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A methodology is presented for real-time control of unmanned aerial vehicles (UAV) in the absence of 
apriori knowledge of location of sites in an inhospitable flight territory. Our proposed hostile control 
methodology generates a sequence of waypoints to be pursued on the way to the target. Waypoints are 
continually computed with new information about the nature of changing threat. The Dijkstra algorithm 
is used to account for a weighted combination of threat measures arising from the probability of 
encountering hostile ground to air fire as well as the internal urgency to complete the mission in the 
shortest time. UAVs broadcast latest sensed data to their counterparts. The sequence of waypoints 
defines the trajectory of the UAV to its target. By varying components of cost function, paths are altered 
to obtain a desired performance criterion. Validation of our methodology is offered by a series of agent-
based simulations.

Povzetek: Predstavljena je metoda za upravljanje brezpilotnega letala ali helikopterja v sovražnem 
okolju.

1 Introduction
A powered, aerial vehicle that does not need a 

human pilot and uses aerodynamics forces to provide 
vehicle lift is called Unmanned Aerial Vehicle (UAV), 
also called a drone. UAVs are able to fly autonomously 
or can be remotely piloted. They might be expendable 
and can be equipped to carry lethal payloads. Ballistic 
missiles, cruise missiles, and artillery projectiles are not 
considered UAVs. Three varieties are shown in Figures 
1-3.

UAVs were first conceived in the aftermath of the 
First World War and were used during the Second World 
War to train anti-aircraft gunners. Subsequently, early 
UAVs were large, remote-controlled planes until the late 
20th century. Technological advances allowed the 
military to develop more capable fighting machines that 
could be used in performing dangerous missions without 
posing a significant risk to human life. 

Military strategists have envisioned developing a 
wide array of roles performed by unmanned aircraft 
including deployment of ordinance [25]. UAVs  are 
primarily used for intelligence, reconnaissance, 
surveillance. For example, the Global Hawk UAC 
(shown in Figure 1) provides the U.S. Air Force and joint 
battlefield commanders with near real-time, high 
resolution intelligence, surveillance, and reconnaissance 

imagery. Predator (Figure 2) is a high endurance, 
medium altitude unmanned aircraft system used for 
surveillance and reconnaissance missions, as well as the 
refuelling of jets. Seiko Epson has developed the world’s 
lightest and smallest UAV helicopter, the Micro Flying 

Figure 1: A Global Hawk.
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Figure 2: A Predator.

Figure 3: A Micro UAV.

Robot (shown in Figure 3). Sierra Nevada Corporation
offers the most widely used UAV landing and takeoff 
software systems. Next, we outline the specific flight 
problem that is addressed.

Consider a ground to air protected hostile force zone 
that is of interest for surveillance by the friendly force. 
We need to compute the vulnerability in crossing the 
enemy region and find the safest trajectory across the 
region. Consider a swarm of coordinating reconnaissance 
UAVs, modelled as agents, which attempt to cross the 
hostile region. These UAV agents form a closely 
communicating friendly network and collectively 
produce estimates of threats needed to generate the safest 
possible flight trajectories.

The main objective of this work is to provide a novel 
approach for manoeuvring of a group of coordinating 
agents in a hostile environment. Due to the complexity of 
the problem involving formation and control of the 
UAVs in the real world, we are primarily concentrating 
on path generation [9]. 

2 Related work
The problem of multi-sensor surveillance involves 
detection of multiple intrusions and tracking of the 
intruders. Detection and target tracking have been 
explained from multiple viewpoints. To keep track of 
multiple moving objects researchers need to know all the 
joint probabilistic states of the all objects. These states 
grow exponentially with increase of number of moving 
objects. Sample-based variant of join probability data 
association filters technique is used to track moving 
objects [22]. Mobile service agents are designed to 
operate in a dynamic environment by estimating the state 
of the dynamic object using probabilistic techniques [23]. 
The probabilistic estimates accurately identify the most 
likely state of each dynamic object.  Multiple targets can 
be tracked by using dynamic time stamps. In order to 
detect, track, and avoid targets, researchers have used 
cluster-based approaches [12]. The focus of all these 
techniques has been building reliable estimators and 
trackers. These approaches do not use distributed sensors 
and are not directly useful for the problem of large area 
surveillance.

Within the context of distributed task allocation and 
sensor coordination [20] proposed a scheme for 
delegating and withdrawing agents to and from targets 
through the ALLIANCE architecture. The protocol for 
allocation was one based on the “impatience” of the 

robot with respect to a target while withdrawal was based 
on “acquiescence.” [18] presented a strategy for tracking 
multiple intruders through a distributed mobile sensor 
network. Researchers have made significant advances in 
the areas of distributed sensor networks [7] and sensor 
management [18].

In [7], distributed robots cross a region using density 
estimates in a manner that facilitated maximal tracking of 
targets in that region. The decision for a robot to move to 
another region or to stay in its current region was based 
on certain heuristics. The method presented did not 
address collaborative or shared reasoning strategies for 
decision-making and action selection, such as the 
decision to move to a new area. Coordination between 
sensors was restricted to communicating their respective 
positions. Lesser’s group used sensor coordination for 
the purpose of tracking only one target [14].

In solving path planning and resource allocation 
problems researchers have considered UAVs to be 
independent of one another. Path planning methods focus 
on sequencing UAVs to arrive at specified locations or 
target locations [15]. Resource allocation methods have 
concentrated on target assignment, [16] and classification 
[5]. In the research of Ken Nygard [19], a scheme based 
on hierarchical decomposition was presented to assign a 
sub-team of UAVs to a particular task. McLain used a 
methodology that allowed the UAVs to reach the target 
simultaneously by avoiding pop-up threats whose 
locations were known a-priori [17]. 

This article presents a strategy that is a variant of
methods described in [17] in that the UAVs can be 
coordinated to arrive at a desired target location or 
respective target locations within a specified time period. 
However, unlike McLain’s [17], locations of targets are
not known beforehand. A set of waypoints are generated 
through a reinterpreted Dijkstra algorithm, and the 
computation is updated every time a UAV agent
discovers new information. Our contribution is largely in 
our unique interpretation of path costs. There are 
numerous applications of this algorithm in robotic 
motion planning [8]. However, there are no known 
adaptations of this algorithm that suggest an emotional 
interpretation of path costs. This is a novel contribution 
in our approach. We have redefined the interned 
distance function from the standard algorithm, e.g., 
given in [6].

Simulations can be greatly simplified when the 
agent’s mission is executed using formation control 
strategy [1]. Formation control strategy is used to study 
aerodynamic effects involving multiple-aircraft [15] and 
to explore large areas with the aid of UAVs whose sensor 
capabilities are limited [19]. The aspect ratio1 of the 
formation can be increased by using a formation control 
strategy. Two or more closely spaced agents can be 
treated as a single unit, which will decrease the workload 
of a remote operator and the cost of communication with 

                                                          
1 The aspect ratio of two-dimensional shape is the ratio of 
its longest dimension to its shortest dimension.
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other aircraft because the distance between aircrafts is 
decreased. 

In many missions, UAVs fly in formations that are 
thought to increase chances of success. There are three 
different formation control strategies: leader following 
approach, behavioral approach, and virtual structures 
approach.

In the leader following approach, one of the agents 
acts like a leader, while the rest of the agents act like 
followers. The follower agents track the position and 
orientation of the leader. The problem with this approach 
is that the motion of the agent is controlled by the motion 
of the leader; if the leader agent fails in its motion then 
the following agent will not make the best move. 
Researchers have proposed variations of the leader 
following approach in order to prevent the centralized 
control of the agents’ motion. In these approaches, agents 
designate multiple leaders, form chains, and create tree 
topologies. These approaches only solve the centralized 
motion problem partially, because subsets of the agents 
follow the designated leader agent. There have been a 
number of studies of leader-following techniques in the 
mobile robotics community. Using leader-following 
technique [5], robots can cooperatively move a box.

The goals of the behavioral approach are to prescribe 
several desired behaviors for each agent [1] and to make 
the control action of each agent a weighted average of 
the behaviors. Possible behaviors include collision 
avoidance, obstacle avoidance, goal-seeking and 
formation-keeping. There are also numerous variations 
on the behavioral approach to multi-agent coordination, 
most of which are derived by novel weight of the 
behaviors. In the behavioral approach agents use the 
decentralized motion method, which is desired in Multi 
Agent Systems. Botelho and Alami (1999) applied the 
behavioral approach to the problem of satellites in an 
equally distributed ring formation [2].

In the virtual structure approach, the entire agent
formation is treated as a single structure. This approach 
defines the desired motion of the structure. Next, the 
motion of the virtual structure is translated into the 
desired motion for each agent. Finally, tracking controls 
for each agent are derived. It is very easy to implement 
this approach, which is its strength. However,
applications in which we can use this approach are very 
limited. 

Agent interaction in multiagent systems is associated 
with some form of communication [3]. Researchers rely 
on agent communication to solve standard multi-agent 
problems, like coordination and negotiation. The 
communication primitives that are exchanged among 
agents are typically referred to as communicative acts or 
speech acts. Some communicative acts are informing 
about the environment, querying about environment, 
telling about an action, advising other agents, and 
directing agents. These communicative acts help agents 
to make decisions. Agents have to use a standardized 
language format for exchanging information so that 
agents can easily understand each other. Several agent 
communication languages have been proposed by 
researchers aiming at standardizing the multi-agent 

communication process. The two most notable ones are 
KQML and FIPA ACL [24], each using a slightly 
different syntax and set of communicative acts.

Intelligent agents, having incomplete knowledge of 
the operating environment, must learn the structure of the 
environment to better accomplish their tasks. This 
exploration may be performed in a different phase, or it 
may be combined with the task at hand. Algorithms 
which guide agents in unknown physical environments 
can be classified as full exploration algorithms or 
navigation algorithms [26]. Full exploration algorithms 
are used when the entire environment is mapped out a-
priori. Navigation algorithms are used when a specific 
target location has to be reached. Modified search 
algorithms are widely used in solving these types of 
problems.

Hill climbing is a heuristic method of searching for 
solutions to problems that have huge solution spaces 
[21]. In the hill climbing approach, the problem space is 
converted to a graph, where each solution corresponds to 
a node associated with a value. The current path is 
extended with a successor node, which is closer to the 
solution than the end of the current path. In the simple 
hill climbing approach, the node closest to the present 
node is added to the solution space. In steepest ascent hill 
climbing, all successors are compared, and the one 
closest to the solution is selected. A fitness function is 
defined for evaluating the effectiveness of the node 
newly added to the solution. Unless the fitness function 
is smooth and effective, these two approaches will fail to 
a reach global maximum. This happens when there are 
local maxima in the search space, which are not 
solutions. This can be partially overcome using varied 
hill climbing methods such as iterated hill climbing, 
stochastic hill climbing, random walks, and simulated 
annealing [26].

To avoid getting stuck on the first local maximum, 
several hill climbs are repeated, each time starting from 
different randomly chosen points. This method is known 
as iterated hill climbing. This approach increases the 
probability of reaching the global maximum value by 
detecting different local maximum points. If there are 
several local maximum points in problem space, it is not 
a good method to implement. This approach surprisingly 
gives optimal results in many applications.

In the stochastic hill climbing approach, a randomly 
chosen neighbor node is evaluated using the fitness 
function. This node is only retained if it increases the 
value of the fitness function; otherwise, another neighbor 
node is selected randomly for evaluation of the fitness 
function. Stochastic hill climbing usually starts from a 
random point. By combining iterated hill climbing with 
stochastic hill climbing, solution paths avoid getting 
stuck on local optimum values.

Simulated annealing is an optimization technique 
proposed by [13] by extending the Monte Carlo method
to determine the equilibrium state of a collection of 
atoms at any given temperature T. Simulated annealing is 
inspired by a technique involving the heating and 
controlled cooling of a material that increases the size of 
its crystals and reduces their defect. The heat makes 
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atoms move randomly due to the high energy state. The 
slow cooling gives them more chance of finding more 
stable configuration than the initial one. Simulated 
annealing consists of randomly choosing a solution from 
the neighboring nodes of the current node. If the value of 
the fitness function increases the current one, the new 
node is accepted as the new current node. If the fitness 
function is not improved, the new solution is retained 
with probability. Simulated annealing differs from hill 
climbing algorithms in that it allows the possibility of 
going downhill if the temperature is high enough. When 
the temperature is high, the motion is more random. 
Because the probability of going downhill is inversely 
related to temperature, when temperature decreases, it is 
hard to go downhill. Simulated annealing generally starts 
with high temperature values. The slower the cooling, the 
easier it becomes to find the global solution. Infinitely 
slow cooling certainly produces a global optimum 
solution, although it might take infinite time.  The main 
difficulty of simulated annealing is to find an appropriate 
temperature decrease rate.

Thus far, we have discussed the research related to 
coordination and communication in multiagent systems. 
In the following sections, we will present details of our 
approach.

3 Implementation
We have made certain abstractions while transforming 
the real world situation to a simulated environment. We 
also make assumptions about the modelling of inter-
agent communication. We define our simulation system 
by describing agents present in the system, their 
capabilities, and the missions assigned to the agents. 
There are two different types of agents present in our 
system: friendly UAV agents and hostile, ground-based
agents. UAV agents are autonomous and compute their 
trajectory dynamically. They perform surveillance over a 
square-shaped surveillance zone. The main objective for 
UAV agents is to move from a location outside the 
surveillance area to a designated target zone. These 
agents use a variety of algorithms to achieve their 
objective. They continually compose and update a 
trajectory to reach the target location consistent with 
perception of their surroundings. Our simulation allows 
for user-defined number of UAV agents to be modelled. 
These agents communicate with one another to 
effectively analyze the surveillance zone. 

Hostile agents protect the surveillance area from
intrusion. From the perspective of UAV agents, hostile 
agents are considered to be threatening. Hostile agents 
are static and reactive. Hostile agents operate 
independently of one another. The objective of these 
agents is to harm unknown vehicles within their 
perceptual range. Although they are an integral 
component of our system, they are not considered to be 
part of the multi-agent component as they do not 
communicate or coordinate among themselves. They 
remain in the same location throughout the simulation. 
Therefore, once UAV agents identify the location of a 
hostile agent, that hostile agent need not be sensed again. 

Hostile agents are capable of firing anti-aircraft 
missiles. The success of hitting UAV agents depends on 
the distance of the UAV agent from the hostile agent. In 
our simulation, UAV agents cannot be completely 
destroyed by anti-aircraft missiles. Each UAV agent will 
continue to travel the surveillance area even after it has 
sustained a strike by an anti-aircraft missile. This 
assumption is made so that we can compute the 
effectiveness of the path algorithm used for the 
reconnaissance mission.

We introduce a number of assumptions in order to 
define our model. Hostile agents are guarding the 
surveillance area in which UAV agents are attempting to 
cross. UAV agents divide the surveillance zone into 
number of square cells for the trajectory computation. 
The firing strength of the hostile agent is the probability 
that it can shoot down a UAV agent when the UAV agent 
flies over the cell occupied by it. The probability of 
hitting a UAV agent decreases as the distance of the 
UAV agent from the cell occupied by hostile agent 
increases. As shown in Figure 4, in an eight-connected 
sense, the occupied cell by a hostile agent is denoted by 
O, the four nearest neighbors are denoted by N1 and the 
four diagonal neighbors by N2. If the distance between 
the centers of two four-connected cells is termed a unit, 
cells that are two units away are denoted by N2. Figure 4 
is used to compute actual firing strength of hostile forces. 
In contrast, Figure 8 will be used to reflect the 
perspective of a friendly UAV flying over the hostile 
territory and how they perceive threats from hostile 
agents. Since UAVs share information, subsequent 
figures show cumulative perceptions of threat.

Figure 4: Labeling of cells with respect to a central 
hostile cell denoted by O; i.e., the cell that is occupied by 
a hostile agent.

Direct firing strength is defined as the probability of 
hitting a UAV agent when the UAV agent is flying over 
cell O.  First neighboring firing strength is defined as the 
probability of hitting UAV agent from the cells labelled 
N1. Second neighbor firing strength is defined as the 
probability of hitting UAV agent from the cells labelled 
N2.

For a UAV agent that flies over a cell i, the
probability that it is hit by a hostile agent is computed by 
Equation 1. 
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Ofs is direct firing strength, 1Nfs is firing strength at 

the first neighbor’s level, and 2Nfs is firing strength at 

the second neighbor’s level.

If a UAV agent flies directly over an occupied cell, 
the UAV agent has the maximum probability of being
hit, but its probability of being struck decreases if it flies 
over cell N1 and further decreases if it flies over cell N2. 

fjp is the probability that a hostile agent situated at cell

j can fire successfully at the UAV agent flying over cell 

i .
Thus, for a UAV agent flying over cell i , the 

cumulative probability of being shot is the sum of the 
individual probabilities of being successfully fired at by 
the hostile agents positioned at the cell beneath or any of 
the N1 or N2 cells. The cumulative probability of being 
shot is given by siP , i.e., 

(Equation 2)
In the absence of prior information regarding the 

occupancy of the cells in the region, the prior probability 
of cell j being occupied by a hostile agent is denoted by

Ojp . The cumulative probability of being shot when 

flying over cell i and lacking such information regarding 
the occupancy of the cells is given by Equation 3.

(Equation 3)
It is assumed that the a-priori information regarding 

the number of hostile agents, HAn , is known while their 

coordinates or the cells that they occupy are unknown. If 

the total number of cells is Cn , then
C

HA
Oj n

n
p  . As the 

UAV agents move over the habitat they obtain 
information regarding the occupancy or non-occupancy 
of a cell. This information is then broadcast to the other 
UAV agents. The occupancy probability of a cell for 
which there is no information yet is recomputed as in 
Equation 4.

VH A
O j

C

n n
p

n v



(Equation 4)

In Equation 4, Vn represents the number of cells that 

are occupied by hostile agents. Here, v represents the 
total number of cells for which the UAV agent has 
obtained information about.

Distance anxiety denotes the anxiety experienced by 
the UAV agents to travel unit distance over the hostile 
area. We use w to denote distance anxiety. When 

0w  the UAV agent has the maximum innate distance 
anxiety. This encourages UAV agent to seek the path 
with the shortest possible distance. At  1w the UAV 
agent will not have any distance anxiety. At this value,
UAV agent will seek paths of least probabilistic 
resistance that need not be optimal in terms of distance. It 
is to be noted, however that increasing w does not 
always imply increasing path lengths – it only implies 
paths with reduced chances of being fired at or a search 
that is biased towards least probabilistic paths. 
Decreasing w does not always imply paths along which 
there are increased chances of getting fired at – it only 
implies a search that is biased towards shortest distance 
paths. In other words, a path of least probabilistic 
resistance obtained for 1w could well be a path that is 
shortest in terms of distance.

Figure 5: The effect of distance anxiety on trajectory 
computation.

We used parameters to control the communication 
behavior in the system. Communication range denotes 
the number of UAV agents to whom UAV agent can 
send messages. Communication penalty is the cost of 
communicating in the system for a single unit of 
distance. It is directly related to the distance that the 
UAV agent travels.  If UAV agents travel a long distance 
the cost of communication will increase.

3.1 Path Generation
In this model, UAV agents have to traverse a square 
hostile surveillance area. While crossing this area, UAV 
agents compute trajectory by considering the hostile 
elements on the ground.  This trajectory is also 
influenced by the UAV agent’s distance anxiety value, 
which can cause the computed trajectory to have fewer 
steps. We used the standard Dijkstra algorithm to create 
our path generation algorithm, for algorithm consult 
(Knuth, 1997). The nodes in Dijkstra’s algorithm 

Change in Distance Anxiety

Change in Cost of Travelling Node

New Trajectory

, 1 2fj
j

si p j O or j N or j NP   

, 1 2Oj fj
j

si p p j O or j N or j NP   
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correspond to our UAV agent surveillance cells. 
Similarly, the edges correspond to adjacency among our 
surveillance cells. For an edge directed from cell m to 
cell n , the cost of traversing the edge mnC    is given by 

the weighted combination given in Equation 5.

(1 )C w d wP
mn mn sn

     (Equation 5)

snP is the same as the left-hand side of Equation 3; i.e., 

the cumulative probability of being shot at cell n . The 
distance between the cells in the Euclidean distance 
denoted by mnd , while mnd represents the fatigue 

accrued by the UAV agent after traveling a distance of 

mnd .  is a normalization constant that allows mnd to 

be scaled to similar values as snP . w is the weighing 

factor in the range of 0.0 to 1.0. To recapitulate, Equation 
5 suggests that the cost of traveling from cell m to cell 
n is the sum of the overall probability of being fired at 
while over cell n as well as the fatigue developed with 
distance.

Figure 6: High level flow of algorithm.

Figure 6 depicts the high level flow of the algorithm. 
Paths are updated whenever information regarding a new 
cell in the form of either presence or the absence of a 
hostile agent occupying it is discovered. The occupancy 
probabilities of unobserved cells are recomputed by 
using Equation 4, and the cost matrix is updated by using 
Equation 5. Change in the distance anxiety value triggers 
the change in the cost of traversing two nodes as shown 
in Figure 5. This change will affect the waypoints 
generated by the path generation algorithm. The 
algorithm we devised for computation of the waypoints 
for reaching target locations uses a hill climbing 
technique. The waypoints are always computed from the 
current position to the target position. The neighbor 
node, which produces the optimal solution from the 
current node, is always added to solution space. This is 
similar to the steepest ascent hill-climbing search.

The overall algorithm given a specific parametric 
value w is given in Figure 7.

For all UAV agents alive in the system, do steps 2 
and 3 until the last waypoint or target is reached.

If new information is available about the presence or 
absence of a hostile agent occupying a cell, continue with 
the following:

Update occupancy probabilities at all cells.
Compute the new cost matrix based on the most 

recent probabilities.
Search in the space of w for all paths that satisfy the 

time upper bound.
Select the path with the least probabilistic resistance 

or distance metric. 
Move towards the next waypoint.

Figure 7: Overview of system architecture

4 Simulation details
A piece of surveillance area is shown in Figure 8. We 
divided the surveillance area into cells. By doing so, we 
can observe the enemy location and UAV agent motion. 
We also can understand the reason for UAV agent’s
motion in the surveillance area. In contrast to Figure 4, 
Figure 8 depicts the UAV perspective.

As mentioned earlier, the hitting probability for a 
cell can be computed by adding the likelihood of hostile 
agent being present in the vicinity. Cells that are located 
either in the corners or at the sides of the surveillance 
area have fewer neighbors. Consequently, these cells 
have the least probabilistic values, so the path computed 
by UAV agents using the algorithm will be always along 
these cells. We assigned shading for cells to depict their 
perception of levels of threat.   

Figure 8: Shading assignment for UAV perception of the 
surveillance zone: white shade denotes no threat, solid 
gray denotes maximum threat, horizontal shade denotes 
moderate threat, vertical shade denotes minimal threat.

We identified the perception of severity of threats for 
each cell by using a specific shade. White shaded cells 
are neutral areas, i.e., these are perceived to be free of 
hostile agents. These cells are not used for computing 
paths. Perception of a hostile agent at a cell is denoted by 
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solid gray shade. The first neighboring cells of a hostile 
agent are shaded horizontally. The second neighboring 
cells of a hostile agent are shaded vertically. Figure 9 
shows our GUI where we can assign different parameter 
values for the simulation system. These values can be set 
using the sliders shown in Figure 9. We can change firing 
strength values and distance anxiety values for the 
simulation. These values can be changed at run time. 

Figure 9: Simulation system controls: The GUI.

5 Results
We simulated the environment of a UAV surveillance 
Multi Agent System and carried out experiments. All of 
the assumptions that we mentioned in the beginning of 
Section 5 were made for this simulation.

The figures 10, 11 and 12 show paths of UAV agents
for 1,0.5, 0w and respectively. UAV agents

themselves are not aware of their own locations 
beforehand until one of them identifies a hostile agent
during flight. Since UAVs share information, subsequent 
figures show cumulative perceptions of threat. A UAV 
agent’s sensing range at any instant is defined as the area 
covered by 9 surrounding cells, three along the length 
and three along the breadth. In Figure 10, the cells are 
shaded. 

Figure 10: The paths traced by the UAV agents for w=1. 
Threat perceptions for cells are indicated by shadings: 
gray for most threat, vertical for the least threat, and 
horizontal for moderate threat.

As expected, despite their lack of apriori knowledge 
regarding the locations of hostile agents, for 1w , the 

UAV agents manage to find their paths through the cells 
where the probability of getting fired upon is minimal. 
On the contrary, for 0w , the UAV agents move 
bravely  through hostile cells to minimize their distance. 
The shortest distance is not a straight line between start 
and target locations since the graph search is through an 
eight-connected lattice. For 5.0w , the paths turn out to 
be neither the shortest distance paths nor the shortest 
probability paths but paths that minimize 

)(5.0 snmnmn PdC   . The sum of probabilities can 

exceed 1.0 since it represents the total chances of being 
fired upon whenever the UAV agent visits the cell and 
based upon the path computed at that instant. While it is 
this sum that gets minimized during the Dijkstra search 
for paths of least probability, this is different from the 
computation that evaluates the probability that a UAV 
agent gets past  cells safely. That computation is given 

by  





1

1
i

siP and is the safety factor of a path that 

traverses  cells. However, it can be shown that at any 
given instant based on the knowledge of the
environment, the path that minimizes the sum of 
probabilities would also be the one that gives the 
maximum value of the safety factor. 

Figure 11: The paths traced by the UAV agents for w=0.5

It is seen that for w = 0 the paths with least prior and 
posterior probability sums, but with maximum distances, 
are obtained. This is due to the fact that the paths of least 
probabilities go through the center of the environment 
and the UAV agents that enter the habitat at its top and 
bottom search their way to the center due to lack of prior 
information about the hostile agents locations. For w=1, 
UAV agents take the shortest path with the least amount 
of fatigue. While computing paths with w=1, UAV agents
will travel in an area with a high density of hostile agents
to reduce the distance. This will increase their chances of 
being fired upon by hostile agents.
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Figure 12: The paths traced by the UAV agents for w=0.

6 Conclusion
A methodology for parametric flight control of multiple 
UAV agents is presented so that a desired criterion is met. 
The desired criterion can be one that minimizes distance 
fatigue or the path that minimizes the chances of being 
fired upon. The method works for situations where a-
priori knowledge of the hostile habitat is not available. It 
also lends itself to situations where the trajectories of 
UAV agents can be modified dynamically by adjusting a
weighing factor w , since the paths are recomputed every 
time new information about the location of hostile agents 
is discovered. The effect of communication on the 
simulation system is observed. Communication in the 
simulated multiagent system improved the performance 
of the system by rapidly increasing the number of known 
cells to the agents at any time. The path computed by the 
algorithm chose waypoints towards the cells whose 
information is known. If UAV agents start at different 
intervals of time, the computed trajectory moves towards 
the known cells whose information is gathered by the 
UAV agent, which started the mission earlier. Due to 
this, UAV agents may not explore the surveillance area in 
which they are moving. The main objective was to find 
the safest path based on a given set of constraints.

Future scope of this work includes incorporating 
communication constraints such as latency, minimum 
distance to be maintained between UAV agents for 
information exchange, and an investigation into the role 
for embedding the UAV agents with social notions like 
autonomy and benevolence that yielded useful results in 
[13].
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