https://doi.org/10.31449/inf.v43i1.2674

Informatica 43 (2019) 3-10 3

Implementation and Evaluation of Algorithms with ALGator

TomaZz Dobravec

Faculty of Computer and Information Science
University of Ljubljana, Slovenia

E-mail: tomaz.dobravec @fri.uni-lj.si

Keywords: automatic algorithm testing, quality evaluation, empirical analysis

Received: October 30, 2018

In this paper we present an automatic algorithm evaluation system called ALGATOR, which was devel-
oped to facilitate the algorithm design and evaluation process. The system enables unbiased tests of the
correctness of the algorithm’s results on given test cases and comparisons of the quality of implemented
algorithms for solving various kinds of problems (e.g. sorting data, matrix multiplication, traveler sales-
man problem, shortest path problem, and the like). Within the ALGATOR one can define a problem by
specifying the problem descriptors, test sets with corresponding test cases, input parameters and output
indicators, algorithm specifications and criteria for measuring the quality of algorithms. When a user of
the system submits an algorithm for solving a given problem, ALGATOR automatically executes this algo-
rithm on predefined tests, measures the quality indicators and prepares the results to be compared with the
results of other algorithms in the system. The ALGATOR is meant to be used by algorithm developers to
perform independent quality tests for their solutions.

Povzetek: V tem delu je predstavljen sistem ALGATOR, ki omogoca izvajanje implementiranih algoritmov
na vnaprej pripravljenih testnih primerih ter ocenjevanje pravilnosti in kvalitete izvajanja. Da bi omogocili
uporabo pri reSevanju ¢im vecjega nabora problemov, smo sistem zasnovali tako, da so njegovi gradniki
(problem, algoritem, testna mnoZica, testni primer) definirani na abstrakten nacin. Pred uporabo ALGA-
TORja za reSevanje nalog konkretnega problema, administrator projekta konkretizira abstraktne entitete,
kasnejsi uporabniki (razvijalci algoritmov) pa konkretizirajo le svoje izdelke (algoritme). Izvedba testi-
ranja poteka povsem samodejno, implementirani algoritmi se poZenejo na vseh testnih mnoZicah, rezultati
testiranja (Casovni in drugi indikatorji) pa se zapiSejo v bazo in se kasneje lahko uporabijo za prikaz v

obliki grafikonov in tabel ali za analizo in primerjavo z rezultati drugih algoritmov.

1 Introduction

As written by Aho et al. in [1], “Efforts must be made to
ensure that promising algorithms discovered by the theory
community are implemented, tested and refined to the point
where they can be usefully applied in practice. [...] to in-
crease the impact of theory on key application areas”. It
is very important to develop good algorithms and theoret-
ically prove their efficiency. On the other hand, if these
algorithms do not perform well in practice, all the theoreti-
cal work is not much more than “art for art’s sake”.

From this point of view, algorithm evaluation is a very
important part of an algorithm design process. To facilitate
the implementation, execution and evaluation of the algo-
rithms and make this part of the algorithm design process as
simple as possible, the ALGATOR system was developed.
It can be used to execute an algorithm implementation on
the given predefined sets of test cases and to analyze vari-
ous indicators of the execution. Within every project of the
system user can define the problem to be solved, sets of test
cases, parameters of the input and indicators of the output
data and the criteria for the algorithm quality evaluation.
When a project is defined, any number of algorithm im-

plementations (programs) can be added. When requested,
system executes all the implemented algorithms, checks the
correctness (on a given set of tests) and compares the qual-
ity of the results. Using the ALGATOR user can add addi-
tional quality criteria, draw graphs and perform evaluations
and comparisons of defined algorithms.

1.1 A typical usage of the system

ALGATOR is a complex system in which users can per-
form various kinds of tasks - from technically demanding
(e.g., defining the properties of a project) to rather straight-
forward and simple tasks (e.g., using charts presented on
a web page to compare the quality of two algorithms). To
keep the hard job for the experts and to simplify the us-
age for the others, ALGATOR uses different user roles and
privileges, namely, a system administrator, a project admin-
istrator, a researcher and a guest. There are many different
possible ways of using the ALGATOR system but the main
common and the most perspective is the one presented in
the following. A system administrator prepares the system
by providing the hardware, installing ALGATOR software
packages, and publishing the internet address of the in-

4 Informatica 43 (2019) 3-10

stalled system. A project administrator adds a new project
and defines all the project’s properties. When the project is
completely defined and declared as public, ALGATOR au-
tomatically generates an internet subpage with the project
presentation and usage guide sections. The project admin-
istrator adds some state of the art algorithms for solving the
problem of the project, which will be used as a reference
for the evaluation process (i.e. the results of the algorithms
added by researchers will be compared with the results of
these referential algorithms). According to the rules, pre-
sented at the project’s website, a researcher adds a new al-
gorithm. ALGATOR will automatically run the new algo-
rithm on predefined tests. The researcher then checks the
correctness and compares the results of his algorithm with
the results of the other algorithms defined in the project.
The researcher can also decide to make the algorithm pub-
lic (by default, the algorithms are private and can only be
seen by the author). A guest of the system lists the re-
sults and prints the graphs and other data produced by AL-
GATOR. A guest can also perform some actions (like cus-
tomization of the presentation) that do not alter the project
configuration. At any time a guest can register to the sys-
tem and contribute as a project administrator or as a re-
searcher.

1.2 Related work

ALGATOR was created to fill the gap in the area of
algorithm evaluation process since, as far as we know,
there is no similar tool available that would offer all of
ALGATOR’s capabilities. Even though there are some
tools available on the web that allow analysis of program
execution, they have been developed with different goals,
therefore their support in the area of algorithm analysis is
not possible or it is too cumbersome. On the web, we can
find the following tools that partly cover the ALGATOR’s

functionality.
Code Profilers (JProfiler [12], JMeter
(jmeter.apache.orqg), Netbeans Profiler

(profiler.netbeans.org) and the like) can fol-
low and record a program execution indicators and they
are able to display various information about the usage of
computer resources (like time and memory). Using the
recorded data, a user can detect possible code errors and
memory leaks and perform various code optimization.
Although code profilers offer a number of different tests
and measurements, their use is not appropriate for accurate
analysis of algorithms, as they do not allow to tailor
the sets of test cases and to perform analysis based on
user-defined measurements and output indicators.

Algorithms presentation pages (like [5]) systematically
present various computer problems and practical exam-
ples, grouped into categories (e.g. searching and sorting
problems, mathematical problems, graph problems, string
problems, etc.). Besides the presentation of a wider field
for each domain, the pages usually present at least one
solution (i.e. algorithm) for each problem and offer the

T. Dobravec

possibility to upload user-defined implementations. The
emphasis of this kind of pages is mainly on educational
asspects and on presentation of problem descriptions
therefore they do not allow the independent analysis of
the algorithms using the user criteria nor do they offer the
tools to display custom-defined graphs or other statistical
information.

Problem-domain dedicated pages present a specific
problem domain (like [2] for mixed integer programming
problem and [3] for the traveler selsman problem) and they
offer tools to compare different solutions. Although these
pages are not configurable (for example, user can use only
pre-defined measurements and result indicators), they are
ideal for testing a specific solutions. The main drawback
comparing to ALGATOR is that each page covers only one
problem domain while ALGATOR aims to cover as many
areas and problems domains as possible and to present the
results in a uniform way for all of them.

Educational coding platforms (like Sphere online judge
CodeChef

(codeforces.com),

(www . spoj.com), (www.codechef.com),
CodeForces CodeFights
(codefights.com) and the like) introduce different
problems with exactly defined input and expected output.
After a user of such a platform uploads its own solution,
the system performs its execution, evaluation and ranking
according to regularity and efficiency. The essential
difference between ALGATOR and these environments
is that they offer only several predefined basic algorithm
quality criteria (like, does an algorithm return a correct
solution or not, or, how many of the given tests were
solved correctly, and the like). In addition, the purpose
of these platforms is focused on the process of learning
programming skills and not in finding an optimal solutions
for specific problems, which results in insufficient result
presentation (e.g., it is not possible to compare different
solutions using charts, plots or tables). For the purpose,
for which these pages exist (i.e. to help their users to learn
programming), they serve very good and they can be of
a great help, nevertheless for the purpose of comparing
different algorithms to solve the same problem they lack
some crucial functionalities (like fully configurable input,
output and result-presentation layer of the project) which
are supported by ALGATOR.

2 Project definition

The main task of the ALGATOR’s project administrator is
to provide the configuration files and to implement corre-
sponding Java or C++ interfaces. Besides the definition of
the output format (where the sequence of the parameters
and indicators in output file is described), the test cases,
the test sets and the algorithm structure has to be defined
precisely.

Implementation and Evaluation of Algorithms with ALGATOR

The test cases and the test sets

A test case in ALGATOR execution environment is de-
fined by a subclass of the Test Case class, which contains
data structures to hold the input and output (result) data.
Since these data structures are project-specific (i.e. each
problem needs data of its own type) the project adminis-
trator has to implement the [Project]Input and the
[Project]Output classes and prepare the correspond-
ing data structures. For example, in the data-sorting prob-
lem, the Sort Input class could be defined as presented
in Listings 1.

Listings 1.
An input of the sorting problem

public class SortInput extends AbstractInput{
// An array of data to be sorted
public int [] arrayToSort;
}

A test set contains one or more test cases and it is a min-
imal execution unit. A test set is defined by a single text
file in which every line defines one test case. The format of
these lines is project-specific and it is defined by a project
administrator. If required, additional files can be used to
specify the test cases. Again, the syntax and the semantics
of the content of these files is defined by the project ad-
ministrator. Listings 2 presents an example of the text file
defining five test cases for the data-sorting problem.

Listings 2.
Examples of test cases for the sorting problem

testl:10:INLINE:3 51 8 6 3 8 9 0 6
test2:10000:RND

test3:20000:SORTED
test4:30000:INVERSE
test5:50000:FILE:numbers.txt:16534

To iterate through the text file associated with a
given test set, ALGATOR uses the methods of the
DefaultTestSetIterator class. For each line read
from the text file the getTestCase () method of the
[Project]TestCase class is called. This method
parses the input line and creates a set of parameters
that describe the test case. Using these parameters it
calls the generateTestCase () method which cre-
ates the instance of the test case. Since the represen-
tation of test cases is project-specific, the project ad-
ministrator has to provide the correct implementation of
the getTestCase () and the generateTestCase ()
methods. All the other methods are general and they can
be used without modification. A part of an implementa-
tion of the generateTestCase () method is presented
in Listings 3.

Algorithms
The “heart” of each project are the implemented algo-

Informatica 43 (2019) 3-10 5

Listings 3.
A part of the generateTestCase () method for the
sorting problem

@Override
public SortingTestCase generateTestCase
(Variables inputParameters) {

int probSize = inputParameters.
getVariable ("N") .getIntValue () ;
String group = inputParameters.

getVariable ("Group") .getStringValue () ;

// prepare an array of integers
int [] array = new int|[probSize];
// ... and fill table according to group
switch (group) {
case "RND":
Random rnd
for (int 1
arrayl[i]
break;
case "SORTED":
for (int 1
array[i]
break;
/).
}

new Random() ;
0; i < probSize; i++)
Math.abs (rnd.nextInt ());

0; 1 < probSize; i++)
i;

// create a test case ...
SortingTestCase sortingTestCase =
new SortingTestCase();
sortingTestCase.setInput (
new SortingInput (array));
int [] expectedResultArray =
getSortedArray (array) ;
sortingTestCase.setExpectedOutput (
new SortingOutput (expectedResultArray));
// ... and return
return sortingTestCase;

rithms. Each algorithm is represented by a subclass of the
AbsAlgorithm class with the following methods:

ErrorStatus init (TestCase test). This
method takes care of the input of the algorithm; it
reads the test case and prepares the data. To enable
fast algorithm execution all expensive initial tasks
have to be done in this method. When this method is
done all the required algorithm’s input data has to be
prepared in a proper format.

void run () . In this method the execute () method
is called. The parameters of the execute () method
are project-specific and are provided by the project ad-
ministrator. ALGATOR takes the time of the execution
of the run () method as an algorithm execution time
therefore nothing else than the execute () method
call should be placed in the run () method (see List-
ings 4).

ParameterSet done () . This method collects all the
parameters and indicators of the execution and pre-
pares them in the form suitable to be written into the
output file.

The AbsAlgorithm class is abstract and
the project administrator has to provide the
[Project]AbsAlgorithm subclass with the above

6 Informatica 43 (2019) 3-10

Listings 4.
A simple implementation of the run () method

public void run() {
result = execute (sortTestCase.getInput());

}

mentioned methods implemented. Besides he has to
declare fields for input data (in these fields the input
data obtained from the test case will be stored during the
execution of the init () method) and the abstract
execute () method with appropriate number and type of
parameters. The task of the researcher is to implement a
subclass of [Project]AbsAlgorithm and implement
the execute () method. In other words, all the “dirty
job” of preparing data and collecting the results is done
by the project administrator. The researcher who wants to
provide an algorithm only has to implement one method
which returns a proper result. In the case of data-sorting
problem, an algorithm only needs to sort the array of
data; a very simple (but technically correct) algorithm for
sorting data is listed in Listings 5.

Listings 5.
A simple implementation of the algorithm

public class JavaSortAlgorithm
extends SortAbsAlgorithm {

SortOutput execute (SortInput input) {
SortOutput result = new SortOutput ();
java.util.Arrays.sort (input.arrayToSort);
result.sortedArray = input.arrayToSort;
return result;

3 Indicators of the algorithm

Since ALGATOR was designed to be used for various
kinds of problems, the criteria for measuring the quality
of algorithms are not defined as a part of the system but
they have to be defined by the project administrator. The
current version of the system enables measurements of
three different kinds of indicators: a) the indicators to
measure the speed and the quality of the algorithm (the so
called EM indicators), b) the project-specific counters to
count the usage of the parts of the algorithm’s program
code (the so called CNT indicators), and c) the counters of
the Java byte code usage (the so called JVM indicators).
These indicators are calculated with independent measure-
ments that are performed as separated tasks so they do not
interfere with one another. For example: when ALGATOR
measures time, the CNT and JVM indicators are disabled.
To perform the JVM measurements a dedicated Java
virtual machine is used.

T. Dobravec

The EM measurements.

These measurements are used to measure the time and
other project-specific indicators. All measurements of the
time are performed automatically. To provide as accurate
time indicators as possible ALGATOR tries to reduce the
influence of the uncontrolled computer activities (e.g. sud-
den increase of a system resource usage) by running each
algorithm several times. The system measures the first, the
best, the worst and the average time of the execution. The
project administrator only needs to specify the phases of al-
gorithm execution (e.g. the pre-processing phase, the main
phase, the post-processing phase, ...) and to select which
of the time indicators are to be presented as the result of
execution.

The project-specific indicators are defined by the project
administrator. They can be presented as a string or as a
number. For example, for exact algorithms, the value of
an indicator could be "OK" (is the algorithm produced the
correct result) or "NOK" (if the result of the algorithm is
not correct). For approximation algorithms the value of an
indicator could be the quality of the result (i.e. the quotient
of the correct result and the result of the algorithm).
ALGATOR produces the values of the EM indicators for
each (algorithm, test_case) pair by performing
the following steps: a) load the test case and create its
project-specific representation, b) load the algorithm (by
using the Java reflection), ¢) read the values of the test case
specific parameters, d) run the algorithm and measure its
time consumption, e) read the values of the time indicators,
f) determine the values of the project-specific indicators,
g) writes all the parameters and the indicators of the exe-
cution to the output file. Since the time indicators are na-
tively plugged into the ALGATOR system, the step f) of the
above procedure is the only step that has to be configured
by the project administrator (everything else is done auto-
matically by ALGATOR). To configure a project-specific
indicator the administrator has to provide its description in
a configuration file (defining indicators type and possible
values) and a program code to determine its value using
the test case parameters and the algorithm’s result. For ex-
ample, in the Sorting problem the administrator provides
a correctness indicator by a code as presented in Listings
6. In this code (which is a part of a done () method
that is invoked just after the execution of the algorithm)
the isArraySorted () method returns t rue if the in-
put array is sorted. The name ("Correctness") and the
type (St ring) of the indicator has to be defined in a con-
figuration file.

The CNT measurements.

The CNT measurements are used to count the usage of the
parts of the program code. This option is used to analyze
the usage of a certain system resource or to count the us-
age of the selected type of commands on the programming
language level. Using this one can, for example, measure
how many times the memory allocation functions were ex-
ecuted during the algorithm execution and the amount of

Implementation and Evaluation of Algorithms with ALGATOR

Informatica 43 (2019) 3-10 7

N ILOAD ILOAD_2 ILOAD_3 ALOAD_0 ALOAD_1 |IALOAD ISTORE IASTORE SWAP ISUB IINC IFGT IF_ICMPGE IF_ICMPGT IF_ICMPLE GOTO
100000 | 9239508 | 499996 | 399997 | 200002 | 4464950 | 3423910 | 720517 | 841040 | 420520 | 200000 | 2393781 | 199999 | 1082571 | 520519 | 1865365 | 2017806
150000 | 14428904 | 749986 | 599989 | 299998 | 6974251 | 5379311 | 1097463 | 1294944 | 647472 | 299996 | 3801442 | 299995 | 1778546 | 797469 | 2869760 | 3220434
200000 | 19845560 | 999971 | 799977 | 399992 | 9594937 | 7439695 | 1477608 | 1755252 | 877626 | 399990 | 5306397 | 399989 | 2483928 | 1077620 | 3967173 | 4517797
250000 | 25274716 | 1249991 | 999993 | 500000 | 12215690 | 9472548 | 1871566 | 2243144 | 1121572 | 499998 | 6757642 | 499997 | 3034249 | 1371570 | 5177611 | 5746952
300000 | 29881801 | 1499981 | 1199985 | 599996 | 14421988 | 11079568 | 2271201 | 2742426 | 1371213 | 599994 | 7770538 | 599993 | 3443313 | 1671209 | 6098350 | 6532629
350000 | 36067622 | 1749971 | 1399977 | 699992 | 17428304 | 13527674 | 2650302 | 3200640 | 1600320 | 699990 | 9666354 | 699989 | 4242506 | 1950314 | 7490197 | 8221377
400000 | 41593804 | 1999941 | 1599953 | 799980 | 20095356 | 15601174 | 3047066 | 3694204 | 1847102 | 799978 | 11151012 | 799977 | 5067904 | 2247090 | 8464165 | 9481895
450000 | 46857738 | 2249976 | 1799981 | 899994 | 22627953 | 17525033 | 3451449 | 4202928 | 2101464 | 899992 | 12471748 | 899991 | 5672803 | 2551459 | 9500952 |10570465
500000 | 53067612 | 2499951 | 1999961 | 999984 | 25634712 | 19928046 | 3853312 | 4706684 | 2353342 | 999982 | 14276542 | 999981 | 6187404 | 2853332 | 11109725 | 12145615

Figure 1: The number of Java bytecode instructions used by Hoare’s Quicksort algorithm while sorting integer arrays with

N =100.000...500.000 elements.

Listings 6.
Checking for the correctness of the algorithm

boolean checkOK = isArraySorted(testArray);

EIndicator checkPar = new EIndicator (
"Correctness", checkOK ? "OK" : "NOK");

indicators.addIndicator (checkPar);

the memory allocated by these calls. One can also use
CNT measurements to detect which part of the algorithm is
most frequently used. For example, if the problem in con-
cern would be data-sorting, using the CNT measurements
one could count the number of comparisons, the number
of swaps of elements and the number of recursive func-
tion calls (which are the measures that can predict the al-
gorithm execution behavior [11]). To facilitate the CNT
measurement in the project, the project administrator has to
define the names and the meaning of the counters and the
researchers have to tag the appropriate places in their code.
Everything else is done automatically by ALGATOR.

For example, if we want to count the number of swaps and
the number of comparisons performed by a sorting algo-
rithm, we would define two counters (namely, the "CMP"
and the "SWAP" counter) in a configuration of a sort-
ing problem. Additionally, to ensure a correct value of
these counters, the source code of algorithms should be
tagged, so that every code line in which a comparison of
two elements appears would be accompanied by at tag line
//@count {CMP, 1}, and a code line in which a swap of
two elements is invoked by //@count {SWAP,1}. An
example of tagged code for the BubbleSort algorithm is
presented in Listings 7.

When ALGATOR is asked to provide the counter
values, it replaces all the tags with a Java code (e.g., it
replaces a tag //Qcount{CMP, 1} with a Java code
Counters.add ("CMP", 1) ;), recompiles the source
and runs the algorithm. When the algorithm stops, AL-
GATOR collects the values of the counters and writes them
to an appropriate output file.

The JVM measurements.

An algorithm written in the Java programming language
compiles into Java byte code. An interesting option offered
by ALGATOR is the ability to count how many times each

Listings 7.
A tagged source code of the BubbleSort algorithm used to
count the number of comparisons and swaps.

public void execute (int[] data) {
for (int i=0; i<data.length; i++)
for (int j=0; j<data.length-1; Jj++) {
//@COUNT{CMP, 1}
if (data[j] > datal[j+1]) {
//@COUNT{SWAP, 1}
swap (data, i, 3J);
}
}
}
}

byte code instruction was used during the execution of an
algorithm on a given test case. To facilitate this option AL-
GATOR uses a dedicated Java virtual machine VMEP which
was developed as a part of ALGATOR project [9]. This
virtual machine [10] extends an open source virtual ma-
chine JamVM [8] and supports counting of the usage of
each bytecode instruction used during the algorithm exe-
cution. When ALGATOR is asked to provide JVM statis-
tics, it executes the algorithm in the VMEP and stores the
bytecode—usage counters that it returns. In [7] Lambert and
Power indicated that the frequency of the usage of each
byte code instruction can be used to predict the execution
time. Even though ALGATOR’s ability to count the byte
code instructions usage is quite young, we expect that the
data produced by the JVM measurements could be useful
not only for the quantitative but also the substantive analy-
sis of the algorithms.

As an usage example of the VMEP’s indicators let us
consider the Hoare’s implementation of a sorting algorithm
(i.e. a Quicksort algorithm in which the partitioning phase
uses one pivot to split a given array into two subarrays [6]).
It is known that this algorithm performs O(n logn) steps
on average to sort a given array of n elements. Running
this algorithm in ALGator leads to interesting conclusions
as presented in the following. To sort an array of integers
the Hoare’s algorithm uses only 16 (out of 202 possible)
Java bytecode instructions, namely, ILOAD, ILOAD_2,
ILOAD_3, ALOAD_O0, ALOAD_1, IALOAD, ISTORE,
IASTORE, SWAP, ISUB, IINC, IFGT, IF_ICMPGE,
IF_ICMPGT, IF_ICMPLE, and GOTO (see Figure 1).

8 Informatica 43 (2019) 3-10

Among these instructions the most common used are the
ILOAD (32%), ALOAD_1 (15%), IALOAD (12%), IINC
(8%) and GOTO (6%) instructions (an average usage of the
other instructions is less than 5%). The overall number of
all instructions used is 57, 8 * n log n, with a relative error
(for n = 100.000...1.000.000) less than 3,5%. Which
means, for example, that for n=100.000, the algorithm will
perform approximately 29 millions of java bytecode in-
structions to sort an array. As a consequence, knowing only
the size of the input array, one can predict the number of re-
quired instructions very accurately. On the other hand, this
shallow analysis can not be used to predict the execution
time of the algorithm due to a weak relation between the
number of used instructions and the time consumption. Us-
ing the results obtained on an Intel(R) Core(TM) 17-6700
CPU computer running at 3.40GHz an average quotient be-
tween the number of instructions and the execution time
(in microseconds) is 3949 (with a relative error 17.3% for
n = 100.000...1.000.000), which means that on average
the Java virtual machine performs around 4000 instructions
per microsecond (i.e. 0.25 nano second per instruction).
For more accurate analysis of the relation between the num-
ber of instructions and the execution time, we would need
to distinguish slow and fast instructions [7] with a special
attention being paid to instructions that can fetch the data
from a non-cached memory.

Listings 8.
An example of the ALGATOR’s query

queryF1Cl = FROM TestSetO
WHERE (algorithm=%) AND ComputerID=F1.C1l
SELECT Tmin AS Al;

queryF2Cl = FROM TestSetO
WHERE (algorithm=%) AND ComputerID=F2.C1l
SELECT Tmin AS A2;

FROM queryF1Cl, queryF2C1l
WHERE (algorithm=JHoare)
SELECT N, Al/A2 AS Q

4 Analyzing the results

As aresult of the algorithm execution ALGATOR produces
text output files. For each tuple (algorithm, test set, mea-
surement) one file is created; each line in this file contains
parameters and indicators of one test case.

The data in the output line is separated by semicolons
(CSV format). For efficient work with this data ALGATOR
provides the analyzer with its own query language and with
the visualization module for presenting data as graphs. For
example, to get the minimal execution times for algorithms
named JHoare and JWirth on the test set called TestSet3, a
user can run query as depicted in Figure 2.

ALGATOR query language is a powerful tool that
enables all sorts of data manipulation. An example of
a complex query to calculate the quotient of minimal

T. Dobravec

FROM TestSet3

WHERE (algorithm=)Hoare OR algorithm=)Wirth)

SELECT N,Tmin

ORDERBY N
ID Testset TestD Pass N JHoare.Tm...| JWirth.Tmin
1 TestSet3 Test-1 DONE 10000 740 72
2 TestSet3 Test-2 DONE 10000 768 788
3 TestSet3 Test-3 DONE 10000 753 768
4 TestSet3 Test-4 DONE 10000 760 771
5 TestSet3 Test-5 DONE 10000 750 807
6 TestSet3 Test-6 DONE 15000 1160 1181
7 TestSet3 Test-7 DONE 15000 1152 1182
8 TestSet3 Test-8 DONE 15000 1150 1203
9 TestSet3 Test-9 DONE 15000 1144 1245
10 TestSet3 Test-10 DONE 15000 1166 1199
11 TestSet3 Test-11 DONE 20000 1594 1583
12 TestSet3 Test-12 DONE 20000 1598 1673

Figure 2: An example of data query with result.

times for the JHoare algorithm running on two different
computers (F1.C1 and F2.C1) is presented in Listings 8.
Note that the ALGATOR system might contain several
computers that are able to execute the algorithms (such
a computer in the system is called an execution engine).
Each execution engine has its name, which comprises of
a name of a computer family and a unique name of the
computer inside this family (e.g. in the name F1.C1 the
F1 represents the family and C1 the computer name). One
family contains computers with equal hardware configu-
ration. To provide comparable results, the algorithms of a
given problem are usually run on the same computer (or
at least on computers of the same family). Nevertheless,
a researcher might additionally run algorithms on other
computers and compare the execution results as presented
in the query in Listings 8. If the computers used in this test
have different hardware configurations, the results of such
a comparison might reveal the influence of the particular
hardware to the algorithms’ behaviour.

The results of the execution can be analysed in one of the
ALGATOR’s visualization modules (one is implemented as
a web and the other as a standalone application). In these
modules a user can design queries (to produce arrays of
numerical results) and draw charts as depicted in Figure 3.

5 Conclusion

The execution part of ALGATOR [4] was developed in both
Java and C++ programming languages, therefore the algo-
rithms to be tested could be implemented in one of these
two languages. Measuring the exact execution time of the
algorithms written in Java is a challenging task since the
system can only measure real time and because there is no
way to eliminate the side effects of the Java virtual ma-
chine’s background tasks (e.g. garbage collection). To
overcome this problem, ALGATOR executes each algo-
rithm several times and reports the first, the minimal, the
maximal and the average time of execution. Comparing
and analyzing these times one can detect the influence of

Implementation and Evaluation of Algorithms with ALGATOR

Informatica 43 (2019) 3-10 9

= AlLGator 2 Problems ® control panel
Problems
Algorithms 800
JHoare CHoare Jwirth Cwirth
700
TestSets 500
TestSet2 500
400
Parameters
i 300
200
Indicators
*EM
O
1000
Filter: N>100 Count
GroupBy: N ComputeriD: F1.C1 X:

SortBy: | Tmin

=Tmin

T T T T T T T T ™
2000 3000 4000 5000 6000 7000 8000 9000 10000

M JHoare. Tmin CHoare. Tmin W JWirth.Tmin W CWirth.Tmin

¥ Data

Settings

Figure 3: The visualization module of ALGATOR.

the execution environment to the overall execution time. In
many cases this influence is negligible. Having the Java
implementation of the algorithm also has some benefits.
Namely, ALGATOR counts and generates the statistics of
the usage of the Java byte code instructions. As stated in
[7] these statistics provide enough information to be used
for the platform independent timing of the algorithms. Our
preliminary tests indicate a high correlation between the
number of used Java byte code instructions (multiplied by
the corresponding weight depending on the type of instruc-
tion) and the execution time. The ability to implement
the algorithms in both (Java and C++) programming lan-
guages, enables the researchers to compare the execution
time of both and to estimate the impact of the programming
language. ALGATOR is a testing environment, which aims
to make the testing process as easy as possible for both,
the project administrators and for the researchers. We tired
to minimize the effort that has to be used to prepare the
project and the algorithm and we think that this goal was
achieved. The biggest challenge for the project adminis-
trator is to prepare adequate test cases and to write several
lines of Java of C++ code (in an average case not more that
about 100 lines of code), while the researcher has to write
only a few lines of code to call the existing Java or C++ im-
plementation of the algorithm. All the other tasks needed
to execute the algorithm and to produce the desired indica-
tors are performed automatically by ALGATOR, therefore
the researchers can focus on the analyses of the results.
Furthermore, ALGATOR uses the same test cases for all
the algorithms of the project, therefore the researchers can
not tailor the tests to be optimal for their implementations,
which makes the results of the evaluation fair and reliable.

References

[1] A.V. Aho, D. S. Johnson, R. M. Karp, S. R. Kosaraju,
C. C. McGeoch, C. H. Papadimitriou, and P. Pevzner.
Emerging opportunities for theoretical computer sci-
ence. SIGACT News, 28(3):65-74, 1997.

[2] D. Applegate, W. Cook, S. Dash, and
M. Mevenkamp. QSopt linear programming
solver. www.math.uwaterloo.ca/ bico/qsopt, 2011.

[3] W. Cook. Concorde TSP solver.
www.math.uwaterloo.ca/tsp/concorde, 2015.

[4] T. Dobravec. ALGator - an open source
automatic algorithm evaluation system.

https://github.com/ALGatorDevel/Algator, 2018.

[5] G. F. Geeks. A computer science portal for
geeks. www.geeksforgeeks.org/fundamentals-of-
algorithms, 2018.

[6] C. A. R. Hoare.
1962.

Quicksort. Comput. J., 5:10-15,

[7] J. M. Lambert and J. F. Power. Platform indepen-
dent timing of Java virtual machine bytecode instruc-

tions. Electronic Notes in Theoretical Computer Sci-
ence, 220:79-113, 2008.

[8] R. Lougher. JamVM - an open source Java virtual
machine. jamvm.sourceforge.net, 2014.

[9] J. Nikolaj. Java virtual machine for counting the Java
bytecode usage (original title: Predelava javanskega
navideznega stroja za Stetje ukazov zloZne kode, lan-
guage: Slovene). University of Ljubljana, Faculty of
Computer and Information Science, 2014.

10 Informatica 43 (2019) 3-10

[10] J. Nikolaj. A source code of VMEP virtual machine.
github.com/nikolai5slo/jamvm, 2014.

[11] R. Segedwick. The analysis of Quicksort programs.
Acta Informatica, 7:327-355, 1977.

[12] E. Technologies. The definitive guide
to JProfiler (ebook). resources.ej-
technologies.com/jprofiler/help/doc/JProfiler.pdf,
2018.

T. Dobravec

