limited number of points 

structured in the deterministic skip list, successfully prevents situations with over-populated strips, while 

its further advanced version with two perpendicular partitions and four categories of deterministic skip 

lists efficiently decreases the number of strips to be examined in a great majority of practical cases. 

Povzetek: V članku je predstavljen algoritem za reševanje inkrementalnega problema najbližje točke, ki z 

dinamično delitvijo ravnine v vzporedne trakove preprečuje prenaseljenost le-teh, z dodatno delitvijo, 

pravokotno na prvo, pa se večinoma izogne tudi preiskovanju prevelikega števila trakov. 

1 Introduction 
Let us assume a set S of points in a space M and a query 

point p  M. The nearest-point search (NPS) aims to find 

the point in S being the closest to p. In its most common 

form, M is a d-dimensional vector space (2-D in this 

paper), points correspond to their position vectors, and 

closeness is expressed with Euclidean distance. 

Applications can be found in a variety of domains, such as 

computational geometry [2, 20], geographic information 

systems – GIS [18], bioinformatics [21], image and video 

compression [3, pattern recognition [16], computer vision 

[12], robot motion planning [14] ], telecommunications 

[9], and computer graphics [6]. There are a number of 

versatile generalizations where the distance metric 

between spatial points is extended to any quantitative 

measure of similarity between two generic objects, as one 

may also measure closeness of pairs of polygons, text 

strings, images, audio sequences etc.  

If the distance is computable in Θ(1) time, the brute-

force NPS is trivially handled in Θ(n) time, but the 

problem becomes more demanding in a recurring NPS 

where a larger set of query points has to be considered. A 

straightforward repetition of the brute-force approach 

results in Θ(n2) time when applied to Θ(n) query points. In 

spatial domains, space partitioning can be used to bound 

the number of possible nearest-point candidates in each 

iteration [19]. The partition is accomplished by 

constructing a hierarchical or a grid data structure, 

typically a tree [7], the Voronoi diagram [10], a regular 

grid [4], or a multi-level organization of these structures 

[19]. Such a data structure is aimed to accelerate solving 

the point-location problem i.e. determination of the region 

where a query point lies. The methodology is based on the 

assumption that the points in the same region or those in 

adjacent regions are closer to each other than the points in 

more distinct regions. A static partition does not depend 

on point distribution or, eventually, it only utilizes the 

bounding box and/or the number of points in S. On the 

contrary, a dynamic partition maintains the numbers of 

points in all regions within the previously determined 

limits. Particularly in higher dimensions, where either the 

query time or storage space must be sacrificed, a user may 

also be satisfied by approximate solutions provided by the 

reasonably fast locality sensitive hashing technique, for 

example [17].  

The all nearest-points pairs problem represents a 

special form of the recurring NPS, where the set of target 

points S and the set of query points coincide. For each 

point pi  S, we have to find pj  S, such that i ≠ j and the 

distance |pi pj| is minimal. Two different approaches can 

be distinguished. 

(a) The two-phase preliminary points arrangement 

approach firstly arranges all the points into the 

adequate regions of the space partition data structure. 

Then, in the second phase, this preliminary points 

arrangement is utilized to determine the nearest point 

for every query point. 

(b) The incremental nearest-point search successively 

inserts points p1, ..., pn into the space partition data 

structure and simultaneously searches for their 

nearest points. The nearest point for pi, 1 < i ≤ n, is 

determined among previously inserted points from Si 

= {p1, ..., pi – 1} only. Note that S1 = . 

In this paper, we introduce an original dynamic plane 

partition into parallel strips and utilize it to handle the 

incremental NPS in 2-D space. The incremental search 

adequately models interactive processing of database 

queries where the results of previous queries are usually 

irrelevant for processing the current one. In an expressive 

everyday life example, a new house is connected to the 

mailto:david.podgorelec@um.si


46 Informatica 43 (2019) 45–51 D. Podgorelec et al.  

electrical grid, water supply, road and telecommunication 

systems in a currently optimal way, although this solution 

could prove far from optimal after ten more houses are 

built in the neighbourhood. In computational geometry, a 

remarkably fast incremental Delaunay triangulation 

algorithm is based on the incremental NPS [20]. 

Details on the new algorithm and the problem itself 

are described in Section 2. Section 3 analyses the time 

complexity, compares the method with an older algorithm 

based on static strips, and introduces some additional 

improvements. Finally, the presented work is briefly 

summarized and some challenges for further research are 

discussed in Section 4. 

2 The DP-DSL approach to the 

incremental nearest-point search 
Subquadratic-time methods for the preliminary points 

arrangement approach are well-known. Utilization of the 

Voronoi diagram, together with efficient solutions of the 

point-location problem, for example, leads to an obvious 

O(n log n) time solution [1, 11], where n is the number of 

points in S. On the other hand, utilization of the Voronoi 

diagram in the incremental NPS requires some of the 

incremental Voronoi diagram construction algorithms 

which all, although fast on average, require quadratic time 

in the worst case [8]. For this reason and because of a 

relatively complex maintenance of the Voronoi diagrams, 

we preferably study other space partitioning techniques. 

First of all, we wish to keep practical advantages of the 

HT-DSL approach [19] and, simultaneously, to improve 

its theoretical behaviour. The pioneering HT-DSL 

approach represents even nowadays the only work where 

the incremental NPS is explicitly considered. It is based 

on a uniform plane subdivision into parallel strips. These 

static strips are directly accessible in O(1) time through a 

hash table (HT). On the other hand, our method named the 

DP-DSL approach uses a dynamic partition (DP) into 

evenly populated strips. In both methods, the points in a 

particular strip are stored in (a, b)-deterministic skip list 

(DSL) [13], providing a point insertion in O(log n) time 

and, on the average, efficient NPS inside the strip. The 

DP-DSL approach must additionally provide the 

functionality of DSL splitting as an over-populated strip 

has to be split into two (or three) strips.  

2.1 Deterministic skip lists 

Our implementation of (a, b)-DSL, inherited from [19], 

consists of a doubly linked list of points sorted in non-

descending order on the x-coordinate. If more points share 

the same x-coordinate, then the y-coordinate is decisive. 

Double connectivity assures that the move from an 

arbitrary point to its direct predecessor or successor takes 

O(1) time. This list represents the basic level (level 1) of 

the DSL. Its nodes (leaves) are accessible from simply 

linked lists of the internal nodes at higher levels. Each 

parent node P (see Fig. 1) at level h, h > 1, points to a 

single child node C followed by the remaining children 

nodes of P, forming a gap. The first node C′ after the gap 

represents the leading (the one with the lowest x-

coordinate) child node of the successive parent node (P′) 

of P. The gap size must be in range [a, b], except the gap 

behind the last child node. Access to a particular leaf 

requires O(b log n) worst time. By keeping b small, the 

logarithmic access time is provided. Typical pairs (a, b) in 

practice are (1, 2), (1, 3), (2, 5), and (3, 7). Fig. 1 shows 

an example of (1, 3)-DSL. Values stored in a gap are lower 

or equal to the value in the parent node. Consequently, M 

at the root level must be set to some "safely" high value. 

The actual search for the nearest point to the query 

point p was also inherited from [19]. Once it determines a 

candidate of the nearest-point to p and its distance d to p, 

it limits the search for better candidates to the interior of 

the circle with the centre p and radius d. The search 

consists of the local search in the strip where p was 

inserted, and the inter-strip search which progresses up 

and/or down through the adjacent strips within the 

distance of current d. The local search time is the time 

needed to perform local search for a single query point, 

while the total local search time is the time spent for local 

search operations for all query points. In an analogous 

manner, the inter-strip search time and the total inter-strip 

search time can be introduced, while the total search time 

refers to the sum of both, the total local search time and 

the total inter-strip search time. Finally, the total time is 

the sum of the total search time and the time spent for the 

dynamic partition construction. 

 

Figure 1: An example of (1, 3)-deterministic skip list. 

2.2 Dynamic partition 

The HT-DSL is remarkably fast for nearly uniform point 

distributions. However, examples with much slower 

performance and also strongly affected by the points 

ordering can effortlessly be constructed and, not rarely, 

also met in practice. Example in Fig. 2 consists of a cloud 

of points with rather favourable Gaussian distribution 

which alone does not result in highly over-populated 

strips. However, an isolated point concentrates all other 

points on the opposite end of the region of interest, 

resulting in a considerable number of empty strips and in 

the increased population density of those few strips 

containing the entire point cloud (Fig. 2a). The DP-DSL 

approach is directly designed to prevent from such 

situations. The idea is straightforward: when a particular 

strip contains too many points (the number of points in a 

strip is labelled q in continuation), the algorithm splits it 

into a pair of strips, each containing half of the points of 

the original strip. Under certain conditions, splitting may 

also result in three strips. The point cloud in Fig. 2b is cut 

by many narrow strips, while a wide undivided strip is left 

around the isolated point. Another, more realistic 
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demonstration of the advantageous behaviour of the DP-

DSL approach is given in Fig. 3. 

 

 

Figure 2: Gaussian distribution with additional point in: a) 

HT-DSL static partition with uniform strip width, and b) 

DP-DSL approach with evenly populated strips of variable 

widths. 

 

Figure 3: a) HT-DSL and b) DP-DSL approach employed 

on clusters of points. 

The DP-DSL approach requires additional data 

structure to store the strips’ borders i.e. minimum y-

coordinates for each strip. We use an additional DSL 

named Borders for this purpose. It plays the same role as 

the hash table in the HT-DSL approach, but requires 

longer search time (logarithmic instead of constant) and 

dynamic construction. 

Two types of strips are stored in Borders. A line strip 

SoPi is the horizontal line y = Bordersi, and an interval 

strip SoPj is a region between two horizontal lines. The 

lower borderline is also a part of the interval strip i.e. SoPj 

= {p(x, y); Bordersj  y < Bordersj + 1}. Exceptionally, the 

unbounded first and last strip are also the interval strips. 

Another exception is met when the interval strip SoPj lies 

directly above a line strip SoP j–1. Then the lower 

borderline cannot be a part of SoPj since it represents an 

independent line strip. A line strip is introduced when the 

y-coordinates of two or more points correspond to the 

splitting threshold.  

Points in each DSL are sorted according to x-

coordinates, but an over-populated strip should be split 

with regard to y. Splitting is only sensible for the interval 

strips. A line strip may therefore have O(n) points, but the 

local search has to examine only the predecessor and 

successor of the query point while, on the other hand, the 

entire interval strip should be examined in the worst case. 

The role of the line strips is, therefore, to keep the sizes of 

the interval strips limited.  

The splitting algorithm must firstly determine the 

splitting threshold. We utilize the well-known SELECT 

algorithm [5] which finds the i-th largest element in the set 

with q points in Θ(q) time. Simultaneously, the types of 

the output strips and the numbers of points in each of them 

are determined. Three diverse output situations can be 

met: (1) two interval strips, (2) two interval strips and the 

separating line strip, and (3) an interval strip above a line 

strip where the latter coincides with the bottom line of the 

input strip. 

The strip splitting is completed by physically splitting 

the DSL into two or three separate skip lists. An intuitive 

solution rests on the O(log n)-time skip list splitting 

algorithm [15] which cuts the input DSL at the determined 

splitting threshold into two separate DSLs. Of course three 

DSLs may be obtained, when necessary, by performing 

two cuts. The structure of the input DSL is mostly 

preserved in the separated DSLs, except that the gaps on 

the right side along the cut usually require some minor 

O(b)-time corrections. The values of q nodes are 

maintained in Θ(q) time afterwards. The method has 

several desired properties, including the aforementioned 

inherited structure of higher levels and the ability to reuse 

allocated nodes of the input DSL. However, the inherited 

gaps in the output DSLs, varying in size from a to b, are 

often too short for optimal further exploitation. 

Furthermore, additional short gaps on both sides along a 

cut are typically produced. In continuation, we propose an 

original approach, which gives full control over the gap 

size to the user. 

The bricklaying approach firstly constructs level 1 for 

each of the two or three separate DSLs. This is achieved 

by moving the leaves of the input DSL, one after another, 

to the end of the corresponding separate list. Upper levels 

are then built from the elements of the simply linked 

global list of recyclable nodes. At each level, the nodes are 

grouped into gaps of size b – gsc, where gsc is a user-

selected gap size correction parameter. A compromise 

must be found since shorter gaps accelerate later insertions 

(less gap rearrangements needed), while longer gaps 

reduce the numbers of nodes at higher levels and 

consequently decrease the search times.   

The global list of recyclable nodes may contain nodes 

from three different sources, as shown in Fig. 4a. Firstly, 

eventual unused nodes from previous splitting operations 

are included. Although the output lists usually contain 

more internal nodes in total than the input DSL did, the 

opposite is also possible because of typically longer gaps 

in split DSLs. The second source consists of the input 

DSL’s internal nodes. They are firstly organized into the 
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linked list, such that the last element of level k is connected 

to the first one at level k - 1, and this is then appended to 

the end of the global list. Finally, the third part contains 

eventual additional nodes allocated just before the actual 

splitting operation starts. Fig. 4b shows how the nodes of 

the global list are distributed across three output DSLs. 

The situation with two output strips is handled in nearly 

the same manner.  

 

 

Figure 4: Bricklaying DSL splitting approach: a) global 

list of recyclable nodes, and b) three output DSLs. 

3 Results and analysis 
The number of strips in the HT-DSL approach was 

experimentally set in the range m = Θ(n). Consequently, 

the number of points in a strip is q = O(n) in an optimal 

uniform point distribution. We have retained this result in 

the DP-DSL approach, and experimentally determined the 

best performance by splitting the strips reaching q = 3n 

points. We use (1, 3)-DSLs in the HT-DSL approach, and 

(2, 5)-DSLs in the DP-DSL approach. The best long-term 

performance was achieved by using the gap size 

correction parameter gsc = 1. 

In Table 1, expected time complexities for handling 

the considered representative cases by the HT-DSL and 

DP-DSL approach are given. We consider Gaussian 

distribution of points with an additional isolated point 

(Fig. 2), few non-uniformly distributed clusters (Fig. 3), 

uniform distribution (Fig. 5a), grid (Fig. 5b), two GIS 

datasets (Figs. 5c and 5d), and the so-called ladder with 

an additional isolated point (Fig. 6b). The time ratios in 

the second column were obtained for configurations of 

5.000.000 points. Much lower cardinalities were used in 

figures (except Fig. 5) to maintain clarity. The realistic 

examples in Figs. 5c-d consist of 70.334 and 193.360 

points, respectively. 

By choosing the number of strips in the range m = 

Θ(n), the average horizontal distance between two 

successive points in the DSL of an interval strip may be 

considered similar to the average strip width. 

Consequently, the local search mostly examines only a 

few nearest-point candidates, while the inter-strip search 

also traverses only a few strips. Both numbers may be 

considered O(1) and thus, the expected total search time 

for n query points does not exceed O(n). The expected 

total times O(n log n) for the first six examples in Table 1 

are therefore determined by the construction phase (see 

Table 2). Exceptionally, the HT-DSL approach in the first 

two examples (Figs. 2 and 3) collects n - 1 points in a 

single strip, and the local search time can be hardly 

considered O(1). Significantly slower performance can be 

noticed in comparison to the DP-DSL approach, although 

the theoretical worst-case time complexity Θ(n2) is not 

reached in this two cases.   

 

 

Figure 5: Dynamic partition into strips for: a) uniform 

points distribution, b) grid, and c-d) two GIS datasets. 

While the order of inserting the points was considered 

random in the above six examples, the ladder illustrated in 

Fig. 6 and analysed in the last two rows of Table 1 was 

synthetically generated and represents the worst-case for 

the local search, which requires Θ(r) time if there are 2r 

points in an interval strip (see Fig. 6a). The condition w < 

h assures that the nearest point of any pr+i  l2 is exactly 

the other end of the same ladder rung i.e. pi  l1. Another 

requirement w > xr – x1 provides the arrangement xj < xj+1 

for every j < 2r. Consequently, exactly r points pr+i–1, pr+i–

2, …, pi have to be examined for every query point pr+i on 

l2, 0 < i ≤ r. Thus, the HT-DSL approach requires Θ(n2) 

total local search time to handle the case in Fig. 6b with 2r 

= n – 1 points. The DP-DSL approach handles the same 

case in Θ(nn) time in a similar manner as the example 

from Fig. 6c is handled.  
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Figure 6: A ladder: a) point organization, b) HT-DSL case 

with Θ(n2) total local search time, and c) case requiring 

O(nn) time in both approaches. 

Fig. HT-DSL/DP-

DSL 

HT-DSL time DP-DSL time 

2 9.91 Θ(n log n) to 

O(n2) 

Θ(n log n) 

3 7.21 Θ(n log n) to 

O(n2) 

Θ(n log n) 

5a 0.79 Θ(n log n) Θ(n log n) 

5b 0.84 Θ(n log n) Θ(n log n) 

5c 0.50 Θ(n log n) Θ(n log n) 

5d 0.47 Θ(n log n) Θ(n log n) 

6b 203.73 Θ(n2) Θ(nn) 

6c 0.59 Θ(nn) Θ(nn) 

Table 1: Expected time complexities of HT-DSL and DP-

DSL approaches in considered representative examples. 

3.1 Theoretical time complexity analysis 

Table 2 lists theoretical worst-case time complexities of 

all phases of both approaches. The construction of strips 

and maintenance of DSLs are optimal in both cases, while 

the total local and total inter-strip search time do not 

provide the desired O(n log n) total time and require 

further consideration. 

Besides other interesting cases, we have managed to 

construct one which requires Θ(n2) inter-strip search time 

in the DP-DSL approach. In Fig. 7, points p1, …, pr are 

placed on slightly descending vectors in strips SoP2 to 

SoPm, and pr+1, …, pn are arranged from left to right in 

SoP1. These latter (pi, i > r) further fulfil the following 

conditions.  

 

1. In each SoPj, j > 1, distances to pi descend from left 

to right along the bold line segment (the nearest point 

to pi is the rightmost and the bottommost one).  

2. pu  SoPj+1, pv  SoPj, j > 1  |pi pu| < |pi pv| i.e. upper 

bold segments are closer to pi than lower ones. 

3. Point pi+1 is closer to any point in Sr+1 than to pi.  

 

We use auxiliary pairs of circular arcs to graphically 

emphasize the above conditions 1 and 2. The left and right 

arc in each pair are centred in pn and pr+1, respectively. The 

third condition is fulfilled by halving the horizontal 

distance between the query point and the farthest target 

point candidate pFAR from Sr+1 in each iteration. For each 

point from SoP1, all r points from Sr+1 have to be examined 

until the nearest point pNEAR is found, thus the total time is 

raised for Θ((n – r)r). Selection r  n/2 obviously leads to 

Θ(n2) time. Note that SoP1 represents a line strip in the DP-

DSL approach and thus it is allowed to contain O(n) 

points. Anyway, x-coordinates of pr+1, …, pn–1 in the 

considered example represent a geometric progression 

with ratio 2. Even with relatively low n and really small d, 

the exponential growth quickly produces x-coordinates 

out of the range of the IEEE 754 floating-point 

specification. If we choose d = 1, n = 1000, r = 500 and 

x501 = 0, for example, then we get x1000 = 2499  1.6*10150, 

which is usually far beyond the expected range in 

industrial, GIS and other practical applications. 

 

Phase HT-DSL DP-DSL 

Construction   

Strip identification O(n) O(n log n) 

Point insertion Θ(n log n) Θ(n log n) 

DSL splitting 0 O(n) 

Maintenance of Borders 0 O(n log n) 

Quering   

Local search Θ(n2) Θ(nn) 

Inter-strip search Θ(n2) Θ(n2) 

Table 2: Worst-case time complexities of particular 

phases in the HT-DSL and DP-DSL approach. 

 

 

Figure 7: Construction of the Θ(n2) time example based on 

geometric progression. 

Note that the total local search time of the DP-DSL 

approach could be improved from O(nn) to O(n log n) by 

splitting the strips of size q = O(log n) instead of current q 

= 3n. Although this change does not critically increase 

theoretical worst-case time complexities of other phases, 

it usually results in slower practical performance due to 

the increased number of DSL splits and initial positioning 

operations in much more DSLs during the inter-strip 

search. 
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3.2 DP-4DSLs approach 

We have recently developed an engineering solution 

which handles the considered problematic examples in the 

desired (optimal) time bounds. It additionally performs the 

vertical DP. In each strip, two orthogonal DSLs are 

constructed, the horizontal one sorted by the x-coordinate, 

and the vertical one sorted by the y-coordinate. Each point 

is therefore placed into four DSLs: XH-DSL (also in the 

DP-DSL approach) and YH-DSL are assigned to each 

horizontal strip, and XV-DSL and YV-DSL are 

constructed in each vertical strip (see Fig. 8). Note that the 

strip splitting threshold can be found by help of the 

orthogonal DSL in a quicker way than with the 

aforementioned SELECT algorithm. 

In each iteration of the local search, the method 

performs one move in each DSL which are all addressing 

the same radius d. The nearest point is found when the first 

DSL (the winner) examines all the points within the 

distance d around the query point. We have not managed 

to theoretically prove optimal time complexity but the 

performance in the considered cases (I to VI in Table 3) 

appears promising.   

 

• The cases I and II were already considered in Table 1. 

In the DP-4DSLs approach, the nearest-point of any 

point p is its direct predecessor in the YH-DSL. The 

total local search and inter-strip times are both Θ(n) 

and thus the total time Θ(n log n) is determined by the 

construction phase.  

• In the ladder example rotated 90 degrees (case III), 

the local search in the HT-DSL and the DP-DSL 

approach examines at most two points, but the inter-

strip search traverses Θ(n) strips for half of the query 

points, resulting in Θ(nn) total time. In the DP-

4DSLs approach, XV-DSL has the same role as YH-

DSL has in cases I and II, resulting in Θ(n log n) total 

time.  

• Case IV was addressed by the HT-DSL and DP-DSL 

approach in Section 3.1 already. In the DP-4DSLs 

approach, however, XV-DSL provides O(1) local 

search and inter-strip search times and thus the total 

time Θ(n log n) is determined by the construction 

phase.  

• In case V where the configuration from case IV is 

rotated 90 degrees, YH-DSL has the same role as XV-

DSL has in case IV, and optimal Θ(n log n) is again 

achieved. For the HT-DSL and the DP-DSL 

approaches, the same conclusions can be made as in 

case II. 

• “Regular” cases (VI) refer to those configurations, 

where an optimal Θ(n log n) time complexity is 

expected (see Fig. 5 and Table 1) within both, HT-

DSL and DP-DSL approach. Of course, the same 

optimal time complexity is expected by the DP-

4DSLs approach because the winner can either be 

XH-DSL (also used in the HT-DSL and DP-DSL 

approaches) or some other DSL outperforming XH-

DSL. Note that the HT-DSL and DP-DSL approaches 

usually outperform the DP-4DSLs approach in 

“regular” cases as maintenance of two partitions and 

four DSLs is quite expensive. 

• Note that the remaining YV-DSL, which is not met in 

the considered examples, is also necessary. It is for 

example the winner if a “regular” case won by XH-

DSL is rotated 90 degrees.  

 

 

Figure 8: A query point (filled grey) is in four DSLs: a) 

XH-DSL, b) YH-DSL, c) YV-DSL, and d) XV-DSL. 

 

Case HT-DSL DP-DSL DP-4DSLs Winner 

I Θ(n2) Θ(nn) Θ(n log n) YH 

II Θ(nn) Θ(nn) Θ(n log n) YH 

III Θ(nn) Θ(nn) Θ(n log n) XV 

IV Θ(n2) Θ(n2) Θ(n log n) XV 

V Θ(nn) Θ(nn) Θ(n log n) YH 

VI Θ(n log n) Θ(n log n) Θ(n log n) various 

Table 3: Comparison of the three approaches in the 

considered cases: I – ladder with an isolated point, II – 

ladder, III – ladder rotated 90 degrees, IV – geometric-

progression-based case from Fig. 7, V – case from Fig. 7 

rotated 90 degrees, and VI – “regular case”. 

4 Conclusion 
The paper considers a new (DP-DSL) approach to the 

incremental nearest-point search in 2-D. It guarantees 

Θ(n) interval strips, each containing Θ(n) points and, 

therefore, successfully prevents situations with over-

populated interval strips and decreases the total local 

search time from O(n2) to O(n n). In our opinion, this is 

an important acceleration, although the algorithm still fails 

to achieve an optimal O(n log n) time performance 

characteristic for the preliminary points arrangement 

approach. In addition, examples can be constructed 

(although hardly met in practice) which, just as the 

“traditional” HT-DSL approach still achieve quadratic 

inter-strip search time. The DP-4DSLs variant seems to 

solve the considered problematic examples in optimal 

time, but a formal proof is still missing. Construction of 

the Voronoi diagram on Θ(n) points and utilization of 
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two perpendicular DSLs in each Voronoi cell could have 

a potential, but one should first prove that such dynamic 

partition is generally possible, and then provide an 

efficient region splitting algorithm.  
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