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During last one and half decade an interesting relationship between chaos and cryptography has been 
developed, according to which many properties of chaotic systems such as: ergodicity, sensitivity to 
initial conditions/system parameters, mixing property, deterministic dynamics and structural complexity 
can be considered analogous to the confusion, diffusion with small change in plaintext/secret key, 
diffusion with a small change within one block of the plaintext, deterministic pseudo randomness and 
algorithmic complexity properties of traditional cryptosystems.  As a result of this close relationship 
several chaos-based cryptosystems have been put forward since 1990.  In one of the stages of the 
development of chaotic stream ciphers, the application of discrete chaotic dynamical systems in pseudo 
random bit generation has been widely studied recently.  In this communication, we propose a novel 
pseudo random bit generator (PRBG) based on two chaotic logistic maps running side-by-side and 
starting from random independent initial conditions.  The pseudo random bit sequence is generated by 
comparing the outputs of both the chaotic logistic maps.  We discuss the suitability of the logistic map 
by highlighting some of its interesting statistical properties, which make it a perfect choice for such 
random bit generation. Finally, we present the detailed results of the statistical testing on generated bit 
sequences, done by the most stringent tests of randomness: the NIST suite tests, to detect the specific 
characteristics expected of truly random sequences.
Povzetek: Predstavljen je psevdo naključni generator bitov na osnovi kaotičnega pristopa.

1 Introduction
New rapid developments in the telecommunication 

technologies especially the Internet and mobile networks 
have extended the domain of information transmission, 
which in turn present new challenges for protecting the 
information from unauthorized eavesdropping.  It has 
intensified the research activities in the field of 
cryptography to fulfill the strong demand of new secure 
cryptographic techniques [1, 2].

Recently researchers from the nonlinear dynamics 
community have noticed an interesting relationship 
between chaos and cryptography.  According to that, 
many properties of chaotic systems such as: ergodicity, 
sensitivity to initial conditions/system parameters, 
mixing property, deterministic dynamics and structural 
complexity can be considered analogous to the 
confusion, diffusion with small change in plaintext/secret 
key, diffusion with a small change within one block of 
the plaintext, deterministic pseudo randomness and 
algorithmic complexity properties of traditional 
cryptosystems [3].   As a result of this close relationship 

several chaos-based cryptosystems have been put 
forward since 1990 [4].  These chaos-based 
cryptosystems can be broadly classified into two 
categories: analog and digital.  Analog chaos-based 
cryptosystems are based on the techniques of control [5, 
6] and synchronization [5, 6] of chaos.  There are several 
ways through which analog chaos-based cryptosystems 
can be realized such as: chaotic masking [7-11], chaotic 
modulation [12-15], chaotic switching [16, 17], inverse 
system approach [18, 19] etc.  On the other hand in 
digital chaos-based cryptosystems, chaotic discrete 
dynamical systems are implemented in finite computing 
precision.  Again there are number of ways through 
which digital chaos-based cryptosystems be realized: 
block ciphers based on forward and/or reverse iterations 
of chaotic maps [4, 20-23], block ciphers based on 
chaotic round functions [24-27], stream ciphers 
implementing chaos-based pseudo random bit generators 
(PRBG) [28-33] etc.
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The subject of the present manuscript is the 
generation of cryptographically secure pseudo random 
bit sequences, which can be further used in the 
development of fool-proof stream ciphers and its 
statistical testing.  In the following paragraph, we briefly 
summarize a few efforts undertaken recently in this 
direction.

The first, relatively unnoticed, idea of designing a 
pseudo-random number generator by making use of 
chaotic first order nonlinear difference equation was 
proposed by Oishi and Inoue [34] in 1982 where they
could construct a uniform random number generator with 
an arbitary Kolmogorov entropy. After a long gap, in 
1993 Lin and Chua [35] designed a pseudo random 
number generator by using a second-order digital filter 
and realized it on digital hardware. In 1996 Andrecut 
[36] suggested a method for designing a random number 
generator based on logistic map and also compared the 
congruential random generators, which are periodic, with 
the logistic random number generator, which is infinite 
and aperiodic. In 1999 Gonzalez and Pino [37] 
generalized the logistic map and designed a truly 
unpredictable random function, which helped in the 
generation of truly random numbers. In 2001 Kolesov et 
al [38] developed a digital random-number generator 
based on the discrete chaotic-signal. The suggested 
digital generator employed the matrix method of chaotic-
signal synthesis. Further, Kocarev [39] and Stojanovski
et al [40] analyzed the application of a chaotic piecewise-
linear one-dimensional map as random number 
generator. Li et al [32] did a theoretical analysis, which 
suggests that piecewise linear chaotic maps have perfect 
cryptographic properties like: balance in the defined 
interval, long cycle length, high linear complexity, good 
correlation properties etc.  They also pointed out that bit 
streams generated through a single chaotic system are 
potentially insecure as the output may leak some 
information about the chaotic system. To overcome this 
difficulty, they proposed a pseudo random bit generator 
based on a couple of piecewise linear chaotic maps, 
which are iterated independently and the bit streams are 
generated by comparing the outputs of these chaotic 
maps.  They also justified their theoretical claims through 
a few numerical experimentations on the proposed 
pseudo random bit generator. In 2003 Kocarev and 
Jakimoski [41] discussed the different possibilities of 
using chaotic maps as pseudo-random number generators 
and also constructed a chaos-based pseudorandom bit 
generator. In 2004 Fu et al [42] proposed a chaos-based 
random number generator using piecewise chaotic map. 
Further, a one-way coupled chaotic map lattice was used 
by Huaping et al [43] for generating pseudo-random 
numbers. They showed that with suitable cooperative 
applications of both chaotic and conventional 
approaches, the output of the spatiotemporal chaotic 
system can meet the practical requirements of random 
numbers i.e. excellent random statistical properties, long 
periodicity of computer realizations and fast speed of 
random number generations. This pseudo-random 
number generator can be used as an ideal synchronous 
and self-synchronizing stream cipher for secure 

communications. In 2005 Li et al [44] designed and 
analysed a random number generator based on a 
piecewise-linear map. A new pseudo-random number 
generator (PRNG) based on modified logistic map was 
proposed by Liu [45] and a design of a chaotic stream 
cipher using it was also suggested. Further, a chaotic 
random number generator was developed by Wang et al 
[46] and realized it by an analog circuit. In 2006, Wang 
et al [47] proposed a pseudo-random number generator 
based on z-logistic map, where the binary sequence 
through the chaotic orbit was realized under finite 
computing precision.  Recently in 2007, Ergun and 
Ozogur [48] showed that the bit streams, generated from 
the stroboscopic Poincare map of a non-autonomous 
chaotic electronic circuit, pass the four basic tests of 
FIPS-140-2 as well as NIST tests suite.  Very recently, 
Hu et al [49] proposed a true random number generator 
(which generates a 256-bit random number by computer 
mouse movement), where the authors used three chaos-
based approaches namely: discretized 2D chaotic map 
permutation, spatiotemporal chaos and MASK algorithm 
to eliminate the effect of similar mouse movement 
patterns.  The results have been tested through NIST tests 
suite.  Recently, Patidar et al [50] proposed a 
pseudorandom bit generator based on the chaotic 
standard map and presented its testing analysis using the 
NIST as well as DIEHARD test suites. No failure has 
been observed in any of the tests of these two test suites.

In this paper, we propose a pseudo random bit 
generator (PRBG) based on two chaotic logistic maps.  
Most of the existing pseudo random bit generators [34-
47] are based on a single chaotic system and there are 
known techniques in chaos theory to extract information 
about the chaotic systems from its trajectory, which 
makes such chaos-based pseudo random bit generators 
insecure [32].  However the proposed pseudo random bit 
generator is based on two chaotic systems running side-
by-side, which of course increases the complexity in the 
random bit generation and hence becomes difficult for an 
intruder to extract information about the chaotic system.  
In the next section, we briefly introduce the logistic map, 
which is a basic building block of the proposed pseudo 
random bit generator and its properties, which make it a 
suitable choice for the generation of random bit 
sequences.

2 The logistic map
The logistic map is a very simple mathematical 

model often used to describe the growth of biological
populations.  In 1976 May [51] showed that this simple 
model shows bewildering complex behaviour.  Later 
Fiegenbaum [52, 53] reported some of the universal 
quantitative features, which became the hallmark of the 
contemporary study of chaos.  Because of its 
mathematical simplicity, this model continues to be 
useful test bed for new ideas in chaos theory as well as 
application of chaos in cryptography [4].  The simple 
modified mathematical form of the logistic map is given 
as:

)1()(1 nnnn XXXfX   ,                                    (1)



A PSEUDO RANDOM BIT GENERATOR… Informatica 33 (2009) 441–452 443

where nX is a state variable, which lies in the interval [0, 

1] and  is called system parameter, which can have any 

value between 1 and 4. 

Figure 1: Behaviour of the logistic map: (a) map function )1()( XXXf   for different values of parameter  , (b) 

sensitivity on initial conditions for 0.4 , (c) bifurcation plot showing the qualitative changes in the dynamical 
behaviour as a function of parameter  and (d) Lyapunov exponent (quantitative measurement of chaos) as a function 
of parameter  .

In Figure 1(a), we have plotted the map function 
)(Xf as a function of X for different values of system 

parameter  .  It is clear that the map function )(Xf is 

symmetric about the mid point of the interval [0, 1].  This 
iterative map shows a strange complex behaviour for the 
system parameter values ...5699.3 , where map 
function never repeats its history.  This peculiar 
behaviour is termed as chaos and more precisely, it can 
be described by the phrase ‘sensitivity on initial 
conditions’.  In Figure 1(b), we have depicted one such 
example of sensitivity on initial conditions for 0.4 .  
It is clear that the two trajectories of the logistic map 
starting nearby, soon diverge exponentially in the course 
of time and have no correlation between them.  If we 
calculate the correlation coefficient for these two data 
sets (for N 1 to 106), it comes out equal to -0.000839 
at the significance level of  0.01, which confirms the 
completely uncorrelated behaviour of two trajectories, 
which are starting from almost same initial conditions.  
In Figure 1(c), we have summarized the complete 
dynamical behaviour of the logistic map by using the 
bifurcation plot: a plot illustrating the qualitative changes 

in the dynamical behaviour of the logistic map as a 
function of system parameter  .  It is also clear from the 
bifurcation diagram that the map function is 
surjective/onto in the complete interval [0, 1] only at 

0.4 i.e., each and every value of )(Xf in the 

interval [0, 1] is an image of at least one value of X in 
the same interval [0, 1].  The interval of surjectivity 
reduces as we decrease the value of  form 4.0. In 
Figure 1(d), we have displayed the Lyapunov exponent (







N

i
iN

XfL
1

|)(|lnlim , which is a quantative measure of 

chaos and a positive Lyapunov exponent indicates chaos) 

as a function of system parameter  .  
Invariant density measure and ergodicity:  If we 

divide the complete range of state variable [0, 1] into a 
set of M equal sub-intervals and calculate the number 
that a trajectory visits a particular sub-interval i (

Mi 1 ), if it is im then the probability associated 

with the sub-interval i is Nmp ii / (where N is the 

total number of trajectory points considered).  A graph of 
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ip as a function of i gives us the natural probability distribution or probability measure.

Figure 2: Probability distributions for the logistic map trajectories (a) and (b) for 0.4 & (c) and (d) for 90.3 .

For a chaotic trajectory, this probability distribution does 
not depend on the starting point of the trajectory (if we 
observe the trajectory for a long enough duration) i.e., 
the probability measure is unchanged under the dynamics 
of the system, we term it as invariant probability 
measure or invariant density measure.  It has been shown 
analytically that for the logistic map with system 
parameter 4 the probability distribution is given by 
[54],

)1(

1
)(

XX
XP





. (2)

If such an invariant distribution exists for a system 
then it allows us to replace the time averages by the 
spatial averages and the system is called ergodic.  This 
ergodic property provides us a very simple way for 
calculating the average properties of the system.  For 
example the average Lyapunov exponent for the logistic 
map with system parameter 0.4 can be calculated 

with the help of above invariant probability distribution 
as:


1

0
)()( dXXXPL  , (3)

here )(X is the local Lyapunov exponent.  Using 

(3) we have
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which is positive and confirms the chaotic nature of the 
logistic map at 0.4 .In Figures 2(a) and 2(b), we have 
shown probability distributions for two different 
trajectories of logistic map starting from different initial 
conditions ( 927725.00 X and 437884.0 ) with system 

parameter 0.4 .  Here the interval [0, 1] has been

divided into 1000 equal sub-intervals and total 610N
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points are used for each trajectory. Clearly both the 
distributions are same hence the logistic map exhibits 
unique invariant probability measure for 0.4 .  It is 
also clear that the probability distributions are symmetric 
about the mid point of the interval [0, 1].  However in 
Figures 2(c) and 2(d), probability distributions are 
displayed for the two logistic trajectories starting form 

835283.00 X and 582735.0 with the system 

parameter 90.3 .  It is clear that the logistic map also 
exhibits invariant probability measure for 90.3 but 
the distribution is not symmetric about the mid point of 
the interval [0, 1].  From Figure 2, one may also 
conclude that the logistic map has surjective character in 
the complete interval [0, 1] only very near to 4 .   In 
the next section, we discuss the basic terminology for the 
random bit generation and details of the proposed pseudo 
random bit generator (PRBG).

3 The proposed PRBG
A random bit generator (RBG) is a device or algorithm, 
which outputs a sequence of statistically independent and 
unbiased binary digits.  Such generator requires a 
naturally occurring source of randomness (non-
deterministic).  In most practical environments designing 
a hardware device or software programme to exploit the 
natural source of randomness and produce a bit sequence 
free from biases and correlation is a difficult task. In such 
situations, the problem can be ameliorated by replacing a 
random bit generator with a pseudo random bit generator 
(PRBG).

A pseudo random bit generator (PRBG) is a 
deterministic algorithm, which uses a truly random 
binary sequence of length k as input called seed and 
produces a binary sequence of length l>>k, called pseudo 
random sequence, which appears to be random.  The 
output of a PRBG is not truly random; in fact the number 
of possible output sequences is at most a small fraction (

lk 22 ) of all possible binary sequences of length l.  The 

basic intent is to take a small truly random sequence of 
length k and expand it to a sequence of much larger 
length l in such a way that an adversary can not 
efficiently distinguish between output sequence of PRBG 
and truly random sequence of length l [2].

In this paper, we are proposing a PRBG, which is 
based on two logistic maps, starting from random 
independent initial conditions )1,0(,( 00 YX and 00 YX 
)

)1(11 nnn XXX   ,                                    (6)

)1(21 nnn YYY   .                                         (7)

The bit sequence is generated by comparing the 
outputs of both the logistic maps in the following way:














11

11

11 0

1
),(

nn

nn

nn YXif

YXif
YXg ,             (8)

The set of initial conditions )1,0(,( 00 YX and

00 YX  ) serves as the seed for the PRBG, if we supply 

the exactly same seed to the PRBG, it will produce the 
same bit sequence due to the above deterministic 
procedure. The schematic block diagram of the proposed 
PRBG is shown in Figure 3.

In a recent analytical study Li et al [32] showed that 
the binary sequences produced by comparing the outputs 
of two chaotic maps will have perfect cryptographic 
properties if following requirements are satisfied:

(i) Both the maps should produce asymptotically 
independent trajectories as n ,

(ii) both the maps are surjective on the same interval,
(iii) both the maps have unique invariant density 

distributions )(1 xP and )(2 xP and  are  ergodic on 

the defined interval,
(iv) either )()( 11 xPxP  or )(1 xP and )(2 xP are 

symmetric about the mid point of the interval.
It is clear from the discussion of Section 2 that the 
logistic map exhibits all the above mentioned properties 
wherever it shows chaotic behaviour.  In view of the 

condition (ii), we have to choose the same value of  
for both the chaotic maps (i.e.,   21 ) to maintain 

its surjectivity in the same interval.  However it would be 
most appropriate to choose  very near to 4.0 to make 

available a large interval for the seed values 0X and 0Y
, which will in turn increase the key space of the stream 
cipher, where the proposed cipher is going to be used.  It 
is also suggested that before choosing   21 other 

than 4.0, a careful analysis of Lyapunov exponent must 
be done to take care of the asymptotic independence of 
two trajectories (property (i)), larger the Lyapunov 
exponent lesser the correlation between the trajectories 
starting from almost same initial conditions. 

In the next section, we mention various resources for 
statistical testing of  PRBGs which are available to 
researchers from academia and industry who wish to 
analyze their newly developed PRBG. We also briefly
introduce the resource (NIST tests suite), which we have 
used for analyzing the proposed PRBG and discuss the

Figure 3: Schematic block diagram of the proposed pseudo random bit generator (PRBG).
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results of our analysis in detail. It is to be noted here that 
the PRBG and the analysis proposed in [32] does not 
present any idea about the performance of PRBG in 
respect to the NIST test suite (whether successful or not).
Hence we can not compare both the PRBGs in terms of 
their superiority/inferiority. However the idea of the 
present PRBG has emerged from the analytical study and 
properties reported in [32].

4 Statistical testing
In order to gain the confidence that newly developed 
pseudo random bit generators are cryptographically 
secure, they should be subjected to a variety of statistical 
tests designed to detect the specific characteristics 
expected of truly random sequences.  There are several 
options available for analyzing the randomness of the 
newly developed pseudo random bit generators.  The 
four most popular options are: (i) NIST suite of statistical 
tests [55], (ii) The DIEHARD suite of statistical tests 
[56], (iii) The Crypt-XS suite of statistical tests [57] and 
(iv) The Donald Knuth’s statistical tests set [58].  There 
are different number of statistical tests in each of the 
above mentioned test suites to detect distinct types of 
non-randomness in the binary sequences. Various efforts 
based on the principal component analysis show that not 
all the above mentioned suites are needed to implement 
at a time as there are redundancy in the statistical tests 
(i.e., all the tests are not independent).  The results also 
suggest that the NIST statistical tests suite contains a 
sufficient number of nearly independent statistical tests, 
which detect any deviation from the randomness [59].  
Hence for analyzing the randomness of the proposed 
pseudo random bit generator (PRBG), we use the most 
stringent tests of randomness: the NIST suite tests.  In 
the following subsection, we briefly mention the various 
statistical tests of NIST suite their focuses and purposes.

4.1 The NIST Tests Suite
The NIST tests suite is a statistical package comprising 
of 16 tests that are developed to test the randomness of 
(arbitrary long) binary sequences produced by either 
hardware or software based cryptographic random or 
pseudo random bit generators.  These tests focus on a 
variety of different types of non-randomness that could 
exist in a binary sequence.  Broadly, we may classify 
these sixteen tests into two categories: (i) non-
parameterized tests and (ii) parameterized tests.

4.1.1 Non-parameterized tests
Frequency (monobit) test: The focus of the test is the 
proportion of zeroes and ones for the entire sequence. 
The purpose of this test is to determine whether the 
number of ones and zeros in a sequence are 
approximately the same as would be expected for a truly 
random sequence. The test assesses the closeness of the 
fraction of ones to ½, that is, the number of ones and 
zeroes in a sequence should be the same. 

Runs test: The focus of this test is the total number 
of runs in the sequence, where a run is an uninterrupted 

sequence of identical bits. A run of length k consists of 
exactly k identical bits and is bounded before and after 
with a bit of the opposite value. The purpose of the runs 
test is to determine whether the number of runs of ones 
and zeros of various lengths is as expected for a random 
sequence. In particular, this test determines whether the 
oscillation between such zeros and ones is too fast or too 
slow.

Test for longest run of ones in a block: The focus of 
the test is the longest run of ones within M-bit blocks. 
The purpose of this test is to determine whether the 
length of the longest run of ones within the tested 
sequence is consistent with the length of the longest run 
of ones that would be expected in a random sequence. 

Lempel-Ziv compression test: The focus of this test 
is the number of cumulatively distinct patterns (words) in 
the sequence. The purpose of the test is to determine how 
far the tested sequence can be compressed. The sequence 
is considered to be non-random if it can be significantly 
compressed. A random sequence will have a 
characteristic number of distinct patterns.

Binary matrix rank test: The focus of the test is the 
rank of disjoint sub-matrices of the entire sequence. The 
purpose of this test is to check for linear dependence 
among fixed length substrings of the original sequence.

Cumulative sums test: The focus of this test is the 
maximal excursion (from zero) of the random walk 
defined by the cumulative sum of adjusted (-1, +1) digits 
in the sequence. The purpose of the test is to determine 
whether the cumulative sum of the partial sequences 
occurring in the tested sequence is too large or too small 
relative to the expected behavior of that cumulative sum 
for random sequences. This cumulative sum may be 
considered as a random walk. For a random sequence, 
the excursions of the random walk should be near zero.

Discrete Fourier transform (spectral) test: The focus 
of this test is the peak heights in the Discrete Fourier 
Transform of the sequence. The purpose of this test is to 
detect periodic features (i.e., repetitive patterns that are 
near each other) in the tested sequence that would 
indicate a deviation from the assumption of randomness. 

Random excursions test: The focus of this test is the 
number of cycles having exactly K visits in a cumulative 
sum random walk. The cumulative sum random walk is 
derived from partial sums after the (0,1) sequence is 
transferred to the appropriate (-1, +1) sequence. A cycle 
of a random walk consists of a sequence of steps of unit 
length taken at random that begin at and return to the 
origin. The purpose of this test is to determine if the 
number of visits to a particular state within a cycle 
deviates from what one would expect for a random 
sequence. This test is actually a series of eight tests (and 
conclusions), one test and conclusion for each of the 
states: x = -4, -3, -2, -1 and +1, +2, +3, +4.

Random excursions variant test: The focus of this 
test is the total number of times that a particular state is
visited (i.e., occurs) in a cumulative sum random walk. 
The purpose of this test is to detect deviations from the 
expected number of visits to various states in the random 
walk. This test is actually a series of eighteen tests (and 
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conclusions), one test and conclusion for each of the 
states: x = -9, -8, …, -1 and +1, +2, …, +9.

4.1.2 Parameterized tests
Frequency test within a block: The focus of the test 

is the proportion of ones within M-bit blocks. The 
purpose of this test is to determine whether the frequency 
of ones in an M-bit block is approximately M/2, as 
would be expected under an assumption of randomness. 
For block size M=1, this test degenerates to the 
Frequency (Monobit) test.

Approximate entropy test: The focus of this test is 
the frequency of all possible overlapping m-bit patterns 
across the entire sequence. The purpose of the test is to 
compare the frequency of overlapping blocks of two 
consecutive/adjacent lengths (m and m+1) against the 
expected result for a random sequence.

Linear complexity test: The focus of this test is the 
length of a linear feedback shift register (LFSR). The 
purpose of this test is to determine whether or not the 
sequence is complex enough to be considered random. 
Random sequences are characterized by longer LFSRs.

Maurer’s universal statistical test: The focus of this 
test is the number of bits between matching patterns (a 
measure that is related to the length of a compressed 
sequence). The purpose of the test is to detect whether or 
not the sequence can be significantly compressed without 
loss of information. A significantly compressible 
sequence is considered to be non-random.

Serial test: The focus of this test is the frequency of 
all possible overlapping m-bit patterns across the entire 
sequence. The purpose of this test is to determine 

whether the number of occurrences of the m2 m-bit 
overlapping patterns is approximately the same as would 
be expected for a random sequence. Random sequences 
have uniformity; that is, every m-bit pattern has the same 
chance of appearing as every other m-bit pattern. Note 
that for m = 1, the Serial test is equivalent to the 
Frequency test.

Non-overlapping template matching test: The focus 
of this test is the number of occurrences of pre-specified 
target strings. The purpose of this test is to detect 
generators that produce too many occurrences of a given 
non-periodic (aperiodic) pattern. For this test and for the 
Overlapping Template Matching test, an m-bit window is 
used to search for a specific m-bit pattern. If the pattern 
is not found, the window slides one bit position. If the 
pattern is found, the window is reset to the bit after the 
found pattern, and the search resumes.

Overlapping template matching test: The focus of 
the Overlapping Template Matching test is the number of 
occurrences of pre-specified target strings. Both this test 
and the Non-overlapping Template Matching test use an 
m-bit window to search for a specific m-bit pattern. It 
differs from the non-overlapping template matching test 
in the sense that in this case when the pattern is found, 
the window slides only one bit before resuming the 
search.

For the detailed description of above mentioned 16 
tests, we refer the readers to the NIST document [55].

4.2 Testing strategy
The NIST framework, like many statistical tests, is based 
on hypothesis testing. A hypothesis test is a procedure 
for determining if an assertion about a characteristic of a 
population is reasonable. In the present case, the test 
involves determining whether or not a specific sequence 
of zeroes and ones is random (it is called null hypothesis

0H ). 

For each test, a relevant randomness statistic be 
chosen and used to determine the acceptance or rejection 
of the null hypothesis. Under an assumption of 
randomness, such a statistic has a distribution of possible 
values. A theoretical reference distribution of this 
statistic under the null hypothesis is determined by 
mathematical methods and corresponding probability 
value (P-value) is computed, which summarizes the 
strength of the evidence against the null hypothesis.  For 
each test, the P-value is the probability that a perfect 
random number generator would have produced a 
sequence less random than the sequence that was tested, 
given the kind of non-randomness assessed by the test. If 
a P-value for a test is determined to be equal to 1, then 
the sequence appears to have perfect randomness. A P-
value equal to zero indicates that the sequence appears to 
be completely non-random. A significance level ( ) be
chosen for the tests and if  valueP , then the null 
hypothesis is accepted i.e., the sequence appears to be 
random. If  valueP , then the null hypothesis is 
rejected; i.e., the sequence appears to be non-random.  
Typically, the significance level ( ) is chosen in the 
interval [ 01.0,001.0 ].  The 01.0 indicates that one 

would expect 1 sequence out of 100 sequences to be 
rejected. A 01.0 valueP would mean that the 
sequence would be considered to be random with a 
confidence of 99 %. 

For the numerical experimentations on the proposed 
pseudo random bit generator, we have generated 2000
(sample size 2000m ) different binary sequences (each 
sequence has been generated from a randomly chosen 
seed )1,0(, 00 YX with 00 YX  and 0.421   ) 

each of length 610 bits and computed the P-value 
corresponding to each sequence for all the 16 tests of 
NIST Suite (in all we have computed total 482000 = 
96000 P-values). All the computations have been 
performed in double precision floating point 
representation.  We refer the readers to Rukhin et al [55] 
for the detailed mathematical procedure for calculating 
the P-value for each individual test of NIST suite. For 
the analysis of P-values obtained from various statistical 
tests, we have fixed the significance level at 01.0 .  In 
Tables 1 and 2 respectively, we have summarized the 
results obtained after implementing non-parameterized 
and parameterized tests of NIST suite on the binary 
sequences produced by the proposed pseudo random bit 
generator.
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4.3 Interpretation of results:
(i) Uniform distribution of P-values: For each test, the
distribution of P-values for a large number of binary 

sequences ( 2000m ) has been examined.  Visually, it 
has been done by plotting the histograms, where we have 
divided the complete interval of P-values [0, 1] into 10 

Figure 4: Histograms of P-values for non-parameterized tests of NIST suite.
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equal sub-intervals and the P-values that lie in each 
subinterval has been counted and displayed.  We have 
displayed the result of one such analysis in Figure 4 for 
some of the non-parameterized tests.  It is clear from 
Figure 4 that the P-values for each statistical test are 
uniformly distributed in the complete interval of P-
values i.e., [0, 1].  We obtain the similar results for the 
remaining non-parametric and parametric tests also.

The uniformity of the P-values has also been 
examined quantitatively via an application of 2 test and 

the determination of a P-value corresponding to the 
Goodness-of-Fit distributional test on the P-values
obtained for each statistical test (i.e., a P-value of the P-
values, which is denoted by TvalueP  ).  The 

computation is as follows:


















 

10

1

2

2

1010i
i

mm
f , (9)

where if is the number of P-values in the sub-interval i
and m is the size of the sample, which is 2000m for 
the present analysis.  The P-value of the P-values (i.e.,

TvalueP  ) is obtained from the 2   by using











2
,

2

9 2
igamcvalueP T ,             (10)

where igamc( ) is the incomplete Gamma function.  If 

0001.0 TvalueP then the P-values are considered to 

be uniformly distributed.
The computed TvalueP  corresponding to each 

statistical test has been given in Tables 1 and 2.  In 
Figures 5(a) and (b) respectively, we have graphically 
depicted the computed TvalueP  for each non-

parameterized and parameterized test along with the 
threshold value (0.0001). It is clear that the computed 

TvalueP  for each test lies above the threshold value, 

which confirms the uniformity of the P-values for all the 
16 tests of NIST suite.

(ii) Proportions of the sequences passing the tests:
We have calculated the proportion of the sequences 
passing a particular statistical test and compared it with 
the range of acceptable proportion.  The range of 
acceptable proportion is determined by using the 

confidence interval given by
m

pp
p

)ˆ1(ˆ
3ˆ


 ,

            (11)
where m is the sample size and  1p̂ , which are 

2000m and 99.001.01ˆ p for the present 

analysis.  So the range of acceptable proportion is 
]9966745.0,9833245.0[ .  The quantitative results of 

proportions are given the Tables 1 and 2 respectively for 

Table 1: Non-parameterized tests results.
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various non-parameterized and parameterized statistical 
tests of NIST suite. In Figures 6(a) and (b) respectively, 
we have graphically depicted the computed proportions 
for each non-parameterized and parameterized test along 
with the confidence interval i.e., ]9966745.0,9833245.0[

. It is clear that the computed proportion for each test lies 
inside the confidence interval; hence the tested binary 
sequences generated by the proposed PRBG are random 
with respect to all the 16 tests of NIST suite.

5 Conclusion
We have proposed a design of a pseudo random bit 
generator (PRBG) based on two chaotic logistic maps 
iterated independently starting from independent initial 
conditions.  The pseudo random bit sequence is obtained 
by comparing the outputs of both the chaotic logistic 
maps.  We have also tested rigorously the generated 
sequences using the NIST suite, which consists of 16 
independent statistical tests devised to detect the specific 
characteristics expected of truly random bit sequences.  
The results of statistical testing are encouraging and 
show that the proposed PRBG has perfect cryptographic 
properties and hence can be used in the design of new 
stream ciphers.
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