
Informatica 29 (2005) 199–207 199

Improving Branch Prediction Performance with A Generalized Design for
Dynamic Branch Predictors

Wei-Ming Lin, Ramu Madhavaram and An-Yi Yang
Department of Electrical Engineering
University of Texas at San Antonio
San Antonio, TX 78249-0669, USA
WeiMing.Lin@utsa.edu

Keywords: Branch Prediction, Two-Level Predictor, Gshare, Generalized Branch Predictor

Received: January 1, 2004

Pipeling delays from conditional branches are major obstacles to achieving a high performance CPU. Pre-
cise branch prediction is required to overcome this performance limitation imposed on high performance
architecture and is the key to many techniques for enhancing and exploiting Instruction-Level Parallelism
(ILP). A generalized branch predictor is proposed in this paper. This predictor is a general case of most
of the predictors used nowadays, including One-Level Predictor, Two-level predictor, Gshare, and all their
close and distant variations. Exact pros and cons of different predictors are clearly analyzed under the same
general format. The concept in the traditional Gshare predictor is then extended to form a more flexible
predictor under the same construct. By following this generalized design scheme, we are able to fine-tune
various composing parameters to reach an optimal predictor and even allow the predictor to adjust accord-
ing to various types of applications. From our simulation results, it is evident that significant improvement
over traditional predictors is achieved without incurring any additional hardware.

Povzetek: Članek obravnava delovanje CPU in napovedovanje razmejitev.

1 Introduction

In the past decade, by taking advantage of RISC archi-
tecture and advanced VLSI technology, computer design-
ers were able to exploit more Instruction-Level Parallelism
(ILP) by using deeper pipelines, wider issue rates and
superscalar techniques. However, these techniques suf-
fer from disruption caused by branches during the issue
of instructions to functional units. How to appease such
a performance-degrading effect from branch instructions,
which typically make up twenty or more percentage of an
instruction stream, has to be paid with more attention.

Branch prediction is a common technique used to over-
come this performance limitation imposed on high per-
formance architectures and is the key to many techniques
for enhancing ILP. Branch prediction essentially involves
a guess on the likely stream direction that is to take place
after a branch instruction; whenever such a guess is cor-
rect, penalty in pipeline delay is either reduced or com-
pletely avoided. There have been various branch prediction
schemes proposed in this area [1, 2, 6, 7, 8, 10, 13, 15, 21].
They are usually classified as static or dynamic according
to how prediction is made. Static prediction schemes al-
ways assume same outcome for any given branch, whereas
a dynamic scheme uses run-time behavior of branches to
adjust the database for later predictions. Focus of this pa-
per is on the dynamic ones which usually show far better
prediction accuracy than the static ones.

A typical dynamic prediction mechanism relies on a pre-
diction table, or the so-called Pattern History Table (PHT)
to record the behavior of past branches. One of the very
early predictors used was the One-Level Predictor which
has a one-dimensional PHT and uses only program counter
(PC) as the index to retrieve past branch behavior and
record new branch behavior. Usually one-bit or two-bit sat-
urating up-down counters are used in the PHT to record the
behavior of branches. When these branches are encoun-
tered again they are predicted based on their entries in the
table, i.e., based on their previous behavior. It was fol-
lowed by the more widely used Two-Level Adaptive Pre-
dictor [17], which has the PHT but organized into a two-
dimensional table. Such a PHT is addressed using both the
PC index and a history register (HR) index. The HR is used
to record behaviors of either the most recent per-address
branch or the most recent global branches. The two-level
predictor easily outperforms the one-level one by exploit-
ing potential correlation between branches at run-time.

Another very popular predictor design, Gshare, was pro-
posed in [9]. Unlike the previously proposed designs,
Gshare addresses the PHT with a blended index between
global history and the PC. Based on Gshare, some other
designs including LGshare [4] have also been proposed.
Although these Gshare-based designs usually yields bet-
ter prediction results than the traditional two-level predic-
tors in most cases, the exact reason behind their design and
their relationship with the two-level predictors has never

200 Informatica 29 (2005) 199–207 W. Lin et al.

been discussed, nor has a complete analysis on their bene-
fits ever been presented.

After carefully analyzing the structure of all the afore-
mentioned predictors, we propose a general prediction
scheme which encompasses all these popular designs. This
generalized scheme displays a standard organization for the
PHT and a flexible selection for HR index. This proposed
scheme provides a platform with which one can easily un-
derstand the similarities and/or differences among different
predictors proposed so far. In addition, based on this, we
can provide a more systematic explanation for the benefits
a predictor provides and the drawbacks it may come with.

The remainder of the paper is organized as follows. A
brief overview of the well-known counter-based dynamic
branch prediction schemes is presented in section 2. The
proposed generalized predictor is then described in the fol-
lowing section along with its variations. In section 4, our
simulation and performance comparison results are pre-
sented. Concluding remarks are given in the last section.

2 Dynamic Branch Prediction
There have been many dynamic branch prediction schemes
proposed in the past decade. A few representative ones are
described in the following for the sake of completeness.

2.1 One-Level Predictor
The prediction table is usually indexed by the lower-order
address bits in the program counter (PC), although other
portions of the PC have been used as well. Figure 1 illus-
trates the design of such a scheme. Each entry in the predic-

●

●

●

PC

Actual Branch Outcome

 (T/NT)

Prediction

n PHT

Figure 1: Implementation of Simple One-Level Branch
Prediction

tion table (PHT) is used to provide prediction information
for the branch instruction mapped to it, and is implemented
by a counter which goes up or down according to the ac-
tual outcome of the corresponding branch instruction. Each
branch is predicted based on its most recent outcome. In-
stead of the simple one-bit counter, a well-known two-bit
up-down counter has been extensively used in this scheme
so as to render a damping effect which enhances predic-
tion accuracy for typical reentrant loop constructs. Dam-
age caused by alternating occurrences between two aliasing

branches can also be alleviated using the two-bit counters.
Such an observation prompts most later advanced designs
to use such a two-bit counter prediction table as a design
base.

2.2 Correlation-based or Two-Level
Adaptive Predictor

Outcome of a branch is usually affected by some previ-
ously executed branches. Such a correlation could exist
among different branch instructions executed temporally
close to one and other, or simply refers to the effect on a
branch from its own recent execution behavior. The lat-
ter one has been partially considered in the simple one-
level two-bit counter design. Such an approach requires
a separate table, the so-called history table, to record the
necessary history information. A general design block di-
agram is shown in Figure 2 in which the PHT organized
as a two-dimensional table is addressed by two separate
indices, the PC index and the history index. History in-
formation established in a history table can be either in
per-address (per-branch) format as shown in Figure 2 or in
global format as shown in Figure 3. In a per-address case, a

●

●

●●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

PC m n-m

PHT

m

n-m

HR

Prediction

Figure 2: Implementation of Per-Address Correlation-
based Branch Prediction

per-address history table is needed which also is addressed
by the PC index. A shift register, so-called History Reg-
ister (HR), is usually used to implement each such entry.
On the other hand, for the global format, only one HR is
needed, as shown in Figure 3. This aims at exploiting the
correlation in behavior existing in most programs between
recurring identical branches (as in the per-address case) or
between distinct branches adjacent in time (as in the global
case). HR index and PC index combined are then used to
locate the counter in the PHT for prediction. It is shown
that [19] global history schemes perform well with integer
programs while per-address history schemes are better for
floating point programs. Also, note that the PC index for
history table does not have to come from the same least sig-
nificant portion of PC that the PC index for PHT normally
uses. The so-called “per-address” refers to the one that uses
the least significant bits of PC for such an index, while the
“per-set” refers to the selections otherwise. In general, such

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 201

HR
●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

PC

m

n-m

PHT

n-m

m

Figure 3: Implementation of Gloabl Correlation-based
Branch Prediction

a selection does not lead to any significant discrepancy in
performance.

2.3 Gshare Predictor
In the Gshare scheme [9], as shown in Figure 4, the predic-
tion table is addressed by an index established by XORing
a global history and part of the PC index. Gshare scheme
does lead to improvement in most cases compared to a sim-
ple two-level predictor; however, the exact cause for such
an improvement has never been clearly analyzed. (Note
that, in one of the original Gshare designs, the XORing
function is performed over the entire PC index; that is, m
is set to be equal to n, which in general leads to worse per-
formance than a simple two-level predictor.)

HR

●

●

●

PC m n-m

Prediction

PHT

Figure 4: Implementation of Sharing Index Branch
(Gshare) Prediction

2.4 Others Well-Known Predictors
The possibility of combining different branch predictors is
exploited by McFarling in [9]. It comes from the obser-
vation that some schemes work well on one type of pro-
grams while not so on another. The selective scheme is
implemented with two different predictors, with each mak-
ing prediction separately. A third table is then used to
make decision between the two prediction outcomes based
on various program scenarios. Such a scheme is claimed

to perform well on different circumstances, yet it has a
hardware cost roughly three times of what a non-selective
one would cost. A predictor called LGshare has also been
proposed [4] to further improve on Gshare by using both
global as well as per-address history of a branch to predict
its behavior. Among many more others in this field, a new
predictor discussed in [6] is based on Simultaneous Sub-
ordinate MicroThreading (SSMT), which provides a new
means to improve branch prediction accuracy. SSMT ma-
chines run multiple concurrent microthreads in support of
the primary thread to dynamically construct microthreads
that can speculatively and accurately pre-compute branch
outcomes along frequently mispredicted paths. Another
technique is introduced in [5] to reduce the pattern history
table interference by dynamically identifying some easily
predictable branches and inhibiting the pattern history ta-
ble update for these branches.

In general, there are a few types of well-known potential
problems that would lead to a misprediction result due to
the nature of the predictor employed:

– Initialization –
Every branch instruction that has a predictable behav-
ior needs to have its behavior history properly estab-
lished in the prediction table before a meaningful pre-
diction can be made.

– Alias –
This problem occurs when different branches are
mapped to the same entry in the PHT. Such a prob-
lem is unavoidable unless a sufficiently large number
of entries to cover all potential program sizes are pro-
vided.

– Undetected Correlation –
Due to the limited size of history register, correlation
among branches far apart in time/trace may not be de-
tected.

– “Random” (Unpredictable) Branch Behavior –
A branch’s behavior, either at times or throughout the
life of the program, may be simply run-time data-
dependent which is either completely “random” or un-
predictable based on any of the known branch predic-
tion schemes.

Some of the above problems may further intertwine with
each other. For example, if the overall size of the pre-
dictor table is to remain the same, by increasing the his-
tory depth (the history register size) to allow more poten-
tial correlation to be detected, alias problem between dif-
ferent branches would worsen. It is part of our goals in
our proposed generalized predictor to determine the pros
and cons among the various predictors and to incorporate
an additional flexibility in our predictor to accommodate
for various programs that may call for different prediction
techniques.

202 Informatica 29 (2005) 199–207 W. Lin et al.

3 Proposed Generalized Predictor
A generalized predictor is proposed in this section to show
that most of the predictors mentioned above fall under this
category. With the introduction of this design scheme, po-
tential performance-influencing factors can be more clearly
analyzed. Additional design flexibility is also incorporated
in this design to allow adjustment of certain design param-
eters to accommodate for various program behaviors. In
order to have a fair comparison among all predictors, all
are assumed to be of unified cost, i.e. predictors with simi-
lar hardware are compared.

3.1 Generalized Predictor

Figure 5 illustrates the proposed generalized predictor de-
sign. In this design, the PHT is organized as a two-

PC XOR mask

●

●

●

●

●

●

●

●

●

● ● ●● ● ●

Prediction

HR

PC

n-mm

m

m

m n-m

PHT

Figure 5: The Proposed Generalized Predictor

dimensional table similar to the traditional two-level pre-
dictor. The primary hardware cost resides in the PHT, the
size of which is thus fixed at 2n. The lower portion of PC
from bit 0 to bit n − m − 1 is used to address the PHT
as the row index, while the column index is composed by
XORing the m-bit HR and a “floating” portion of PC. This
portion of PC is called as the “PC XOR mask” throughout
this paper.

3.2 Special Case #1: One-Level Predictor

The one-level predictor as shown in Figure 1 can be reor-
ganized as a special case of the proposed generalized pre-
dictor. Figure 6 illustrates such an arrangement. By having
the PC XOR mask fixed at the highest position of the n-
bit index, and XOR-ing it with the non-existing HR (0’s
throughout the HR content), the original one-dimensional
PHT is then re-arranged as a two-dimensional PHT. The se-
quence of addressing in the original one-dimensional PHT
is then mapped to a column-major-order sequence in this
new two-dimensional PHT, i.e. one column followed by the
next one. Such a rearrangement presents us a platform for
a direct comparison between any advancement from this
technique and the original one.

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

HR

PC

n-mm

m

m

m n-m

PHT

000 ... 0

Figure 6: One-Level Predictor as A Special Case

3.3 Special Case #2: Two-Level Predictor
Comparing the two-level predictor with the one-level Pre-
dictor, one can obviously see that the former intends to im-
prove prediction accuracy by using more history to exploit
correlation information among different branches’ behav-
ior. However, with the cost fixed, the two-level predictor
introduces potentially more alias problem into the picture
by having a smaller PC index (row index) used. That is, for
every additional bit of HR employed (m being increased by
1), the number of row entries of the PHT is reduced by half.
It has been shown that such a tradeoff usually is worthwhile
to a certain extent of m due to the following reasons:

– Benefit from exploiting correlation among branches
usually outweighs the potential performance loss from
the alias problems thus incurred.

– Alias problem between two branches thus incurred
can sometimes be relieved if they have a different
global history pattern in HR even though they are
“aliased” into the same row entry. In this case, the
alias problem is removed since their prediction entries
are mapped into different columns albeit in the same
row.

The two-level predictor based on a global history HR as
shown in Figure 3 can be also reorganized as a special case
of the proposed generalized predictor. Figure 7 illustrates
such an arrangement. The new arrangement has the XOR
mask confined to within the row index, i.e. the first n−m
bits of PC. This results in no change of prediction accu-
racy because the mapping of branches is merely swapped
around among the columns i.e. branches mapped to one
column are now mapped to a different column and this
takes place symmetrically for all the branches. This comes
from a simple understanding of how XOR function applies
to a given bit pattern. For example, in Figure 8, two-bit col-
umn indices from a two-bit HR are one-to-one mapped to
different set of indices when XORed with a different XOR-
mask values from PC. Obviously, if this mask portion of
PC is within the row index portion of PC as indicated in
this special case for two-level predictor, then each branch

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 203

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

HR

PC

m

m

m n-m

PHT

n-m

m

Figure 7: Two-Level Predictor as A Special Case

HR

m

HRHR HR

mm m

01

00

10

1111

01

00

10

PC m n-m

11

10

01

0000

n-m m n-mm

11

10

01

00

PC m n-m

11

10

01

00

PC PC

11

10

01

00

11

10

01

00

11

10

01

00

01 10 11

Figure 8: Index Swapping Effect from XOR Function

will be still mapped to the same row except that it may
be using a different column index mapping according to
its run-time HR content. Thus, the prediction result would
remain the same comparing the original arrangement and
the new arrangement pertaining to a non-alias case. For an
alias case between two different branches that are mapped
to the same row, the alias effect still remains the same since
both instructions would have the same XOR-mask content
from within their identical row index content. An exam-
ple showing such a swapping between two instructions is
given in Figure 9. It happens so because no extra PC in-
formation is used and thus two aliased branches cannot be
differentiated with the same PC index. As shown in Fig-
ure 9 two aliased branches A and B with different histories
are mapped to different columns along the same row before
XORing with XOR-mask from the PC. Consequently, after
XORing as shown in the second figure, both A and B are
mapped to different columns but are just swapped around
which does not lead to different prediction result from the
two-level predictor. So it can be concluded that two-level
predictor is also a special case of this generalized predictor.

3.4 Special Case #3: Gshare

Gshare is one of the global two-level predictors, which ex-
ploits correlation by basing the prediction on the outcome
of the recently executed branches. The XORing is done to
incorporate history information into the PC index thereby
differentiating interfering branches with the help of history
bits. Similarly Gshare can be organized as a special case of
our proposed predictor, through which we can easily an-

A

B

A

Y

X

(b) Re-organized as a special case

B A

B

A

Y

X

(a) Original Two-Level Predictor

B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
11

01

HR

00 01 10 11

●

●

0 1011 0

0 1011 0
●

●

●

●

●

●

11

01

HR

00 01 10 11

0 1011 0

0 1011 0

●

PC 2 6

Figure 9: Index Swapping between Two Aliased Instruc-
tions

alyze the benefits brought by this technique. Figure 10
demonstrates this new arrangement. In the following, a

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

Prediction

HR

PC

m

m

m n-m

PHT

n-m

m

Figure 10: Gshare Predictor as A Special Case

thorough analysis on how Gshare compares to the two spe-
cial cases thus far introduced is given.

3.4.1 Gshare vs. One-Level Predictor

As shown earlier, the original Gshare predictor is similar
to one-level predictor in the way its PHT is organized with
the difference that Gshare additionally uses history infor-
mation and so produces much better prediction accuracies
than the one-level predictor. Similar to two-level predic-
tor, Gshare benefits from exploiting correlation information
from the use of HR, but it addresses the tradeoff between

204 Informatica 29 (2005) 199–207 W. Lin et al.

alias problem and loss of correlation in a more delicate
manner, which is to be described in the following section.

3.4.2 Gshare vs. Two-Level Predictor

Gshare, when compared to the two-level predictor, is said
to be advantageous due to the XORing effect and can be
explained as shown in Figure 11. The benefit comes from
that fact that, in most programs, global history (HR) con-
tent tends to exhibit one dominant pattern, either 00 . . . 00
or 11 . . . 11, due to loop constructs especially when the his-
tory depth used (m) is small. This claim has also been
confirmed by our simulation results. Consider four aliased
branches A, B, C and D that are aliased into the same row
in the PHT. The mapping of these branches with different
values of HR is shown for both two-level predictor in (a)
and Gshare predictor in (b). A00, B00, C00 and D00, where
the subscripts denote the HR contents, are mapped to dif-
ferent columns of the same row in Gshare as compared to
same column in two-level. Same scenario applies to the
case when HR has a content of 11. This is one of the advan-
tages of Gshare because aliased branches with most domi-
nant history patterns are now mapped to different locations
thereby reducing destructive overlapping. That is, assum-
ing that they have the same history, all the four branches are
mapped to the same column in a two-level predictor and so
cannot be distinguished. In Gshare on the other hand, these
aliased branches are “dispersed” to different columns and
so the problem is resolved.

The mapping difference described above is the only dis-
tinction between the Gshare and the two-level predictor,
and such a distinction may not always favor the Gshare due
to different program behavior. A very important conclusion
that can be drawn from this is that the Gshare is essentially
identical to the two-level predictor if the (n − m)-bit row
index does not lead to any alias problem. That is, the dis-
persion of dominating entries among aliasing branches no
long exists, thus leading to no more difference in prediction
result.

Size of the XOR mask also plays a very important role
in Gshare’s potential performance. Similar to the two-level
predictor, the larger the mask is (larger m), the more his-
tory correlation among branches can be exploited. On the
other hand, a larger mask leads to more alias problems, al-
though the column mapping of Gshare may provide a bet-
ter alias-differentiating support than the two-level one from
our discovery. As one of the most extreme case, in one of
the original Gshare designs, the XORing function is per-
formed over the entire PC index; that is, m is set to be equal
to n. This in general leads to an undesirable performance
due to its excessive alias problems.

3.5 The Proposed Generalized Predictor
with Extensions

A generalized predictor as proposed can be specified
with the position of the m-bit XOR mask in PC. Let the

Z

X

W

1

Y

Z

X

W 00

1

01

10

D 1

(b) Gshare Predictor

Y

A

D

C

B

(a) Two-Level Predictor

A

C

B

11

11

11

●

11

●

●

●

●●

●

●

●

●

●

●

00 01 10

10

10

10

01

01

01

●

●

●

●

01

●

●

10 D
C

●

D

11

●

● ●

●

B

●

A

D

PC 2 6

0 1011 0

0 1011 0
C

0 1011 0

B
A

0 1011 0

C
B
A

00D
00C
00B
00

PC 2 6

0 1011 0

0 1011 0

0 1011 0

A

0 1011 0

00 01 10 11

11A 00

B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

01 10

HR

HR

01 00 11 10

10 11 00 01

11 10 01 00

0

0

0

0

1

11

Figure 11: Difference between Gshare Predictor and Two-
Level Predictor

least significant bit of this mask be starting at bit Ws;
that is, the mask ranges from bit Ws to Ws + m − 1.
Each of the special cases is then defined as in the following:

Case Range of Ws HR value

(a) 0 ≤ Ws ≤ n− 2m run-time

(b) n− 2m + 1 ≤ Ws ≤ n−m− 1 run-time

(c) Ws = n−m 00 . . . 00

(d) Ws = n−m run-time

(e) n−m + 1 ≤ Ws run-time

Clearly, case (a) corresponds to the two-level predictor,
case (c) to the one-level predictor and case (d) corresponds
to the Gshare predictor, while cases (b) and (e) have never
been addressed.

Case (b) is essentially a combination of two-level and
Gshare predictors. Such a hybrid design displays a vari-
ous degree of dispersion on dominating entries of aliasing
branches. Figure 12 shows an example similar to the one
presented in Figure 11. As a compromising point in be-
tween the two-level one that shows zero dispersing effect
and the Gshare that has a 100% dispersing effect, this spe-
cial case exhibits a 50% dispersing capability. Branch A

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 205

Z

X

WA

D

C

B

Y

2 6PC

HR

●

●

●

●

●

1011 0

0 1011 0

●

●

0 1011 0
●

●

0 1011 0

●

●

●
0

00 01 10 11

11A 00

B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

01 10

01 00 11 10

0

0

1

1 1

00 01 10 11

01 00 11 10

1

0

0

Figure 12: A Hybrid Design of Two-Level and Gshare Pre-
dictors

and C remain aligned and so do B and D among the four
aliasing branches. Performance from such a hybrid predic-
tor is usually unpredictable due to its nature.

Case (e) is an extension of Gshare aimed at programs
with larger address space and/or with a small PHT. The ex-
ample in Figure 13 shows that, between the two aliasing
instructions A and B, the dispersing effect does not take
place in the traditional Gshare since both instructions have
the same XOR mask value. That is, under such a circum-

X

B

A

Y 1

HR

011 0

0 1011 00

0

PC 2 6

0

1

0

00

Figure 13: An Extended Design from Gshare

stance, Gshare performs exactly like the two-level predic-
tor. Moving the XOR mask to the higher portion of PC
allows the dispersion effect to re-emerge.

4 Simulation

Our trace analysis and simulation are performed on a
SPARC 20 system. Data are obtained using Shade ver-
sion 5.25 analyzing program. Shade is a dynamic code
tracer, which combines instruction set simulations, trace
generation and custom trace analysis in a process. Our test
programs include a benchmark program from the Stanford
Body Benchmark Suite, sfloat, and seven standard Unix
utility programs. A brief description of these programs on
various aspects of their branch instructions is given in Ta-
ble 1. A trace analysis has been performed on these eight
test programs to show the percentage improvement in mis-
prediction rate.

program # instr # taken # not-taken
sfloat 7730261 111170 125382

ls 1207004 112180 91466
gcc 677017 61258 58096
cc 543900 50519 46536

chmod 492158 45812 42507
grep 491016 45672 42382
awk 490911 45524 42365
pack 486776 45159 42173

Table 1: Description of Test Programs

4.1 Simulation Results
A series of simulation runs are performed by varying the
following three parameters on one-bit and two-bit predic-
tion schemes: (1) Number of index bits (n), (2) Number of
history bits (m), and (3) Shift in the window (Ws). Perfor-
mance comparison results are plotted after taking the aver-
age of improvement in miss prediction rate for all the above
eight programs. The “miss rate improvement percentage”
is defined as:

Mtwo-level −Mgeneralized
Mtwo-level

× 100

where Mtwo-level and Mgeneralized denote the miss rate
of two-level prediction scheme and that of the generalized
one, respectively. Each point in these results corresponds
to the average of results from the eight test programs. Fig-
ure 14, Figure 15 and Figure 16 show the results for both
one-bit and two-bit counters prediction schemes.

We can see that, from all these figures, performance of
the generalized predictor is identical to that of the two-level
one (i.e. improvement equals to 0) when

0 ≤ Ws ≤ n− 2m

Gshare’s results (when Ws = n−m), in general, are among
the better ones for n = 11, but are outperformed by most of
cases with larger Ws values (the Extended Gshare scheme)
for n = 10 and n = 9. This finding verifies our analy-
sis that the Extended Gshare scheme allows the dispersion
effect to reappear when a small PHT is used. The Hybrid
scheme (when n− 2m + 1 ≤ Ws ≤ n−m− 1) does not
distinguish itself clearly from the two-level one.

5 Conclusion
In this paper, we propose a generalized branch predictor
and show that most of the commonly used predictors are
actually special cases of this generalized predictor. Simi-
larities and differences among predictors are clearly identi-
fied. Based on this construct, we are able to easily analyze
and compare the benefits and drawbacks among different
predictor designs. We also show that a simple extension of

206 Informatica 29 (2005) 199–207 W. Lin et al.

the Gshare design, a direct notion from the generalized de-
sign, can outperform Gshare in many cases. This is an im-
provement at no additional cost on hardware. A dynamic
selection of the XOR-mask position according to the nature
of the program may bring additional improvement. Also,
one potential direction that is worthwhile looking into is
the understanding and classification of different kinds of
conditional branches, which may help predict the otherwise
declared “random” branches that have not been addressed
by the prediction methods investigated so far.

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 9, one-bit counter PHT

m=2
m=3
m=4

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 9, two-bit counter PHT

m=2
m=3
m=4

Figure 14: Improvement Results versus Window Shift for
n = 9

References

[1] T. Ball and J. Larus, “Branch Prediction for Free,”
Proc. ACM SIGPLAN 1993 conf. on Prog. Lang. De-
sign and Implementation, June, 1993.

[2] B. Bray and M. J. Flynn, “Strategies for Branch Tar-
get Buffers,” 24th Workshop on Microprogramming
and Microarchitecture, 1991, p.42-p.49.

[3] B. Calder and D. Grunwald, “Fast & Accurate In-
struction Fetch and Branch Prediction,” Intl. Symp. on
Computer Architecture, April, 1994.

[4] M.-C. Chang and Y.-W. CHou, “Branch Prediction
using both Global and Local Branch History informa-
tion,” Computers and Digital Techniques, IEE Pro-
ceedings, Volume: 149 Issue: 2, March 2002.

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 10, one-bit counter PHT

m=2
m=3
m=4

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 10, two-bit counter PHT

m=2
m=3
m=4

Figure 15: Improvement Results versus Window Shift for
n = 10

[5] P.-Y. Chang, M. Evers and Y.N. Patt, “Improving
branch prediction accuracy by reducing pattern his-
tory table interference,” Parallel Architectures and
Compilation Techniques, 1996.

[6] R. S. Chappell, F. Tseng, A. Yaoz and Y. N. Patt,
“Difficult-path Branch Prediction Using Subordinate
Microthreads,” Proc. 29th Annual International Sym-
posium on Computer Architecture, 2002.

[7] J. Fisher and S. Freudenberger, “Predicting Condi-
tional Branch Direction From Previous Runs of a Pro-
gram,” Proc. 5th Annual Intl. Conf. on Architectural
Support for Prog. Lang. and Operating System, Octo-
ber, 1992.

[8] J. K. F. Lee and A. Smith, “Branch Prediction Strate-
gies and Branch Target Buffer Design,” IEEE Com-
puter, January, 1984, p.6-p.22.

[9] S. McFarling, “Combining Branch Predictor,” Tech-
nical Report, Digital Western Research Laboratory,
June, 1993.

[10] S. McFarling and J. Hennessy, “Reducing the Cost of
Branches,” The 13th Annual Intl. Symposium of Com-
puter Architecture, 1986, p.396-p.403.

[11] S. Pan, K. So, and J. Rahmeh, “Improving the Ac-
curacy of Dynamic Branch Prediction Using Branch
Correlation,” Proc. 5th Annual Intl. Conf. on Archi-
tectural Support for Prog. Lang. and Operating Sys-
tem, Oct. 1992.

IMPROVING BRANCH PREDICTION. . . Informatica 29 (2005) 199–207 207

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 11, one-bit counter PHT

m=2
m=3
m=4

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
is

s
ra

te
 im

pr
ov

em
en

t p
re

ce
nt

ag
e

Window Shift (Ws)

n = 11, two-bit counter PHT

m=2
m=3
m=4

Figure 16: Improvement Results versus Window Shift for
n = 11

[12] D. Patterson and J. Hennessy, “Computer Architec-
ture: A Quantitative Approach, 2nd Edition,” Morgan
Kaufmann Publishers, Inc., 1995.

[13] C. Perleberg and A. J. Smith, “Branch Target Buffer
Design and Optimization,” IEEE Transactions on
Computers, April, 1993, P396-412.

[14] J. Smith, “A Study of Branch Prediction Strategies,”
Proc. 8th Annual Intl. Symp. on Computer Architec-
ture, May, 1981, p.135-p.147.

[15] Z. Su and M. Zhou, “A Comparative Analysis of
Branch Prediction Schemes,” Technical Report, Uni-
versity of California at Berkeley, 1995.

[16] “Shade Manual,” Sun Microsystems, 1995.

[17] T. Yeh and Y. Patt, “Two-level Adaptive Branch Pre-
diction,” Proc. 24th Annual ACM/IEEE Intl. Symp.
and Workshop on Microarchitecture, Nov. 1991.

[18] T. Yeh and Y. Patt, “Alternative Implementations of
Two-level Adaptive Branch Prediction,” Proc. 19th
International Symp. on Computer Architecture, May.
1992.

[19] T. Yeh and Y. Patt, “A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch His-
tory,” Proc. 20th Annual Intl. Symp. on Computer Ar-
chitecture, May. 1993.

[20] T. Yeh and Y. Patt, “Two-level Adaptive Branch Pre-
diction and Instruction Fetch Mechanism for High
Performance Superscalar Processors,” Computer Sci-
ence and Engineering Div. Tech. Report CSE-TR-182-
93, University of Michigan, Oct. 1993.

[21] C. Young and M. Smith, “Improving the Accuracy of
Static Branch Prediction Using Branch Correlation,”
Technical Report 06-95, Center for Research in Com-
puting Technology, Harvard University, March, 1995.

[22] C. Young, N. Gloy and M. Smith, “A Comparative
Analysis of schemes for Correlated branch Predic-
tion,” Proc. 22nd Annual Intl. Symp. on Computer Ar-
chitecture, June, 1995.

208 Informatica 29 (2005) 199–207 W. Lin et al.

