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This paper presents a Timed Coloured Petri Nets based programming tool that supports modeling and
performance analysis of distributed World Wide Web environments. A distributed Internet system model,
initially described in compliance with Queueing Theory (QT) rules, is mapped onto the Timed Coloured
Petri Net (TCPN) structure by means of queueing system templates. Then, it is executed and analyzed. The
proposed distributed Internet systems modeling and design methodology has been applied for evaluation
of several system architectures under different external loads.

Povzetek: Predstavljeno je orodje na osnovi Petri mrež za modeliranje spletnih okolij.

1 Introduction
One of modern Internet (or Web) systems development
approaches assumes that the systems consist of a set of
distributed nodes. Dedicated groups of nodes are orga-
nized in layers (clusters) conducting predefined services
(e.g. WWW service or data base service) [2, 6, 8]. This
approach makes it possible to easily scale the system. Ad-
ditionally, a distributed structure of the system assures its
higher dependability. Fig. 1 shows an example cluster–
based Internet system structure. The Internet requests are
generated by the clients. Then they are distributed by the
load balancer among set of computers that constitute the
front-end or WWW cluster. The front–end cluster offers
a system interface and some procedures that optimize the
load of the next system layer–the database servers cluster.
In the standard scenario the client produces the request by
e.g. filling out the formula on the web side. Then the re-
quest is converted into e.g. a SQL query and forwarded to
the database layer. The result of the query is sent back to
the front-end layer. Finally, the client receives the result of
his request on the website.

Simultaneously, for a significant number of Internet ap-
plications some kind of soft real-time constraints are for-
mulated. The applications should provide up-to-date data
in set time frames [20]. Stock market or multimedia appli-
cations may be good examples of hardware/software sys-
tems that may have such timing requirements.

The appearing of new above mentioned development
paradigms cause that searching for a new method of mod-
eling and timing performance evaluation of distributed In-
ternet systems seems to be an up-to-date research path.

One of intensively investigated branch of Internet sys-
tems software engineering is formal languages application
for modeling and performance analysis. Amid suggested
solutions there are: algebraic description [11], mapping

Figure 1: Example distributed cluster–based Internet sys-
tem.

through Queueing Nets (QNs) [8, 18], modeling using both
Coloured Petri Nets (CPNs) [12] and Queueing Petri Nets
(QPNs) [6, 7].

Our approach proposed in this paper1 may be treated as
extension of selected solutions summed up in [6, 7], where
Queueing Petri Nets (QPNs) language [1] has been suc-
cessively applied to the web–cluster modeling and perfor-
mance evaluation. The final QPNs based model can be
executed and used for modeled system performance pre-
diction. In our solution we propose alternative Queueing
Systems models defined as in [3] expressed into Timed
Coloured Petri Nets (TCPNs) [4]. The models has been
used as a background for developing a programming tool
which is able to map timed behavior of queueing nets by
means of simulation. Subsequently we developed our in-
dividual TCPNs–based method of modeling and analysis

1An earlier version of the manuscript was published in Proceedings of
the International Multiconference on Computer Science and Information
Technology, 2008, pp. 559–566.
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of distributed Internet systems. The well known software
toolkits as Design/CPN or CPN Tools can be naturally
used for our models simulation and performance analysis
[10, 19]. The preliminary version of our software tool was
announced in [13], the more mature its description can be
found in [16].

The remaining work is organized as follows. In section 2
we informally introduce basic concepts of TCPNs and then
in section 3 we provide rules of mapping queueing systems
into TCPNs. In the next section, we present a method of ap-
plying the TCPNs based queueing systems models (TCPNs
templates) to distributed Internet system modeling. Section
5 focuses on results of simulation some detailed Internet
system models while section 6 sums up the paper and in-
cludes our future research plans.

2 Hierarchical timed coloured Petri
nets’ basic concepts

As TCPNs is the main formal language exploited in the pa-
per we decided to briefly introduce it. The introduction will
have an informal form focusing only on the most important
TCPNs features. The more thorough TCPNs informal in-
troductions can be found in [9, 5]. The detailed TCPNs
features and some applications are presented in [4].

Informally, a Timed Coloured Petri Net is a bipartite
graph consisting of ”place” nodes and ”transition” nodes.
The places, drawn as circles or ellipses, are used to repre-
sent conditions; the transitions, drawn as bars, are used to
represent events.

The places can have some ”tokens” associated with.
Each token is equipped with an attached data value - the
token ”colour”. The data value may be freely complex (e.g.
integer number or record of data). For each place, a colour
set is defined which characterizes acceptable colours of the
token in the place. All declarations concerning the behavior
of the net and colours of tokens are written in the CPN ML
language. It is possible to define colours, variables, expres-
sions and functions connected to the elements of the net.
The distribution of tokens in the places is called marking.
The initial marking determines the initial state of the net
and is specified by ”initialization expressions”. The mark-
ing of each place is a multi-set over the colour set attached
to the place (compare [4]).

Directed arcs (arrows) connect the places and transitions,
with some arcs directed from the places to the transitions
and other arcs directed from the transitions to the places.
An arc directed from place to transition defines the place
to be an input of the transition. Multiple inputs to a transi-
tion are indicated by multiple arcs from the input places to
the transition. An output place is indicated by an arc from
the transition to the place. Again, multiple outputs are rep-
resented by multiple arcs. The tokens can ”use” the arcs
to move from place to place. Moreover, ”arc expressions”
(the expressions that may be attached to arcs) decide on the
token flow in the net. Arc expressions may denote the num-

ber and the colour set of flowing tokens, as well as may be
functions that manipulate tokens and their colours.

The marking of a Petri net changes by the ”occurrence”
of transitions. Before the occurrence of a transition, the
variables defined in the net are bounded to colours of corre-
sponding types, which is called a binding. A pair (t, b)
where t is a transition and b a binding for t is called a
binding element. For each binding, it can be checked if the
transition is enabled to fire in a current marking. An en-
abled transition may occur. The occurrence of a transition
is an instantaneous event during which tokens are removed
from each of transition’s input places and tokens are de-
posited in its output places.

The transitions of the net may have ”guards” attached
to them. The guards are boolean expressions that may de-
fine additional constraints that must be fulfilled before the
transition is enabled.

For the effective modeling TCPN enable to distribute
parts of the net across multiple subnets. The ability to de-
fine the subnets enables to construct a large Hierarchical
TCPN by composing a number of smaller nets. Hierar-
chical TCPNs offer two mechanisms for interconnecting
TCPN structure on different layers: ”substitution transi-
tions” and ”fusion places”. A substitution transition is a
transition that stands for a whole subnet of net structure. A
fusion place is a place that has been equated with one or
more other places, so that the fused places act as a single
place with a single marking. Each hierarchical TCPN can
be translated into behaviorally equivalent non-hierarchical
TCPN, and vice versa. Thanks to the ability to handle addi-
tional information or data in a TCPN structure and thanks
to introduction of the hierarchy, the nets manage to model
complex systems in a consistent way.

To model a timing behavior of systems TCPNs posses
the following features. There exist a global clock whose
values represent the current model time. Tokens may carry
a time value, also denoted as a time stamp. The time stamp
represents the earliest model time at which the token can be
used. Hence, to occur, a transition must be both colour en-
abled and ready. It means that the transition must fulfill the
usual enabling rule and all the time stamps of the removed
tokens must be less than or equal to the current model time.
When a token is created, the time stamp is specified by an
expression. This means it is possible to specify all kinds of
delays (e.g. constant, interval, or probability distribution).
Moreover, the delay may depend upon the binding of the
transition that creates the token.

Fig. 2 includes an example HTCPN modeling a simple
data distribution system. The declaration node at the top of
the figure defines 4 token types (colours). DATA token type
defines 3 possible enumerated values: A, B or C. NUMBER
and COUNTER token types rename the basic integer type.
PACK colour is a tuple including two elements: the num-
ber and the value of the data package distributed over the
modeled system. Two variables: p and n are also defined in
the declaration node. They may carry PACK and COUNTER
data values, respectively.
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color DATA = with A|B|C;
color NUMBER = int;
color COUNTER = int;
color PACK = product NUMBER*DATA timed;
var p: PACK;
var n: COUNTER;
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Figure 2: Example HTCP Net

For P1 and P5 places the initial markings are defined.
For example, initially place P1 will include 1 token of
(1,A) value, 2 tokens of (2,B) value and 2 tokens of (3,C)
value. As P1 place has some tokens T1 transition may oc-
cur. During the occurrence of T1 transition arc inscription
associated to the arc connecting T1 transition and P2 place
modifies the currently transported token. It increments by 1
each first element of the PACK type tuple. Then the packets
are distributed over the P3 and P4 places. The distribution
procedure is ”hidden” under the ST1 substitution transi-
tion. Guard function connected to T2 transition allows to
”pass” only these data packets whose NUMBER field is 2 or
3. The remaining tokens may go through T3 transition.
Moreover the firing of T3 transition increments a token
value stored in P5 place. As a result P5 stores the num-
ber of data packets received by P5 place. Data packets that
are transported over the T2 and T3 transitions acquire ad-
ditionally some new time stamps. This may be interpreted
that the event connected to T2 or T3 transition occurrence
takes 10 or 20 time units, respectively.

The remaining HTCPNs structures presented in this pa-
per use some similar techniques to manage the token dis-
tribution. Some arc inscriptions are defined as "CPN ML
functions". The selected parameters of the modeled sys-
tems are stored as ”values” not mentioned in the example.

3 Queueing system implementation
Queueing Net usually consists of a set of connected queue-
ing systems. Each queueing system is described by an ar-
rival process, a waiting room, and a service process. In
the proposed programming tool, we worked out several
TCPNs based queueing system templates (e.g. – /M/PS/∞,
– /M/FIFO/∞) most frequently used to represent properties
of distributed Internet system components. Each template
represents a separate TCPN net (subpage) which may be
included in the model of the system as a substitution tran-
sition (using hierarchical CP nets mechanisms [4]).

3.1 Queueing system mapping
Queueing system properties are mapped to the TCPNs net
as follows. At a certain level of system description, a part
of hardware/software is modeled as a TCPN, where some
dedicated substitution transitions are understand as queue-
ing systems (compare fig. 3). To have the queueing func-
tionality running ”under” selected transitions the mapping
to adequate TCPNs subpages must be done. The corre-
sponding subpages include the implementation of the ade-
quate queueing system. In fig. 3 an example -/M/1/PS/∞
(exponential service times, single server, Processor Shar-
ing service discipline and unlimited number of arrivals in
the system; the queue’s arrival process in our modeling
approach is defined outside of queueing system model)
queueing model definition path is presented.

Packets to be served by the example queueing system
are delivered by port place INPUT_PACKS. Then, they
are scheduled in a queue in PACK_QUEUE place. Every
given time quantum (regulated by time multiset included
in TIMERS place) the first element in the queue is selected
to be served (execution of transition EXECUTE_PS). Then,
it is placed at the end of the queue or directed to leave the
system (execution of transition ADD_PS1 or REMOVE_PS
respectively). Number of tokens in TIMERS place repre-
sents number of servers for queueing system.

3.2 Internet requests modeling
Full description of the model requires colors and functions
definition in CPN ML language connected to the net ele-
ments:

(∗−−−−−−−System p a r a m e t e r s:−−−−−−−−∗)
v a l p s_se r_mean_ t ime = 1 0 0 . 0 ;
v a l pack_gen_mean_t ime = 2 2 0 . 0 ;
(∗−− I n t e r n e t r e q u e s t d e f i n i t i o n :−−−−∗)
c o l o r ID= i n t ; c o l o r PRT= i n t ;
c o l o r START_TIME= i n t ; c o l o r PROB= i n t ;
c o l o r AUTIL= i n t ; c o l o r RUTIL= i n t ;
c o l o r INT= i n t ; c o l o r PACKAGE=
p r o d u c t ID∗PRT∗START_TIME∗PROB

∗AUTIL∗RUTIL t imed ;
c o l o r PACK_QUEUE= l i s t PACKAGE;
(∗−−A u x i l i a r y t y p e s and v a r i a b l e s :−∗)
c o l o r random_val = i n t w i th 1 . . 1 0 0 ;
v a r t i m _ v a l : INT ; v a r n : INT ;
c o l o r TIMER= i n t t imed ;
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Figure 3: TCPNs model of -/M/1/PS/∞ queuing system.

v a r t im1 : TIMER ; v a r pack :PACKAGE;
v a r ps_queue : PACK_QUEUE;

Corresponding arc functions (add_PS(),
add_PS1(), update_PS(), release_PS())
release or insert tokens within the queue:

(∗−−Add r e q u e s t t o queue(1):−−−−−−−−−−−−∗)
fun add_PS ( pack :PACKAGE, queue :PACK_QUEUE,
s e r _ t i m e : i n t )= i f queue = n i l
t h e n [ ( # 1 pack , # 2 pack , # 3 pack , # 4 pack ,
s e r _ t i m e , s e r _ t i m e ) ]
e l s e (#1 pack , # 2 pack , # 3 pack , # 4
pack , s e r _ t i m e , s e r _ t i m e ) : : queue ;
(∗−−Add r e q u e s t t o queue(2):−−−−−−−−−−−−∗)
fun add_PS1 ( pack :PACKAGE, queue :PACK_QUEUE)=
i f queue= n i l
t h e n [ pack ] e l s e pack : : queue ;
(∗−−Withdraw r e q u e s t from queue (1):−−−−∗)
fun upda te_PS ( queue :PACK_QUEUE)=
r e v ( t l ( r e v queue ) ) ;
(∗−−Withdraw r e q u e s t from queue (2):−−−−∗)
fun r e l e a s e _ P S ( queue :PACK_QUEUE,
ps_quantum : INT )= l e t
v a l r_ p a ck =hd ( r e v queue ) In
(#1 r_pack , # 2 r_pack , # 3 r_pack ,
ran ’ random_val ( ) , #5 r_pack ,
#6 r_pack−ps_quantum ) end ;

As it was mentioned above, the main application of the
software tool presented in the paper is modeling and evalu-
ation of distributed Internet systems. To effectively model
the Internet requests (or data packets) from the clients a
separate token type (or token colour) has been proposed.
The state of the system is determined by the number and
distribution of the tokens representing data packets within
the TCPN model. Each of the tokens representing a packet

is a tuple PACKAGE = (ID, PRT, START_TIME,
PROB, AUTIL, RUTIL) (compare with source code
including color’s definitions), where: ID - token identifi-
cation (allowing token class definition etc.), PRT - priority,
START TIME - time of a token occurrence in the system,
PROB - probability value (used in token movement distri-
bution in the net), AUTIL - absolute value of token utiliza-
tion factor (for PS queue) and RUTIL - relative value of to-
ken utilization factor. Tokens have timed attribute schedul-
ing them within places which are not queues.

While packets are being served, the components of
a tuple are being modified. At the moment the given
packet leaves the queueing system, a new PROB field
value of PACKAGE tuple is being generated randomly
(release_PS function). The value may be used to mod-
ify the load of individual branches in the queueing system
model. Generally, the queueing system template is charac-
terized by the following parameters: average tokens service
time (ps_ser_mean_time), number of servers (num-
ber of tokens in TIMERS place) and service discipline (the
TCPN’s structure).

In the software tool developed, it is possible to construct
queueing nets with queueing systems having PS and FIFO
disciplines. These disciplines are the most commonly used
for modeling Internet systems. Some our previous works
include the rules of mapping TCPNs into queues of tokens
scheduled according priorities [14, 15]. The presented tem-
plates have been tested on their compatibility with mathe-
matical formulas determining the average queue length and
service time as in [3].
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Figure 4: Queuing model of an example distributed Internet
system environment.

4 Internet system modeling and
analysis approach

Having a set TCPN based queueing systems models a
systematic methodology of Internet system modeling and
analysis may be proposed. Typically, modern Internet sys-
tems are composed of layers where each layer consists of
a set of servers - a server cluster. The layers are dedicated
for proper tasks and exchange requests between each other.

4.1 System structure modeling
To efficiently model typical Internet systems structures we
proposed 3 modeling levels:

– superior - modeling of input process, transactions be-
tween layers and requests removal,

– layer - modeling of cluster structure,

– queue - modeling of queueing system.

To explain our approach to Internet system modeling
a typical structure of distributed Internet system structure
will be modeled and simulated. The example queueing
model of the system informally sketched in fig. 1 is pre-
sented in fig. 4. It consists of two layers of server clus-
ters and is constructed following the rules introduced in
[6, 7, 8].

The front-end layer is responsible for presentation and
processing of client requests. Nodes of this layer are mod-
eled by PS queues. The next layer (back-end) implements
system data handling. Nodes of this layer are modeled by
using the serially connected PS and FIFO queues. The PS
queue models the server processor and FIFO models the
hard disc drive of server. Requests are sent to the sys-
tem and then can be processed in both layers or removed
after processing in front-end layer. The successfully pro-
cessed requests are turned to the front-end layer and then
send back to the customer.

Figure 5 shows the TCPN based model of above men-
tioned queueing network. The superior level of system

description is presented in fig. 5a, whereas in fig. 5b
and 5c detailed queueing systems topologies at each layer
of the system are shown (compare fig. 4). Server clus-
ter of the first layer (e.g. WWW servers; fig. 5b) as
well as the second layer cluster (e.g. database; fig. 5c)
have been demonstrated on the main page of TCPN net
as substitution transitions: front-end_cluster and
back-end_cluster.

On the superior level of system description (fig. 5a)
we have also defined arrival process of the queueing net-
work (T0 transition with TIMER0 and COUNTER places).
TIMER0 place and T0 transition constitute a clock-like
structure that produces tokens (requests) according to ran-
dom, exponentially distributed frequency. These tokens
are accumulated in a form of timed multiset in PACKS1
place and then forwarded into the queueing-based model
of the Internet system. When each token is being gener-
ated its creation time is memorized in the PACKAGE tuple.
This makes it possible to conduct an off-line analysis of the
model.
T1 and T5 as well as T2 and T3 transitions (compare

fig. 5a) are in conflict. Execution of transition T5 re-
moves a serviced request from the net (modeling the sys-
tem answer). If T1 fires the request needs next transac-
tion with the back-end system layer. Similarly, execution
of transition T2 removes a token from T1 the net (mod-
eling the possible loss of data packet). However, if T3
fires, the data packet is transferred for processing in the
second layer of the system. Guard functions connected to
the mentioned transitions determine proportions between
the tokens (packets) rejected and the ones remaining in the
queueing net (in the example model approximately 30% of
the tokens are rejected or send back to the client).

Consequently, an executable (in a simulation sense)
queueing network model is obtained. Tokens generated by
arrival process are transferred in sequence by models of
WWW server layer, by the part of the net that models loss
(expiration) of some packets and by database layer. Pro-
vided that the system is balanced and has constant average
arrival process, after some working time, the average values
of the average queue length and response time are constant.
Otherwise, their increase may occur.

The main parameters of the system modeled are the
queue mean service time, the service time probability dis-
tribution function and the number of servicing units defined
for each queueing system in the model. In the demonstrated
model it has been assumed that queues belonging to a given
layer have identical parameters.

4.2 System rerformance analysis

At this stage of our research it has been decided that sim-
ulation will be the main mechanism used to do analysis
of the constructed model. In our simulations we applied
the performance analysis. It allows collecting selected ele-
ments of the net state at the moment of an occurrence cer-
tain events during simulation. It has been assumed that in
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Figure 5: TCPNs based queueing system model: a) main page, b) front-end_cluster subpage and c) back-end_cluster
subpage.

each of the model layers, queue lengths and response time
will be monitored. Monitoring of the above mentioned pa-
rameters helps to determine whether the model of the sys-
tem is balanced. Fig. 6 shows example plots obtained in
the simulation of the discussed model.

The example experiment covered model time range from
0 to 100 000 time units. Fig. 6a shows the state of se-
lected queue when the modeled system was balanced. Re-
sponse time does not increase and remains around average
value. System is regarded as balanced if the average queue
lengths in all layers do not increase. In fig. 6b response
time for unbalanced system was shown. The results con-
cern the same layer as previously and identical time range
for the simulation. It is clear that response time (fig. 6b)
increase during the experiment. On the basis of the plot in
fig. 6b, it can be concluded that the modeled system under
the assumed external load would be overload and proba-
bly appropriate modifications in the structure of the system
would be necessary. The software tool introduced in our
paper makes it possible to estimate the performance of de-
veloping Internet system, to test and finally to help adjust
preliminary design assumptions.

Having the possibility to capture the net’s state during
the simulation within a certain time interval, it can be pos-
sible to select model parameters in such a manner that they
meet assumed time restrictions. Additionally, the parame-
ters of real Internet system can be used to fit parameters of
the constructed model.
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balanced and b) system unbalanced.



SIMULATION AND PERFORMANCE ANALYSIS OF . . . Informatica 33 (2009) 405–415 411

5 Detailed vs. simplified Web cluster
modeling

The worked out modeling and analysis methodology was
used for construction and evaluation of several detailed
models of architectures of distributed Internet systems. The
analysis of the models were executed with the use of per-
formance analysis tools for TCPN nets [20]. CSIM [17]
simulating environment and experiments on real Internet
system were used for TCPNs simulations evaluation. The
overview of typical TCPNs based Internet system models
analyzed so far can be found in [12].

In the remaining part of the paper we would like to dis-
cuss the following issue. During our research we pro-
posed a detailed TCPNs-based model of an example dis-
tributed Internet system. The model makes it possible to
express such phenomena as suspension of database ser-
vice or database replication. The accuracy of the model
was checked by comparison to a physical experimental
computer cluster and a CSIM model. Obviously, the de-
tailed modeling process requires the adequate knowledge
of a database engine properties and consumes an amount
of time. On the other hand, some authors (e.g. [18, 6, 8, 7])
”suspends” the modeling process on the level similar to one
presented in section 4. This modeling level seems to be
more acceptable for a broaden amount of Web systems de-
velopers. Taking into consideration the aforementioned ra-
tionale we decided to compare three models of an example
distributed Internet system and evaluate the level of inac-
curacy that simpler models contribute.

5.1 Detailed model
In fig. 7 a detailed queueing model of the example sys-
tem has been presented. It consists of two cluster layers
of servers. Customer requests are sent to the chosen node
of front-end cluster with 1/2 probability. Then they are
placed in the queue to get service. The service in the ser-
vice unit (processor) can be suspend many times, if for
example the requests need the database access. When the
database access occurs, requests are sent to back-end layer.
Any request can also be removed following pREMOVE
path. In case of sending to the database, a requests steers
itself to service in one of back-end nodes with 1/2 proba-
bility. The service in the database service unit may be sus-
pend if access to the input/output subsystem of the database
storage device is necessary. Requests are returned to the
database service unit after the storage device is served. This
operation can be repeated many times. After finishing ser-
vicing in the back-end layer, requests are returned to front-
end servers (pDB). Requests can visit back-end layer dur-
ing processing many times. After finish servicing in front-
end server requests are sent to the customer (pLEAVE).

If the necessity of the database replication appears the
requests are sent to next database node (pREP). Unless
none of these two situations appear the requests are send
to front-end layer (pDB). Replication can also cause resig-

Figure 7: Detailed queueing model of the example dis-
tributed Internet system with suspension of transactions
and database replication.

Probability Probability values for model [%]
pREMOVE 30

pLEAVE 30
pDB 55
pREP 10

Table 1: The value of probabilities for model

nation from transaction. Both the replication and the rejec-
tion of realizing transaction are modeled in simplistic way
as delivery of task to the next location of replication.

In this model:

– PS_Q1_1\2 is a queue PS modeling element that
processes in front-end layer,

– PS_Q2_1\2 is a queue PS modeling element that
processes in back-end layer,

– FIFO_Q2_1\2 is a queue FIFO modeling device
that stores data in back-end layer.

Tab. 1 includes the probabilities values for Internet re-
quests distribution for considered model. The parameters
assumed for discussed model are as follows:

– external load,

– the identical parameters of queues,

– request distribution probabilities,

– the number of nodes in experimental environment.

In fig. 8 the detailed TCPNs-based model of the back-
end cluster is presented. The structure of the TCP net cor-
responds with the detailed queing model depicted in fig. 7.
Its most essential properties are:
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Figure 9: Semi-detailed queueing model of the example
distributed Internet system.

– the possibility of directing tokens to any node (the lo-
cation of replication),

– the return of tokens at the beginning of the layer,

– the realization of data synchronization in individual
locations.

It is worth to notice that the complete detailed TCPNs-
based model of the example Internet system can be derived
as follows. The superior page of the model is identical at
the one in fig. 5a. The front-end cluster model corresponds
with the one from fig. 5b.

5.2 Semi-detailed model
In fig. 9 a semi-detailed queueing model of the example
Internet system has been proposed. At this level of model
simplification a database replication has been omitted. Still
the service in the database service unit may be suspend if
access to the input/output subsystem of the database stor-
age device is necessary (compare subsection 5.1). A sepa-
rate TCPNs-based semi-detailed model of the example sys-
tem has been constructed, but due to limited size of the
manuscript it has not been mentioned.

5.3 Simplified model
The so-called simplified model was thoroughly presented
in section 4. Its queueing implementation can be seen in
fig. 4, whereas its TCPNs-based implementation in fig. 5.
The model does not takes into consideration suspension
during the database access, nor database replicattion phe-
nomenon.

5.4 Detailed model evaluation
Experimental environment and the CSIM packet were used
to verify the detailed TCPNs-based model of the exam-
ple system. The experimental system consisted of a net
segment (100Mb/s), set of computers (Pentium 4, 2.8

GHz, 256 MB RAM) with Linux operating system (ker-
nel 2.4.22) and Apache2 software (for WWW servers) as
well as MySQL, version 4.0.15 (for database servers) [12].

The verification model was written by using CSIM sim-
ulator. This is a process oriented discreet event simulation
package used with C or C++ compilers [17]. It provides li-
braries that a program written can be used in order to model
a system and to simulate it. The models created by using
CSIM [12] were based on presented queueing models (fig.
7) (similarly as TCPN models).

As a result we obtained the evaluated TCPNs based
model of the Internet system discussed. The model made it
possible to predict response time of the system developed.
Tab. 2 shows the comparison of the detailed TCPNs-based
model, detailed CSIM model of the example system, and
a real experimental system. The system response times in
each of the layer were measured during simulation (TCPNs
model) and execution of the real environment. The experi-
ments were conducted under different average external load
values. In fig. 10 the response time of the layers during
TCPNs-based model simulation under 100 [req./s] load are
shown. It can be easily noticed, that system was balanced
and the second layer may be the potential bottleneck due to
higher response time.

5.5 Models evaluation
As we mentioned before, we treat the ”real” example sys-
tem as the reference for the set of models to evaluate. In our
experiments we assumed identical model parameters (e.g.
queuing systems parameters, external load, probability of
choosing different paths by the requests). Only the struc-
tures of modeled system were subsequently ”simplified”.

Tab. 3 includes the example response time statistics for
the same external load for all types of models proposed.
Tab. 4 includes the list of percentage of inaccuracy of the
TCPNs-based and and CSIM models with respect to the
real experimental system, respectively.

It can be easily noticed, that the simpler system model,
the faster answer it gives. What is more, if we assume, that
the detailed model is the ”closest” to the real system, an
attempt to simplify it to the level discussed in section 5.3
without any modifications of queueing systems parameters
is purposeless. Simultaneously, the semi-detailed model
for some developers can have the quality sufficient to fol-
low the real system behavior.

In fig. 11 an average response times history under the
same external load for all types of the proposed models has
been included. The average response times seem to oscil-
late around three constant values. It seems that a kind of
equation showing the dependence between detailed, semi-
detailed and simplified models may be derived.

6 Conclusions
It is still an open issue how to obtain an appropriate dis-
tributed Internet system. The demonstrated research results



SIMULATION AND PERFORMANCE ANALYSIS OF . . . Informatica 33 (2009) 405–415 413

Figure 8: Back-end_cluster subpage of the detailed TCPNs-based queueing system model.

Load Layer TCPN Model CSIM Model Experiments TCPN Model CSIM Model
[req./s] [ms] [ms] [ms] Error [%] Error [%]

100 front-end 49 50 36 26.5 28.0
100 back-end 567 598 409 27.5 31.0
300 front-end 701 743 579 17.4 22.1
300 back-end 813 798 648 20.4 39.7
500 front-end 1001 1109 921 8.0 16.4
500 back-end 1050 1083 973 7.3 10.0

Table 2: Layers response time for TCPNs model, CSIM model, and for experimental reference system

TCPN CSIM TCPN CSIM TCPN CSIM Experiments
Layer Simply Simply Semi-detailed Semi-detailed Detailed Detailed [ms]

[ms] [ms] [ms] [ms] [ms] [ms]
front-end 93 114 123 159 167 197 153
back-end 115 135 157 192 222 257 201

Table 3: Layers response time for three TCPN, CSIM models and experimental results (the same load)

are an attempt to apply Queueing Theory (QT) and TCPNs
formalism to the development of a software tool that can

support distributed Internet system design. The idea of
linking Queueing Nets Theory and Coloured Petri Nets was
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Figure 10: Detailed TCPNs-based model response time for layers a) - front-end layer, b) - back-end layer.

TCPN-Exp. CSIM-Exp. TCPN-Exp. CSIM-Exp. TCPN-Exp. CSIM-Exp.
Layer Simply Simply Semi-detailed Semi-detailed Detailed Detailed

[%] [%] [%] [%] [%] [%]
front-end -57.73 -68.13 -22.40 -28.57 18.18 23.11
back-end -63.41 -71.79 -34.89 -40.55 22.98 27.17

Table 4: Error - TCPN-CSIM-experiments

 0

 100

 200

 300

 400

 500

 600

 700

 0  10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

S
er

vi
ce

 T
im

e 
Le

ng
th

Time [sim. time units]

Service Time Lengths

Average Response of Simplified Model
Average Response of Semi-Detailed Model

Average Response of Detailed Model

Figure 11: Average service times for Simplified, Semi-
Detailed and Detailed models of the example system.

proposed previously by other authors in [6, 7]. However, in
the presented approach queueing systems have been imple-
mented using TCPNs formalism exclusively. As a conse-
quence, alternative implementation of Coloured Queueing
Petri Nets has been proposed. What was more, the rules of
modeling and analysis of distributed Internet systems ap-
plying described net structures was introduced.

This paper deals with the problem of calculating perfor-
mance values like the response time in distributed Internet
systems environment. The values are calculated by using
TCPNs. It is shown how the Coloured Petri Net model of a
distributed Internet system is created with some of its data
structures and functions, and gives an examples of system
analysis. Finally, the paper discuses whether the detailed
Internet system modeling brings substantial improvement
in a real system mapping. The preliminary results show
that probably adequate modification of queueing systems
parameters can produce acceptable level of compatibility
between ”simplified” models and the real systems.

Our future research will focus on dealing and analyz-
ing another structures of distributed Internet systems using
the software tool developed. It will be also dedicated to
demonstrate compatibility of the models with the real sys-
tems. TCPN features such as tokens distinction will be of
more extensive use. We will also make an attempt to cre-
ate queueing model systems with defined token classes and
consider a possibility to use state space analysis of TCPN
net to determine properties of the system.
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