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Special cases of the edge disjoint realizations of two tree degree sequences are considered in this paper. We
show that if there is no node which have degree one in both degree sequences, then they always have edge-
disjoint caterpillar realizations. By using a probabilistic method, we prove that two tree degree sequences
always have edge-disjoint realizations if each vertex is a leaf in at least one of the trees. We also show that
the edge-disjoint realization problem is in P for an arbitrary number of tree sequences with the property
that each vertex is a non-leaf in at most one of the trees.
On the other hand, we show that the following problem is already NP-complete: given two graphical
degree sequences D1 and D2 such that D2 is a tree degree sequence, decide if there exist edge-disjoint
realizations of D1 and D2 where the realization of D2 does not need to be a tree.
Finally, we show that efficient approximations for the number of solutions as well as an almost uniform
sampler exist for two tree degree sequences if each vertex is a leaf in at least one of the trees.

Povzetek: V članku so obravnavani posebni primeri povezavno-disjunktnih realizaciji dveh zaporedji
stopenj dreves. Pokazano je, da, če ni vozlišča stopnje ena v obeh zaporedjih, potem imata zaporedji
vedno povezavno- disjunktni gosenični realizaciji. Pokazan je tudi primer, ko je problem NP -poln.

1 Introduction

Packing degree sequences is related to discrete tomogra-
phy. The central problem of tomography is to reconstruct
spatial objects from lower dimensional projections. The
discrete 2D version is to reconstruct a colored grid from
vertical and horizontal projections. In the simplest version,
this problem is to reconstruct the coloring of an n×m grid
with the requirement that each row and column has a spe-
cific number of entries for each color. Such colored matrix

can be considered as a factorization of the complete bipar-
tite graph Kn,m. Indeed, for each color ci, the 0-1 matrix
of size n × m obtained by replacing ci by 1 and all other
colors by 0 is an adjacency matrix of a simple bipartite
graph such that the disjoint union of these simple graphs
is Kn,m. The prescribed number of entries for each color
are the degrees of the simple bipartite graphs. Therefore,
an equivalent problem is to give a factorization of the com-
plete bipartite graph into subgraphs with prescribed degree
sequences.
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It is also possible to consider the non-bipartite version of
the edge-disjoint realization problem above. Obviously, the
sum of the degrees for each vertex must be n− 1 when the
complete graph Kn is factorized. Therefore, if there are
k degree sequences, the last degree sequence is uniquely
determined by the first k− 1 degree sequences. When k =
2, the problem is reduced to the degree sequence problem,
and can be solved in polynomial time [3, 4]. Unfortunately
the problem becomes NP-complete already for k = 3 [1].
However, special cases are polynomially solvable. Such a
special case is when one of the degree sequences is almost
regular, that is, any two degrees differ by at most 1 [5].

In this paper we consider the case when k = 3, and
two of the degree sequences are tree degree sequences. It
was already known that this case is tractable [6]. Here we
present a new result considering special, caterpillar real-
izations. Another alternative proof is given for a special
subclass of pairs of tree degree sequences that can be ex-
tended to an arbitrary number of sequences. The size of the
solution space and sampling from it is also discussed. As
a negative result, we show that deciding the existence of
edge-disjoint realizations for two degree sequencesD1 and
D2 is NP-complete even if D2 is a tree degree sequence
(but its realization does not have to be a tree).

2 Preliminaries
In this section we give the definitions and lemmas needed
to state the theorems. The central subject of study in this
paper is the edge-disjoint realization problem.

Definition 1. A degree sequence D = (d1, . . . , dn) is
a series of non-negative integers. A degree sequence
is graphical if there is a vertex labeled simple graph
G = (V,E) with V = {v1, . . . , vn} in which the de-
gree of vertex vi is exactly di for i = 1, . . . , n. Such
graph G is called a realization of D. The edge-disjoint
realization problem is the following: given a c × n
degree matrix D = {(d1,1, . . . , d1,n), (d2,1, . . . , d2,n),
. . . , (dc,1, . . . , dc,n)}, in which each row of the matrix is
a degree sequence, decide if there is an ensemble of edge-
disjoint realizations of the degree sequences. Such a set of
edge-disjoint graphs is called a realization of the degree
matrix. Given two degree sequences D = (d1, . . . , dn)
and F = (f1, . . . , fn), their sum is defined as D + F =
(d1 + f1, . . . , dn + fn).

For sake of completeness, we define tree degree se-
quences, path sequences and caterpillars.

Definition 2. Let D = (d1, . . . , dn) be a degree sequence.
Then D is called a tree sequence if

∑n
i=1 di = 2n− 2 and

each degree is positive. If all of the degrees are 2 except
two of them which are 1, then D is called a path sequence.
A tree is called a caterpillar if its non-leaf vertices span a
path.

We will use the following complexity classes later on.

Definition 3. A decision problem is in NP if a non-
deterministic Turing Machine can solve it in polynomial
time. An equivalent definition is that a witness proving the
“yes” answer to the question can be verified in polynomial
time. A counting problem is in #P if it asks for the num-
ber of witnesses of a problem in NP. A counting problem
in #P is in FP if there is a polynomial running time al-
gorithm which gives the solution. It is #P-complete if any
problem in #P can be reduced to it by a polynomial-time
counting reduction.

Definition 4. A counting problem in #P is in FPRAS
(Fully Polynomial Randomized Approximation Scheme) if
there exists a randomized algorithm such that for any prob-
lem instance x and ε, δ > 0, it generates an approximation
f̂ for the solution f , satisfying

P

(
f

1 + ε
≤ f̂ ≤ (1 + ε) · f

)
≥ 1− δ,

and the algorithm has a time complexity bounded by a poly-
nomial of |x|, 1/ε and − log(δ).

The total variational distance dTV (p, π) between two
discrete distributions P and π over the set X is defined as

dTV (p, π) :=
1

2

∑
x∈X
|p(x)− π(x)|

Definition 5. A counting problem in #P is in FPAUS
(Fully Polynomial Almost Uniform Sampler) if there exists
a randomized algorithm such that for any instance x and
ε > 0, it generates a random element of the solution space
following a distribution P satisfying

dTV (p, U) ≤ ε,

whereU is the uniform distribution over the solution space,
and the algorithm has a time complexity bounded by a poly-
nomial of |x| and − log(ε).

The following technical lemma will be used later for
constructing edge-disjoint caterpillar realizations.

Lemma 1. For n ≥ 4, there are two edge-disjoint Hamilto-
nian paths in the complete graph Kn whose ends are pair-
wise different.

Proof. Let V = {v1, . . . , vn}, and let the first Hamiltonian
path be v1, v2, v3 . . . , vn. We are going to show by induc-
tion that there is a second Hamiltonian path H starting at
v2, ending at v3 and using no edge between consecutive in-
tegers. For n = 4, the path H = v2, v4, v1, v3 does the job.
Suppose that n > 4 and that we have a path H ′ on vertices
v1, . . . , vn−1 between v2 and v3. Since the path has at least
three edges, there is an edge vivj for which i, j < n − 1.
Replace this edge by edges vivn and vnvj for getting the
desired path H .
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3 Packing trees
First we consider the problem of edge-disjoint realization
of two tree degree sequences without common leaves.

Theorem 2. Let D = (d1, . . . , dn) and F = (f1, . . . , fn)
be two tree degree sequences such that mini{di + fi} ≥ 3.
Then D and F have edge-disjoint caterpillar realizations.

Proof. The proof goes by induction on n. Observe that the
smallest possible n is 4 to accommodate at least 4 = 2 · 2
leaves (note that each tree has at least two leaves). For n =
4, the only possible pair of degree sequences is (2, 2, 1, 1)
and (1, 1, 2, 2). By Lemma 1, these sequences have edge-
disjoint realizations.

If n > 4 and both D and F are path sequences, then
there exists edge-disjoint Hamiltonian paths, according to
Lemma 1.

So we may suppose that at least one of the degree se-
quences is not a path sequence. As the sum of the degrees
in D + F is 4n − 4, there are at least four indices where
dj + fj = 3. It is not difficult to see that we can select
indices i and j such that, possibly after interchanging the
roles of D and F , we have di ≥ 3, dj = 1 and fj = 2.

Modify D and F by removing dj and fj and decreasing
di by 1. This modifiedD′ and F ′ are tree degree sequences
without common leaves on n − 1 vertices, therefore, by
induction, D′ and F ′ have edge-disjoint caterpillar realiza-
tions T ′1 and T ′2, respectively. Modify T ′1 and T ′2 as follows.
Add back vertex vj and connect it to vertex vi in T ′1. The
tree T1 thus arising is a realization of D. Take a path P in
T ′2 containing all non-leaf vertices and two leaves. Observe
that P has at least 3 edges as otherwise F has n− 2 leaves,
soD has only two, contradicting to di ≥ 3. Hence P has an
edge vkv` such that k 6= i and ` 6= i. For constructing T2,
replace edge vkv` of T ′2 by two edges, vkvj and vjv`. The
tree T2 thus obtained is a caterpillar, edge-disjoint from T1
and is a realization of F .

The theorem implicitly states that if two tree degree se-
quences do not share common leaves then their sum is
graphical. If the two trees have common leaves, their
sum is not necessarily graphical as shown by the example
D = (2, 1, 1) and F = (2, 1, 1). Observe that the largest
degree in D + F is 4, and there are only 3 vertices.

On the other hand, if the sum of the two sequences hap-
pens to be graphical, then they also have edge-disjoint re-
alizations, as was shown by Kundu in [6].

Theorem 3 ([6]). Let D = (d1, . . . , dn) and F = (f1,
. . . , fn) be two tree degree sequences. Then there exist
edge-disjoint tree realizations of D and F if and only if
D + F is graphical.

However, there are tree degree sequences that have edge-
disjoint tree realizations but do not have edge-disjoint
caterpillar realizations. For example, consider the tree de-
gree sequences

D = (5, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1)

Figure 1: Edge-disjoint realization of two degree se-
quences, both of them are (5, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1)

.

and
F = (5, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1).

According to Theorem 3, these sequences have edge-
disjoint realizations as their sum is graphical (see Fig. 1).
We claim that they do not have edge-disjoint caterpillar re-
alizations. To see this, observe that in any caterpillar real-
ization, the degree 5 vertices must be connected to at least
3 leaves. However, there are only 5 vertices that are leaves
in any of the trees, showing that any pair of caterpillar re-
alizations will share at least one edge.

Theorem 2 considered the case when the leaf vertices of
the degree sequences do not coincide. Now we turn to the
opposite end, namely when each vertex is a leaf in at least
one of the sequences.

Theorem 4. Let D = (d1, . . . , dn) and F = (f1, . . . , fn)
be tree degree sequences such that min(di, fi) = 1 for all i.
Let T1 and T2 be random realizations ofD andF uniformly
distributed. Then the expected number of common edges of
T1 and T2 is 1.

Proof. The proof is based on the following lemma.

Lemma 5. Let T be a random realization of the tree de-
gree sequence D = (d1, . . . , dn) (where n ≥ 3). Then the
probability of having an edge between vi and vj is

di + dj − 2

n− 2
.

Proof. It is well known that the number of trees with a
given degree sequence is

(n− 2)!∏n
k=1(dk − 1)!

. (1)

Let T ′ denote those trees in which vi and vj are adjacent.
Let f be a mapping from T ′ to the set of trees with degree
sequence

(d1, . . . , di−1, di+1, . . . , dj−1, dj+1, . . . , dn, di + dj − 2)
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obtained by joining vi and vj to a common vertex.
The function f is surjective, and each tree is an image(
di+dj−2
di−1

)
times. Therefore the number of trees in which

vi is adjacent to vj is

(n−3)!
(di+dj−3)!

∏
k 6=i,j(dk−1)!

(di+dj−2)!
(di−1)!(dj−1)! =

(di+dj−2)(n−3)!∏n
k=1(dk−1)!

. (2)

The probability that vi is adjacent to vj is the ratio of (2)
and (1), which is indeed

di + dj − 2

n− 2
,

thus concluding the proof of the lemma.

Now we turn to the proof of the theorem. Let D and F
be degree sequences satisfying that each vertex is a leaf in
at least one of the trees. Define

A := {i | di > 1 ∧ fi = 1}, and
B := {i | di = 1 ∧ fi > 1}.

Note that there might be parallel edges in the two trees only
between these two sets. The expected number of parallel
edges is then∑

i∈A
∑
j∈B

(di−1)(fj−1)
(n−2)2 =

∑
i∈A

di−1
n−2

∑
j∈B

fj−1
n−2 =∑n

i=1
di−1
n−2

∑n
j=1

fj−1
n−2 = 1,

since di = 1 for all i ∈ Ā, fj = 1 for all j ∈ B̄, and
the sum of the degrees decreased by 1 is n− 2 for any tree
degree sequence. This finishes the proof of the theorem.

Theorem 4 implies a characterization of realizability for
a subclass of tree degree sequences.

Corollary 6. Let D = (d1, . . . , dn) and F = (f1, . . . , fn)
be tree degree sequences such that each vertex is a leaf in
at least one of them. Then D and F have edge-disjoint tree
realizations if and only if di < n − 1 and fi < n − 1 for
all i.

Proof. If maxi{di} = n − 1 or maxi{fi} = n − 1 then
D + F is not graphical. On the other hand, if none of the
trees is a star, then there are four distinct indices i1, i2, j1
and j2 such that i1, i2 ∈ A and j1, j2 ∈ B. Then there
exists a pair of trees T1 and T2 such that both trees con-
tain edges (vi1 , vj1) and (vi2 , vj2) and T1 realizes D while
T2 realizes F . Indeed, the degree 1 vertices can be con-
nected to any of the non-leaf vertices. This means that the
two sequences have realizations having at least 2 common
edges, which is above the expected value. Hence there must
also exist a realization with less common edges than the
expected number, which is 1. That is, there exists an edge-
disjoint realization of the two sequences, thus concluding
the proof.

This theorem will be useful also at generating random
realizations, see the next section.

Similar theorem holds for more tree sequences as well.
Let us fix again V = {v1, . . . , vn}. We need the following
technical preliminary lemma.

Lemma 7. Let D = (d1, . . . , dn) be a tree degree se-
quence, n > m > 2 and U = {vi | di > 1}. Suppose
V1, . . . , Vm−1 are pairwise disjoint sets in L = V \ U .
Suppose further that |U | > 1, |V1| > 1, . . . , |Vm−1| > 1
and di ≤ n −m for all i. Then there is a tree T realizing
D such that its restriction to U ∪ Vj is a non-star tree for
all j.

Proof. For any tree realization T , its restriction to U∪Vj is
a tree because outside U there are only leaves. In the case
|U | ≥ 4 we claim that there is a tree realization T such that
its restriction to U is not a star. Indeed, if T restricted to
U is a star centered at u ∈ U , then, by the degree bound,
there is a leafw ∈ L not connected to u. Let u1 ∈ U denote
the unique neighbor of w in the tree, and let u2 be a third
vertex of U . Replacing edges uu2 and u1w by edges u1u2
and uw gives another tree realization T whose restriction
to U is not a star.

For the case |U | = 2, let U = {vi, vj}. Connect first vi
to vj . Now di + dj = n, so di ≥ m and dj ≥ m. For each
k ≤ m− 1, connect one vertex of Vk to vi and another one
to vj . The remaining leaves in L can be distributed easily:
connect any di −m of them to vi and the remainder to vj ,
giving the aimed tree realization.

Finally suppose U = {vi, vj , vk}. We may also suppose
that 2 ≤ di ≤ dj ≤ dk. Connect first vi and vj to vk. It
is easy to connect vertices of L to U in such a way that for
each ` ≤ m − 1, at least one vertex of V` is connected to
either vj or vk.

Theorem 8. Let D1, D2, . . . , Dm be tree degree se-
quences with Di = di,1, di,2, . . . , di,n such that each ver-
tex is a leaf in all except at most one of them. Then
D1, D2, . . . , Dm have edge-disjoint realizations if and
only if maxi,j{di,j} ≤ n−m.

Proof. Necessity is clear as D1 + D2 + · · · + Dm is not
graphical if maxi,j{di,j} > n−m.

The statement is trivial when m = 1. If m = 2 then it is
equivalent to Corollary 6, so we may suppose m > 2.

We give a constructive proof for the other direction. First
a trial solution is built which might contain parallel edges,
then these parallel edges are eliminated to get an edge-
disjoint realization.

Let Vi denote the subset of vertices on which the degrees
in Di are larger than 1. Note that {V1, V2, . . . , Vm} forms
a subpartition of V and |Vi| ≥ 2 for each i = 1, . . . ,m.
For a degree sequence Di, construct a trial tree T̃i by using
Lemma 7, which ensures that the subtree on vertices Vi∪Vk
is a non-star tree for any k 6= i.

From the trial solution, which might contain several par-
allel edges, a final solution is built in the following way.
While there exists a pair of indexes (i, k) such that there
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is one or more parallel edges between Vi and Vk, do the
following. Let T̃i,k denote the subtree of the tree T̃i on
vertices Vi ∪ Vk and let D̃i,k denote its degree sequence.
By Corollary 6, D̃i,k and D̃k,i have edge-disjoint tree real-
izations. Replace T̃i,k and T̃k,i by such realizations. This
removes all parallel edges between Vi and Vk because T̃j
has no edge between these sets if j 6= i, j 6= k.

4 Counting and sampling
realizations

Since typically there are more than one realizations when a
realization exists, and typically the number of realizations
might grow exponentially, it is also a computational chal-
lenge to estimate their number and/or sample almost uni-
formly a solution. Here we prove the following theorem.

Theorem 9. Let D = (d1, . . . , dn) and F = (f1, . . . , fn)
be two tree degree sequences such that each vertex is a leaf
in at least one of the trees. Furthermore, assume that none
of the trees is a star. Then there is an FPRAS for estimating
the number of disjoint realizations and there is an FPAUS
for almost uniformly sampling realizations.

Proof. This theorem is based on Theorem 4. As we dis-
cussed, there are random trees with at least two parallel
edges. The number of pair of trees containing parallel
edges (vi1 , vj1) and (vi2 , vj2) such that di1 , di2 > 1 and
fj1 , fj2 > 1 is

(n− 4)!

(di1 − 2)!(di2 − 2)!
∏
k 6=i1,i2(dk − 1)!

·

(n− 4)!

(dj1 − 2)!(dj2 − 2)!
∏
k 6=j1,j2(fk − 1)!

. (3)

Therefore, at least the same number of pair of trees have
no parallel edges (that is, are edge-disjoint realizations of
the degree sequences) to get the expectation 1 for the num-
ber of parallel edges. Therefore, the probability that two
random trees will be edge-disjoint is at least

(di1 − 1)(di2 − 1)(fj1 − 1)(fj2 − 1)

(n− 2)2(n− 3)2
.

It follows from basic probabilistic arguments that an
FPRAS algorithm can be designed based on this property.
Indeed, let ξ be the indicator variable that a random pair
of trees are edge-disjoint realizations. Then the number of
edge-disjoint realizations is

E[ξ]
(n− 2)!∏n
k=1(di − 1)!

(n− 2)!∏n
k=1(fi − 1)!

.

Furthermore, we know that

E[ξ] ≥ (di1 − 1)(di2 − 1)(fj1 − 1)(fj2 − 1)

(n− 2)2(n− 3)2
.

Uniformly distributed random trees with a prescribed de-
gree sequence can be generated in polynomial time based
on the fact that the probability that a given leaf is connected
to a vertex with degree di is

di − 1

n− 2
.

A uniformly distributed tree can be generated by randomly
selecting a neighbor of a given leaf, then generating a ran-
dom tree for the remaining degree sequence. Equivalently,
the trees with a prescribed degree sequence can be encoded
by the Prüffer codes in which the index i appears exactly
di − 1 times. Uniformly generating such Prüffer codes is
an elementary computational task.

Therefore, random pair of trees can be generated in poly-
nomial time, and it is easy to check whether or not they are
edge-disjoint realizations. Such sampling of random trees
provide an unbiased estimation for the expectation of the
indicator variable ξ. Indeed, if Xi is 1 if the ith pair of
random trees are edge-disjoint and 0 otherwise, then the
random variable

Ym :=

m∑
i=1

Xi

follows a binomial distribution with parameter p = E[ξ]
and expectation mE[ξ]. The tails of the binomial distribu-
tions can be bounded by the Chernoff’s inequality:

P (Ym ≤ mp(1−ε)) ≤ exp
(
− 1

2p

(mp−mp(1− ε))2

m

)
.

This should be bounded by δ
2 (the other half δ error will go

to the other tail)

exp

(
− 1

2p

(mp−mp(1− ε))2

m

)
≤ δ

2
. (4)

Solving Equation 4, we get

m ≥
−2 log

(
δ
2

)
pε2

.

For the upper tail, we can also use the Chernoff’s inequal-
ity, just replacing P with 1 − p and the upper threshold
mp(1 + ε) with m−mp(1 + ε):

P (Ym ≥ mp(1 + ε)) ≤

exp
(
− (m(1−p)−(m−mp(1+ε)))2

2(1−p)m

)
.

Upper bounding this with δ
2 and solving the inequality, we

get that

m ≥
−2(1− p) log

(
δ
2

)
p2ε2

.

Since 1
p = O(n4), the necessary number of samples is

indeed polynomial with the size of the problem, 1
e and

− log(δ). Furthermore, one sample can be generated in
polynomial time, therefore this algorithm is indeed an
FPRAS.
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It is also well known that an FPAUS algorithm can be de-
signed in this case. The FPAUS algorithm generate − log(ε)

p
pair of random trees. If any of them is an edge-disjoint re-
alization, then the algorithm returns with it. Otherwise it
generates an arbitrary realization and returns with it.

This is indeed an FPAUS algorithm, since any random
pair of trees which are edge-disjoint come from sharp the
uniform distribution of the solutions. The probability that
there will be no edge-disjoint pair of trees in m number of
samples is

(1− p)m.

This probability is not larger than ε. Indeed,

(1− p)
− log(ε)

p ≤ ε,

since
− log(ε)

p
log(1− p) ≤ log(ε)

because
− log(1− p) ≥ p.

Namely, the algorithm generates realizations from a distri-
bution which is the convex combination (1 − ε′)U + ε′π,
where ε′ ≤ ε, U is the uniform distribution and π is an
arbitrary distribution. However, the variational distance of
this distribution from the uniform one is

dTV (U, (1− ε′)U + ε′π) =
1
2

∑
x |U(x)− ((1− ε′)U(x) + ε′π(x)| =
ε′ 12
∑
x |U(x)− π(x)| ≤ ε′ ≤ ε.

Since one sample can be generated in polynomial time, and
the total number of samples is polynomial with the size
of the problem and − log(ε), this algorithm is indeed and
FPAUS.

It remains an open question whether or not similar theo-
rems exist for the case when the tree degree sequences have
common high degrees. Also it is open if exact counting of
the edge-disjoint solutions is possible in polynomial time,
although the natural conjecture is that this counting prob-
lem is #P-complete.

5 A complexity result
What can we say when only one of the two degree se-
quences is a tree degree sequence and the other is arbitrary?
Unfortunately, we have a negative result here.

Theorem 10. It is NP-complete to decide if a tree degree
sequence and an arbitrary degree sequence have an edge-
disjoint realization (in which the tree degree sequence does
not necessarily have to be represented by a tree).

Proof. By [1], it is NP-complete to decide if two bipartite
degree sequences has edge-disjoint realizations. We have
the following observations.

Claim 1. A bipartite degree sequence pair

D = (d1,1, . . . , d1,n1
), (d2,1, . . . , d2,n2

)

and
F = (f1,1, . . . , f1,n1), (f2,1, . . . , f2,n2)

has an edge disjoint realization if and only if the simple
degree sequence pair

D′ = (d1,1 + n1 − 1, . . . , d1,n1
+ n1 − 1, d2,1, . . . , d2,n2

)

and

F ′ = (f1,1, . . . , f1,n1
, f2,1 + n2 − 1, . . . , f2,n2

+ n2 − 1)

has an edge-disjoint realization.

Proof. If an edge-disjoint bipartite realization of D and F
is given, then the complete graph on the first vertex class
can be added to the first realization and the complete graph
on the second vertex class can be added to the second re-
alization to get a (now non-bipartite) realization of D′ and
F ′. On the other hand, it is easy to see that any realization
ofD′ containsKn1

on the first n1 vertices, and any realiza-
tion of F ′ contains Kn2 on the last n2 vertices. Given an
edge-disjoint realization of D′ and F ′, deleting Kn1 from
D′ and Kn2

from F ′ yields an edge-disjoint realization of
D and F .

Claim 2. The degree sequence pair D = (d1, . . . , dn) and
F = (f1, . . . , fn) has an edge-disjoint realization if and
only if the degree sequence pair D′ = (d1 + 1, . . . , dn +
1, n) and F ′ = (f1, . . . , fn, 0) has an edge-disjoint real-
ization.

Proof. Let G1 and G2 be an edge-disjoint realization of D
and F . Then add a vertex vn+1 to G1, and connect it to
all the other vertices to get a realization of D′. Add an
isolated vertex vn+1 to G2 to get a realization of F ′. These
realizations of D′ and F ′ are edge-disjoint. On the other
hand, in any realization of D′, vn+1 is connected to all the
other vertices. If edge-disjoint realizations of D′ and F ′

are given, delete vn+1 from both realizations to get edge-
disjoint realizations of D and F .

Claim 3. The degree sequence pair D = (d1, . . . , dn) and
F = (f1, . . . , fn) has an edge-disjoint realization if and
only if the degree sequence pair D′ = (d1, . . . , dn, 1, 1)
and F ′ = (f1 + 1, . . . , fn + 1, n, 0) has an edge-disjoint
realization.

Proof. Any edge-disjoint realization G1 and G2 of D and
F can be extended to an edge-disjoint realization ofD′ and
F ′ by adding two vertices vn+1 and vn+2, and then con-
necting vn+1 to all v1, . . . , vn in G2 and connecting vn+1

and vn+2 in G1. On the other hand, in any edge-disjoint
realizations G′1 and G′2 of D′ and F ′, vn+1 is connected to
all v1, . . . , vn in G′2, therefore, vn+1 must be connected to
vn+2 in G′1. Therefore deleting vn+1 and vn+2 yields an
edge-disjoint realization of D and F .
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We can use Claim 1 to prove that it is NP-complete to
decide if two simple degree sequences have edge-disjoint
realizations. Claim 2 shows that it is NP-complete to de-
cide if two degree sequences have edge-disjoint realiza-
tions such that one of the degree sequences does not have
0 degrees. Finally, Claim 3 can be used to iteratively trans-
form any D degree sequence (that already does not have a
0 degree) into a tree degree sequence. Indeed, in each step,
we add two vertices toD and extend the sum of the degrees
only by 2. Therefore in a polynomial number of steps, we
get a degree sequence D′ in which the sum of the degrees
is exactly twice the number of vertices minus 2. Therefore
it follows that given any bipartite degree sequences D and
F , we can construct in polynomial time two simple degree
sequences D′ and F ′ such that D and F have edge-disjoint
realizations if and only if D′ and F ′ have edge-disjoint re-
alizations, furthermore, D′ is a tree degree sequence.

6 Discussion and conclusions

In this paper, we considered packing tree degree sequences.
When there are no common leaves, there are always edge-
disjoint caterpillar realizations. On the other hand, there
might not be edge-disjoint caterpillar realizations when
there are common leaves, even if otherwise there are edge-
disjoint tree realizations.

When there are no common high degree vertices, there
are edge-disjoint tree realizations if and only if none of the
degree sequences is a degree sequence of a star. Similar
theorem exists for arbitrary number of trees, and it is easy
to decide if arbitrary number of tree degree sequences with-
out common high degrees have edge-disjoint realizations.

It is also known [5] that a degree sequence and an almost
regular degree sequence have an edge-disjoint realization
if and only if their sum is graphical. This raises the natu-
ral question if a degree sequence and a tree sequence have
edge-disjoint realizations if and only if their sum is graph-
ical. We showed that the answer is no to this question, and
actually it is NP-complete to decide if an arbitrary degree
sequence and a tree degree sequence have edge-disjoint re-
alizations.

We also showed hot to approximately count and sample
edge-disjoint tree realizations with prescribed degrees. We
proved that this is possible if there are no common high de-
gree vertices. However, when the two degree sequences
have common high degree vertices then the problem re-
mains open.
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