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Normalization as a way of producing good database designs is a well understood topic for relational data.
In this paper we discuss the problem of eliminating redundancies and preserving data dependencies in
XML data when an XML schema is normalized. Normalization is one of the main tasks in relational
database design, where 3NF or BCNF, is to be reached. However, neither of them is ideal: 3NF preserves
dependencies but may not always eliminate redundancies, BCNF on the contrary – always eliminates re-
dundancies but may not preserve constraints. In this paper we consider the possibility of achieving both
redundancy-free and dependency preserving form of XML schema. We show how the XML normal form
can be obtained for a class of XML schemas and a class of XML functional dependencies. We relate our
approach to the decomposition algorithm proposed by Arenas and Libkin in [1].

Povzetek: Razvita je metoda pretvorbe XML podatkov v normalizirano obliko s poudarkom na odstranje-
vanju redundanc.

1 Introduction
Normal forms, as desired forms for schemas defining struc-
tures and properties of data collections, were first pro-
posed and investigated by Codd in early 70s. The most
important of them are 3NF (Third Normal Form) [2] and
BCND (Boyce-Codd Normal Form) [3]), where BCNF is
a stronger definition of 3NF. Definitions of normal forms
are based on the functional dependencies defined among
the attributes constituting the relational schema, and spec-
ify requirements to be satisfied by the set of these func-
tional dependencies. Then any relation that is an instance
of the schema and satisfies the given set of functional de-
pendencies, is free of harmful redundancies and anomalies.
In the normalization process, the initial poor designed re-
lational schema is decomposed into an equivalent set of
well-designed schemas, i.e. into schemas in desired nor-
mal forms (usually in 3NF and often also in BCNF).

Recently, as XML becomes popular as the standard data
model for storing and interchanging data on the Web and
more companies adopt XML as the primary data model for
storing information, XML schema design has become an
increasingly important issue. Thus, we observe attempts
to extend normal forms and database design principles to
XML databases. Research on normalization of XML data
was reported in a number of papers. In [1], Arenas and

Libkin extended the relational tuple-oriented definition of
functional dependencies to so-called tree tuple-based func-
tional dependencies and developed the first theory of XML
functional dependencies (XFDs) and XML normal forms
(XNFs). This approach was further studied by Kolahi
[4, 5], and Kolahi and Libkin [6]. Integrity constraints
for XML data (including keys) were studied extensively in
Buneman et al. in [7], and Fan and Simeon in [8]. The
equivalence between XFDs and relational FDs was investi-
gated by Vincent et al. in [9, 10]. Yu and Jagadish proposed
in [11] a new XML normal form, called GTT-XNF, that is
based on Generalized Tree Tuples (GTT).

Central objectives of a good schema design is to avoid
data redundancies and to preserve dependencies enforced
by the application domain (these dependencies are formal-
ized by means of functional dependencies). Existence of
redundancy can lead not only to a higher data storage cost
but also to increased costs for data transfer and data manip-
ulation. It can also lead to update anomalies [12].

One strategy to avoid data redundancies is to design
redundancy-free schema. One can start from an intuitively
correct XML schema and a given set of functional depen-
dencies reflecting some rules existing in application do-
main. Then the schema is normalized, i.e. restructured,
in such a way that the newly obtained schema has no re-
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dundancy, preserves all data (is a lossless decomposition)
and preserves all dependencies. In general, obtaining all of
these three objectives is not always possible, as has been
shown for relational schemas [13]. However, in the case
of XML schema, especially thanks to its hierarchical struc-
ture, this goal can be more often achieved [4].

1.1 Related work

An algorithm, called the Decomposition Algorithm (DA)
normalizing XML schemas was proposed in [1]. The algo-
rithm converts any DTD, given a set of XML functional
dependencies (XFDs), into DTD in XML normal form
(XNF). The decomposition algorithm consists of two basic
operations: moving attributes, and creating new element
types. These operations are performed when an XFD vio-
lating XNF is identified. Thus, the basic idea is similar to
normalization of relational data, when the second normal
form (2NF), the third normal form (3NF), or the Boyce-
Codd normal form (BCND) are to be achieved. In the re-
lational counterparts during the normalization process a re-
lational schema is decomposed into a set of its projections.
Thus, we can obtain a set of separate relational schemas as
the result of the normalization process performed for an ini-
tial relational schema. In the case of XML documents, the
result is still one XML document restructured accordingly.
In [14], an information-theoretic approach to normal forms
for relational and XML data has been developed. Some
other papers, e.g. [5, 15, 16, 6] study XML design and nor-
malization for native or relational storage of XML docu-
ments. In [17, 18] approaches for obtaining well-designed
XML schemas from conceptual ER (Entity-Relationship)
schemas have been discussed.

1.2 Contribution

In this paper we describe a systematic approach to the
normalization of XML data when so-called cyclic func-
tional dependencies exist, i.e. dependencies, which in the
relational case are functional dependencies of the form
{A,B → C,C → A}, where A,B,C are attributes in a
relational schema R(A,B,C). It is well known from re-
lational database theory [13], that the schema R(A,B,C)
is then in 3NF, but is not in BCNF. As a result, instances
of R(A,B,C) have redundancies, but decomposition the
schema into BCNF leads to two schemas R1(C,A) and
R2(C,B), which are free of redundancy but do not pre-
serve dependency A,B → C.

We focus on normalization procedure for XML schemas
with cyclic XFDs. The contributions of the paper are the
following:

– We use a language based on tree patterns [19, 20] to
express XML schemas and XML functional depen-
dencies. This notation is used in the formal analysis
of properties of XML normal form as well as the base
for developing transformation algorithms.

– We propose an approach to obtain XNF starting from
ER schema. In the first step the ER schema is con-
verted into an XML schema satisfying a necessary
conditions (see Theorem 7.3) which is a prerequisite
to successful applying of DA algorithm [1]. We show
that the presence of cyclic dependencies results in a
bad behavior of the DA algorithm.

This paper is organized as follows. In Section 2 we in-
troduce a running example and motivate the research. In
Section 3 a relational form of the running example is con-
sidered and some problems with its normalization are dis-
cussed. Basic notations relevant to the discussed issue from
the XML perspective, are introduced in Section 4. We de-
fine tree patterns and use them to formal definition of tree
tuples and instances. In Section 5, tree patterns are used
to define data dependencies: XML functional dependen-
cies (XFDs) and keys (a subclass of XFDs). In Section 6,
an XML normal form (XNF) is defined (according to [1])
and we show how this form can be obtained for our run-
ning example. We discuss different normalization alterna-
tives – we show advantages and drawbacks of some schema
choices. A method for transforming an XML schema into
XNF is proposed in Section 7. First, for the XML schema
the conceptual model in a form of ER schema is created.
This schema and functional dependencies among its at-
tributes are the basis for creating an initial XML schema
satisfying the necessary condition formulated in Theorem
7.3. This schema is the subject for further normalization.
Section 8 concludes the paper.

2 Redundancies in XML data -
motivation example

Our primary goal is to devise methods which will allow
checking correctness of XML data and designing its ex-
pected (normalized) form. We expect such data to be de-
void of the redundancies and immune to the update anoma-
lies.

In the case of XML schemas some redundancy problems
may occur because of bad design of hierarchical structure
of XML document. On the other hand, the hierarchical
structure of this data can sometimes help conduct the nor-
malization of XML data.

Example 2.1. Let us consider an XML schema tree (Figure
1) that describes a fragment of a database for storing data
about parts and suppliers offering these parts. Its DTD
specification is given in Figure 2, and an instance of this
schema is depicted in Figure 3. Each part element has
identifier pId. One part may be offered by zero or more
suppliers. Offers are stored in offer elements. Each of-
fer has: offer identifier oId, supplier identifier sId, price
price, delivery time delivTime, and delivery place
delivPlace.

We assume that the following constraints must be satis-
fied by any instance of this schema:
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Figure 1: Sample XML schema tree

db → part∗
part → pId supplier∗
supplier → offer+
offer → oId sId price delivTime

delivPlace

Figure 2: DTD productions describing the XML schema in
Figure 1
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Figure 3: Sample instance of schema S1

– all offer children of the same supplier must have
the same values of sId; this is similar to relational
functional dependencies, but now we refer to both the
values (text value of sId), and to structure (children
of the same supplier).

– delivP lace functionally depends on part (pId) and
supplier (sId), i.e. when a supplier has two differ-
ent offers for the same part (possibly with different
delivT ime and/or price) the delivP lace is the same
- see offers o1 and o2 in Figure 3.

– delivP lace functionally determines supplier (sId). It
means that having a delivery place (delivP lace) we
exactly now which supplier is associated to this place;
although one supplier can own many delivery places.
For example, in Figure 3 d1 is delivery place uniquely
associated to the supplier s1.

It is easily seen that schema in Figure 1 leads to redun-
dancy: sid (and also all other data describing suppliers
such as e.g.: name and address) and delivP lace are stored
multiple times for a supplier.

Further on we will show that a special caution should be
paid to such kind of dependencies as these in which partic-
ipates delivP lace. In this case we have to do with "cyclic"
dependencies, i.e. delivP lace depends on pId and sId
(pId, sId → delivP lace) and sId depends on delivP lace
(delivP lace → sId).

3 Redundancies and dependencies
in relational databases

3.1 Relational schemas and functional
dependencies

In relational data model, a relational schema is understood
as a pair R = (U,F ), where U is a finite set of attributes,
and F is a set of functional dependencies over F . A func-
tional dependence (FD) as an expression of he form

X → Y,

where X,Y ⊆ U are subsets of U . If Y ⊆ X , then X → Y
is a trivial FD. By F+ we denote all dependencies which
can be infer from F using, for example, Armstrong’s ax-
ioms [21, ?].

A relation of type U is a finite set of tuples of type U . Let
U = {A1, ..., An} and dom(A) be the domain of attribute
A ∈ U . Then a tuple [A1 : a1, ..., An : an], where ai ∈
dom(Ai), is a tuple of type U .

A relation R conforms to a schema R = (U,F ) (is an
instance of this schema) if R is of type U , and all depen-
dencies from F+ are satisfied by R. An FD X → Y is
satisfied by R, denoted R |= X → Y , if for each tuples
r1, r2 ∈ R holds

πX(r1) = πX(r2) ⇒ πY (r1) = πY (r2),

where πX(r) is the projection of tuple r on the set X of
attributes.

A key in R = (U,F ) is such a minimal set K of at-
tributes that K → U is in F+. Then each A ∈ K is called
a prime attribute.

3.2 Normalization of relational schemas

The main task in relational schema normalization is pro-
ducing such a set of schemas that posses the required form,
usually 3NF or BCNF. The normalization process consists
in decomposition of a given input schema. The other ap-
proach consists in synthesizing 3NF from functional de-
pendencies [22].

Ideally, a decomposition of a schema should be loss-
less, i.e. should preserve data and dependencies. Let
R = (U,F ), U1, U2 ⊆ U , and U1∪U2 = U , then schemas
R1 = (U1, F1) and R2 = (U2, F2) are a lossless decom-
position of R = (U,F ), iff:
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– The decomposition preserves data, i.e. for each in-
stance R of R the natural join of projections of R on
U1 and U2 produces the relation equal to R, i.e.

R = πU1
(R) ./ πU2

(R).

– The decomposition preserves dependencies, i.e.

F+ = (F1 ∪ F2)
+,

where F1 = {X → Y |X → Y ∈ F ∧X∪Y ⊆ U1},
and similarly for F2.

The decomposition ((U1, F1), (U2, F2)) of (U,F ) pre-
serves data, if U1 ∩ U2 → U1 ∈ F+ (or, symmetrically,
U1 ∩ U2 → U2 ∈ F+) [23]. Then we say that the de-
composition is determined by the functional dependence
U1 ∩ U2 → U1 ∈ F+.

A schema R = (U,F ) is in 3NF if for every FD X →
A ∈ F+, holds:

– X is a superkey, i.e. a key is a part of X , or

– A is prime.

The second condition says that only prime attributes may
be functionally dependent on a set of attributes which is
not a key. A schema is in BCNF if only the first condition
of the two above is allowed. It means, that if whenever a
set X determines functionally an attribute A, then X is a
superkey, i.e. determines the whole set U .

The aim of a normalization process is to develop nor-
mal forms by analyzing functional dependencies and suc-
cessive decomposition of the input relational schema into
its projections. In this way a well-designed schema can
be obtained, where unnecessary redundancies and update
anomalies had been eliminated. In practice, 3NF is ac-
cepted as the most desirable form of relational schemas
It does not eliminate all redundancies but guaranties de-
pendency preservation. On contrast, BCNF eliminates all
redundancies but does not preserve all dependencies.

In [6] it was shown that 3NF has the least amount of re-
dundancy among all dependency preserving normal forms.
The research adopts a recently proposed information-
theoretic framework for reasoning about database designs
[14].

3.3 Relational analysis of XML schema
Let us consider the relational representation
of the data structure presented in Figure 1.
Then we have the following relational schema:
R = (U,F ), where
U = {oId, sId, pId, price, delivT ime, delivP lace},
F = {oId → sId, pId, price, delivT ime, delivP lace,

sId, pId → delivP lace,
delivP lace → sId}.

In R there is only one key. The key consists of one at-
tribute oId since all attributes in U functionally depends

on oId. Thus, R is in 2NF and oId is the only prime (key)
attribute in R. Additionally, we assume that a given sup-
plier delivers a given part exactly to one place (pId, sId →
delivP lace). Moreover, delivery place delivP lace is con-
nected with only one supplier (delivP lace → sId).
R is not in 3NF because of the functional dependency

sId, pId → delivP lace:

– sId, pId is not a superkey, and

– delivP lace is not a prime attribute in U .

Similarly for delivP lace → sId.
In this case the lack of 3NF is the source of redundancies

and update anomalies. Indeed, for example, the value
of delivP lace will be repeated as many times as many
different tuples with the same value of the pair (sId, pId)
exist in the instance of R. To eliminate this drawback,
we can decompose R into two relational schemas, R1

and R2, which are in 3NF. The decomposition must be
based on the dependency sId, pId → delivP lace which
guarantees that the decomposition preserves data. In the
result we obtain:

R1 = (U1, F1), where
U1 = {oId, sId, pId, price, delivT ime},
F1 = {oId → sId, pId, price, delivT ime}.

R2 = (U2, F2), where
U2 = {sId, pId, delivP lace},
F2 = {sId, pId → delivP lace,

delivP lace → sId}.
The discussed decomposition is both data and dependen-

cies preserving, since:
R(U) = πU1(R) ./ πU2(R),
for every instance R of schema R, and F = (F1 ∪ F2)

+.
However, we see that R2 is not in BCNF, since delivP lace
is not a superkey in R2.

The lack of BCNF in R2 is the reason of redundancies.
For example, in table R2 we have as many duplicates of
sId as many tuples with the same value of delivP lace exist
in this table.

R2

sId pId delivP lace
s1 p1 d1
s1 p2 d1
s1 p3 d2
s2 p1 d3

We can further decompose R2 into BCNF schemas R21

and R22, taking delivP lace → sId as the base for the
decomposition. Then we obtain:



TRANSFORMATION OF XML DATA INTO. . . Informatica 33 (2009) 417–430 421

R21 = (U21, F21), where
U21 = {delivP lace, sid},
F21 = {delivP lace → sId}.

R22 = (U22, F22), where
U22 = {pId, delivP lace},
F22 = ∅.

After applying this decomposition to R2 we obtain tables
R21 and R22:

R21

sId delivP lace
s1 d1
s1 d2
s2 d3

R22

pId delivP lace
p1 d1
p2 d1
p3 d2
p1 d3

This decomposition is information preserving, i.e.

R2 = R21 ./ R22,

but does not preserve functional dependencies, i.e.

F2 6= (F21 ∪ F22)
+ = F21.

We can observe some negative consequences of the loss
of functional dependencies in the result decomposition.

Assume that we insert the tuple (p1, d2) into R22. The
tuple will be inserted because it does not violate any con-
strain imposed on R22. However, taking into account ta-
ble R21 we see that supplier s1 (determined by d2 in force
of delivP lace → sId) offers part p1 in the place d1.
Thus, the considered insertion violates functional depen-
dency sId, pId → delivP lace defined in R2.

The considered example shows that in the case of rela-
tional databases we are not able to completely eliminate re-
dundancies and also preserve all functional dependencies.
It turns out ([6]) that the best form for relation schema
is 3NF, although some redundancies in tables having this
form can still remain.

In next section we will show that the hierarchical struc-
ture of XML documents can be used to overcome some of
the limitations of relational normal forms [24]. As it was
shown in [5], there are decompositions of XML schemas
that are both information and dependency preserving. In
particular, we can obtain a form of XML schema that is
equivalent to BCNF, i.e. eliminates all redundancies, and
additionally preserves all XML functional dependencies.

4 XML schemas and instances
Schemas for XML data are usually specified by DTD or
XSD [25, 26]. In this paper an XML schema (a schema for
short) will be specified by means of a slightly simplified
version of DTD. We will assume that both attributes and el-
ements of type #PCDATA will be represented by so called
terminal elements labeled with terminal labels and having
text values. Additionally, terminal elements may have only

one occurrence within children of one non-terminal ele-
ment.

Definition 4.1. Let L be a set of labels, Ter ⊂ L be a set
of terminal labels and r ∈ L − Ter be a root label. Let ρ
be a set of productions of the form:

l → α,

where:

– l ∈ L− Ter ;

– r does not occur on the right-hand side of any produc-
tion;

– α is a regular expression over L− {r} defined as fol-
lows:
α ::= β | γ
β ::= l | β? | β ∗ | β+
γ ::= A | A? | β | γ γ | γ|γ

l ∈ L− Ter − {r}, A ∈ Ter .

Then the quadruple

S = (r, L,Ter , ρ),

is an XML schema.

XML schemas will be often represented as XML
schema trees (Figure 1) (or as XML schema graphs
when the schema is recursive). In this paper we re-
strict ourselves to non-recursive schemas. An exam-
ple of XML schema, corresponding to the schema tree
in Figure 1, was given in Figure 2, where: db is the
root, part, supplier, and offer are non-terminal labels,
and pid, oid, sid, price, delivT ime, delivP lace are termi-
nal labels.

The following notion of tree patterns [19] will be use-
ful to define tree tuples, tree formulas and XML functional
dependencies.

Definition 4.2. Let L be a set of labels, and Ter ⊂ L be
its subset of terminal labels. A tree pattern is an expression
conforming to the syntax:

e ::= A | l | l/e | l[e1, . . . , ek] | l[e1, . . . , ek]/e,

where A ∈ Ter , l ∈ L− Ter , n ≤ 1.

To denote that a tree pattern φ is build using the
set {A1, . . . , An} of terminal labels, we will write
φ(A1, . . . , An).

Definition 4.3. Let φ(A1, . . . , An) be a tree pattern, and
x1, . . . , xn be text-valued variables. Then the expression

φ(A1 : x1, . . . , An : xn),

is a tree formula.
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Definition 4.4. Let φ(A1 : x1, . . . , An : xn) be a tree
formula, and ω be a variable valuation, i.e. a function

ω : {x1, . . . , xn} → Str ∪ {⊥},

where Str is a set of text values, and ⊥ is a distinguished
null value. Then
t = φ(A1 : x1, . . . , An : xn)(ω) =

φ(A1 : ω(x1), . . . , An : ω(xn))
is called a tree tuple of type φ(A1, . . . , An) with values
(A1 : ω(x1), . . . , An : ω(xn).

Without loss of generality, a tree tuple of type
φ(A1, . . . , An) will be denoted also as:
t = φ(A1 : a1, . . . , An : an),
t = φ(A1, . . . , An)(ω),
t = φ(ω(A1), . . . , ω(An)),
t = φ(A1 : t.A1, . . . , An : t.An).

Definition 4.5. Let t be a tree tuple of type φ(U), and let
U ′ = {A1, . . . , An} ⊆ U . The projection of t on U ′, de-
noted πU ′(t), is the set of fields (Ai : t.Ai) occurring in t,
i.e.:

πU ′(t) = {A1 : t.A1, . . . , An : t.An}.
We assume that there is a function type(t) that for a tree

tuple t returns its type, it will be denoted by

type(t) = φ(A1, . . . , An).

An XML database consists of a set of XML data, and
an XML data is an instance of an XML schema. It will be
convenient to distinguish between two kinds of instances:

– an instance as a set of tree tuples, referred to as a
canonical instance,

– an instance as a labeled tree, referred as an XML tree.

For one canonical instance there may be a number of XML
trees representing it. In the set of all such XML trees we
will be interested in such that have a required form, so
called XML normal form (XNF). The canonical instance
as well as all corresponding XML trees must conform to
the given XML schema.

Definition 4.6. The set of tree tuples

D = {t1, . . . , tN},

is a canonical instance of an XML schema S =
(r, L,Ter , ρ) if the type, type(t), of any tuple t ∈ D con-
forms to S.

The conformance of a tree tuple type to an XML schema
is defined as follows.

Definition 4.7. Let φ(A1, . . . , An) be the type of a tree
tuple t. This tree pattern conforms to the XML schema S =
(r, L,Ter , ρ), if:

1. φ(A1, . . . , An) = r[e], and

2. e conforms to ρ according to r. The conformance of
a pattern e to the set of productions ρ according to a
label l, is defined as follows:

– if e is Ai, then Ai ∈ Ter , and there is such the
production l → α in ρ that Ai occurs in α;

– if e is l′/e′, then there is such the production l →
α in ρ that l′ occurs in α, and e′ conforms to ρ
according to l′;

– if e is l′[e1, . . . , en], then there is such the pro-
duction l → α in ρ that l′ occurs in α, and every
pattern ei, 1 ≤ i ≤ n, conforms to ρ according
to l′.

– if e is l′[e1, . . . , en]/e′, then l′[e1, . . . , en] must
conform to ρ according to l, and e′ must conform
to ρ according to l′.

We define XML tree as an ordered rooted node-labeled
tree over a set L of labels, and a set Str ∪ {⊥}, which
elements are used as values of terminal nodes.

Definition 4.8. An XML tree I is a tuple
(root,Ne, N t, child, λ, ν), where:

– root is a distinguished root node, Ne is a finite set of
non-terminal element nodes, and N t is a finite set of
terminal nodes;

– child ⊆ ({r} ∪Ne)× (Ne ∪N t) – a relation intro-
ducing tree structure into the set {r}∪Ne∪N t, where
r is the root, each non-terminal node has at least one
child, terminal nodes are leaves;

– λ : {root} ∪ Ne ∪ N t → L – a function labeling
nodes with labels;

– ν : N t → Str ∪ {⊥} – a function assigning terminal
nodes with values.

Definition 4.9. We say that an XML tree I =
(root,Ne, N t, child, λ, ν) conforms to an XML schema
S = (r, L,Ter , ρ), denoted I |= S, if

– λ(root) = r; if n ∈ Ne, then λ(n) ∈ L − Ter ; if
n ∈ N t, then λ(n) ∈ Ter ;

– if λ(n) = l, l → α ∈ ρ, and n1, ..., nk are children of
n, then the sequence λ(n1) · · ·λ(nk) is a word in the
language generated by α.

It will be useful to perceive an XML canonical instance
D with tuples of type φ as a pair (φ,Ω) (called a descrip-
tion), where Ω is a set of valuations for φ.

Example 4.1. For the instance I1 in Figure 3 we have:
(φ(pId, oId, sId, price, delivT ime, delivP lace)

{(p1, o1, s1, x1, t1, d1), (p1, o2, s1, x2, t2, d1),
(p1, o3, s2, x3, t3, d2), (p2, o4, s1, x4, t4, d1)}).

An XML tree I satisfies a description (φ,Ω), if the root
of I satisfies φ for every valuation ω ∈ Ω, where:
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1. (I, root) |= (r[e], ω), iff ∃n ∈ Ne child(r, n) ∧
(I, n) |= (e, ω);

2. (I, n) |= (A,ω), iff λ(n) = A and ν(n) = ω(A).

3. (I, n) |= (l/e, ω), iff λ(n) = l and ∃n′ ∈ Ne

child(n, n′) ∧ (I, n′) |= (e, ω)

4. (I, n) |= (l[e1, ..., ek], ω), iff λ(n) = l and for each i,
1 ≤ i ≤ k, exists ni such that child(n, ni)∧(I, ni) |=
(ei, ω));

5. (I, n) |= (l[e1, ..., ek]/e, ω), iff (I, n) |=
(l[e1, ..., ek], ω) and exists n′ such that
child(n, n′) ∧ (I, n′) |= (e, ω)).

A description (φ,Ω) represents a class of φ instances
with the same set of values (the same Ω), since elements in
instance trees can be grouped and nested in different ways.

A

B C C D D

b c1 c2 d1 d2

Figure 4: A simple XML tree

For example, the XML tree in Figure 4 satisfies
(among others) the following two descriptions (φ1,Ω1),
and (φ2,Ω2), where:

φ1(B,C) = /A[B,C],
Ω1 = {(b, c1), (b, c2)};
φ2(B,C,D) = /A[B,C,D],
Ω2 = {(b, c1, d1), (b, c2, d1)}.

5 XML functional dependencies and
keys

Over an XML schema we can define some constraints,
which specify functional dependencies between values
and/or nodes in instances of the schema. These constraints
are called XML functional dependencies (XFD).

Definition 5.1. A tree pattern of the form
φ(A1, . . . , Ak)/A conforming to an XML schema
S = (r, L,Ter , ρ) is an XML functional dependency
(XFD) over S. Then we say that the set of paths terminat-
ing in (A1, . . . , Ak) and satisfying φ, determines the path
terminating in A and satisfying φ/A.

Satisfaction of an XFD is defined against an canonical
instance of XML schema.

Definition 5.2. Let S be an XML schema, D be a canonical
instance of S and f = φ(A1, . . . , Ak)/A be an XFD on S.
We say the D satisfies f , denoted D |= f if for any two tree
tuples t1, t2 ∈ D the following implication holds

πA1,...,Ak
(t1) = πA1,...,Ak

(t2) ⇒ πA(t1) = πA(t2).

Assume that A1, . . . , Ak, A terminates, respectively,
paths p1, . . . , pn, p. Then the XPath-oriented XFD
φ(A1, . . . , Ak)/A corresponds to the following path-
oriented XFD defined in [1]:

p1.A1, . . . , pk.Ak → p.A.

The XPath-oriented definition has the following advan-
tages:

– it is easy to check, using only the XPath semantics,
whether an XML tree satisfies the XFD or not (see
below),

– this form of XFD can be used to generate an XQury
program performing some transformation operations
(see the next section).

An XFD f can be interpreted as XPath expression, i.e.
f(x1, . . . , xk) := φ(A1 : x1, . . . , Ak : xk)/A, that for
a given valuation ω of its variables returns a sequence of
objects (nodes or text values).

An XML tree I = (S,Ω) satisfies an XFD f(x) if for
each valuation ω ∈ Ω of its variables, f(ω(x)) evaluated
on I returns an empty sequence or a singleton , i.e.

count([[f(ω(x))(I)]]) ≤ 1,

where [[expr]](I) is the result of evaluation expr on the
instance I .

An XML tree I = (S,Ω) satisfies an XFD f if for each
valuation ω ∈ Ω, f(ω) evaluated on I returns an empty
sequence or a singleton, i.e.

count([[f(ω)(I)]]) ≤ 1,

where [[expr]](I) is the result of evaluation expr on the
instance I .

Example 5.1. Over S1 the following XFDs can be de-
fined:
f1(oid) = /db/part[supplier/offer/oId],
f2(oid) = /db/part[supplier/offer/oId]/pId,
f3(pid, sid) = /db/part[pId]/supplier/

offer[sId]/delivP lace,
f4(delivP lace) = /db/part/supplier/offer[

delivP lace]/sId,

f5(pid, sid) = /db/part[pId]/supplier[offer/sId].

According to XPath semantics [27] the expression
f1(oid) by a valuation ω, is evaluated against the instance
I1 (Figure 3) as follows: (1) first, a sequence of nodes
of type /db/part is chosen; (2) next, for each selected
node the predicate [supplier/offer/oId = ω(oid)] is
tested, this predicate is true in a node n, if there exists
a path of type supplier/offer/oId in I1 leading from
n to a text node with the value ω(oid). We see that
count([[f1(ω(oid))]]) equals 1 for all four valuations sat-
isfied by I1, i.e. for oid 7→ o1, oid 7→ o2, oid 7→ o3, and
oid 7→ o4.
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Similarly, execution of f2(oid)(I) gives a singleton for
any valuation of oid. These singletons are text values of
the path /db/part/pId, where only nodes satisfying the
predicate [supplier/offer/oId = ω(oid)] are taken from
the set of nodes determined by /db/part. So, also this XFD
is satisfied by I1.

However, none of the following XFDs is satisfied in I1:
g1(sid) = /db/part[supplier/offer/sId],
g2(pid) = /db/part[pId]/supplier/offer/sId
g3(pid) = /db/part[pId]/supplier/offer
g4(pid, sid) = /db/part[pId]/supplier/offer[sId],
g5(delivP lace) = /db/part/pId/supplier/

offer[delivP lace].
Evaluating the above XFDs against I1, we obtain, for

example:
count([[g1(sid)([sid 7→ s1])(I1)]]) = 2,
count([[g2(pid)([pid 7→ p1])]]) = 2,
count([[g3(pid)([pid 7→ p1])]]) = 3.

An XFD can determine functional relationship between
a tuple of text values of a given tuple of paths and a path
denoting either a text value (e.g. f2(oid)) or a subtree (a
node being the root of the subtree) (e.g. f1(oid)) Ű the
latter XFDs will be referred to as XML keys.

Definition 5.3. A functional dependence f =
φ(A1, . . . , Ak), where f is of type q/l and l is a
non-terminal label, is an XML key for subtrees of the type
q/l.

Another notation for XML keys has been proposed in
[7]. In that notation

(db.part, {pId})

is an absolute key saying that a subtree of type db/part
is uniquely determined by the path db/part/pid (this con-
straint holds in the instance I1 in Figure 3). In our XPath-
oriented notation this key is the following XFD:

db/part[pid].

An example of a relative key ([7]) is

(db.part, (supplier, {offer.sId})),

that says that that in the context of db/part, a tree supplier
is determined by the path offer/sId. In our XPath-
oriented notation this key is expressed as follows:

db/part[pid]/supplier[sid].

6 Normal form for XML
To eliminate redundancies in XML documents, some nor-
mal forms (XNF) for XML schemas have been proposed
[1, 24, 4, 5]. In this paper we will define XNF in the spirit
of BCNF defined for relational schemas. This approach
was also used in [1].

Definition 6.1. Let S be an XML schema and Σ be a
set of XFDs defined over S. (S,Σ) is in XNF iff for any
XFD φ(A1, . . . , Ak)/A ∈ (S,Σ)+, also φ(A1, . . . , Ak) ∈
(S,Σ)+,where (S,Σ)+ is a set of XFDs being conse-
quences of (S,Σ).

In other word, if φ(A1, . . . , Ak)/A is an XFD for q/l/A,
then φ(A1, . . . , Ak) is a key for q/l. It means that there is
at most one subtree of type q/l for any different valuation
of (A1, . . . , Ak) in φ, if the value of a child A of q/l is
determined by this valuation. In this way the redundancy,
i.e. repetition of values in different subtrees of type q/l, is
eliminated.

Let us consider the schema S2 in Figure 5 and its in-
stance I2 in Figure 6.

part

offer+

pId

sId

supplier

price delivTime

delivPlace

db

oId

S2:

Figure 5: Restructured form of schema in Figure 1
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pId
p1

part

pId
p2

I2:

oId:

price:

delivTime:

offer

o1

x1

t1

offer

o2

x2

t2

offer

o3

x3

t3

offer

o4

x4

t4

Figure 6: Instance of schema in Figure 5

The following XFD over S2

/db/part/supplier[delivP lace]/sId

says that delivery place (delivP lace) determines the sup-
plier (sId). However, S2 is not in XNF, since its instance
I2 does not satisfy the key

/db/part/supplier[delivP lace].

It means that I2 (Figure 6) is not free of redundancy (there
are two different subtrees of type supplier describing the
same supplier, i.e. its possible name, address, etc.).

In the case of schema S3 (Figure 7) the corresponding
XFD and the key are:
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supplier
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price delivTime
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Figure 7: Restructured form of schema in Figure 1do IMCSIT 08do IMCSIT 08
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Figure 8: Instance of schema in Figure 7

db/supplier[part/delivP lace]/sId
db/supplier[part/delivP lace].

These constraints are satisfied by I3 (Figure 8). We see
that this time, there is only one subtree of type supplier for
any value of delivP lace.

The other dependency of interest is sId, pId →
delivP lace. Its specification with respect to S2 and S3 is
as follows:

db/part[pId]/supplier[sId]/delivP lace,

and

db/supplier[sId]/part[pId]/delivP lace.

It is easy to see then if these XFDs hold, then also keys

db/part[pId]/supplier[sId],

and
db/supplier[sId]/part[pId]

are satisfied.
However, neither S2 nor S3 is in XNF. We have already

shown that there is redundancy in instances of S2. Sim-
ilarly, we see that also in instances of S3 redundancies
may occur. Indeed, since one part may be delivered by
many suppliers then the description of one part may be
multiplied under each supplier delivering this part, so such
data as part name, type, manufacturer etc. will be stored
many times. It results from the fact that satisfaction of
db/supplier/part[pid]/pname would not imply the sat-
isfaction of db/supplier/part[pid].

In Figure 9 there is schema S4 that is in XNF. To make
the example more illustrative, we added node name to
part data. Also the instance in Figure 10 was slightly ex-
tended as compared to instances I2 and I3.

supplier offer

sId

pId

part price delivTime

delivPlace

db

pId

S4:

suppliers parts offers

pId

part

name sIdoId

Figure 9: XNF schema for schemas S1, S2, and S3
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Figure 10: Instance of schema in Figure 9

XSD (XML Schema Definition) for S4 in notation pro-
posed in [26] is shown in Figure 11.

Note that we cannot use DTD since there are two
subtrees labeled part, where each of them has different
type: the part subtree under supplier consists of pId and
delivP lace, whereas the part subtree under parts consists
of pId and name. Recall that in the case of DTD each
non-terminal symbol (label) can have only one type (defi-
nition), i.e. can appear on the left-hand side of exactly one
production rule [26]. This difficulty might be overcame by
introducing new labels (for example partDesc) for full de-
scriptions of a parts.

It can be shown that S4 satisfies the condition of XNF.
Thus, this schema is both redundant-free and dependency
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db → db[content]
content → suppliers[suppliers],parts[parts],

offers[offers]
suppliers → supplier[supplier]∗
parts → parts[part1]∗
offers → offers[offer]∗
supplier → sId, part[part2]
part2 → pId, delivPlace
part1 → pId, name
offer → oId, sId,

pId, price, delivTime

Figure 11: An XSD describing the XML schema in Figure
9

preserving. However, as we will show in the next section,
schema S4 is not the best XNF for the considered running
example.

7 Transforming XML schemas to
XML normal form

In the previous section we discussed an example of trans-
forming an XML schema into XNF. We started with the
schema S1 in Figure 1, and the final schema was S4 in
Figure 9. However, the final schema has been created in
a rather intuitive way. Thus, although it is in XNF it is
not clear whether there exists another XNF reformulation
of S1, maybe better than X4, or not. A systematic algo-
rithm (the Decomposition Algorithm, DA) for normalizing
an XML schema was proposed in [1]. If we apply DA to
S1, we obtain a schema that is worse than S4. It is so due
to the following reasons:

1. In DA we always obtain a normal form relative to a
context path, i.e. the XNF is restricted to the subtree
determined by this context path. Only if the context
path is equal to the root label (db in our case), the
XNF is absolute.

2. In DA it is not possible to change ordering of elements
on a path, because we can only move and discard at-
tributes or create new element types [1]. For example,
the part element precedes supplier (is above it) in S1

and in the result schema this ordering must remain un-
changed. But then the absolute XNF for S1 cannot be
achieved.

3. The result of normalization strongly depends on the
starting XML schema.

7.1 Transforming ER model to XNF

In this section we will discuss how to transform an ER
(Entity-Relationship) schema [28] into XML schema in

XML normal form (XNF). Our method is based on ana-
lyzing functional dependencies among attributes of entities
involved in the ER schema.

In Figure 12 there is an ER schema corresponding to the
XML schema considered in previous sections (see S1 in
Figure 1) with two additional attributes sname (supplier
name) and pname (part name). delivP lace is treated as
an entity with the key attribute did.

supplier

delivPlace

part

N

1

N

1

1

pid

did

sid offer 1

1

1
N

pnamesname

oid price delivTime

N N

Figure 12: ER schema corresponding to S1

The following functional dependencies are captured by
the ER schema in Figure 12:

oid → sid, pid, did
sid, pid → did
did → sid
sid → sname
pid → pname
oid → price, delivT ime

(1)

The first three of them are of particular importance be-
cause they state constraints between entities (key attributes
of entities).

We will proceed in two steps:

1. An initial XML schema is created using the entities
names from the ER schema, their attributes and func-
tional dependencies between key attributes. The ini-
tial schema must follow the necessary condition for-
mulated in Theorem 7.3. Satisfaction of this condition
is the prerequisite to obtain an XML schema in abso-
lute XNF in the next step.

2. The DA algorithm [1] is applied to obtain the final
XNF schema. In fact, only the step called Creat-
ing New Element Types from this algorithm is to be
applied. In this way all violations caused by func-
tional dependencies over non-key attributes (appear-
ing on the right-hand sides of these dependencies) are
resolved. Such functional dependencies in our exam-
ple are for example the three last in (1).

Definition 7.1. Let φ(A1, . . . , An)/B be an XFD of type
q/l/B over an XML schema S. S is called XNF-consistent
with φ(A1, . . . , An)/B, if for any instance I of S holds
the implication:

I |= φ(A1, . . . , An)/B ⇒
mergeq/l(I) |= φ(A1, . . . , An),
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where mergeq/l(I) is the result of merging subtrees of type
q/l in I .

Let I be an XML tree and T = (r, τ) be a subtree of
type q/l of I , i.e. T belongs to the result of evaluation of
the path expression q/l on the instance I , T ∈ [[q/l(I)]].
Then r is a list of the form r := (A1 : a1, . . . , An : an),
and τ is a list of subtrees (each of these lists may be empty).

Definition 7.2. Two subtrees T1 = (r1, τ1), and T2 =
(r2, τ2) of type q/l of an instance I are joinable if r1 = r2,
and then:

– (r, τ1) ./ (r, τ2) = (r, τ1||τ2), where τ1||τ2 is con-
catenation of lists τ1 and τ2;

– the merge operation on all subtrees of type q/l of an
instance I is defined as follows:
mergeq/l(I) =

for each T1, T2 ∈ [[q/l(I)]]
if T1 and T2 are joinable then
I := I − q/l[T1]− q/l[T2] ∪ q/l[T1 ./ T2].

Example 7.1. Let S be defined by
l → l1∗
l1 → A1 B l2∗
l2 → A2 C

and let terminal labels A1, A2 functionally determine B,
i.e. A1, A2 → B. Then the corresponding XFD is

φ(A1, A2)/B := l/l1[A1, l2[A2]]/B.

We see that I (Figure 13) satisfies φ(A1, A2)/B, i.e. for
the values of the pair of paths (l/l1/A1, l/l1/l2/A2) the
value of the path l/l1/B is uniquely determined. Similarly,
the merged form of I , mergel/l1(I), satisfies φ(A1, A2),
i.e. the pair (l/l1/A1, l/l1/l2/A2) of path values uniquely
determines the node of type l/l1. Note that I in its un-
merged form does not satisfy φ(A1, A2), because there are
two nodes of type l/l1 corresponding to the same pair of
path values of the type (l/l1/A1, l/l1/l2/A2).
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c1

l1

l2

A2
a2

C

B
b

I:

l1

A1
a1

l2

A2
a2

C
c2

B
b a1

A1

l

c1

l1

l2

A2
a2

C

B
b

mergel/l1
(I):

l2

A2
a2

C
c2

Figure 13: Instance I of the schema from Example 7.1 and
its merged form

The following theorem formulates the necessary condi-
tion for XML schema to be XNF-consistent with an XDF
defined over this schema.

Theorem 7.3. Let f := φ(A1, . . . , An)/B be an XFD
of type q/l/B over an XML schema S. Then S is XNF-
consistent with f if the set consisting of labels of all termi-
nal children of q/l is functionally dependent on the set of
terminal labels occurring in f .

Proof. We will proof the theorem by contradiction. Let us
assume that there exists a terminal child of l labeled C and
C is not functionally dependent on the set {A1, . . . , An}
of terminal labels occurring in f . Then the tree of the form
I = φ(A1 : a1, . . . , An : an)

∪{q/l[B : b, C : c1], q/l[B : b, C : c2]},
is a subtree of an instance of S in which φ(A1, . . . , An)/B
is satisfied. However, this subtree violates φ(A1, . . . , An).
This violation follows from the fact that there are two sub-
trees rooted in q/l, one with terminal children (B : b, C :
c1), and the other with terminal children (B : b, C : c2),
so this subtrees cannot be merged. Thus S is not XDF-
consistent with f . 2

In the schema in the following example the necessary
condition formulated in Theorem 7.3 does not hold.

Example 7.2. Let S be defined by
l → l1∗
l1 → A1 l2∗
l2 → A2 B C

and let terminal labels A1, A2 functionally determine B,
i.e. A1, A2 → B. Then the corresponding XFD is

φ(A1, A2)/B := l/l1[A1]/l2[A2]/B.

Assume that C does not depend on {A1, A2}. Schema S is
not XNF-consistent with φ(A1, A2)/B, since we have (see
Figure 14):
I = l/l1(A1 : a1)/l2(A2 : a2)

∪{l/l1/l2((B : b, C : c1), (B : b, C : c2))}
= mergel/l1/l2(I)

Thus, I violates φ(A1, A2) before and after application of
the merging operation, in both cases there are two nodes
of type l/l1/l2 corresponding to the same pair of values
(a1, a2) of the pair of paths (l/l1/A1, l/l1/l2/A2).

l

l1l1

A1
a1

l2 l2A1
a1

A2
a2

C
c1

B
b

A2
a2

C
c2

B
b

I:

Figure 14: Instance of the schema from Example 7.2 that
satisfies φ(A1, A2)/B and violates φ(A1, A2)

Now, using the Theorem 7.3 and DA, the transformation
of ER into XNF is realized in the following two steps:

1. We start with functional dependencies defined over
key attributes of entities modeled by ER schema. Fol-
lowing the requirements of Theorem 7.3 we obtain the
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following DTD for ER schema in Figure 12:

db → supplier∗
supplier → sid sname part∗
part → pid pname did offer∗
offer → oid price delivT ime

(2)

Now, the remaining functional dependencies specified
in (1) must be taken into account.

2. The DTD obtained in the first step is the subject of
the decomposition by means of the DA algorithm. It
is easily seen that the XFD corresponding to pid →
pname is anomalous. The step Creating new element
types of DA converts (2) into

db → supplier ∗ partDesc∗
supplier → sid sname part∗
partDesc → pid pname
part → pid did offer∗
offer → oid price delivT ime

(3)

Applying the above steps to the ER schema from Figure
12 gives the XML schema in XNF depicted in Figure 15
and its instance in Figure 16.

db

partDesc*supplier*

sid part* pnamepid

pid offer*did

S5:

oid delivTimeprice

sname

Figure 15: The result of transformation ER schema from
Figure 12 to XML schema in XNF

8 Conclusion
In this paper, we discussed how the concept of database
normalization can be used in the case of XML data.
Normalization is commonly used to develop a relational
schema free of unnecessary redundancies and preserving
all data dependencies existing in application domain. In
order to apply this approach to design XML schemas, we
introduced a language for expressing XML functional de-
pendencies. In fact, this language is a class of XPath ex-
pressions, so its syntax and semantics are defined precisely.
We define the notion of satisfaction of XML functional de-
pendence by an XML tree. To define XNF we use the ap-
proach proposed in [24].

All considerations are illustrated by the running exam-
ple. We discuss various issues connected with normaliza-
tion and compare them with issues faced in the case of re-
lational databases. We show how to develop redundancy-
free and dependency preserving XML schema. It is worth

mentioning that the relational version of the schema cannot
be structured in redundancy-free and dependency preserv-
ing form. In this case, preservation of all dependencies re-
quires 3NF but then some redundancy is present. Further
normalization to BCNF eliminates redundancies but does
not preserve dependencies. In the case of XML, thanks
to its hierarchical nature, we can achieve both properties.
However, it is not clear if this is true in all cases (see e.g.
[5].

We have proposed a method for normalizing XML data
in to steps. First, we build a conceptual model by means of
ER schema and specify all functional dependencies among
its attributes. Following the necessary condition formu-
lated in Theorem 7.3, an initial XML schema is created.
This schema is XNF-consistent with all XML functional
dependencies under consideration. Such the schema can
be further normalized, for example using the decomposi-
tion algorithm (DA) [1]. It was shown that in the presence
of cyclic functional dependencies the procedure proposed
in DA results in bad design (only a local XNF can be ob-
tained, i.e. only subschemas of the schema can be trans-
formed into XNF).
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