
https://doi.org/10.31449/inf.v43i1.2650 Informatica 43 (2019) 313–319 313

Consistency in Cloud-based Database Systems

Zohra Mahfoud

USTHB University, Algeria

E-mail: mahfoud.zohra@yahoo.fr

Nadia Nouali-Taboudjemat

CERIST Research Center, Algeria

E-mail: nnouali@cerist.dz

Keywords: cloud computing, consistency, distributed databases, relational databases, No-SQL, CAP

Received: July 15, 2019

Cloud computing covers the large spectrum of services available on the internet. Cloud services use

replication to ensure high availability. Within database replication, various copies of the same data item

are stored in different sites, this situation requires managing the consistency of the multiple copies. In

fact, the requirement for consistency level can be different according to application natures and other

metrics; a delay of some minutes in visualizing latest posts in social networks can be tolerated, while

some seconds can make a loss of a bid in an auction system. Wide variety of database management

systems are used actually by cloud services, they support different levels of consistency to meet the

diversity of needs.

This paper draws a presentation of the main characteristics of cloud computing and data management

systems and describes different consistency models. Then it discusses the most famous cloud-based

database management systems from the point of view of their data and consistency models.

Povzetek: Prispevek analizira podatkovna skladišča v oblakih predvsem s stališča konsistentnosti.

1 Introduction
Cloud computing refers to the large spectrum of services

available on the internet. These services manage big

quantities of data with high availability, scalability and

elasticity. Providing availability requires databases

replication. Replication permits the creation and the

management of various copies of data items stored in

different sites.

Consistency concerns the freshness of data and

indicates if copies are the same in the different sites and

witch version of data is returned by queries. In fact,

consistency does not have the same importance for all the

applications and the users. In social networks, a delay of

minutes or even hours in visualizing the posts may not be

a problem. Whilst for an auction system, a delay of few

seconds can cause the loss of a bid.

Various systems are proposed to manage data for

cloud services; they provide a variety of consistency

models and use different data models which are based

either on the classical relational model or on No-SQL

models.

This paper discusses consistency in cloud-based

database management systems. The reminder of this

paper is organized as follows. Section 2 presents the

main characteristics of cloud computing. Section 3

presents databases models in cloud. Section 4 explains

the concept of consistency and the dilemma posed by the

CAP theorem; it presents also the different levels and

models of consistency. Section 5 presents some famous

cloud systems and describes the implemented models of

data and consistency. Section 6 concludes the paper.

2 Cloud computing
Cloud computing includes all forms of services available

on the Internet; that are classified as software, platform

or infrastructure as a service. Cloud services attract

increasingly individuals, startups and big companies by

the fascinating characteristics offered such as

Availability, Scalability and Elasticity [1-4].

2.1 Availability

Queries must be answered within a reasonable time even

there is a huge load of work or under any type of failures.

Availability is guaranteed by replicating databases,

i.e. creating multiple replicas (copies) of the database and

storing them at different sites. Replication can be full

when it concerns the entire database or partial when it

concerns just a part of the database (one or more tables,

one or more partition) [5, 6].

Typically, Replicas are used to increase the

availability of the system. They permit i) to decrease the

latency by distributing queries on different replicas, ii) to

cache site failure by accessing other sites, and iii) to

recover site failure as backups [7].

Synchronous replication control algorithms assume

that replicas are the same all the time. But this is not

possible physically, so outdated replicas are made not

mailto:mahfoud.zohra@yahoo.fr
mailto:nnouali@cerist.dz

314 Informatica 43 (2019) 313–319 Z. Mahfoud et al.

accessible until they are synchronized. In contrary,

asynchronous algorithms allow accessing to divergent

replicas that will finally converge [8, 9].

2.2 Scalability

This property is related to the capacity of providing large

databases and managing their growing. Scalability is

ensured by partitioning the database, i.e. devising the

database into several disjoint partitions (fragments) that

can be stored in different sites. Partitioning database

offers the possibility of incrementing infinitely the

capacity of storage by adding new hardware [6].

Partitioning has two general types: Vertical and

Horizontal. In vertical type each partition contains a set

of columns of the database; while in horizontal type

(called communally sharding) the database is divided

into sets of rows. The two types of partitioning can be

combined to obtain a better strategy [10].

2.3 Elasticity

Elasticity called also elastic scalability refers to the

flexibility of scaling up and down quickly in order to

support the change of the requirements. Elasticity is the

most important property that attracts companies to the

cloud as it permits to pay accurately according to use.

3 Database models in cloud

computing
Data storage in the cloud uses both of the classical

relational model and the new No-SQL architectures.

Relational Databases: These databases respect the

classical relational model proposed by E.F.Codd [11].

Relational databases structure data into tables composed

of columns and rows, with a unique primary key and

possible foreign keys. They provide the CRUD (Create,

Read, Update and Delete) basic operations, and also

operations across several tables.

Relational databases dominate the market of

databases for more than twenty years; this success is due

to its stability and consistency. These characteristics are

guaranteed via transactional mechanisms that are

implemented by the ACID (Atomicity, Consistency,

Isolation and Durability) properties [12].

SQL (Structured Query Language) is the most used

for requesting and maintaining relational databases.

Database Management Systems (DBMS) are

responsible to store, retrieve, secure, replicate and realize

backups of databases. The most famous Relational

Databases Management Systems (RDBMS) are: Oracle,

MySQL, Microsoft SQL Server, Postgres.

No-SQL Databases:

No-SQL databases (‘Not only SQL’ or ‘Not relational’)

is a family of databases or more appropriate data stores

that support all schemas of data characterized as

structured, semi-structured and unstructured. No-SQL

databases provide a high level of availability, scalability

and elasticity. These features make No-SQL databases

increasingly used for big data and qualified as the

databases for the next-generation of web applications

[13, 14].

Unlike the relational databases, No-SQL databases

do not have a unified data model. Also, the level of

operations is different; some systems provide only simple

read-write operations, while others support more

advanced operations. These differences lead to more than

one hundred No-SQL databases which are principally

classified into four categories [2, 3, 15, 23]:

i. Key-value Databases: this model permits to store all

schemas of data, as (key, value) pairs. A unique key

is assigned to every value and permits to access the

value. The value can be a simple data item, or a set of

key-value pairs.

Example of key-value databases are: App Engine

Data Store, Redis, Riak, etc.

ii. Column-oriented Databases: this model holds

structured data in tables that are organized in rows

like in relational databases. The difference is that

columns can be different from one row to another.

Also, a column can also regroup a set of columns. In

other hand, operations across tables are not

supported.

Examples of column-oriented databases are: Google

BigTable, Cassandra, etc.

iii. Document-based Databases: this model is used to

store unstructured data, where keys addressed

generally XML (eXtensible Markup Language) or

JSON (JavaScript Object Notation) documents. No

restrictions on data type or documents length are

imposed.

Examples of Document-based stores are: CoucheDB,

MongoDB, RavenDB, etc.

iv. Graph Databases: this model allows storing data

and relationships between them using graphs; nodes

store data and arcs store relationships. The support of

dynamic relationship makes this model the most

appropriate for social networks.

Examples of graph databases are: Neo4j,

HyperGraphDB, Infinite Graph, etc.

We stress that all No-SQL architectures are basically

based on the key-value model.

4 Consistency
Mutual consistency or simply consistency refers how to

propagate updates between the different copies of

replicated items. It concerns the state of data items in

different sites; if they are the same or not. Also, how

users see data items, if they see the same value, or they

are allowed to see different values [6, 22].

Figure 01 shows a cloud system where the item X is

duplicated in three sites. In an ideal situation, all copies

of X have the same value (V1=V2=V3), this classical

level of consistency is the most suitable, but it is hard to

implement in distributed systems as it is proved by the

CAP theorem as explained below.

https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Microsoft_SQL_Server

Consistency in Cloud-based Database Systems Informatica 43 (2019) 313–319 315

Figure 1: Distributed system with replication.

We mention here that the cloud is considered as a

large geo-distributed system; data is largely replicated to

ensure availability in the case of concurrent queries and

recovery in case of failure. The different replicas can be

located in the same datacenter or over different geo-

distributed datacenters that can located in different

continents; in this case the communication between

replicas is very expensive.

4.1 CAP theorem

The CAP theorem (Figure 02) states that shared-data

systems can ensure at most two of three properties:

Consistency, Availability, and Partition tolerance at the

same time [16, 17].

Choosing two properties between Availability,

Partitioning tolerance and Consistency in the cloud is not

easy; Availability and Partitioning are primordial and

Consistency is vital for reliability. Cloud systems do not

avoid absolutely one of the three properties, and propose

generally a compromise between the three properties,

which leads to support degraded levels of each one. A

description of consistency levels is presented by the next

section.

PACELC [18] extends CAP and states that the

compromise is not all the time between Availability and

Partitioning and Consistency; during network Partition

(P) the compromise is between Availability (A) and

Consistency (C). Else (E), the compromise is between

Latency (L) and Consistency (C). The latency measures

the delay of getting a reply.

4.2 Consistency levels

Consistency levels are influenced by the type of

replication control protocol; i) Synchronous protocols

propagate updates to all the replicas at the same time and

in the same order. These protocols present strong

consistency (immediate consistency). ii) Asynchronous

protocols allow updating one replica while other outdated

replicas are still accessible. iii) Hybrid protocols

propagate updates synchronously between some replicas.

Asynchronous and hybrid protocols present different

levels of consistency according to which replicas are

accessible, and the number of replicas that must be

written and read before replying to queries [18, 19].

Quorum-based systems are proposed to achieve strong

consistency by using the majority of replicas; Paxos is

the most known protocol in this area [47].

The level of consistency is chosen according to the

system nature and user’s needs. Transactional systems

like they proposed to book a flight ticket, buy an item, or

send a bid are cases where data must be treated with

strong consistency; an inconsistency of few seconds may

make a loss. Social networks are examples of

applications that tolerate weak consistency; a delay in

visualizing the latest posts can be accepted.

4.3 Consistency models

A variety of consistency models degraded from strong to

weak consistency are proposed in the literature, the main

models are [19, 20, 21, 22, 40]:

Strict consistency (Atomic consistency,

Linearizability), is the strictest model of consistency;

updates are propagated between replicas at the same

order according to the real time. Also, reads return the

last written values.

Sequential consistency (Serializability): updates are

ordered according to a logical order applied by all the

replicas, this order can be different from the real order.

Reads return the last values written according to the

logical order.

The eventual consistency model ensures that all

replicas will eventually become consistent even if

requests can read inconsistent values. Different variants

of this model are distinguished according to the

techniques used to manage the inconsistent window:

Causal Consistency is a variation of the eventual

consistency, where only causally related operations are

ordered.

Read-your-writes consistency is a case of causal

consistency where users access always his updates, or a

newer version, and never access an older version.

Session consistency implements the read-your-writes

consistency model during the session.

The bounded staleness consistency model tolerates

reading stale values under some conditions such as

bounding staleness by a specific period of time delta.

This condition is satisfied by propagating updates within

delta.

In Configurable consistency (Tunable consistency)

the user configures the number of replicas accessed

synchronously. Here, the consistency level depends on

the percentage of the replicas requested synchronously;

strong consistency is reached if the number of replicas

for read (R) and write (W) overlap (R+W>=N), N is the

total number of replicas.

Figure 2: CAP theorem.

316 Informatica 43 (2019) 313–319 Z. Mahfoud et al.

5 Consistency levels in cloud systems
Wide variety of database management systems are used

actually by cloud services. This section presents the most

famous of them from the point of view of their data and

consistency models [24].

5.1 Amazon propositions

Amazon has several propositions: Simple Storage

Service (S3) [25,29], SimpleDB [26] and DynamoDB

[27, 28] are No-SQL databases that provide high

availability and scalability. Amazon Aurora [30, 31] is a

relational databases management system that provides

strong consistency.

S3 is designed to store large data in buckets: a bucket

is organized as a key-value store, values are generally

objects that represent data files or folders used to

organize data files, folders can be arranged

hierarchically. S3 offers simple operations to create,

write, read and delete buckets, keys and objects. S3 uses

automatic Cross-region replication that allows

asynchronous copying of objects across buckets in

different Regions. This strategy provides eventual

consistency model.

SimpleDB arranges structured data in domains which

consist of items; items are composed of pairs of

(attribute, value); value can contain multiple data.

SimpleDB offers operations for creating, writing, reading

and deleting a domain or an attribute. Operations

manipulate one or various items of the same domain.

Eventual consistency is proposed by default; however it

is possible to choose the strong consistency.

Dynamo uses tables of items, each item contains one

or more attributes. An attribute is composed of (key,

value) pairs. Dynamo provides several operations to

create, write, read and dele table, item and attribute;

which permit to manipulate one or various items of the

same table. Initially, dynamo offers eventual consistency;

a quorum that preserves availability and scalability is

addressed to fulfill operations. However, dynamo makes

it is possible to achieve strong consistency by

configuring the number of requested replicas.

Data models in simpleDB and Dynamo have the

structure of tables. Although, they are not classified as

column-family store because they have simple columns

and not super column families.

Amazon Aurora is a cloud-based relational databases

management system proposed by Amazon Relational

Database Service (RDS). Aurora is built on a MySQL

engine and it is compatible with PostgreSQL. It provides

better availability and scalability comparing to classical

databases engines on RDS. Aurora guarantees strong

consistency by supporting a quorum protocol.

5.2 Google propositions

In its turn, Google published several cloud-based systems

[32] like BigTable [33], Megastore [34], Spanner [35],

Cloud SQL [36], and Cloud datastore [37].

Bigtable stores data in massive tables. Each table is

organized in rows that are accessed by primary keys and

they contain a set of column-families which can differ

from a row to another. A column-family regroups related

columns and each column contains a single value for a

row. This model allows storing versioned data in

columns regrouped in a column family. Operations

concern atomic single-row and a quorum protocol based

on Paxos algorithm is implemented to provide strong

consistency for write operations, read operations can get

stale data if an update is on progress.

Bigtable is designed to store very large amounts of

data; Google uses it in many applications like: Google

Analytics, Earth, Map and Personalized Search.

Megastore uses schemas of tables to organize data; a

table contains a set of entities that are characterized by a

set of properties. Megastore defines entity groups that are

sets of related tables based on Bigtable. Megastore

provides transactions with full ACID semantics that can

concern data through several tables of the same entity

group, not just data of the same table like the majority of

No-SQL databases. Like Bigtable, Megastore uses Paxos

protocol to provide strong consistency; for each write

operation, a majority of replicas across geographically

distributed datacenters is requested; this strategy

increases the system latency.

Megastore is proposed to build interactive

applications; it is used by well-known Google

applications as: AppEngine, Gmail, Calendar and

Android Market.

Spanner is a key-value database created to fix the

weaknesses of megastore in term of latency. Like

megastore, spanner organizes data in schematized semi-

relational tables, uses timestamp for versioning data and

use a like SQL-based query language. Spanner propose

an excellent support of transactions with full ACID

properties, it provide strong consistency for distributed

transactions across geographically replicated datacenters;

this is achieved by executing a combination of the two-

phase-commit protocol and Paxos protocol. Spanner is

largely used within Google's datacenters infrastructures.

Cloud SQL is a RDBMS based on MySQL that

provides classically immediate consistency.

Cloud Datastore is a Document store that organizes

data on kinds of entities; each entity is accessed by a key

and composed of a set of properties storing values that

can have different types even for the same properties.

Cloud Datastore use Multi-Master replication based on

Paxos. Queries are configured to obtain immediate or

eventual consistency.

5.3 Microsoft propositions

Microsoft has also several propositions: Microsoft Azure

Table storage [38], Microsoft Azure DocumentDB [39]

and Microsoft Azure SQL Database [41].

 Microsoft Azure Table storage is a key-value store that

stocks large amounts of data in tables. Each table

contains a set of entities: an entity is composed of a

primary key and a set of properties. Table storage

provides strong consistency, and permits to achieve

transactions with ACID properties across tables of the

same partition.

http://db-engines.com/en/article/Document+Stores

Consistency in Cloud-based Database Systems Informatica 43 (2019) 313–319 317

Microsoft Azure Cosmos DB gathers multiple data

models that include key-value, table, columnar,

document and graph data models. It offers a configurable

consistency model that presents five levels: strong,

bounded-staleness, session, consistent prefix, and

eventual. Strong consistency is associated only with one

Azure region; it uses a linearizability based on a majority

of replicas. The other levels are designed to reinforce

avalability across different regions.

Microsoft Azure SQL Database is a RDBMS in the cloud

built on the Microsoft SQL Server engine that supports

full ACID properties of relational databases and uses a

quorum-based algorithm that provides an acceptable

consistency level with high availability.

5.4 Others solutions

5.4.1 Cassandra

Cassandra [42, 43] is an open source column family store

proposed by Facebook for managing massive amounts of

data. Cassandra is inspired from Google BigTable and

Amazon DynamoDB.

The data model of Cassandra uses column families

(tables) that regroup rows; each row in a table is

composed of a key and a list of columns or super

columns. A column is composed of a key, a value and a

timestamp. A super column is a column family that

regroups columns.

Cassandra proposes panoply of consistency models

that can be configured at operation level. These levels are

differentiated according to the requested replicas and

theirs locations; the level ALL involves all the replicas of

the cluster. The levels: One, TWO and THREE involve

at least one, two and three replica (s), respectively. The

level QUORUM involves a quorum of replicas of the

cluster. According to the nodes locations, the following

levels are defined: EACH_QUORUM requires a quorum

of replicas in all data centers. LOCAL_QUORUM

requires a quorum of replicas in the same data center.

And, LOCAL_ONE requires one replica at least in the

local data center. In addition, Cassandra proposes the

SERIAL level that uses linearizable consistency for

achieving lightweight transactions.

LOCAL_SERIAL concerns one datacenter. The

levels listed above are common to read and write

operations. The ANY level is specific only to write

operations; it permits to execute a write operation even if

no required replica is available; the operation writes hints

for downed nodes on others nodes. The changes will be

sent to downed nodes when they recovered.

The consistency level is determined by the number

of replicas solicited for the read (R) and write (W)

operations; if it overlaps the total number of replicas (N)

the consistency is strong (R+W>=N), otherwise the

consistency is weak.

5.4.2 PNUTS

PNUTS [44, 45] proposed by Yahoo! exposes a simple

relational model with flexible schema. PNUTS organizes

data into tables of records with attributes that can store

any type of data. PNUTS offers various operations like

Update, delete, selection of one or more items from a

single table.

PNUTS proposes a per-record timeline consistency

model that offers a consistent view of data to the user; a

master replica is nominated to each record, this replica

receives all the updates concerning the record and

propagates the updates to other replicas in the same

order.

This consistency can be configured; the weak level is

ensured by the options: Read-any, Read-critical (required

version), Test-and-set-write. However, the options:

Read-latest ensures strong consistency.

5.4.3 Neo4j

Neo4j [46] is a graph based No-SQL databases that

models data using nodes and relationships. Nodes are

used to represent entities, they can be labeled and contain

properties. Relationships present relations between nodes

and can also contain properties.

Neo4j supports full ACID properties and implements

causal consistency to provide an acceptable level of

consistency.

6 Conclusion
Availability, scalability and elasticity are the success

keys of cloud computing. At the storage level, these

properties are guaranteed by partitioning and replicating

databases.

Initially, cloud systems used the relational model that

dominated the market of databases for more than twenty

years. This model is known by its stability and

consistency, which are guaranteed using transactional

mechanisms. However, these mechanisms make the

relational model very rigid and lack required availability

and scalability. In order to meet the cloud needs, a new

generation of relational cloud-based systems that

supports more availability and scalability appeared.

Several applications in cloud prefer No-SQL models that

are proposed initially as simple key-value pairs that

avoid all types of constraints. Bit by bit, No-SQL

Databases use more organized models and integrate some

transactional mechanism. Nevertheless, they still more

flexible comparing to relational model.

In the consistency side and as it is difficult to ensure

availability with strong consistency in large geo-

distributed systems, cloud systems implement different

consistency models to ensure the best compromise

between availability and consistency. In addition, a lot of

systems propose a tunable consistency that offers the

possibility to choose between numerous proposed

models.

7 References
[1] S. Sakr, A. Liu, D. Batista, M. Alomari (2011). “A

Survey of Large Scale Data Management

Approaches in Cloud Environments”. IEEE

https://docs.datastax.com/en/glossary/doc/glossary/gloss_data_center.html

318 Informatica 43 (2019) 313–319 Z. Mahfoud et al.

Communications Surveys and Tutorials. 13(3):

311- 336,

https://doi.org/10.1109/SURV.2011.032211.00087.

[2] A. Elzeiny, A. Abo Elfetouh ,and A Riad (2013).

“Cloud Storage: A Survey”. International Journal of

Emerging Trends & Technology in Computer

Science. Vol. 2, Issue 4, ISSN 2278-6856: 342-

349.

[3] M. Siba, S. Breß, and E. Schallehn (2012). "Cloud

Data Management: A Short Overview and

Comparison of Current Approaches". Grundlagen

von Datenbanken.

[4] D. Kossmann, T. Kraska, S. Loesing (2010). “An

evaluation of alternative architectures for

transaction processing in the cloud”. SIGMOD

Conference : 579-590.

https://doi.org/10.1145/1807167.1807231.

[5] Saeed K. Rahimi , By (author) Frank S. Haug

(2010). “Distributed Database Management

Systems A Practical Approach”. Wiley-IEEE

Computer Society.

https://doi.org/10.1002/9780470602379.

[6] M.T Özsu, P. Valduriez (2011). “Principles of

Distributed Database Systems”. Springer Science+

Business Media, 3rd ed.

https://doi.org/10.1007/978-1-4419-8834-8.

[7] V.K. Pallaw (2010). “Concept of Database

Management Systems”. Asian Books Pvt. Ltd.

ISBN : 978-81-8412-119-3.

[8] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme,

G. Alonso (2000). “Understanding Replication in

Databases and Distributed Systems”. IEEE

International Conference on Distributed Computing

Systems: 464-474.

[9] M. Wiesmann, F. Pedone, A. Schiper (2000).

“Database Replication Techniques: a Three

Parameter Classification”. The 19th IEEE

Symposium on Reliable Distributed Systems: 206-

215.

[10] SH. Navathe, S. Ceri, G. Wiederhold, J. Dou

(1984). “Vertical Partitioning Algorithms for

Database Design”. ACM Transactions on

Database Systems, Vol. 9, No.4.

https://doi.org/10.1145/1994.2209.

[11] Codd, E.F. (1970). "A Relational Model of Data for

Large Shared Data Banks". Communications of the

ACM. 13 (6): 377–387.

https://doi.org/10.1145/362384.362685.

[12] J. Gray (1981). “The Transaction Concept: Virtues

and Limitations”. The 7th VLDB, Cannes: 144-154.

[13] F. Bugiotti, L. Cabibbo, P. Atzeni, R. Torlone

(2014). “Database Design for NoSQL Systems”.

223-231.

[14] P. J. Sadalage and M. J. Fowler (2012). “NoSQL

Distilled”. Addison-Wesley.

[15] G. Harrison (2015). “Next Generation Databases:

NoSQL, NewSQL, and Big Data”. Apress,

ISBN(e): 978-1-4842-1329-2.

[16] E. A. Brewer (2000). “Towards Robust Distributed

Systems”. PODC (Invited Talk) :7.

[17] N. Lynch and S. Gilbert (2002). “Brewer's

conjecture and the feasibility of consistent,

available, partition-tolerant web services”. ACM

SIGACT News, Vol. 33 Issue 2: 51-59.

https://doi.org/10.1145/564585.564601.

[18] Daniel J. Abadi (2012). “Consistency tradeoffs in

modern distributed database system design: Cap is

only part of the story”. Journal of computer,

45(2):37–42. https://doi.org/10.1109/MC.2012.33.

[19] S.P. Kumar (2016). “Adaptive Consistency

Protocols for Replicated Data in Modern Storage

Systems with a High Degree of Elasticity”. PHD

thesis, Conservatoire national des arts et métiers,

Paris, France.

[20] D. Mosberger (1993). “Memory Consistency

Models”. ACM SIGOPS Operating Systems

Review Homepage archive. Vol. 27, Issue 1 : 18-26

https://doi.org/10.1145/160551.160553.

[21] Adve, Sarita V and Gharachorloo, Kourosh (1996).

“Shared Memory Consistency Models: A Tutorial”.

Journal of Computer, Vol. 29, Issue 12: 66-76.

https://doi.org/10.1109/2.546611

[22] W. Vogels (2009). “Eventually consistent”.

Communications of the ACM, Vol. 52, n.1: 40-44,

https://doi.org/10.1145/1435417.1435432.

[23] IGI Global publications (2016). “Big Data:

Concepts, Methodologies, Tools, and

Applications”. ISBN: 9781466698406.

[24] “DB-Engines Ranking”, Available Online

[Aug2018]: http://db-engines.com/en/ranking/.

[25] “Amazon Simple Storage Service Documentation”.

Available Online [Aug2018]:

https://aws.amazon.com/documentation/s3/.

[26] “Amazon SimpleDB Documentation”. Available

Online [Aug2018]:

https://aws.amazon.com/documentation/simpledb/.

[27] “Amazon DynamoDB Documentation”. Available

Online [Aug2018]:

https://aws.amazon.com/documentation/dynamodb/.

[28] G. DeCandia, D. Hastorun, M. Jampani, et al.

(2007). “Dynamo: Amazon’s highly available key-

value store”. SOSP:205–220.

https://doi.org/10.1145/1294261.1294281.

[29] D. Bermbach and S. Tai (2011). “Eventual

consistency: How soon is eventual? an evaluation

of amazon s3’s consistency behavior”. The 6th

Workshop on Middleware for Service Oriented

Computing. ACM.

https://doi.org/10.1145/2093185.2093186.

[30] “Amazon Amazon Aurora”. Available Online

[Aug2018]: https://aws.amazon.com/rds/aurora/.

[31] “Amazon Relational Database Service

Documentation”. Available Online [Feb2017]:

https://aws.amazon.com/documentation/rds/.

[32] “Google Cloud Platform: Cloud Storage Products”.

Available Online [Aug2018]:

https://cloud.google.com/products/storage.

[33] F. Chang, J. Dean, S. Ghemawat, et al. (2008).

“Bigtable: A Distributed Storage System for

Structured Data”. ACM TOCS 26.2, 4:1–4:26.

https://doi.org/10.1145/1365815.1365816.

https://doi.org/10.1145/1807167.1807231
https://www.bookdepository.com/author/Saeed-K-Rahimi
https://www.bookdepository.com/author/Frank-S-Haug
https://doi.org/10.1002/9780470602379
https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.1145/1994.2209
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1145/160551.160553
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/1435417.1435432
http://db-engines.com/en/ranking/
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/simpledb/
https://aws.amazon.com/documentation/dynamodb/
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2093185.2093186
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/documentation/rds/
https://cloud.google.com/products/storage
https://doi.org/10.1145/1365815.1365816

Consistency in Cloud-based Database Systems Informatica 43 (2019) 313–319 319

[34] J. Baker, C. Bond, J. Corbett et al. (2011).

“Megastore: Providing Scalable, Highly Available

Storage for Interactive Services”. CIDR: 223–234.

[35] J. Corbett, J. Dean, M. Epstein, et al. (2012).

“Spanner: Google’s globally-distributed database”.

OSDI:251–264. DOI: 10.1145/2491245.

[36] “CLOUD SQL”. Available Online [Feb2017]:

https://cloud.google.com/sql/.

[37] “Google Cloud Datastore Documentation”.

Available Online [Aug2018]:

https://cloud.google.com/datastore/docs/.

[38] B. Calder, J. Wang, A. Ogus et al. (2011).

“Windows Azure Storage: A Highly Available

Cloud Storage Service with Strong Consistency”.

The 23rd ACM Symposium on Operating Systems

Principles: 23-26. Cascais, Portugal.

[39] “Azure Cosmos DB Documentation”. Available

Online [Aug2018]:

https://docs.microsoft.com/en-us/azure/cosmos-db/.

[40] A. Singla, U. Ramachandran, and J. Hodgins

(1997). “Temporal Notions of Synchronization and

Consistency in Beehive”. The 9th Annual ACM

Symp. on Parallel Algorithms and Architectures:

211–220. https://doi.org/10.1145/258492.258513.

[41] “Microsoft Azure SQL Database”. Available Online

[Aug2018]: https://azure.microsoft.com/en-

us/services/sql-database/

[42] “Apache Cassandra”. Available Online [Aug2018]:

http://cassandra.apache.org/

[43] A. Lakshman, P. Malik (2010). “Cassandra: a

decentralized structured storage system”. Operating

Systems Review 44(2): 35-40.

https://doi.org/10.1145/1773912.1773922.

[44] B. Cooper, R. Ramakrishnan, U. Srivastava (2008).

“Pnuts: Yahoo!’s hosted data serving platform”.

PVLDB, 1(2):1277–1288.

https://doi.org/10.14778/1454159.1454167.

[45] A. Silberstein, J. Chen, D. Lomax et al. (2012).

“PNUTS in Flight: Web-Scale Data Serving at

Yahoo”. IEEE Internet Computing 16(1): 13-23

https://doi.org/10.1109/MIC.2011.142.

[46] “Neo4j”. Available Online [Aug2018]:

https://neo4j.com/

[47] L. Lamport (2002). “Paxos Made Simple, Fast, and

Byzantine”. OPODIS: 7-9

https://www.researchgate.net/scientific-contributions/70059267_Chris_Bond?_sg%5B0%5D=OesH5LKpyNbQpQRZ4DQv-eW3A3tLae4KE0ZZ59FGlyRey9cw2JsewSd1hPDgWw4Syd44mvw.l6yDehpTma7N4w39JNuAMaS4ZerKUhFnmzNsX3BztCPm0fIcq-4RunmfSFxy2hsFqBMT3qgAx9-QMC5BkSJbxw&_sg%5B1%5D=sZ9cd_3oS7fdUOQkh7K5hUrNiXCXGq6a1VLcGFRbZl0mlCDOHoEoD67nuMrt6RC8upmnpxz56-hq8E0X.ilRpqUwjNUHdi43X9rAlAVJOUWG4bar17mJ7tp9F99_agScmyCmZ6aS8UsDR1yiLqsS4Y4pue8ZbtHrSsZQBVQ
https://cloud.google.com/datastore/docs/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://doi.org/10.1145/258492.258513
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
http://cassandra.apache.org/
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.1109/MIC.2011.142
https://neo4j.com/

320 Informatica 43 (2019) 313–319 Z. Mahfoud et al.

