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The rate distortion manifold is considered as a carrier for elements of the theory of information proposed
by C. E. Shannon combined with the semantic precepts of F. Dretske’s theory of communication. This type
of information space was suggested by R. Wallace as a possible geometric–topological descriptive model
for incorporating a dynamic information based treatment of the Global Workspace theory of B. Baars. We
outline a more formal mathematical description for this class of information space and further clarify its
structural content and overall interpretation within prospectively a broad range of cognitive situations that
apply to individuals, human institutions, distributed cognition and massively parallel intelligent machine
design.

Povzetek: Predstavljena je formalna definicija prostora za opisovanje kognitivnih procesov.

1 Introduction
The concept of an information space seems to have vari-
ous definitions and interpretations within the mathematical
and life sciences literature. The quest for suitable mod-
els of cognitive processes in the large scale is likely to in-
volve an eclectic array of techniques drawn from topology,
geometry and category theory. For it appears sensible, if
not absolutely necessary, to introduce structures that are
comparatively weaker than the conventional ‘smooth man-
ifold’ approach as it is often employed in mainstream dy-
namical systems, statistical inference, automata, and pat-
tern/speech/facial recognition. Whereas in such situations
we do not dispute the usefulness of Finsler or Riemannian
structures (e.g. the well–known Fisher information met-
ric about which much as been written), their comparative
rigidity does not allow the flexibility of topological mod-
eling which is necessary for the more organismic–like na-
ture of cells of information as they function in the local-
to-global processing of cognitive mechanisms. The quest
then is to provide a descriptive framework of cognitive–
interactive modules which are ‘organisms’ in their own
right, possessing their own internal dynamics, semantic
language, channels of communication and their own ‘im-

mune’ systems. This affords them further richness of con-
tent compared to the schemata of classical neural networks,
or to the over–simplified flow boxes of cybernetic processes
and other stock–in–trade tools of traditional AI.

Wallace [125] has brought together the fundamental
ideas of F. Dretske’s semantic communication theory [39]
with the Global Workspace theory of B. Baars [12] within
a framework governed by the acclaimed theory of infor-
mation of C. E. Shannon [32, 112] originating with neces-
sary conditions gauging the reliability of a source entropy
rate relative to a channel capacity. Subsequent ideas are
blended in with the mathematical models for statistical me-
chanics/chemical thermodynamics as introduced by L. On-
sager along with K. Wilson’s theory of renormalization. In
this way the overall treatment incorporates several notable
examples of 20th century mathematical–physical creation.
Motivated by the main results of Shannon’s theory, Wal-
lace [125] introduced the concept of a rate distortion man-
ifold as a descriptive model for analyzing a schemata of
information–based cognition in a range of contexts (such
as e.g. psycho–social epidemics, sleep patterns, obesity,
stress related illnesses, inattentional blindness and the lan-
guage of the immune system [126, 127, 128, 129]). A
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prime ingredient used here is the concept of the rate distor-
tion function R(D) that characterizes the minimum rate of
information needed to reproduce a source message within
a specified fidelity D.

Although the basis for having a manifold atlas topology
had been suggested in these works, there remains the task
for a comprehensive description of a rate distortion man-
ifold in more formal geometric and topological terms as
a means of understanding and better representing the in-
trinsic dynamics underlying a wide range of cognitive pro-
cesses. These may involve direct comparisons between in-
dividual/institutional cognition on the one hand, and dis-
tributed cognition/massively parallel computation on the
other. In this way we may gain some insight into how fail-
ures in one category induce corresponding causes of fail-
ures in another.

Here we propose such a formal and conceptual treat-
ment of the rate distortion manifold within a stretch of
mathematical ideas, and at the same time provide a dis-
cussion of how these ideas are applicable to a variety of
cognitive situations. The ‘weaker’ structures, incumbent
to an extent on the abstract principles of the topology of
manifolds and the theory of categories, are preferred over
the less flexible structures which appear in the examples
mentioned previously. More specifically, we consider cer-
tain topological spaces which are intrinsically path spaces
over an alphabetical–coding system in the Dretske seman-
tics of communication and adhering to the Shannon the-
ory [125]. But viewed as particular (rate distortion) met-
ric spaces with length structure, they are nevertheless con-
ducive to admitting manifold/atlas topologies in a general
sense, and moreover, may enjoy a sufficiently weaker no-
tion of ‘differentiability’ beyond the framework of classical
differential calculus. Putting it another way, we propose a
rate distortion manifold to be a general ‘cognitive informa-
tion space’ adapted to, or designed towards, analyzing a
particular cognitive situation.. Such a space admits a mani-
fold/atlas topology to encompass its framework, and which
serves as a descriptive ‘cell’ or ‘organism’ of cognitive in-
formation gauged as such by certain principles of informa-
tion/entropy and statistical physics.

By ‘cognitive’, we mean pertaining to cognition at large;
that is, in relationship to the neurosciences, cross–cultural
psycho–sociological and epidemiological/immunological
phenomena (both distributed and institutional). In the con-
text of the Global Neuronal Workspace [12], such an ‘or-
ganism’ is a constituent module of a ‘broadcasting system’
that cooperates or competes within a specified hierarchy of
contexts. Symmetry-breaking within the underlying infor-
mation network engenders a phase transition, and thus the
complexity of information increases. The cultural mod-
els of [125, 135] apply not only to individual cognition,
but also to the large–scale cognition of socio–political–
environmental mechanisms which inevitably shape the vi-
tal drive of the former.

Underlying our proposed information spaces are cellu-
lar and combinatorial structures as, for instance, provided

by the general topological notion of a CW–complex or of
a simplex ( obtained via a simplicial decomposition of a
given topological space) which provides a route into the
graph–theoretic concepts of mainstream network analysis.
There is yet another categorical twist. We propose that the
structures of our information spaces be richer and deeper
than abstract categories, but it is even more meaningful if
the actual objects of a given category are the information
spaces themselves. The other slant is that these spaces may
be reasonably viewed in terms of ‘small’ categories with
invertible morphisms, that is, they can be realized via path
equivalence as groupoids and therefore can be treated quite
appropriately within the framework of the algebraic topol-
ogy of groupoids, their actions and atlases of such (see e.g.
[16, 21, 143] and Appendix I of this paper). Applicable
to a broad range of cognitive models, this is a central idea
already advanced in [125](cf [60]) and can be compared
with recent approaches to biological and neural network
systems as adopted by a number of other authors (see e.g.
[15, 61, 66, 67, 118] and the many references therein). The
cognitive ‘cells’ or ‘modules’ of information founded on
rate distortion manifolds are also relevant in the model-
ing of autopoietic and related systems [93](cf [34, 60, 70])
which will be discussed in a later section. Future direc-
tions (which we will address later) are likely to involve the
more ambitious tasks of dealing with informational pro-
cesses and rate distortion theory within the context of such
general categorical concepts as groupoid atlases, stacks in
groupoids and the general concept of a topos.

2 Information spaces for general
cognition

2.1 Characteristics of a cognitive
information space

Let us mention that Chalmers [25](Chapt. 8), for in-
stance, has suggested a possible framework for linking
the processes of the physical and phenomenal worlds in
terms of a conceptually–based information science cast
within the mathematical methods of geometry and topol-
ogy. This plan has a significant overlap with the devel-
opment in [125] and the more formal treatment described
herein. Such an approach seems imperative for advancing
the Workspace structure within the Theater of Conscious-
ness [12] by means of semantic information and dynamical
processes. Moreover, the proximity to our formal descrip-
tion of a rate distortion manifold as an information space,
will eventually become relevant. We rephrase the overall
requirements within the scope of our proposed develop-
ment:

1. The model assists in addressing the phenomenological
aspect (states of context) in relationship to physical
reality.

2. An information space could be viewed as in part rep-
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resenting a ‘causal pathway’ embedded within some
culture, but included are semantic, dynamic principles
seeking to incorporate states of experience, properties
often lacking in traditional cognitive theories.

3. We consider a model based upon the structure of
contexts and language of thought within fluctuating
paths of information, not entirely in the discrete sense,
but possibly within a suitable notion of a ‘continuum
limit’, a ‘manifold–atlas topology’, or a ‘dynamic cat-
egorical process’, as examples of possible working en-
vironments.

4. The manifold–atlas topology can be coupled with
an information based, (weakly) stochastic structure
where essential distinctions can be represented in
terms of such properties as homotopy and diffeomor-
phism type, homology, curvature, etc. Thus we turn
to state of the art techniques of differential geome-
try/topology, category theory, on the one hand, and
on the other, to combine these techniques with those
of information theory, stochastic processes and statis-
tical mechanics. This spread of ideas reflects upon the
eclectic framework proposed for extending the tradi-
tionally acceptable descriptive methods for studying
cognitive processes and their emergence through or-
ders of complexity.

5. By introducing simplicial methods to analyze the un-
derlying combinatorial structure of the manifold, we
may recover graph-theoretic models as suited to the
navigation through various types of information high-
ways [2], systems of coding, symbolic dynamics [89]
and complexity [88].

6. The approach aims at constructing a geometri-
cal/topological carrier for the Shannon information
theorems about which the rate distortion manifold is
formulated, thus leading to a framework for interact-
ing cognitive modules upon which the prevailing cul-
tural environment inevitably writes its image. Essen-
tial here is that the manifold accommodates a homol-
ogy between the corresponding informational laws
of asymptotic probability and certain thermodynamic
limits of statistical mechanics. In this way, altered
states of cognitive processes can be seen to be caused
by phase transitions analogous to how the latter can
induce sharp transformations between one thermody-
namic state to another.

A wide range of descriptive possibilities are likely. Of
these we could view the structure of awareness and experi-
ence as represented within the structure of an information
space with phenomenal states. Conversely, such a predic-
tive representation may feed its way back into the cogni-
tive system with the enhanced prospects of obtaining an
improved model which may lead to the eventual solution
of a given problem.

A limitation of classical information theory is that it was
not preoccupied with semantics. The theory was destined
originally for the testing ground of noisy telephone ex-
changes – some time before ‘The Brain is a Noisy Pro-
cessor’ became a standard assumption. Information in
Shannon’s theory evolved essentially within a combinato-
rial/probabilistic framework for representing how states are
manifest within an information space. Its main constituents
include:

a) Application of the asymptotic limit theorems of prob-
ability theory.

b) Mutual information.

c) The Shannon Coding Theorem (fixing signal and os-
cillator) assumes an optimal coding scheme involving
noise so that the rate of error–free output of the signal
will attain some positive value.

2.2 The Global Workspace
A principal aim is to apply rate distortion manifolds as
descriptive features of the Global Workspace theory of
[12, 14]. The general dictum goes as follows [14]:

(1) The brain can be viewed as a collection of distributed
specialized networks (processors).

(2) Consciousness is associated with a Global Workspace
in the brain – a fleeting memory capacity whose focal
contents are widely distributed (broadcast) to many
unconscious specialized networks.

(3) Conversely, a Global Workspace can serve to integrate
many competing and cooperating input networks.

(4) Some unconscious networks called ‘contexts’, shape
conscious contents. For example, unconscious pari-
etal maps modulate visual feature cells that underlie
the perception of color in the ventral stream.

(5) Such contents work together jointly to constrain con-
scious events.

(6) Motives and emotions can be viewed as goal contexts.

(7) Executive functions work as hierarchies of goal con-
texts.

Recent research [37, 38] has enhanced the validity of
this model. As pointed out in [126], the special proper-
ties of representing embedding and interpenetrating con-
texts provide a framework for understanding the synergism
of consciousness and mental disorders in humans within
a socio–cultural context. This framework bears startling
analogies with the institutional cognition of epidemics ver-
sus the public health sector as a phenomenon of disorder
of information [129, 137, 140]. Indeed, institutions such
as the latter may themselves function within their respec-
tive cultural environments as ‘distributed’ cognitive sys-
tems having their own sovereign mechanisms, implicitly



312 Informatica 33 (2009) 309–345 J. F. Glazebrook et al.

different from that of humans but nevertheless influencing
the degree of effectiveness of human involvement [70], a
situation closely in tune with the organisms of environmen-
tal autopoietic systems [93] (see §9.4). But these large–
scale cognitive mechanisms, although not constrained so
much by biological evolution, are certainly prone to anal-
ogous cognitive disorders such as enviromental (psycho–
social) stress, inattentional blindness, (social) network fail-
ure and many other ailments that plague human society.

As incorporating fundamental geometric techniques,
rate distortion manifolds each possessing characteristic
topological and geometric properties, along with their own
internal dynamics, are thus proposed as descriptive cells
within this blueprint for cognition. As abstract topological
manifolds they are designed to model the shape and flow
of information that can be adapted to analyze a broad range
of cognitive situations. The next stage is to outline a more
specific mathematical description of their structure.

3 Towards a rate distortion manifold

3.1 Manifold–atlas topology
The standard concept of a ‘differentiable manifold’ as to
be found in e.g. [1, 87], is of long–standing importance in
geometry and physics. However, for the sake of the more
flexible structures as sought after, we need to have a handle
on an even more general concept, namely that of an atlas–
manifold topology (such as to be found in e.g. [21]).

The idea is to start by defining a weaker notion of ‘func-
tion’ valid for set-valued mappings. Let A and B be sets
and consider a triple (A,B, F ) where F ⊂ A × B, with
the property that if (a, b), (a, b′) ∈ F , then b = b′. Such
a triple is called a partial function between A and B, de-
noted f : A½B, and written f(a) = b. The domain of f
is the set of a ∈ A such that f(a) is defined. The concepts
of composition, continuity, etc. apply in accordance their
usual topological definitions. The domain of f can be any
subset of A, and if B is a some scalar field such as R or C,
then the definition reduces to the standard one for that of a
function.

Consider a set A and a family {Aλ}λ∈Λ of topological
spaces, together with a partial function fλ : A½Aλ, for
each λ ∈ Λ. A topology T on A is said to be initial with re-
spect to {fλ} if for any topological space B, a partial func-
tion k : B½AT is continuous if and only if the composi-
tion fλ ◦ k : B½Aλ is continuous. Such a topology on A
is the coarsest of topologies such that each fλ : AT ½Aλ,
is continuous.

Let E be a topological space and let M be a set. An
E–chart on M is an injective partial function ϕ : M½E
whose image is open in E. For some indexing set I, an
E–atlas for M consists of a family A = {ϕα}α∈I of E–
charts for M such that if ϕα, ϕβ : M½E are charts in A,
then the composition ϕβ ◦ ϕ−1

α : E−→E, is continuous.
Suppose then we are given such an E–atlas A, and let

M have the initial topology with respect to all E–charts in

A. Then ϕ−1
α : E½M is continuous, since ϕβ ◦ ϕ−1

α :
E−→E, is continuous for all β ∈ A. Therefore, ϕα maps
its domain homeomorphically to its image. We may call
E the model space of the atlas in accordance with the ter-
minology in the case where M is a manifold in the more
concrete sense, and when E is some suitable vector space
(which could be infinite dimensional).

In order to realize a suitable cognitive information space,
we probe beyond some of the typical manifold structures
of information geometry and so the above abstraction has
potential value. Information geometry can involve using
parametric and non–parametric probability densities in or-
der to construct appropriate statistical manifolds for infer-
ence. In the parametric case, befitting a Fisher metric struc-
ture say, the manifold can be treated from the point of view
of a Euclidean topology, whereas in the non–parametric
case (useful for e.g. perception/recognition as in [122]),
other topologies have to be considered leading to infinite
dimensional manifolds modeled, say, on spaces of opera-
tors (such as projections) and which include special Banach
spaces with differing topologies (e.g. exponential conver-
gence as introduced in [101] and applied in [145]).

In this respect the model space E might be taken as
a carrier space for operator–valued probability densities,
suitable say, for dealing with ‘sharp’ or ‘fuzzy’ stochastic
processes (as in e.g. [64]). Manifolds for statistical infer-
ence, stochastic processes and those serving as a descrip-
tive mechanism for modeling the various information high-
ways are seemingly too rigid in structure for effectively
describing cognitive cells. In the latter case, we consider
these as significantly influenced by linguistic and cultural
factors. Additionally, there are potentially useful structures
weaker than the standard manifold/atlas, such as that of an
orbifold atlas which would accommodate certain types of
singularities [96] (see Appendix I §11.2). More generally,
there is the notion of a groupoid atlas [16] (see §7.4) which
incorporates groupoid actions and thus may be viewed as
an abstract dynamical system in its own way (see §7.4).

3.2 The information space (X, sX)

More specifically, suppose E = EΓ is a high di-
mensional state space modeled on some ‘alphabeti-
cal/coding/syntatical’ structure denoted Γ. This is instru-
mental for a semantic base–model following the dictum
of F. Dretske [39, 125]. In mathematical terms, we grant
the possibility that E as a kind of state space may be for-
mally structured as a vector space which may possess cer-
tain properties such as local convexity, etc. For instance, E
could be taken to be the underlying vector space of a gen-
eral events algebra in the sense of [64]. We also leave open
the possibility that E is endowed with some norm denoted
‖ · ‖, although we may not always insist on this property.

We proceed to consider a set X ⊂ E, where points x ∈
X correspond to paths of convoluted signals; typically, x =
(a0, a1, . . . , an, . . .) where ak represents some functional
composition of internal and external signals. In this respect
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X could be deemed to be a ‘weak path space’ over E. It
is quite possible that X could be considered as having a
filtered or cellular structure (as will be described below).
The path space (X, sX) with model (or atlas) space E, is
considered as a metric space with metric sX ≡ d(x, x̂)
induced by a distortion measure d (see §3.4). This measure
then leads to defining a rate distortion function complying
with Shannon’s theorem (see §3.4 and §4.3 later).

Following [125], suppose we take a decision oscillator
generating an output as given by a set valued (partial) func-
tion h : X−→B. For instance, we set B = B0 ∪B1 where

h(x) ∈ B0 ≡ b0, . . . , bk, (3.1)

if the pattern is not recognized, and

h(x) ∈ B1 ≡ bk, . . . , bm, (3.2)

if the pattern is recognized.
The set B is prospectively one that is highly extensible

and could be viewed as the underlying set of a suitably con-
structed algebra of responses or events. Also, the fact that
higher order cognitive decisions and several options of re-
sponse along a given path are likely to be necessary, sug-
gests further intrinsic properties needed for sets of the type
B0 and B1.

Remark 3.1. Note that patterns may well undergo a fil-
tering in stages of recognition. Thus a generalization is to
suppose that B0 and B1 admit countable filtrations of the
sort:

B0 = B0
0 ⊆ B1

0 ⊆ B2
0 ⊆ · · ·

B1 = B0
1 ⊆ B1

1 ⊆ B2
1 ⊆ · · ·

where at level j we have set Bj
0 ≡ bj0, . . . , b

j
k,

and Bj
1 ≡ bjk+1, . . . , b

j
m.

3.3 The Shannon entropy
Shannon conceived of entropy as a measure H of the ca-
pacity of a communications system to transmit information.
The idea was to directly tie a given response rate r(t) to a
function of the probability of achieving r(t). In a more spe-
cific way we will recall below some of the basic results of
the theory in terms of meaningful paths.

For each n ∈ N, let N(n) denote the number of paths of
length n beginning with a particular a0 with h(a0) ∈ B0,
and leading to the condition that h(x) ∈ B1 . We call such
paths meaningful and, for cognitive reasons, regard N(n)
to be much less than the number of all paths of length n .
Further, we assume that the limit

H ≡ lim
n−→∞

log[N(n)]

n
, (3.3)

exists, is finite, and is independent of the path x. Such
a cognitive process is then said to be ergodic. The non–
ergodic case (more pertinent to cognition) will be discussed
later.

Relative to the path space (X, sX), we define a cor-
responding ergodic information source X with stochas-
tic variables Xj having joint and conditional probabili-
ties P (a0, . . . , an) and P (an|a0, . . . , an−1) respectively,
so that the joint and conditional Shannon probabilities may
be defined and satisfy the relations [32]:

H[X] = lim
n−→∞

log[N(n)]

n

= lim
n−→∞

H(Xn|X0, . . . ,Xn−1)

= lim
n−→∞

H(X0, . . . ,Xn)

n+ 1
.

(3.4)

Such an information source is considered to be dual to the
ergodic process.

Remark 3.2. Technically, X is taken to be an adiabat-
ically, piecewise stationary, ergodic (APSE) information
source (see e.g. [6, 32] and explanations relative to cog-
nitive modules in [125, 135]).

The Shannon–McMillan theorem provides ‘a law of
large numbers’ and permits the definition of uncertainties
in terms of cross sectional sums of the form

H = −
∑

k

Pk log[Pk], (3.5)

where the Pk are derived from a probability distribution
and satisfy

∑
k Pk = 1. Different languages can be de-

fined by different divisions of the total universe of possible
responses into various pairs of sets B0, B1 above, or by in-
sisting upon more one than response in B1 along a path.
Allocating the full set of possible responses into B0, B1

may necessitate engaging higher order cognitive decisions.

3.4 The Rate Distortion Theorem
Following [125], suppose we have an (ergodic) information
source Y with output from a particular alphabet generating
sequences of the form

yn = y1, . . . , yn (3.6)

‘digitalized’ in some sense, and inducing a chain of ‘digi-
talized’ values

bn = b1, . . . , bn (3.7)

where the b–alphabet is considered more restricted than the
y–alphabet. In this way, bn is deterministically retrans-
lated into a reproduction of the signal yn. That is, each
bn is mapped onto a unique n–length, y–sequence in the
alphabet of Y:

bm−→ŷn = ŷ1, . . . , ŷn. (3.8)

We remark that many yn sequences may be mapped onto
the same retranslation sequence ŷn, the set of which is de-
noted Ŷ; this may be interpreted as a loss of information.
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A distortion measure d : Y × Ŷ−→R+, between paths
yn and ŷn is defined as

d(yn, ŷn) =
1

n

n∑

i=1

d(yj , ŷj), (3.9)

for some suitable distance function d (such as the Hamming
distance). Suppose that with each path yn ∈ Y and each
bn–path retranslation ŷn ∈ Ŷ into the y–language, we con-
sider the associated individual, joint, and conditional prob-
ability distributions

p(yn) , p(ŷn) , p(yn|ŷn). (3.10)

The average distortion is then defined to be

D =
∑
yn

p(yn) d(yn, ŷn). (3.11)

For the corresponding strings Y (incoming), Ŷ (outgo-
ing), the Shannon uncertainty rule is

I(Y, Ŷ) ≡ H(Y)−H(Y|Ŷ)

= H(Y) +H(Ŷ)−H(Y, Ŷ).
(3.12)

Definition 3.1. The information rate distortion function
R(D) for a source sequence Y, a retranslated sequence Ŷ,
along with a distortion measure d : Y × Ŷ−→R+, is de-
fined as follows.

Let Υ =
∑

(y,ŷ) p(y) p(y|ŷ) d(y, ŷ). Then

R(D) =
∑

p(y,ŷ) : Υ≤D

I(Y, Ŷ). (3.13)

To explain this notation, the minimization is over all con-
ditional distributions p(y|ŷ), for which the joint distribu-
tion p(y, ŷ) = p(y) p(y|ŷ) satisfies average distortion less
than or equal to D.

The Rate Distortion Theorem (see e.g. [32, 36]) states
that R(D) is the maximum achievable rate of information
which does not exceed the distortion D.

These are some of the basic ingredients for considering
the optimal rate of precise information transfer in relation-
ship to channel capacity and to which extent noise is haz-
ardous to the system. The path–space modeled rate distor-
tion manifolds in question, are assumed to comply with the
above theorem implicitly. Moreover, as far as cognition is
concerned, [125] postulates a fundamental homology with
thermodynamic processes, quite similar to how distortion
and fidelity in network information can be studied involv-
ing techniques of statistical physics such as the Ising lattice
and spin–glass networks in conjunction with the usual in-
dustry of error correcting and coding (for related work in
this direction see e.g. [98, 89, 116]).

3.5 Channel capacity
The channel capacity is defined to be

C ≡ max
P (X)

I(X|Y), (3.14)

subject to the subsidiary condition that
∑

P (X) = 1. This
is a measure of the maximum transmission rate of informa-
tion across a channel with the likelihood of error tending
to zero. Effectively, the critical trick of the Shannon Cod-
ing Theorem for sending a message with arbitrarily small
error along the channel Y at any rate R < C, is to encode
it in longer and longer ‘typical’ sequences of the stochas-
tic variable X; that is, those sequences whose distribution
of symbols approximates the probability distribution P (X)
above which maximizes C.

Thus for an information source X , the Shannon entropy
H(X) as given in (3.3), can be seen to satisfy for a given
channel capacity C, the inequality

H(X) ≤ C. (3.15)

If S(n) is the number of such ‘typical’ sequences of
length n, then log[S(n)] ≈ nH(X). Some consideration
shows that S(n) is much less than the total number of pos-
sible messages of length n. Thus, as n → ∞, only a van-
ishingly small fraction of all possible messages is meaning-
ful in this sense. This observation, after some considerable
development, is a principle that allows the Shannon Cod-
ing Theorem to work so well. In sum, the prescription is
to encode messages in typical sequences, which are sent at
very nearly the capacity of the channel. As the encoded
messages become longer and longer, their maximum pos-
sible rate of transmission without error approaches channel
capacity as a limit (for details see [32, 79, 112]).

Rate distortion manifolds may be characterized by a type
of inversion of this procedure. Examples of noisy channels
are telephone lines, optical wave guides and interplanetary
plasmas around which a message is to be structured so as
to attain an optimal error-free transmission rate. These ex-
amples are, relatively speaking, fixed on the timescale of
most messages, as are most sociogeographic networks. In-
deed, the capacity of a channel, is defined by varying the
probability distribution of the ‘message’ process X so as
to maximize I(X|Y). For instance, suppose there is some
message X so critical that its probability distribution must
remain fixed. The trick is to fix the distribution P (X) but
to modify the channel; that is, to tune it so as to maximize
I(X|Y). The dual channel capacity C∗ is then defined as

C∗ ≡ max
P (Y),P (Y|X)

I(X|Y). (3.16)

But
C∗ = max

P (Y),P (Y|X)
I(Y|X), (3.17)

since we have

I(X|Y) = H(X) +H(Y)−H(X,Y)

= I(Y|X).
(3.18)

Thus, in a purely formal mathematical sense, the message
transmits the channel, and there will indeed be, accord-
ing to the Shannon Coding Theorem, a channel distribution
P (Y) which maximizes C∗. Variations on this theme are
realized in [134](see also [135]).
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3.6 Noise in the system

In many sensory and cognitive systems not all noise cor-
rupts the processing of information. Indeed, adding noise
under the right circumstances may actually amplify and
enhance the transmission, and may even reduce random-
ness in the system by the presence of stochastic resonance.
In biological circumstances, the effect is often detected
in large ion channels in the presence of stochastic pro-
cesses, such as in the Hodgkin–Huxley model for instance
[57]. Noise itself is not without its own peculiar ‘lin-
guistics’ and semantic coding. Standard martingale anal-
ysis coupled with stochastic resonance reveals in [129] that
the noise of a socio–economic structure (in the form, say,
of misguided or regressive social policies), is most likely
than not a major catalyst for the spreading of endemic ill-
nesses, psycho–social disorders, therapeutic failure, inade-
quate public health services, and the deterioration of urban
residential districts, as much as these factors influence each
other [137, 138, 139].

3.7 A canonical model (M, sM)

In some cases it will be necessary to project to a manifold
model for the path space (X, sX) based on this local de-
scription, but to one that is inherently less complicated and
more conducive to standard topological/geometrical tech-
niques. So let us proceed to define a topological space M
which can be associated to X via a suitable map. Initially,
we can grant M the structure of a metric space with a dis-
tortion measure sM as induced by sX in a sense to be made
precise. We may assume that M admits an E–atlas mani-
fold topology with a system of E–charts {(V, ϕV )} while
thinking of E as a suitable state space as above. Several
possible ways to proceed are discussed below. To an extent
(M, sM ) could be viewed as a more structured, simplified
information space serving as a canonical model for the path
space (X, sX) (but as pointed out earlier, we do not insist
on the speciality of Finsler or Riemannian spaces). Thus
we consider a procedure similar to a dimensional reduc-
tion. We wish then to specify a projection map

Π : X−→M, (3.19)

with suitable properties, such as surjective, Lipschitz, etc.,
which will be outlined below. To an extent this will re-
flect the nature of information sources in (X, sX), be they
ergodic, or non–ergodic.

Remark 3.3. The use of the the term ‘canonical’ is similar
in spirit to how intricate and chaotic systems of neural net-
works can be transformed into certain blueprints (canoni-
cal models) representing the dynamics of reduced systems
of differential equations, and which can thus be studied
with the standard techniques of differentiable dynamical
systems theory (as in e.g. [72]).

3.8 Length space structures
Hypothesizing a class of ‘admissible paths’ in (M, sM )
leads to giving the latter a length space in the sense of [24].
In our case, the admissible paths are to be considered as
‘meaningful’ in the sense introduced below (and for which
M is considered as a locally path connected space).

To see how a length structure induced by the metric sM
arises, let γ : [a, b]−→M be a (continuous) path in M and
choose a partition J of the interval [a, b], that is, a finite
collection of points J = {y0, . . . , yN} such that

a = y0 ≤ y1 ≤ y2 ≤ · · · ≤ yN = b. (3.20)

We can define the length of γ with respect to the metric sM
as the supremum of the sums over all partitions J :

L(γ) = LsM (γ) := sup
J

N∑

i=1

sM (γ(yi−1), γ(yi)). (3.21)

The length structure induced by sM can then be specified
in terms of: a) all continuous paths parametrized by closed
intervals are admissible, and b) the length is given by the
function L in (3.21).

Consequently, we can draw upon generalizations of
some traditional (but elementary) differential–geometric
concepts in terms of a length structure. For instance, a
curve

γ : [a, b]−→M, (3.22)

is said to be rectifiable if its length is finite, and a shortest
path if its length is minimal among curves with the same
endpoint, that is, L(γ1) ≥ L(γ) for any curve γ1 connect-
ing γ(a) and γ(b). In particular, a curve γ : I−→M is said
to be a geodesic if for every t ∈ I , there exists an interval
J containing a neighborhood of t in I , such that γ|J is a
shortest path. We remark that the concept of ‘geodesic’ can
also be formulated in the context of graphs and networks
(to be discussed later).

The metric space (M, sM ) is said to be complete if there
exists a shortest path between two languages A,A′, and
said to be (locally) homogeneous if for every A,A′, there
exists a (local) isometry I : M−→M , such that I(A) =
A′. Other possible length space structures could be consid-
ered thus allowing the flexibility of going beyond the tra-
ditional Finsler and Riemannian structures which are com-
mon frameworks for inference and stochastic processes.

Remark 3.4. Suppose in M we have an admissible class
A of curves {γ(t)}. For V ⊂ M an open set, suppose
there is defined a nonnegative homogeneous function F̃ =
F̃ (x, v), where x, v ∈ V , that can be integrated over curves

γ = γ(t) : [a, b]−→M, (3.23)

in A invariant under reparametrization. The homogeneity
condition implies the relationship F̃ (x, kv) = |k|F̃ (x, v).
For γ ∈ A, the length between A = γ(a) and Â = γ(b),
may then be defined by

`γ(A, Â) = `(γ, a, b) =

∫ b

a

F̃ (γ(t), γ′(t)) dt. (3.24)
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Observe that we have not required F̃ ( , ) to be a norm, or
even that F̃ is convex or symmetric, so the length space
structure of M is weaker than that of a Finslerian structure
(see e.g. [24]). A metric on M can be defined in the usual
way by

sM (A, Â) = inf{`γ(A, Â) : γ(a) = A, γ(b) = Â}.
(3.25)

Given a local isometry Π : X−→M , this metric may then
be assumed to agree locally with sX on pulling–back under
Π .

Once M is endowed with an atlas–manifold topology we
can then postulate M as a CW–complex, that is, a space
constructed from a collection of points via the successive
attachment of cells. The topology then is weak, meaning
that a set in M is closed if and only if its intersection with
every cell is closed. Viewed as a CW–complex, M then
has the same homotopy type of a simplicial complex which
affords further considerations particularly when reducing
matters to a skeletal–like, graph–theoretic analysis.

Remark 3.5. The (path) space X may indeed be very
complex in its structure of informational data, whereas the
canonical model M (possibly via dimensional reduction of
the former) by dint of its manifold structure, is expected
to be more conducive to geometric analysis as may be
the case for nonlinear optimization. Such principles apply
in work concerning imaging–recognition data as in [121]
where multi–imaging ‘noisy’ data in a carrier akin to X
is analyzed (such as with regard to pixel intensity) and is
projected to a local metric structure via maps such as Π.
The convergence of subsequent ‘data manifolds’ in reduced
dimensions may then yield the exact model for a solution
space. In [121] examples include intricate ‘Swiss Roll’ data
spaces which are dimensionally reduced to some convex
region in Rn. Here geodesic distances between data points
are calculated, and typically one wants to minimize a cost
function based on an operational norm of data differences.
Such examples (re. pixel intensity) do not generally fit into
the context of rate distortion theory and semantic commu-
nication, and for our purposes further considerations are
clearly necessary. These we will proceed to discuss in the
following.

3.9 Stationary ergodic information sources
For a rate distortion manifold, an alternative procedure is to
consider stationary ergodic information sources, although
not all cognitive processes are expected to be of this type.
Here the Khinchin’s E–property [79](p. 74) is evoked.
Under the ergodicity assumption, the path space (X, sX)
can be partitioned into high and low probability subsets,
X = Xh ∪X`.

The projection map Π : X−→M can be specified as fol-
lows. Each equivalence class of paths in the appropriate
space is identified with its associated language–of–thought
characterized by a stationary ergodic information source

having a source uncertainty H(A), where A is taken as the
language having a set of paths Ax . Thus for x ∈ X , we
define the projection Π via x 7→ Π(x) = A (the language
having a set of paths Ax). There are other possible varia-
tions on this theme.

Note also that we have restrictions

Π|Xh : Xh−→M

Π|X` : X`−→M.
(3.26)

For each A ∈ M , let U ⊂ M be an open set consisting
of approximately similar languages near A. For all pairs of
languages A, Â ∈ U , let us suppose that we have available
a suitable metric sM (A, Â) induced by the path space met-
ric sX . As an alternative to the metric in (3.25), we may
choose a metric of the form [134]

sM (A, Â) ≡ |
∫

A,Â

d(Ax, Âx)−
∫

A,A

d(Ax,Ax̂) |,
(3.27)

where Ax and Âx are paths in the languages A, Â respec-
tively, d is the distortion measure, and the second term is a
‘self–distance’ for the language A, such that sM (A,A) =

0, sM (A, Â) > 0, A 6= Â.
Since choosing stationary ergodic sources presents a dif-

ferent scenario to the non–ergodic sources, we may rethink
the appropriate properties assumed by the projection Π.
Possibilities might include: the projection

Π : (X, sX)−→(M, sM ), (3.28)

is a local isometry, or, Π is Lipschitz, meaning there exists
a constant C > 0, such that

sM (Π(x),Π(x̂)) ≤ C sX(x, x̂). (3.29)

Next, for each A ∈ U , we consider a source uncer-
tainty H(A), such that the information source derivative
∇sH(A) is defined to be

∇sH(A) ≡ lim
s−→0

H(Â)−H(A)

s(Â, A)
, (3.30)

when this limit exists and is finite. A number of concepts
follow from the basic principles of calculus, such as the
logarithmic derivative

∇s(logH(A)) =
∇sH(A)

H(A)
, (H(A) 6= 0) (3.31)

a measure of the relative rate of change of the source un-
certainty through language of thought.

Prior to admitting an atlas–manifold topology on M , we
remark that the metric sM defined in (3.25) appears to be
intrinsic in the sense that it arises from a supposed length
structure on M induced by the above integration over lan-
guages, and not by the restriction of a metric on some am-
bient space.
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3.10 Non–ergodic information sources
Non–ergodic information sources are likely to be favor-
able options for the purpose of understanding more com-
plex cognitive processes. Suppose here the path space
X consists of length n high probability paths xn−→x
(as n−→∞) that correspond to non–ergodic information
sources. Let N(n) be the number of high probability
‘grammatical’ and ‘syntactical’ paths of length n having
h(a0) ∈ B0, and leading to h(x) ∈ B1. Such paths are
called meaningful where once more the limit

H ≡ lim
n−→∞

log N(n)

n
, (3.32)

exists, but is now generally taken to be path dependent.
We have a partial function h : X−→B, where B denotes

a set of pattern responses for which given xn−→x, we have

lim
n−→∞

h(xn) = h(x). (3.33)

For all x ∈ X , we take an open set U ⊂ X such that for all
such x ∈ U , the following conditions hold [125]:

(1) For all paths x̂n−→x̂ ∈ U , a distortion measure sn ≡
dU (xn, x̂n) exists.

(2) For each path xn−→x in U , there exists a pathwise
invariant function h(xn)−→h(x) [79].

(3) A function FU (sn, n) ≡ fn−→f exists, such as for
example

fn = sn,
log[sn]

n
, or

sn
n
. (3.34)

(4) The limit

lim
n−→∞

h(xn)− h(x̂n)

fn
≡ ∇Fh|x, (3.35)

exists and is finite.

In a similar way to stationary ergodic sources, we may
consider introducing (M, sM ) as a more finely structured
information space corresponding to a path space (X, sX),
using a dimensional reduction procedure via a projection
map

Π : X−→M, (3.36)

with properties such as e.g. a surjective, local isometry,
or Lipschitz, etc. that suitably projects the informational
architecture on X to that on M .

Again, one might consider several options for the space
M which would allow a weaker than Finsler structure.
With regards to Remark 3.4, let us consider defined on each
open set V ⊂ M , a nonnegative homogeneous function of
two variables

F̃ : V × V−→R+,

(u, v) 7→ F̃ (u, v).
(3.37)

Let A, Â be points in V ⊂ M corresponding respectively
to paths of length n in X , denoted xn−→x and x̂n−→x̂,

under the map Π (so that we have A = Π(x) and Â =
Π(x̂)).

For the first variable u, set u = sM where sM ≡
dM (A, Â) denotes a choice of a suitable metric on M ,
and the second variable v = v(n), so that F (u, v) =

F (sM , v(n)) . Consider the pulled back function Π∗F̃ =

F̃ ◦Π, with the property that on U ⊂ M , we have for some
sufficiently small ε̃ > 0, the inequality

| FU (sn, n)−Π∗F̃ (sM , v(n)) | < ε̃. (3.38)

Of course, such considerations may be suitable for sta-
tionary ergodic sources as well. We leave open the pos-
sibility that a suitable metric space structure on M will be
conducive to introducing methods from dynamical systems
such as homoclinic points, hyperbolic sets, stable mani-
folds and related ideas (see e.g. [77]).

Remark 3.6. The constructions proposed above may be
compared with that for an optimal manifold representa-
tion of (information) data in [28] for instance. Suppose
X ⊂ E is defined by a density function ρ(x) and E is a
vector space with norm ‖ · ‖ . There is a stochastic map
Π : X−→M which is seen as a projection to a lower di-
mensional manifold M ⊂ E. On M , a distortion measure
D(M,Π, ρ) is defined by

∫

x∈E

∫

m∈M

ρ(x) Π(x) ‖x−m‖2 dx dm. (3.39)

The map Π along with the density ρ determines a joint
probability function P (M,X) that allows calculation of
the mutual information I(X,M) between X (higher di-
mensional) and M its lower dimensional manifold repre-
sentative M , as given by
∫

x∈X

∫

m∈M

P (x,m) log
[ P (x,m)

ρ(x) Π(x)

]
dx dm. (3.40)

3.11 Semimartingale processes and noise
Given the possible stochastic nature of bio–cognitive be-
havioral and response mechanisms, we expect the under-
lying processes to be driven to an extent by stochastic
and noise–driven diffusion processes conducive to the cre-
ation of new information. This necessitates introducing a
noise mechanism into the system as an agent towards self–
organization and complexity (cf [9]), just as open systems
far from equilibrium require some sort of internal ‘amplifi-
cation’ in order to attain to a macroscopic dynamical struc-
ture (cf [108]).

We have already mentioned how martingale analysis is
instrumental in describing stochastic resonance within cog-
nitive and epidemiological systems. In order to build this
feature into a rate distortion manifold we need to consider
a more general approach. A submartingale on the real line
R consists of those stochastic processes of the form Λ+A,
where Λ : C0(R)× R+−→R represents Brownian motion
on R commencing at 0 ∈ R, possibly with a random time
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change, and A denotes a continuous increasing process on
R.

In order to translate these concepts so as to work on a
rate distortion manifold, we will need a suitable measure
such as that of (3.9). A suggested definition is provided
in [45]: given some domain Ω, let us say that a stochastic
process

χ : Ω× R+−→(M, sM ), (3.41)

is a martingale on (M, sM ), if for any convex function g :
U−→R defined on an open set U ⊂ M , the composition
g ◦χ|U is a submartingale on R . An example is Brownian
motion

ΛM : C0
a(M)× R+−→(M, sM ), (3.42)

starting at a ∈ M .
A sum of a continuous local martingale and a process

of finite variation gives rise to the notion of a semimartin-
gale [49]. Such local martingales with respect to Brown-
ian motion say, admit certain integral representations. If
α ∈ Ω1(M,R) is a 1-form and ζ a semimartingale on M ,
then the real semimartingale

∫ 〈dα, dζ〉 (where 〈 , 〉 denotes
the dual pairing, and d denotes derivation on tangent vec-
tors) is called the Stratonovich integral of α along ζ. We
refer to [49] §7 for further properties where this integral is
denoted by

∫ 〈α, δζ〉 .
If M,N are (smooth) manifolds, one can define the

Stratonovich operator

E = {e(x, y)} , x ∈ M, y ∈ N, (3.43)

to be a family of linear maps where the map e(x, y) :
TxM−→TyN is a linear map that depends on (x, y) (to
some degree of differentiability) thus defining a map e :
TM × N−→TN . The latter also has a corresponding
adjoint mapping e∗(x, y) : T ∗

yN−→T ∗
xM . Given an M–

valued semimartingale ζ, an N–valued semimartingale η is
said to be a solution of the Stratonovich differential equa-
tion δη = e(ζ, η) δζ, if for every 1–form α on N , there is
the equality of Stratonovich integrals

∫
〈α, δη〉 =

∫
〈e∗(ζ, η)α, δζ〉. (3.44)

In terms of Markovian game theory the above concepts
may be seen more concretely as follows. Let {Xn} be a se-
quence of stochastic variables defining a game (possessing
noise), with conditional expectations given by

E(Xn+1|X1,X2, . . . ,Xn) ≡ E(Xn+1). (3.45)

The definition of terms and interpretations are then:

(i) E(Xn+1|n) ≥ Xn –submartingale (favorable to
player).

(ii) E(Xn+1|n) = Xn –martingale (completely fair
game).

(iii) E(Xn+1|n) ≤ Xn –supermartingale (favorable to the
house).

As in [135](§5.1), this is exemplified for an epidemio-
logical model whereby the ‘player’ is an infectious agent,
Xn is the number of people infected at stage n (the player’s
fortune), and the ‘house’ is some socioeconomic system.
A submartingale then represents a spreading infection, and
a supermartingale represents a declining infection. The
convolution of the community structure (the ‘signal’) with
the opportunity structure (the ‘noise’) then leads to the
simple epidemic model as a generalized stochastic reso-
nance. Such situations have been studied by similar means
in the case of childhood illnesses where, besides the inter-
nal transmission of an infection within a community, there
is also an external effect due to individual migration be-
tween communities, and weak ‘seasonality’ together with
low transmission levels are seen to induce stochastic effects
with amplified noise that may generate resonance [3]. Our
perspective is that models such as these could be treated in
terms of groupoids and convoluted path space, as will be
discussed in §7.1.

4 Equivalence relations and tuning

4.1 Equivalence relations
For the purpose of describing cognitive modules we can
also append the structure(s) with equivalence relations
RX ,RM ,RE defined on X,M,E respectively, and a se-
quence of maps

(X,RX)
Π−→(M,RM )

ϕ−→(E,RE). (4.1)

Suggestive of the orbit equivalence theorem (relative to
a more abstract setting of e.g. [59, 100]), we will suppose
the equivalence relations are tied by

RM = Π×Π(RX),

RE = ϕ× ϕ(RM ).
(4.2)

4.2 Tangent spaces
As we have suggested, a rate distortion manifold need not
necessarily be a differentiable manifold in the conventional
sense, but may admit an abstract differentiable space struc-
ture (such as that described in Appendix III). In some in-
stances, however, we may have to address the question of
tangency at a point m ∈ M and thus assume that the tan-
gent space TmM is defined accordingly. We recall how
TmM can be defined in terms of an equivalence classes
of curves. Consider the equivalence relation c1(R

M
m )c2 on

curves c1, c2 as meaning: c1 and c2 are tangent at m ∈ M ,
if and only if (ϕ ◦ c1)(RE

ϕ(m))(ϕ ◦ c2) means they are tan-
gent at the point ϕ(m) in E. In which case, the equivalence
class [c]m at m ∈ M , is defined to be the tangent space at
m, and this is usually denoted by TmM . This way of view-
ing tangency in terms of equivalence classes globalizes to
the construction of the tangent bundle TM−→M as de-
scribed in e.g. [1, 87].
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From an information–theoretic point of view, this de-
scription of tangency is useful for characterizing ‘tuning’.
We give a more general interpretation. Suppose p1, p2 are
paths (or ‘sequences’) in X that are projected by Π down
to the manifold M ; we keep p1, p2 to denote their projected
images. For m ∈ M , let (U,ϕ) be a local chart with m ∈ U
and ϕ(U) ⊂ E. With regards to the equivalence relations
RM ,RE , we want to consider paths (sequences) p1, p2 as
being equivalently tuned at m ∈ M , denoted p1(R

M
m )p2,

if at ϕ(m) in the atlas space E, the equivalence denoted
(ϕ ◦ p1)(RE

ϕ(m))(ϕ ◦ p2), holds. The equivalence class of
paths [p]m at m ∈ M may then be thought of as the tuning
space at the point m in the manifold M , in a sense corre-
sponding to a focal point of attentive processing.

4.3 Higher and lower dimensional
information sources

Let X and Y be information sources whereby dim X ≥
dim Y. The ‘higher’ source X is one that may be consid-
ered ‘fast’ and the ‘lower’ source Y is considered ‘slow’.
Associated to X and Y, are their respective path spaces
with respective distortion metrics (X, sX), and (Y, sY ).
We consider a projection map

Φ : (X, sX)−→(Y, sY ), (4.3)

as complying with the following version of the Rate Distor-
tion Theorem: for any chosen maximum average distortion
such that

d(x,Φ(x)) < ε, (4.4)
there is, in relationship to Φ, a maximum possible trans-
mission rate δ, such that the average distortion will be less
than ε [125].

The above condition can be represented in terms of a
subset of the graph of Φ. Recalling that the graph ΓΦ of Φ
is given by

ΓΦ := {(x, y) ∈ X × Y : y = Φ(x)}, (4.5)

we define a ‘rate distortion’ subset Γrd ⊆ ΓΦ by

Γrd := { (x,Φ(x)) ∈ ΓΦ : d(x,Φ(x)) < ε }. (4.6)

Recall that each of (X, sX) and (Y, sY ) have associ-
ated lower dimensional and structured language of thought
spaces M and N (with possible manifold/atlas topologies)
and induced distortion metrics sM and sN , respectively.
For each of these we have projections onto the lower di-
mensional source, Π1 and Π2 respectively (with whatever
properties are assumed), and for which the diagram below
commutes

(X, sX)
Π1−−−−→ (M, sM )

Φ

y
yΨ

(Y, sY )
Π2−−−−→ (N, sN )

(4.7)

that is, Ψ ◦ Π1 = Π2 ◦ Φ. In this way we see that in-
duced on Ψ is the constraint of the Rate Distortion Theo-
rem as it holds on Φ, such that the corresponding languages
of thought adhere accordingly.

4.4 Tunable states
The genesis of a rate distortion manifold lies in the con-
cept of a generalized tunable retina model as introduced in
[125]. Specifically, let us suppose that threshold behavior
for individual, distributed or institutional (cognitive) reac-
tion requires some elaborate system of nonlinear relation-
ships defining a set of renormalization parameters

Ωk ≡ ωk
1 , ..., ω

k
m. (4.8)

The critical assumption is that there is a tunable zero or-
der state, and any changes about that state are, in first or-
der, relatively small, although their effects on a punctuated
process may not be at all small. Thus, given an initial m-
dimensional vector Ωk, the parameter vector at time k+ 1,
Ωk+1, can, in first order, be written as

Ωk+1 ≈ Rk+1Ωk, (4.9)

where Rk+1 is an m×m matrix, having m2 components.
If the initial parameter vector at time k = 0 is Ω0, then at
time k

Ωk = RkRk−1 . . .R1Ω0. (4.10)

The interesting correlates of individual, institutional or ma-
chine consciousness are, in this development, now repre-
sented by an information-theoretic path defined by the se-
quence of operators Rk, each member having m2 compo-
nents, for some m. The grammar/syntax of the path de-
fined by these operators is associated with a dual informa-
tion source, in the usual manner.

The effect of an information source of external signals
Y, is now seen in terms of more complex joint paths in Y
and the R-space (of operators) whose behavior is, again,
governed by a mutual information splitting criterion ac-
cording to the Joint Asymptotic Equipartition Theorem (a
variant of the Shannon–McMillan Theorem). The com-
plex sequence in m2–dimensional R–space has, by this
construction, been projected down onto a parallel path,
the smaller set of m-dimensional ω–parameter vectors
Ω0, . . . ,Ωk.

If the punctuated tuning of institutional or machine at-
tention is now characterized by a ‘higher’ dual information
source – an embedding generalized language – so that the
paths of the operators Rk are autocorrelated, then the auto-
correlated paths in Ωk represent output of a parallel infor-
mation source which is, given rate distortion limitations,
apparently a grossly simplified, and hence highly distorted,
picture of the ‘higher’ conscious process represented by the
R-operators, having m as opposed to m×m components.
High levels of distortion may not necessarily be the case
for such a structure, provided it is properly tuned to the in-
coming signal. If it is inappropriately tuned, however, then
distortion may be extraordinary.

Let us examine a single iteration in more detail, assum-
ing now there is a (tunable) zero reference state, R0, for
the sequence of operators Rk, and that

Ωk+1 = (R0 + δRk+1)Ωk, (4.11)
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where δRk is ‘small’ in some sense compared to R0. Note
that in this analysis the operators Rk are implicitly, deter-
mined by linear regression. We thus can invoke a quasi-
diagonalization in terms of R0. Let Q be the matrix of
eigenvectors which Jordan–block–diagonalizes R0. Then

QΩk+1 = (QR0Q
−1 +QδRk+1Q

−1)QΩk. (4.12)

If QΩk is an eigenvector of R0, say Yj with eigenvalue
λj , it is possible to rewrite this equation as a generalized
spectral expansion

Yk+1 = (J+ δJk+1)Yj ≡ λjYj + δYk+1

= λjYj +

n∑

i=1

aiYi,
(4.13)

where J is a block-diagonal matrix

δJk+1 ≡ QRk+1Q
−1, (4.14)

and δYk+1 has been expanded in terms of a spectrum of the
eigenvectors of R0, with

|ai| ¿ |λj | , |ai+1| ¿ |ai|. (4.15)

The point is that, provided R0 has been tuned so that this
condition is true, the first few terms in the spectrum of this
iteration of the eigenstate will contain most of the essen-
tial information about δRk+1. This appears quite similar
to the detection of color in the retina, where three overlap-
ping non–orthogonal eigenmodes of response are sufficient
to characterize a huge plethora of color sensation. Here,
if such a tuned spectral expansion is possible, a very small
number of observed eigenmodes would suffice to permit
identification of a vast range of changes, so that the rate
distortion constraints become quite modest. That is, there
will not be much distortion in the reduction from paths in
R–space to paths in Ω–space. Inappropriate tuning, how-
ever, can produce very marked distortion as in inattentional
blindness (individual, institutional or machine–oriented),
in spite of multitasking. We remark that higher order rate
distortion manifolds are likely to give better approxima-
tions than lower ones, in the same sense that second order
tangent structures give better, if more complicated, approx-
imations in conventional differentiable manifolds. The for-
mal mathematical background to this idea can be found in
[102]; we will be more specific about this observation in
§6.4.

Remark 4.1. A possible and more general geometric way
of viewing such constructions is to consider a vector bundle
V−→M and some operator R : Γ(V )−→Γ(V ) on sections
of V . The above local description may serve to describe the
(time) evolution of R and its spectral properties. In certain
cases this reveals an associated ‘spectral’ set (or submani-
fold, which could be M itself). Alternatively, the tangent
space TM (pointwise) may split into a particular ‘eigen-
mode’ decomposition, a feature often found in the field of
differentiable dynamics (see e.g. [1, 77]).

4.5 Description of the rate distortion
manifold as an information space

At this stage we can summarize some of the essential prop-
erties required for a rate distortion manifold (M, sM ) to
serve as a cognitive information space within the Global
Workspace setting.

(1) M with its distortion metric sM and atlas–manifold
topology serves as a canonical model of the path space
(X, sX), where X = P(EΓ). The corresponding
distortion measure leads to defining a rate distortion
function on M complying with the Rate Distortion
Theorem.

(2) In terms of the metric sM , M admits a length space
structure in the general sense as described (a priori,
weaker than a Finsler structure say).

(3) M may possibly admit a ‘weak’ differentiable space
structure in some suitable sense (for instance, in terms
of the abstract calculus of manifolds such as [27, 55]
described briefly in Appendix III).

(4) Both ergodic and non–ergodic processes may be con-
sidered. We may also require that M admits cer-
tain stochastic properties suited to representing e.g.
stochastic resonance in the informational context. On
the other hand, there may be situations where M car-
ries a flow engendered by solutions to some wave
equation or the time–evolution of an operator on sec-
tions of a vector bundle over M . Spectral eigenmode
decompositions of TM may be expected as §4.4 sug-
gests.

(5) For the purposes of a ‘directed’ theory of information,
M may admit a partial ordering ‘6’ and thus may ad-
mit an underlying ‘partially ordered space’ structure
(see §6.6).

5 Thermodynamic limit and the
Onsager relations

Feynman [53] (following in part the work of C. Bennett)
considered the problem of extracting useful work from a
transmitted message. The essential argument is that com-
puting of any form, requires work. Consequently, on re-
calling from (3.3), the asymptotic limit

H ≡ lim
n−→∞

log[N(n)]

n
, (5.1)

is postulated as formally homologous to the thermody-
namic limit in the definition of the free energy density of
a physical system as given by

F (K) = lim
V−→∞

log[Z(K)]

V
, (5.2)
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where F is the free energy density, K the inverse tempera-
ture, V the system volume and Z(K) the partition function
defined by the Hamiltonian of the system.

In [125] it is shown at some length how this homol-
ogy permits the natural transfer of renormalization methods
from statistical mechanics to information theory, produc-
ing phase transitions and analogs to evolutionary punctu-
ation in systems characterized by piecewise, adiabatically
stationary, ergodic information sources. Crosstalk, as a par-
ticular characteristic, may then serve as an ‘inverse temper-
ature parameter’.

This homology is essential for understanding the type of
model spaces as described here. The point being, that the
more intricate a cognitive process, measured by informa-
tion source uncertainty, the greater its energy consumption.
Biological phase changes appear to be ubiquitous in natu-
ral systems and can be expected to dominate information
machine behaviors as well, particularly those which seek
to emulate biological paradigms. In [133] these arguments
are used to explore the differences and similarities between
evolutionary punctuation in genetic and learning plateaus
in neuronal systems.

As much as thermodynamic laws influence most kinds of
vital phenomena, certain types of epidemiological and cog-
nitive processes may be represented in terms of a thermo-
dynamic limit on the processing capacity (as for instance
in the case of inattentional blindness [128] or sleep patterns
[127]).

In order to see how suitable models may be designed
accordingly, consider the dual source uncertainty of a
cognitive process as parametrized by a vector K ≡
(K1, . . . ,Kn). In analogy with nonequilibrium thermody-
namics we define the disorder as a function S given by

S ≡ H(K)−
m∑

j=1

Kj
∂H

∂Kj
. (5.3)

Further expanding the homology, leads to defining the gen-
eralized Onsager relations of temporal dynamics

dKj

dt
=

∑

i

Lji
∂S

∂Ki
, (5.4)

where L = [Lij ] is a matrix of constants associated to the
underlying cognitive phenomena. From the symmetric ma-
trix

U = [Uij ] = [
∂2S

∂Ki ∂Kj
] = [Uji], (5.5)

one can define associated metric coefficients as follows:

gij =
L2

2

∑

k

UikUkj . (5.6)

Next, consider the source uncertainty

K(t) ≡ (K1(t), . . . ,Kn(t)), (5.7)

as time dependent and defining a (smooth) curve K :
R+−→M ⊂ Rn, in a rate distortion manifold M . Use

of standard procedures (see e.g. [1, 24]) leads to defining
a suitable length space structure on M via a distance func-
tion sM between languages A, Â, suitably represented by
points along some dynamic path in M . Here sM is given
by

sM (A, Â) =

∫ Â

A

[∑

i,j

gij
dKi

dt

dKj

dt

] 1
2 dt. (5.8)

Accordingly, the curve K(t) with respect to the above met-
ric structure is a geodesic in M precisely when the second
order equation

d2Ki

dt2
+
∑

j,m

Γi
jm

dKj

dt

dKm

dt
= 0, (5.9)

is satisfied, where the Γi
jm denote the associated Christoffel

symbols (see e.g [1, 24]).

Remark 5.1. One may hypothesize that under the right cir-
cumstances, geodesics sufficiently near to a reference state
A0 are bound by some estimate, and external physiological
forcing must be imposed to effect a transition to a different
condition. This, as is pointed out in [128], may be specified
in terms of regions of fatal attraction and strong repulsion
akin to Black or White hole phenomena which can either
trap or deflect the path of consciousness.

5.1 The torus–sphere example: differing
homologies on languages of cognition

Most textbooks on algebraic topology contain the relevant
definitions and concepts pertaining to singular homology of
the space M in terms of the constituent homology groups
Hk(M,Z) with integer coefficients (see e.g. [20, 87, 117]):

H∗(M) =

dimM∑

k=0

Hk(M,Z). (5.10)

Loosely speaking, the Hk(M,Z) are ‘groups of cycles of
differing dimensions’ which contribute to an overall char-
acteristic of the space, namely its homological structure. In
particular, if M = U∪V is the union of two open sets, then
a finer analysis can be made in terms of the Mayer–Vietoris
homology sequence

. . .−→Hq(U ∩ V )
f−→Hq(U)⊕Hq(V )

g→Hq(M)

−→Hq−1(U ∩ V )−→· · ·
(5.11)

where f denotes the map induced by a signed inclusion
a 7→ (−a, a) and g is that of the sum (a, b) 7→ a+ b.

Rate distortion manifolds pertaining to distinct homo-
topy types are then expected to represent distinct homolo-
gies in relationship to information, intrinsic languages of
cognition and culture, and to which such homological tech-
niques can be applied. A topological example, as presented
in [125] (Chapter 5) concerns the case of the two–torus T 2
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versus the two–sphere S2, both of which are surfaces em-
bedded in 3–space, and both possess two–dimensional tan-
gent spaces (pointwise). Thus sitting in a small local co-
ordinate patch, an observer cannot really notice much dif-
ference. However, their homotopy type and (singular) ho-
mologies are fundamentally different, since at level k = 1
we have H1(S

2) = 0, whereas H1(T
2) = Z⊕ Z.

In general, the manifold itself forms an envelope of the
entirety of its tangent planes and this envelope will in
turn describe a homology type which reflects a particu-
lar topological structure. This straightforward topologi-
cal observation underscores the point of how rate distor-
tion manifolds of distinct (fundamental) homology, ho-
motopy and diffeomorphism types, provide an informa-
tional blueprint for the significant differences in bio–
cultural/psycho–cognitive choices in Workspace informa-
tional processing. Such fundamental differences might be
realized in a variety of cognitive situations where culture,
as always, plays a significant role. Consider for instance the
case in [99] which compares the main differences between
the Asian mode of perception, on the one hand, widely
framed and holistic, and the Western mode, on the other
hand, more analytically and logically centered. In other
words, culture bears an influence upon the ‘topologies’ of
the respective information processing which partly explains
the difference between the two perceptual characteristics.

6 Embeddings of contexts
This section takes up some of the development in the pre-
vious sections with a tentative outline of how we might
formulate a finer geometric description of the Global
Workspace in terms of a rate distortion manifold M :

(1) The Workspace and access to it may be considered in
terms of nested sequence of rate distortion manifolds

M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊆ M.

This represents a hierarchy of cognitive processes
based on nonlinear dynamical principles.

(2) Cooperating and competing contexts as unconscious-
ness networks to be integrated within the Workspace,
participate within a higher dimensional dominant con-
text describable by embeddings as in (1).

(3) Within each context there is a cooperating group of
specialized processors where access to the Workspace
can be represented through such a chain of inclu-
sions/embeddings.

Let us start by taking an E–chart (U, φ) for a rate dis-
tortion manifold M relative to the model space E. Here
(U, φ) is taken to be a chart representative of a ‘context’.
We consider (U, φ) to be sufficiently ‘large’ so as to admit
a sequence of ‘embeddings’ of charts through the above
sequence. Initially we have a hierarchial context given as

before by a projection Π : X−→M from some high di-
mensional information source space X (typically, a ‘cul-
ture’ with rate–distortion features) to a lower dimensional
information carrier, a rate distortion manifold M (typically,
a ‘structured’ or ‘canonical’ cognitive system which could
be a canonical model for X).

6.1 Cooperating contexts

Cooperating contexts (cf specialized unconscious proces-
sors) within a hierarchial structure are represented as a
nested sequence of rate distortion manifolds {Mk} given
by

(M1; (V1, ψ1)) ⊂ (M2; (V2, ψ2)) · · ·
⊂ (Mm; (Vm, ψm)) ⊆ (M ; (U, φ)),

(6.1)

each with their respective chart/atlas system (Vk, ψk), and
where each Mk represents a processing stage within some
cognitive (sub)system corresponding to a level of informa-
tion k. These come complete with inclusions through their
respective chart/atlas systems

V1
λ1−→V2

λ2−→· · · λm−1−→ Vm
λm−→U, (6.2)

satisfying, for 1 ≤ i ≤ m, the composition

ψi = φ ◦ λm ◦ λm−1 · · · ◦ λi. (6.3)

In this sequence, we may include at each level k retraction
mappings (or projections when defined) pk : M−→Mk,
for k ≤ m, such that we have a commuting diagram

X
Π //

!!B
BB

BB
BB

B M

pk

²²
Mk

(6.4)

suggesting the influence of the higher (or faster) dimen-
sional information source at subsystem level k.

Thus the nested sequence of embeddings could be inter-
preted as levels of information representing a broad domi-
nant context hierarchy through executive functions and lev-
els of cooperation such as (e.g. in [12] §4):

Perceptual Contexts =⇒ Conceptual Contexts =⇒ Goal
Contexts

specified at each level k by Mk. The above sequence
can also be appended with a string of (sub)–equivalence
relations “∼i”, when specified:

(M1,∼1) ⊂ (M2,∼2) · · · ⊂ (Mm,∼m) ⊆ (M,∼).
(6.5)

The sequence is thus seen to represent a parallel series of
specialized processors (cf e.g. [12, 38]). Also, the adoption
of the equivalence relations affords a useful interpretation
(cf the notion of ‘frames’ in the cognitive sense). Each
(Mi,∼i) then leads in a straightforward way to a groupoid
structure upon which we will elaborate below.
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6.2 Filtration by Morse functions
The proof that an n–dimensional manifold M has the ho-
motopy type of a CW–complex of dimension 6 n, relies on
the use of Morse functions f : M−→R which are ordered
in a suitable sense (see e.g. [95, 113]). Specifically, we
choose a sequence of numbers c1, c2, . . . , cn−1 for which
the following is satisfied: if aλi (resp. bλ+1

j ) are critical
points of index λ (resp. λ + 1), we have f(aλi ) < cλ <
f(bλ+1

j ). Then the manifolds Mλ = f−1[0, cλ] define a
filtration

M∗ : M0 ⊆ M1 ⊆ . . .Mλ ⊆ . . . ⊆ Mn = M. (6.6)

6.3 Competing contexts
Next we consider another such nested sequence {N`} of
rate distortion manifolds with their respective chart/atlas
system (Wj , ζj) contained within that of (M ; (U, φ)):

(N1; (W1, ζ1)) ⊂ (N2; (W2, ζ2))

· · · ⊂ (Nn; (Wn, ζn)) ⊆ (M ; (U, φ)),
(6.7)

also complete with inclusions through their respective
chart/atlas systems

W1
ρ1−→W2

ρ2−→· · · ρn−1−→Wn
ρn−→U (6.8)

satisfying, for 1 ≤ j ≤ n, the composition

ζj = φ ◦ ρn ◦ ρn−1 · · · ◦ ρj . (6.9)

Likewise, we have a projection of influence as in (6.4),
and each (Nj , ζj) can be appended with an equivalence re-
lation “∼j”. The sequence then represents the hierarchy

Perceptual Contexts =⇒ Conceptual Contexts =⇒ Goal
Contexts

The main difference between this sequence {Nj} and the
{Mi}, is that at a sufficiently low level in the hierarchy, the
former represents a competing sequence to the latter within
a dominating system (M ; (U, φ)) subject however to the
projection Π : X−→M . In a Workspace setting, the se-
quences {Nj}, {Mi} each with limited capacity, contend
for recognition in a central or main processor (as repre-
sented by the larger canonical model (M ; (U, φ)) with its
rate distortion characteristics).

Some suggested conditions are in order (but most likely
not exhaustive). These include the possibilities that over
some range of indices 1 ≤ ` < min{i, j}, we have:

(i) dimM` ≥ dimN` [same level competition].

(ii) M` ∩N` 6= ∅ [same level competition].

(iii) For charts ψ`|V` ∩W` 6= ζ`|V` ∩W`, when (ii) above
occurs. The charts ψ` and ζ` are distinct functions on
V` ∩W` [competition].

In other words, the contexts near to, or at the bottom
of, the hierarchy compete to dominate the Workspace by

means of their intrinsic cognitive mechanisms as repre-
sented by the geometric structure of the {Mi} and {Ni}
via their respective chart/atlas system. There are other
possible interpretations. For instance, as in [125], stress
can be viewed as a socially devised cultural characteris-
tic involving a schemata of languages each with its own
grammar/syntax. This may be represented in mathematical
terms by the high dimensional information source X . The
dimensional reduction (given by projection Π : X−→M )
along with the embeddings of the chain of the Mk into
M , can then be viewed as the relevant interacting cog-
nitive modules within some environment: for instance,
how embedded psycho–social stress influences mind–body
interactions. For ‘noise’ related purposes, we may also
consider under appropriate conditions, the various embed-
dings Mi−→Mj as linked in a semimartingale process by
Stratonovich operators Eij : TMi × Mj−→TMj as in
(3.43), and likewise for the chain Ni−→Nj .

These cognitive modules, as reflective of the mathemat-
ical description of the model, so adhere to the asymptotic
limit theorems of information theory as we have outlined
them. For many persons, information overload, ‘noise’ and
‘heat engines’, are the fiendish perpetrators of such stress
ailments as the modules so describe. The all–or–none com-
peting stimuli creating a bottleneck in the central process-
ing of neural information is considered in [38, 128] as a
Workspace explanation of inattentional blindness for which
the above schemata of rate distortion manifolds may serve
as a blueprint.

6.4 Higher order tangency

The above setting holds further prospects for applying
state-of-the-art techniques from geometry and topology. In
particular, we have mentioned that higher order rate dis-
tortion manifolds are likely to produce better approxima-
tions than those of lesser order. A formal explanation of
these terms is as follows. If M is a smooth manifold in the
traditional sense, then a classical example is how tangent
vectors coalesce with osculating curves such as the local
geodesics. More generally, one may consider the higher
order tangency of submanifolds of M where the maps in
question admit osculating spaces to certain orders. Fol-
lowing [102], the idea revolves around p-th order tangent
bundles TM [p] whose typical fiber consists of a p-th order
osculating vector. The latter can be related to the classi-
cal osculating spaces of order p of a submanifold of some
affine space. These higher order tangent bundles comply
with the exact sequence

0 → TM [p−1]−→TM [p]−→Sp(TM [1]) → 0, (6.10)

where Sp denote the p-th symmetric tensor product. Such
osculating spaces seem relevant to ‘higher order retinal tun-
ing’ in the context of institutional multitasking [131], a
topic for further development.
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6.5 Hierarchy of organization and
complexity

Complex systems (whether they are genetic, neuronal or
cultural–social) can be organized into various levels of
complexity each equipped with their sovereign mecha-
nisms for managing the prevailing environment or commu-
nity. Recall also how neurons communicate via synapses
by means of a synchronous assembly of encoded neurons,
thus realizing a mental event with some degree of plasticity.
At a higher order there exists a semantic memory which in-
fluenced by referential experiences within its environment,
induces the development of personal memory as charac-
teristic of humans and other higher order species. Quite
often the question is to determine how the higher levels
evolve from those lower without being directly reducible
to them, in a way similar to how percolation techniques of
lower to higher level operations are realized in the theory
of graphs and networks. A similar problem has been dis-
cussed in [46] in the context of memory evolutive systems
(MES) which depend on types and classes of selection pro-
cedures. An internal feature is that iterated complexifica-
tion can induce a hierarchy of objects of strictly increas-
ing orders of complexity each with its own characteristics
which allow a switching across the constituent organisms.
This can be explained in categorical terms, in particular, in
terms of ‘colimits’ as we will briefly describe.

Firstly, let us give a short but quite abstract notion of
a graph as a family of objects {Ai} together with a col-
lections of arrows f : A1−→A2 between objects. In
the absence of the strict definition of a category (see e.g.
[19, 91]), let us say for now, and informally, that a standard
notion of a categorical structure can be defined on a graph
in terms of objects and an internal rule of composition ‘◦’
associating to pairs f : A1−→A2, g : A2−→A3, the com-
position g ◦ f : A1−→A3, satisfying the rule of associativ-
ity, together with the identity morphism idA : A−→A.

If we regard objects as labeled in terms of ordered states
A < A′, a transition functor F (A,A′) : FA−→FA′ , repre-
sents a change in states A−→A′, and satisfies

F (A,A′′) = F (A,A′) ◦ F (A′, A′′). (6.11)

Following e.g. [46], if we have a system as represented by
a graph, it is said to be hierarchial if the objects can be
divided into specified complexity levels representative of
the embeddings of contexts.

Further, we can speak of a pattern of linked objects A
as a family of objects Ai with specified links (edges) be-
tween them. Consider another object B to which we can
associate a collective link from A to B by a family of links
fi : Ai−→B. We can picture then a cone with a base con-
sisting of A = {A1, A2, . . .} and with B as the vertex. The
pattern is said to admit a colimit denoted C, if there exists
a collective link A−→C such that any other collective link
A−→B admits a unique factorization through C. If such
a colimit C exists, then locally C is well–defined by the
nature of the pattern to which it is attached, and globally,

C enjoys a universal property determined by the totality of
the possible collective links of the pattern. In other words,
C effectively binds the pattern objects while at the same
time functions as the entire pattern in the sense that the col-
lective links to B are in a one–to-one correspondence with
those to C. Further, a category can be said to be hierar-
chial if its objects can be partitioned into different levels of
complexity, with an object C of level n + 1 say, being the
colimit of at least one pattern of linked objects of (strictly)
lower levels n, n− 1, . . .

In our situation the concept is particularly useful when
the objects Ai comprise a pattern or network of rate distor-
tion manifolds and the collective links fi : Ai−→B are
morphisms to B which may, for instance, model a cen-
tral processor. The colimit C then functions as the binding
agent for the respective channels of information.

Remark 6.1. The concept of a colimit in a category gener-
alizes that of forming the union A ∪ B of two overlapping
sets, with intersection A ∩ B. However, rather than con-
centrating on the actual sets A,B, we place them in context
with the role of the union as permitting the construction of
functions f : A ∪ B → C, for any C, by specifying func-
tions fA : A−→C , fB : B−→C agreeing on A∩B. Thus
the union A∪B is replaced by a property which describes,
in terms of functions, the relationship of this construction
to all other sets. In practical terms [15, 22] it is how we
might compare input and output. In this respect, a colimit
has ‘input data’, viz a cocone. For the union A ∪ B, the
cocone consists of the two functions iA : A ∩ B → A and
iB : A ∩B → B.

An evolutive system [46] is viewed as a family of cate-
gories indexed by a suitable parameter t (usually time), to-
gether with a family of transition functors. The internal or-
ganization of a complex component C can then be modeled
in relationship to a pattern of linked objects such that the
actions of C on any other component are determined com-
pletely by the collective links (of the pattern), thus charac-
terizing C as the colimit. The above model can describe
an evolutionary autonomous system (or organism) with a
hierarchy of components managing organized exchanges
within an environment. Thus a hierarchial evolutive sys-
tem is then an evolutive system in which the state category
at each value t is hierarchial and the transition functors pre-
serve the levels. By means of such a network of learning,
the system re–adapts to changing conditions within the en-
vironment, thus leading to a MES, a characteristic which
can be related to the embedding of contexts. We re–iterate
that these components could be realized as specific types
of rate distortion manifolds which collectively model in-
formation relay within an interactive context.

6.6 Scheduling of paths
Methods of concurrency involving directed homotopies,
scheduling, n–categories/n–complexes and related topics
may well be suited to developing certain aspects of cogni-
tive/institutional multi–tasking. The geometric perspective
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is outlined in [62, 105] and an application to the Global
Workspace is discussed in [132].

A particular idea starts by recalling the notion of a par-
tially ordered space (a po–space for short) with respect to
a partial ordering “6” on M . A local po–space is a Haus-
dorff space M with a covering U = {Uα,6α, α ∈ J}
where each Uα ⊆ M is open and 6α is a partial order
on Uα. We may assume here that M is a rate distortion
manifold corresponding to some cognitive process. There
is some scope as to how “6” may be linked to the rate dis-
tortion theorem (locally) on the Uα, in terms of channel
capacity, etc. We keep in mind that our rate distortion man-
ifolds may be subjected to ‘direction’ as would be required
within a setting of channeled consciousness; this would in-
volve some further analysis and grounds for a separate dis-
cussion.

Remark 6.2. As pointed out in [103], given a smooth man-
ifold M , a po–space structure on M may be defined in
terms of ordering of Morse functions f : X−→R as men-
tioned in §6.2. Briefly, for x, x′ ∈ M , we decree an or-
dering by x ≤ x′ ⇐⇒ f(x) < f(x′), or x = x′. The
theory of po–spaces is one of several abstract methods em-
ployed for analyzing concept structures in theoretical com-
puter science (others, such as Chu spaces [106] incorpo-
rate strict logical structures and are innately different to the
‘thermodynamic’ features of rate distortion manifolds).

Nevertheless, it is possible that a hierarchy of contexts
may be executed concurrently and the ensuing transition
states may be subjected to a ‘schedule’ which the (cogni-
tive) organism may inter–impose via evolution. We give a
brief mathematical description following [41, 51], but for
now restricting to the non–directed case. Consider the path
space P(M) of paths

γ : R≥0−→M, (6.12)

of finite length. Given a covering U = {Ua : a ∈ A} of M
by open sets indexed by a set A, a schedule is an element of
the monoid SA = (A × R≥0)

∗, where elements are pairs
of words of the same length (a1a2 · · · an, t1t2 · · · tn). We
say that a path γ fits the schedule (a1a2 · · · an, t1t2 · · · tn),
if

i) γ(t) = γ(t1 + · · ·+ tn), for t ≥ t1 + · · ·+ tn

ii) γ([t1 + · · ·+ ti, t1 + · · ·+ ti+1]) ⊂ Uai+1

iii) γ([0, t1]) ⊂ Ua1 .

Also, there is an equivalence relation on schedules gener-
ated by

(a1a2 · · · an, t1t2 · · · tn) ' (a1a2 · · · ai−1ai+1

· · · an, t1t2 · · · ti−1ti+1 · · · tn) , if ti = 0.
(6.13)

The main result of [41] states that for certain coverings,
the schedules may be assigned continuously to all paths up

to the latter equivalence and this can be used towards glob-
alizing locally continuous fibrations over a given space. It
seems workable to apply this concept to the directed case,
which we finesse for now. However, for our rate distor-
tion manifolds the main point is that the open sets of the
covering each should contain neighborhoods of points con-
strained by the estimate (4.4) of the Rate Distortion Theo-
rem. A slight word of caution is necessary here: the rate
distortion manifold (M, sM ) as we have described it, is
already a canonical model for the ‘semantic path space’
(X, sX), so the above path space P(M) has to be consid-
ered somewhat apart from the space X . It is appealing that
this notion of path scheduling may be linked to the study of
universal algorithms where there is an intention to establish
lower bounds on the running times of computational proce-
dures (cf [88]). Furthermore, ‘paths in a space of paths’ is
a potentially useful concept since eventually one may wish
to consider an approach similar to the Jamesian ‘processes
of processes’ upon which we will comment later (see §8.7).

7 Further towards groupoids

7.1 Convoluted path space
It is suggested in [125]§3 that a pattern of sensory input
mixed in some way with an internal ongoing activity in-
duces a path γ = (ψ0, ψ1, . . . , ψn, . . .), where each ψk

may represent a composition of internal/external signals.
Guiding this path into some kind of decision process, yields
an output h(γ) which belongs to one of two (disjoint) sets
of system response depending on whether the pattern is rec-
ognized or not. If it is the case, the appropriate response–
action may assumed as initiated. This is quite general, but
for the sake of classifying cognitive modules it is suggested
that commencing from the input level, one may actually
classify the paths themselves in preference to specifying
the output.

Typically, an input x representing an information source,
is tied to an output y via some path; for example, a path rep-
resenting the transition probability p(x|y), or a channel of
information. In another sense, one can define equivalence
classes in a convoluted path space, such as (X, sX), ac-
cording to which a state ψk is path–connected to a source
state ψS . In this way, two states ψ, ψ̂ are said to be equiv-
alent, denoted ψRψ̂, if they lie on the same path γ with
source ψS seen as varying. In this way, the path space is
decomposable into (relatively) disjoint sets of equivalence
classes. Such an equivalence relation defines a category
known as a groupoid, a ‘small’ category G with all mor-
phisms invertible, represented by

G
r //
s

// M (7.1)

where M denotes the space of objects and r, s denote the
range (or target) and source maps, respectively (see e.g.
[21, 143]). Such disjoint equivalence classes are applica-
ble to disjoint ‘cognitive modules’ for which the equiva-
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lence relation is defined by the existence of a high prob-
ability meaningful path connecting two points. Later we
will discuss a network groupoid in which the vertices of
the network (or graph) will represent different information
sources dual to a cognitive process. Certainly, the study
of equivalence classes for dealing with e.g. response ver-
sus sensory input, is an attractive option to analyzing an
overwhelmingly complex network since the key principle
would be to reduce the latter to manageable configurations
involving only the (equivalence) classes.

Specifically, in our case (M, sM ) is viewed as the canon-
ical model of (X, sX) which, as we proposed, could be
replaced by the groupoid G under path equivalence. An
action on M by G, induces an equivalence relation R, to-
gether with a convolution product

(a ∗ b)(γ) =
∑

γ1◦γ2=γ

a(γ1)b(γ2). (7.2)

By using general means (see e.g. [31]) we can form a corre-
sponding convolution algebra C(G) over G of which many
special cases can be realized in a systems–response mech-
anism. Typically, in a response to an environmental stim-
ulus, a ‘response’ function h : C(G)−→B, mostly nonlin-
ear, can be defined where B is such an extensible set as
before, and which could be the underlying set of some se-
mantic/syntactical algebra, or that of an algebra of some
class of operators. The simple epidemic model as a ‘gen-
eralized stochastic resonance’ mentioned in §3.11 is an ex-
ample that immediately comes to mind.

7.2 Geometric phase and holonomy
The concept of holonomy in a physical sense could be
loosely described by the following scenario: imagine walk-
ing along a path of some gradient flow. You may observe
that neighboring flow paths tend to veer off; but as you
progress steadily further, other flow paths appear to ap-
proach asymptotically. The explanation is well–known to
anyone who has taken a first course in differential geome-
try: holonomy is essentially the parallel translation of vec-
tors around a closed path, thus leading to a representation
of the space of closed paths into a group of prevailing sym-
metries. The classic example involves the Poincaré first–
return map of a dynamical system (see e.g. [1, 77, 96]).
The holonomy concept embraces the sense of phase tran-
sition throughout the physical and biological sciences in
whatever the context and wherever the internal states of a
system are tracked in relationship to the latter’s spatiotem-
poral orientation. Notable physical examples include the
Berry phase, whereby a slowly evolving quantum system
in returning to its original state retains a memory of its mo-
tion via a geometric phase in the wave function, a phase as
given by exp(ι

∫
γ
A), where A is a suitable potential and γ

is the path in question. Likewise in the Born–Oppenheimer
approximation, as nuclei describe a closed path in a cer-
tain parameter space, the electronic wave function acquires
such a phase. There is the more mundane example of a

cat held upside down and then released from a reasonable
height. The cat usually lands safely on its feet but with
its orientation reversed [97], thus realizing holonomy as in-
corporated within a certain innate cognitive–physiological
skill.

Parallel transport induced by a ‘flat’ connection/potential
having zero field strength (curvature), but nevertheless hav-
ing non–trivial holonomy, causes shifting interference pat-
terns in electron beams in the vicinity of a solenoid (cf the
Aharonov–Bohm effect and Wilson loop [5, 85]). So in a
similar way, the key to understanding how seemingly dis-
joint cognitive modules interact lies within globalizing the
iterates of such local procedures to create the associated
holonomy groupoid (a technique described for topologi-
cal groupoids in [4]). In the skeletal framework of graphs
and networks, holonomy can be described in the context of
symmetry groups.

7.3 Noise flow on a rate distortion manifold
There is a convenient approach to noise flow on a rate dis-
tortion manifold in terms of groupoid actions. One may
consider a system of noise variables B = (ς1, ς2, . . . , ς`)
associated to an informational process associated modeled
by a rate distortion manifold M . If the noise is network re-
lated, then it is reasonable to speak of ‘equivalence classes
of noise’ and hence an associated groupoid B whose set
of objects would be a network of paths in M . The essen-
tial point here is that given the groupoid B acts on M , the
equivalence classes ‘foliate’ M in some way. This is sim-
ply the principle that a foliation on M corresponds to a
groupoid, and conversely, the foliation is induced by the
action of B:

{
Groupoid Action B×M−→M

}

=⇒
{

Foliation (M,F)
}
.

(7.3)

Generally, this foliation will be singular as, for instance,
the leaf dimensions may jump up and down. For a study of
the general theory of foliations see [26] (cf [92, 96] which
deal with groupoid actions). On the other hand, the noise
equivalence classes may in practice be 1–dimensional, in
which case we have a noise–induced flow (M,F) on M
that is essentially stochastic in nature, and most likely sin-
gular in the general case as well.

Relative to a metric M on M , we have the simplest type
of Onsager relation dM/dt = LdS/dM to which a noise
term can be added:

dM
dt

= L
dS

dM + σW (t), (7.4)

where W (t) is a function representing white noise and σ is
a constant. In this way a stochastic differential equation is
induced on M [134]:

dMt = L(
∂

∂t
,
∂S

∂M ) dt+ σ(
∂

∂t
,
∂S

∂M ) dBt, (7.5)
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where L and σ are now regarded as suitable functions of t
and ds/dM, and dBt represents the noise structure deriv-
able from the noise variables B as above. Thus the above
groupoid action is manifestly the noise flow on M engen-
dered by the 1-form component σ( ∂

∂t ,
∂S
∂M ) dBt.

7.4 Global actions and groupoid atlases
We expect that more general descriptive mechanisms of
cognitive modules may eventually involve features such as
atlases modeled on groupoids themselves. Once instance
involves an orbifold for which the associated orbifold atlas
corresponds to a proper (Lie) groupoid (see [96] and Ap-
pendix §11.2). Thus a ‘rate distortion orbifold’ would then
be a fitting term when a rate distortion space has to admit
certain singularities. However, an even broader concept is
that of a groupoid atlas[16]. The latter, loosely speaking,
entails the pasting together of local groupoid actions with
the net effect of a ‘global’ groupoid, a concept which may
prove to be particularly significant for logically inscribing
processors or sensors (the ‘multi–agents’) within a cogni-
tive module or a communication network.

Following [16], one commences from a family of
groupoids {G1,G2, . . .} where each groupoid has the same
set of objects; this family is called a single domain or multi-
ple groupoid. A groupoid atlas is then defined as a set with
a covering by patches, each of which comprise a single do-
main with global action. An advantage of using this sort of
atlas is that, in general, it admits a weaker structure com-
pared with that of a conventional manifold since no con-
dition of compatibility between arbitrary overlaps of the
patches is necessary. This is an attractive option for study-
ing cognitive modules geared to equivalence class repre-
sentations. For instance, in a (single domain) global action
by a group, the graph representation of intersecting orbits
yields a configuration of various types of circuits (loops,
etc.), and from such an action, a corresponding global ac-
tion can be formulated so that group actions, in particular,
can be more generally extended to groupoid actions that
encode the actions of the various equivalence relations.

On taking a group G, the motivation for defining a
groupoid atlas comes from considering a global action A

which consists of a set XA together with a family

{(GA)α y (XA)α : α ∈ ΨA}
= {(GA)α × (XA)α−→(XA)α : α ∈ ΨA},

(7.6)

of group actions ‘y’ on subsets (XA)α ⊆ XA, where the
local groups (GA)α and the corresponding subsets (XA)α
are indexed by an indexing set ΨA called the coordinate
system of A, satisfying the conditions:

(a) If α ≤ β in ΨA, then (XA)α ∩ (XA)β is (GA)α–
invariant.

(b) For each pair α ≤ β, there is given a group homomor-
phism

(GA)α≤β : (GA)α−→(GA)β ,

such that given elements σ ∈ (GA)α, and x ∈
(XA)α ∩ (XA)β , we have σx = (GA)α≤β(σ)x .

The categorical assignment

GA : ΨA−→ Groups (7.7)

is called the global group of A, and the set XA is called the
enveloping set or the underlying set of A.

Suppose we have a group action Gy X . Then we have
a category Act(G,X) with object set X and G × X its
arrow set. It is straightforward to show that Act(G,X) is
actually a groupoid [16](see also Appendix I). Effectively,
given an arrow (g, x), we have source and range defined re-
spectively by s(g, x) = x, and r(g, x) = g · x, represented
by

x
(g,x)−→g · x. (7.8)

The composition of (g, x) and (g′, x′) is defined when the
range of (g, x) is the source of (g′, x′) such that x′ = g ·x .
This yields a composition (g′g, x):

x
(g,x)−→g · x(g′,gx)−→ g′g · x. (7.9)

We have an identity at x given by (1, x), and for any ele-
ment (g, x) its inverse is (g−1, gx). A key point in this con-
struction is that the orbit of a group action then becomes a
connected component of a groupoid.

The above account motivates the following. A groupoid
atlas A on a set XA consists of a family of local groupoids
(GA) defined with respective object sets (XA)α taken to
be subsets of XA. These local groupoids are indexed by
a set ΨA, again called the coordinate system of A which
is equipped with a reflexive relation denoted by ≤ . Writ-
ing (XA)αβ = (XA)α ∩ (XA)β , this data is to satisfy the
following conditions [16]:

(1) If α ≤ β in ΨA, then (XA)αβ is a union of compo-
nents of (GA), that is, if (XA)αβ and g ∈ (GA)α acts
as g : x−→y, then y ∈ (XA)αβ .

(2) If α ≤ β in ΨA, then there is a groupoid morphism
defined between the restrictions of the local groupoids
to intersections

(GA)α|(XA)αβ−→(GA)β |(XA)αβ , (7.10)

and which is the identity morphism on objects.

We can briefly exemplify matters as follows. Let us re-
call the projection of information sources Φ : X−→Y ,
from the higher (faster) X to the lower (slower) Y , and
recall from (4.6) we defined a rate distortion manifold
Γrd ⊆ ΓΦ on the graph of Φ, by

Γrd := { (x,Φ(x)) ∈ ΓΦ : d(x,Φ(x)) < ε }. (7.11)

Let GZ be a group whose elements are, for instance, matrix
components suitably representing those of a culture or en-
vironment via a slowly interacting source Z = {Zk} [134].
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We consider an action GZ y Γrd along the previous lines,
and subsequently obtain an action groupoid

Act(Γrd, GZ)
//// Γrd . (7.12)

The significance of this construction is that the components
of the above action groupoid may be related to the mutual
information splitting criterion

I(X|Y1, . . . , Ym|Z1, . . . , Zn), (7.13)

an essential ingredient for representing such interactions as
those of a biosocio–culture [128].

8 The underlying simplex of a rate
distortion manifold and network
groupoids

Here we devote some attention to how the simplicial meth-
ods of graphs and networks, which are some of mainstream
tools of information theory, multi–agent systems and con-
currency, can be related to the often ‘continuous’ structures
of rate distortion manifolds.

8.1 Simplicial methods towards networks
Given our rate distortion manifold M , we may want to re-
cover an underlying decomposition of M into ‘networks’
so as to incorporate useful graph–theoretic techniques. A
standard topological way of achieving this is by introduc-
ing simplicial methods and in particular, by taking a trian-
gulation of M (see Appendix II) that serves as a conceptual
mechanism towards tracing the discrete nature of the var-
ious graphs and networks functioning as specialized pro-
cessors within the Workspace. Specifically, a triangulation
(K,φ) of a space M means we have a simplicial complex
K together with a homeomorphism

φ : |K|−→M, (8.1)

where |K| denotes the polyhedron or geometric realization
of M (see e.g. [117] and Appendix II). Observe that sim-
plicial methods often deal with choices of an open covering
and for a given rate distortion manifold M , such a covering
may be achieved by a collection of length spaces {Uα, dα},
each of can be taken to be isometric to some simplex.

The triangulation (K,φ) of M that we have described
above leads to identifying M with an associated polyhe-
dral space, and so there follows a number of ‘discrete’
possibilities leading from a ‘continuous’ to a ‘discrete’
coarse–graining approach. Other possibilities may include
the comparison theorems of spaces of bounded curvature
with their negative curvature characteristics such as the
CAT (k)–spaces (Cartan–Alexandrov–Toponogov spaces
where the (k) denotes that a value k is imposed as a curva-
ture bound [24]). This leaves open the possibility that some
class of rate distortion manifolds, realized in the category

of CAT (k) spaces, might, for instance, admit a ‘hyperbolic
structure’ in a suitable sense.

A topological graph can be converted to a metric graph
by an assignment of ‘lengths’ to edges, although for infinite
graphs this may result in a topology change [24]. More
specifically, a simplicial decomposition of M permits an
internal, skeletal–like representation of M in terms of a
graph or network Γ, and then subsequently to an associated
groupoid model. We can start with a categorical represen-
tation FreeCat(Γ) of the graph Γ : regarding the vertices
of Γ as objects, then between two vertices v, w, we take
FreeCat(Γ)(v, w) to denote the set of paths or edges in Γ
commencing at v and ending at w. To a path v 7→ w, we
can assign a sequence of edge–labels (a1, a2, . . . , an). The
composition in FreeCat(Γ) is by the usual concatenation of
paths where for each edge a between v and w, a reciprocal
(or reverse) edge a−1 between w and v exists.

In forming path sequences, the latter can be reduced by
removal from the sequence of any adjacent edges of the
form (a, a−1), or (a−1, a). In this way the graph Γ leads to
a groupoid structure, namely the free groupoid FreeGpd(Γ)
over Γ (see e.g. [21, 146]). Thus many of the graph–
theoretic and network analysis models relating to phase
transition, percolation and epidemic processes, etc., can be
reduced to a combinatorial groupoid setting for which there
is already available a broad range of algebraic concepts that
can be applied.

8.2 Modular networks and the giant
component

Between disjoint cognitive modules one assumes that link-
ages occur randomly and the latter represent ‘cross–talk’
as a (non–zero) measure of mutual information. A descrip-
tive method for studying this influence of cross–talk uses
random graph theory (mainly following Erdős–Rényi [50];
we also refer to the exposition in [2]). One of the key con-
cepts is that of a giant component, that is, a subnetwork that
dominates the entire network ( of cognitive modules) and
which can capture up most of the smaller subnetworks.

More specifically, suppose we consider c elements of the
equivalence class algebra of languages (that is, c disjoint
cognitive modules) dual to some cognitive process as repre-
sented by the vertices of a graph. If a graph with c vertices
has ` = 1

2ac edges chosen at random, for a > 1, then it
will have a giant connected component with approximately
g(a)c vertices with

g(a) = 1 +
1

a
W (−a exp(−a)), (8.2)

in which W denotes the Lambert W–function defined im-
plicitly by W (x) exp(W (x)) = x. An example depicted in
[126], reveals a sharp phase transition occurring at a = 1
that initiates the Global Workspace as a ‘tunable black-
board’ defined by a set of cross–talk mutual information
measures between interacting modules. The cross–talk
connection corresponds to random linkages in the case of
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[50] and the entropy H of the language dual to the cogni-
tive process, will grow as some monotonic function of the
giant component. Such a phase transition in a network af-
fords some correlation between the size of the component
and the richness of the language to which it is associated.
Thus tuning the giant component by altering the network
topology leads to further insight through a geometric rep-
resentation.

Standard analysis of critical clustering reveals that uplift-
ing the clustering coefficient increases the average number
of edges necessary for the formation of a giant component.
For instance, [126] on applying [124], shows that for a ran-
dom network with parameter a, at cluster value C, there is
a critical value given by

aC =
1

1− C − C2
. (8.3)

One easily sees that for C = 0, the giant component forms
when a = 1. The case C ≥ 1

2 (
√
5−1), which is the Golden

Section, shows that no giant component is definable, for
any a. Thus not every network topology can support a gi-
ant component. As pointed out in [126], some cognitive
network models cannot then represent consciousness and
this poses some big questions ranging from the evolution
of the latter to the actual nature of the sleeping state (cf
[127]). Institutional or machine–based cognition no less
necessitates the synchronization of information relay be-
tween giant components [134, 135].

A governing principle is to define an interaction param-
eter ωC > 0 that will define a regime of giant compo-
nents of network elements linked via mutual information
≥ ωC . Then following [134, 135], the idea is to invert the
argument: namely, a given topology of the giant compo-
nent will in turn define some value of ωC , so that network
elements interacting by mutual information less than ωC

will be blocked from conscious perception (see the exam-
ple of inattentional blindness below). Thus ωC is a syntac-
tically dependent detection limit which depends on the gi-
ant component topology for an individual cognitive frame-
work. Thus the variation of ωC is one example of a topo-
logical shift. This opens up the possibility that the level
sets of ωC may be defined in terms of Morse theory. Ac-
cordingly, a parameter space may be characterized by the
critical points of ωC to ensure a fundamental shift in the
high level cognitive topology.

8.3 Inattentional blindness
We briefly describe a situation from [128, 135] that has al-
ready been mentioned. An intensive focus on a task involv-
ing interactive cognitive modules may necessitate the giant
component to be sustained at an optimum level within the
topology of the network in question. In this way, a high
limit may be placed on the magnitude of mutual informa-
tion signals which can intrude into the Workspace. When
the focus of attention on a single aspect of a complicated
perceptual field or programmed environment precludes the

detection of intervening events which may or may not be
essential to the original task, a condition known as inatten-
tional blindness occurs [115]. An example of this condi-
tion might be that of a person conducting an on–line busi-
ness transaction while oblivious of occasional ‘pop-ups’.
In this scenario it may be that intervening signals fall be-
low a threshold in syntax in order to intrude markedly on
consciousness; alternatively, it fails to be an enduring com-
petitor in the Workspace (cf §6.1). Further, it is expected
that slower acting information sources represent the em-
bedding sociocultural factors across the environment. In
the context of institutional/directed cognition, the intense
focus on economic and data–driven programs may often
result in a blind–side to other essential factors (such as the
sociological consequences of planned shrinkage, industrial
expansion, etc.). Given a fixed topology of the Workspace,
the condition of inattentional blindness thus emerges as
a thermodynamic limit on the overall processing capacity
[128, 135].

8.4 Network phase transitions via
connections on graphs and groupoids

The finer study involves the nature of phase transitions
within the simplicial network/graph structure underlying
the geometry of a rate distortion manifold which we will
proceed to describe. Typically, various types of percolation
processes exhibit phase transitions. For instance, in [84]
network percolation techniques are used to analyze phase
transitions of dynamic neural systems such as those embed-
ded within segments of cortical neuropil. But for a large
class of networks there are available means for measuring
phase transitions and differences in terms of parallel trans-
port and holonomy which are analogous to the standard
differential–geometric means employed on a differentiable
manifold. We shall briefly discuss some of these.

Firstly, for graph–theoretic models there are certain com-
binatorial notions which can be used to replicate a ‘dif-
ferential’ structure as realized on a standard differentiable
manifold. Let Γ = (V,E) be a graph with V denoting
a finite vertex set, E an edge set with an oriented edge
e = (u, v) (accordingly, e−1 = (v, u)) such that u = i(e)
is the initial vertex and v = t(e) is the terminal vertex. The
star of a vertex st(v) is the set of edges emanating from v,
that is

st(v) = {e : i(e) = v}, (8.4)

(see also Appendix II). Given that the star of a vertex is
sometimes viewed as the combinatorial version of the tan-
gent space to a manifold at a point, in [18] is defined a con-
nection ∇ on a graph Γ as defined via a set of one–to–one
functions ∇(u, v), one for each oriented edge e = (u, v) of
Γ satisfying:

(1) ∇(u, v) : st(u)−→st(v)

(2) ∇(u, v)(u, v) = (v, u)

(3) ∇(v, u) = (∇(u, v))−1.
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Assuming a graph Γ admits such a connection ∇, in [18]
is defined the notion of a 3–geodesic as a sequence of four
vertices (u, v, w, z) with edges {u, v}, {v, w} and {w, z}
for which ∇(v, w)(v, u) = (w, z). Subsequently, a k–
geodesic is defined inductively as a sequence of (k+1) ver-
tices. The three consecutive edges {d, e, f} of a 3–geodesic
is referred to as an edge chain. A closed geodesic can then
be specified as a sequence of edges e1, . . . , en such that
each consecutive triple (eα, eα+1, eα+2) is an edge chain
for each 1 ≤ α ≤ n(modulo n). This leads to a convenient
way of defining a ‘totally geodesic subgraph’ [18], that is,
given (Γ,∇), a subgraph Γ0 = (V0, E0) ⊂ Γ, is said to be
totally geodesic if all geodesics commencing at E0 remain
within E0. In other words, for every two adjacent vertices
u, v in Γ0, we have

∇(u, v)(st(u) ∩ E0) ⊆ E0. (8.5)

8.5 The covariant derivative of entropy
along a network path

Suppose now the above vertices (e1, e2, . . . , ek+1) are
interpreted and renamed as k + 1 information sources
(X1,X2, . . . ,Xk+1) in accordance with the APSE condi-
tion (see Remark 3.2), where the Xi act with the set of
tuning parameters associated to a set of giant components.
We consider a connection ∇ acting

∇(Xi,Xj) : st(Xi)−→st(Xj), (8.6)

with the indicated properties (for 1 ≤ i, j ≤ k + 1) as be-
fore. With respect to the metric M = M(Xi,Xj) applied
to these information sources, the above ‘connection’ map in
(8.6) implements on the underlying network, the covariant
differentiation along the path Xi−→Xi, just as in (3.30):

dH/dM = lim
Xj−→Xi

H(Xj)−H(Xi)

M(Xi,Xj)
. (8.7)

Now relative to each Xi, a maximized channel capacity
Ci is assigned, in accordance with the estimate of (3.15),
that is, H(Xi) ≤ Ci, holds for 1 ≤ i ≤ k + 1, and
in respect of the Rate Distortion Theorem along paths
Xj−→Xi. This apparent optimality in terms of the es-
timate (3.15) motivates decreeing the information sources
(X1,X2, . . . ,Xk+1) to be a k-geodesic (there is no loss in
generality by supposing that these actually form a closed
geodesic). In fact, [18] shows that the set of all such
geodesics in a given network determines the connection ∇
which accordingly can be implemented as a form of covari-
ant derivative along the remaining paths.

Remark 8.1. In order to realize how geodesics may arise in
applied graphs and networks, there is the example of [73]
where in the ever competing US telecommunications in-
dustry, extensive and rapid switching of networks between
nodes (vertices), the large–scale use of fiber optics (reduc-
ing transmission costs) and network nodes ramifying to
interconnecting subnetworks, has lead to the reduction of

a vast pyramidial–like network to a structure with many
geodesic subgraphs. Thus the pyramid transforms to a
structure somewhat akin to Buckminster Fuller’s ‘geodesic
dome’. The principles are analogous to those expected in
huge networks of parallel computation which in turn con-
tribute efficiency to the skeleton of some institutional cog-
nitive mechanism.

8.6 The holonomy groupoid and path
connections

Given C = {e1, . . . , en} is any cycle in Γ, for which
t(eα) = i(eα+1) modulo n, then the connection around
C leads to a permutation

∇C = ∇en ◦ · · · ◦ ∇e1 ◦ ∇e0 , (8.8)

of st(u). The upshot is that the notion of a holonomy
group at a vertex can be defined [18]: the holonomy group
Hol(Γu) at a vertex u of Γ, is the subgroup of the permuta-
tion group of st(u) generated by the permutations ∇C over
all cycles C that pass through the vertex u. In this way,
holonomy contributes to the geometry of the graph.

On the other hand, as noted in [82] every groupoid G
leads to a reflexive symmetric graph (RSG). Loosely speak-
ing, the objects form the vertices, arrows form the edges,
inversion in the groupoid leads to symmetry, and the iden-
tity leads to the pointwise identity arrow. For instance,
on a manifold M the set P(M) of (smooth) Moore paths
γ : [a, b]−→M , has the structure of a RSG with M the
vertex set and γ(a), γ(b) defined to be the domain and
codomain of γ respectively. Taking M(1) to denote the first
neighborhood of the diagonal of M [82], a connection ∇
on G

//// M is a morphism of a RSG from M(1) to the
underlying graph of G. Let (x, y) ∈ M(1), then similar to
above, ∇(x, y) is an arrow x 7→ y in G, such that

i) ∇(x, x) = idx

ii) x ∼ y =⇒ ∇(y, x) = (∇(x, y))−1.

A path connection on G is a morphism of RSGs in the case
of P(M)−→G that satisfies certain rules of reparametriza-
tion, representation and subdivision (we refer to [82] §6
which follows in part [123]).

Many groupoids with connection

( G
// // M ,∇) (8.9)

have the property that unique partial integrals exist along
any map [a, b]−→M . Thus we may say that (8.9) admits
path integration. Consequently, a connection ∇ is then
‘flat’ along any path, that is, ∇(x, y) ◦ ∇(y, z) = ∇(x, z).

For u ∼ v in [a, b], let us set

( ∫

γ

∇)
(u, v) = ∇(γ(u), γ(v)). (8.10)

Following [82] we define the holonomy hol∇(γ) along a
path γ : [a, b]−→M , as the arrow (

∫
γ
∇)(a, b) with domain
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γ(a) and codomain γ(b). Thus a map

hol∇ : P(M)−→G, (8.11)

is obtained. If (8.9) admits path integration, then the above
map in (8.11) is considered to be a path connection.

There appears to be a close relation of these ideas to
[61, 118] wherein are considered n–cell systems based on
systems of n ordinary differential equations describing the
dynamics of some (possibly) synchronized network. This
is important because the synchronous coupling of a cell
system to its close environment affects a change in the lat-
ter as well as in the collective organism whose task it is
to square–up to those of the higher, multi–parallel, institu-
tional types. The coupling and equivalence of cells leads
to a natural groupoid structure of a resulting coupled cell
network Γ = (V,E,∼v,∼e) with its intrinsic equivalence
classes [v]V and [e]E . Here, the vertices or nodes of the
network are taken to be representative of such cells. Syn-
chrony of such cell systems may be dependent on groupoid
symmetries which, as pointed out in [131] in the context
of institutional cognition, can be broken by an impinging
rapid crosstalk internal to the system while the latter at-
tempts to manage a slower external crosstalk.

For each v ∈ V , a cell phase space Pv is defined. Usu-
ally Pv is a finite dimensional vector space and a total
phase space is defined as P =

∏
v∈V Pv . A vector field

may then be characterized in terms of a map f : P−→P ,
that in principle should be related to the above permuta-
tion subgroups of st(u) thus leading to a suitable notion of
parallel transport within the system.

We have at this stage arrived at a formalism for obtaining
a network/graph theory underlying a typical rate distortion
manifold, similar to taking an X–ray picture of an essen-
tial organism. Beyond the example of Remark 8.1 there
are many possible applications such as in areas where one
considers the passage from an iteration of local processes
towards global structures. For instance, the situation de-
scribed in Remark 8.1 is likely to have analogs in the study
of social networks. These may be the ‘small world’ graphs
having low density and which are highly clustered thus giv-
ing rise to the likelihood of networks of geodesic subgraphs
[142]. ‘Small world’ relationships are studied in [109] in
a similar way to how strong ties (families, cliques, etc.)
with large clustering are bridged by weak ties [63]. The
corresponding social networks are likely to involve more
intricate topologies and statistical fluctuations, and where
‘simplicial’ Nash equilibria may provide optimal predic-
tions within the resulting framework of games [120]. Ad-
ditionally, the graph holonomy concept and the ‘giant com-
ponent’ thus provide formal criteria in which to specify the
essential phase transitions leading to higher orders of com-
plexity. For small world networks in the context of Global
Workspace Theory, steps in this direction have been taken
in [60].

8.7 2–Groupoids and Stacks
To some degree the cognitive modules we have consid-
ered should afford a Jamesian characteristic of “processes
of processes”. The key is to take a step up in ‘categori-
cal dimension’. Loosely speaking, a 2–category C2 can be
described in a ‘cellular’ sense: C2 consists of a class of ob-
jects O (0–cells), a class of 1–morphisms A1 (1–cells), a
class of 2–morphisms (2–cells) with ‘horizontal’ composi-
tion defined between 1–and 2–cells, along with a separate
‘vertical’ composition between 2–cells. In other words C2

affords the extra mechanism of morphisms between mor-
phisms. When the 2–morphisms of C2 are invertible and the
1–morphisms invertible (up to homotopy), then C2 shapes
up as a 2–groupoid. Suitable reference to this subject are
e.g. [19, 76, 78, 91].

The Cartesian closed category Cat of small categories
is a 2–category in which the 2–morphisms are the natural
transformations for which the vertical composition is given
via composition in the codomain category. Also, the cate-
gory of groupoids Gpd is a (full) 2–subcategory of Cat. A
2–functor F : C2−→D2 is an enriched functor in Cat that
preserves the 2–category structure of C2 on taking objects,
1–and 2–morphisms of C2 to those in D2 .

In relationship to manifold structures, the Yoneda lemma
says that any space or manifold M is uniquely determined
by the categorical functor

Map ( ,M) : Mnf−→Sets (8.12)

A stack S is a (2)–functor between categories of manifolds
and groupoids (with categories)

S : Mnf−→Gpd ⊂ Cat (8.13)

where for any manifold M , we obtain a corresponding cat-
egory S(M) in which all morphisms are isomorphisms,
for any morphism f : N−→M , we have a functor f∗ :

S(M)−→S(N), and for any Z
g−→N

f−→M , there is a nat-
ural transformation Tf,g : g∗f∗ ∼= (g ◦ f)∗ which is asso-
ciative on a trio of compatible morphisms.

As shown in e.g. [68, 86, 91], such a functor S also en-
joys the properties of glueing together all of the objects and
morphisms. Furthermore, S can itself admit an chart/atlas
description generalizing that for a manifold, thus leading to
a potentially useful concept for a further large–scale study
of interactive cognitive modules in the same way as the
groupoid atlas has been proposed. The above account is
one categorically formal means of representing a rate dis-
tortion manifold as groupoid (or, to consider a stack of
groupoids upon the former). In the 2–categorical sense, one
then contemplates a next step up from ‘meaningful paths’
to ‘meaningful membranes’ towards realizing a higher or-
der Global Workspace continuum (see Remark 8.3 below).
In another, but related context, the idea of ‘morphisms be-
tween morphisms’ may be relevant to the passage from 1st
order to 2nd order complexity of information in terms of
‘referents’, in so far that the 2nd order houses the sense of
‘meaning’ [10].
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Remark 8.2. In view of earlier remarks concerning par-
allel processing, it would be reasonable to append to the
model a chain of rate distortion submanifolds M1 ⊆ M2 ⊆
· · · ⊆ Mn = M , on each of which there is a groupoid
structure corresponding to an equivalence relation “∼i” (cf
path equivalence), for 1 ≤ i ≤ n:

(G1,∼1)
//// M1

(G2,∼2)
//// M2

. . . . . . . . . . . .

(Gn,∼n)
//// Mn

(8.14)

A broader framework could be related to the ‘stack’ func-
tor S as previously, where any such nested sequence (of
information) would yield a corresponding nested groupoid
sequence as stacks over the manifolds Mk.

Remark 8.3. We have mentioned that geometric con-
cepts such as parallel transport and holonomy may be re-
alized within graphs and networks. One instance of a 2–
categorical approach to 2–parallel transport using simpli-
cial methods is described in [11] by means of a ‘sweeping
functor’. There is also the related work of [23] which is
relevant to surface holonomy.

9 Some applications towards
cognition at–large

In previous sections we described the mathematical ar-
chitecture of the possible rate distortion manifolds and
network related ideas. Next we discuss the motivat-
ing informational background from the point of view of
immunology-language and several classes of cognition
with possible ramifications.

9.1 The Atlan–Cohen perspective
The immunology–information principle as outlined in [8]
starts with sets of strings of amino acids in an antibody
molecule poised to influence the quantity of information
in the corresponding protein. Recall that protein synthe-
sis as a channel of information is transcribed into the pro-
tein amino acid sequence which acknowledging the genetic
code whereby DNA stores information in the neucleotide
bases A(Adenine), C(Cytosin), G(Guanine), T(Thymine).

Biological interactive networks as a class of complex
networks consist of local cellular communities organized
and managed by their characteristic selection procedures.
In such a partitioning of the structure, it is necessary to
regulate the local properties of the organism rather than the
global mechanism while genetic switches operate as tran-
scription factors encoding and switching on other genes
within this hierarchy. Moreover, one can include systems
which by their intrinsic structure interact via noncommuta-
tive relationships. More specifically, inter–regulatory sys-
tems of genetic networks via activation or inhibition of

DNA transcription can be modeled at several differing lev-
els where various factors influence distinct states usually by
some embryonic process or by the actual network structure
itself. For each gene it is important to understand the dy-
namics of inter–regulatory genetic groups which of them-
selves create hierarchial systems with their own character-
istics. A gene positively (or negatively) regulates another
when the protein coding of the former activates (respec-
tively, inhibits) the properties of the latter. In this way, ge-
netic networks are comprised of interconnecting positive
and negative feedback loops. The DNA binding protein is
encoded by a gene at a vertex i say, activating a target gene
j where the transcription rate of i is realized in terms of
a function of the concentration xj of the regulatory pro-
tein. Acting towards a given gene, the regulating genes
are protein coded and induce a transcription factor. Sub-
sequent modeling techniques can be drawn from a variety
of mathematical sources : graph theory, stochastic differ-
ential equations, and Boolean networks are examples (spe-
cific approaches are realized by de Jong et al.[35]). An
overall exposition of these ideas from the categorical view-
point and that of higher dimensional algebra is presented in
[15].

Immune networks had been proposed by Jerne [75] as
networks of mutually interacting and cooperative ‘idioyt-
pes’ and ‘anti–idiotypes’ as regulators of immune response
towards antigenic approaches through which the antigen it-
self reveals a ‘meaning’. In relationship to this hypothesis,
a main premise of [8] is that an antigen should be viewed
as a fundamental unit of information. However, it is postu-
lated that noise prevails in the system, thus interfering with
and faulting the transmission of information. Any ‘mean-
ing’ then attributed to an antigen is dependent on the kind
of immune response it generates and one which, as pro-
posed in [8], operates via the molecular structure in some
accordance with the Shannon–theoretic principles of infor-
mation. Consequently, the system has several options in
responding to an antigen: a finely tuned cognitive system
organizes the information as it is induced by the antigen
and devises the ‘format’ for internal processing and release
into the biochemical language of the immune system.

One instance is where the system engages different re-
sponse cytotoxic T–cells, where ‘helper’ T–cells secrete
mixtures of cytokines while lymphocytes navigate several
cell types. Subject–predicate type of communication oc-
curs when an antigen cell communicates an immune sen-
tence to a T–cell which is unable to recognize the antigen
totally. Thus the T–cell antigen receptor (TCR) requires the
antigen to register with a superficial major histocompati-
bility complex (MHC) whereby a peptide functions as the
‘subject’ (of the immune sentence), and the way in which
the T–cell responds to the peptide in the MHC is said to de-
fine the meaning of the antigen. The various response/non–
response options are germline predicate signals compris-
ing of cell–interaction/adhesion molecules. The predicate
signals assess the antigen–presenting cells (APC) and tis-
sues, thus registering the potential threat posed by the anti-
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gen. The T–cells read off the context of the antigen subject
through integration of the germline signals with antigen
recognition and react accordingly by dispatching a team of
cytokines and other molecules. In their overall function,
they resemble typical cognitive processes – the response
of the immune system to an antigen so reflects a function
of the entire community (network). This is the essence of
the immuno–cognitive function: assimilating a perceived
signal with respect to a learned association with the envi-
ronment, and then upon comparison, initiating a select re-
sponse mechanism from a large repertoire of possibilities.
As incorporated into higher animals, the immune system
becomes patently a deeper cognitive organism due to the
increased complexity of factors of social mechanisms and
environmental management each exerting their character-
istic cross–talk and tendency to noise. In certain respects,
the breakdown of a given immune system so results from a
disorder in transmission of information.

A possible scenario tied to the paradigm of [8] describes
the activation of T–cell development and the immunologi-
cal synapse via adhesion of the T–cell and APC which in
theory could be initiated by the peptide MHC [40]. The
viewpoint of [40] is that, in practice, the process of signal-
ing response is influenced by certain classes of integrins in
which the actin cytoskeleton provides a suitable structural
mechanism for assimilating the signaling input. Since the
immunological synapse is sensitive to the overall quality of
the MHC peptide, the formation of this synapse depends
upon the T–cell surface and the actin /myosin cytoskeletal
systems in composing a cellular structure out of the tran-
sient interaction of the TCR and peptide MHC.

The ‘Collective Efficacy’ of [110] is one source of analo-
gies between immune cognition and socio–environmental
neighborhood cognition. Similarly, the diagram below
based on [48](§3.3 Fig. 8) shows a mapping from immune
recognition schemes in terms of a determination through
universals

Antigen

Selection
²²

Instruction // Antibody

Universe
of various antibodies

DR

55llllllllllllll

(9.1)

where ‘DR’ is short for ‘differential reproduction’. As-
sociated to this interpretation via immunology, the corre-
sponding ‘cognitive’ interpretation may be represented by
[48](§3.4 Fig. 11):

Environment
perceived

Selection
²²

Instruction // Perception

Universal model
of possible images

DA

66nnnnnnnnnnnnnn

(9.2)

where ‘DA’ is short for ‘differential amplification’.

9.2 Comparisons with neural networks

The underlying processes of institutional/directed cogni-
tion and intelligent machine operation can in part be com-
pared with the functioning of neural networks, thalamacor-
tical and olfactory systems, as examples. Recall that the
acclaimed Hodgkin–Huxley model, together with several
allied models provide a descriptive base for studying a vari-
ety of neuronal cell complexes in which informational pat-
terns can be analyzed on codes based on the temporal prop-
erties of impulses: statistical intervals, frequencies, am-
plitude and phase variation. Accordingly, operative func-
tions that will determine the number of possibilities, de-
pend mainly on the statistical structure of the information
sources and the specific nature of the codes in question. In a
related setting, the theory of differentiable dynamics is ap-
plicable for modeling the effects of neuronal activity (such
as spiking and bursting) in terms of homoclinic/periodic or-
bits in relationship to stable (or unstable) manifolds of crit-
ical elements, saddle node–bifurcations, hyperbolic sets,
and the applications of the major theorems of Smale and
others (see e.g. [52, 72]). In this respect, rate distortion
manifolds are suitable models for analysis of such concepts
while at the same time they afford the special features of
adhering to the Shannon–McMillan theorems. We recall
the Poincaré first return map relative to the phase portraits
(see e.g. [72]) that originally led to the holonomy concept,
an essential descriptive mechanism of neural and cognitive
transition states as we have pointed out in the context of
groupoids.

Rather than by individual cells, quanta of information
can be considered as encoded by communities of the for-
mer. Typically, place cells are representative of encod-
ing information within an environmental frame of refer-
ence whereupon a quorum of cells responds to the demands
within a given location. Each constituent putatively breaks
down its response in terms of an average, plus a variation
in noise (neurons can be typically noisy and in turn can
cause noisy synaptic inputs, oftentimes impeding transmis-
sion relay) thus contributing to sequences of spiking, in
turn encoding information within the period of stimulus.
Eventually, there results an overall cumulative response to
the environment in relationship to the direction of motion,
color, shape, form etc. as they are encoded into the appro-
priate regions of the visual cortex.

Recall that in the pioneering work on holography (and
later wavelets) Gabor [56] postulated an ‘uncertainty’ – a
quantum of information corresponding to a limit to which
both frequency modulations and spatial information can
be simultaneously measured. Pribram [107] in the con-
text of neural networks and brain transition states, devel-
oped analogous ideas of holography/uncertainty, to some
extent based upon the Gabor theory. Within neuronal sys-
tems, dendritic–processing employs analogous uncertainty
principles in order to optimize the relay of information by
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micro–processing. Both time and spectral information (fre-
quencies) are considered as stored in the brain which sup-
posedly maintains a process of self–organization in order to
minimize the uncertainty through a wide–scale regulatory
system of phase transitions, the origin of which involves
the various computational neuroscientific mechanisms of
(hyper) polarizing action potentials, spiking, bursting and
phase–locking, etc. These contribute to a multitude of net-
work cells that register and react to an incoming percep-
tive signal. Thus it is claimed that cognitive processes up
to consciousness may emerge from the neural level, but
this emergence necessitates the integration of lower lev-
els evolving from the successive cultural complexifications
through phase transitions within a hierarchy of which the
model of a colimits structured MES is one such example.

It is understood that the maintenance of a cell membrane
potential depends not only upon inter–cellular communica-
tion, but also upon spiking and bursting rates: usually fast
K+ for transmission between nerve and muscle cells, and
slow Ca2+ for contraction of muscle fibers [58]. Periodic
inputs give rise to spike trains, but stochastic resonance
through noise is needed in order to surpass a threshold for
an action potential [57]. Granted a noisy environment, one
expects a suitable noise level for the maximum signal trans-
mission in correlation to the rate distortion theorem. It is
pertinent to the question of neuronal computation by popu-
lation coding, gating and phase–locking in the presence of
stochastic resonance; altogether a different informational
scenario to the language/immunology of cellular systems
where maximum likelihood methods can involve substan-
tial data accumulation leading to implement an ‘electoral
system’ for predicting vectors by regarding the activity of
a given cell as a vote for taking a preferred direction [104]
and thus initiating its cognitive response, quite in tune with
the Atlan–Cohen model.

9.3 The thalamacortical model

In an analogous way, the viewpoint of [12], as we have
mentioned, is to regard the nervous system as a collec-
tion of specialized unconscious processors complete with
its own squad of perceptual analyzers, output systems, etc.
These are considered as performing cooperatively and effi-
ciently within their locale, but since the system is charac-
teristically decentralized, such qualities may not automat-
ically function at a ‘global’ level. Thus within the system
(or community) the interaction, control and coordination of
squads of unconscious specialists depend on a central in-
formation exchange somewhat like a typical broadcasting
system (such as the Global Workspace). Take for instance
a cognitive basis for emotion, complete with its own lan-
guage/grammar/syntax as a framework for individual ad-
justment to a challenging psycho–social environment and a
mechanism for implementing various response categories
towards the latter [125] – a further slant on the Atlan–
Cohen perspective. Whereas some functions can be per-
formed habitually, special operations require a combined

team effort, the strategy and implementation of which is
somehow relayed throughout the environment/community
(cf §9.1). It appears to be a characteristic ubiquitous
to a number of commonly studied neuro–cognitive and
immuno–biological models. For instance, the neurobiolog-
ical hypothesis of [13] is that intralaminar nuclei as a subset
of the thalamus comprises the broadcasting network for the
Global (Neuronal) Workspace. A main premise is that the
reticular nucleus of the thalamus is instrumental for gat-
ing attention in an information–theoretic capacity and thus
constitutes an agent towards consciousness.

In many regions within the various cortical zones, neu-
ronal groups from one zone can arouse those in another so
to produce a relatively organized re–projection of signals
back to the former, thus creating a network of reverberat-
ing loops as are realized in the hippocampus, the olfactory
system and cortical–thalamus. A riding assumption is that
there is a certain synchronization of neurons through reso-
nance and periodic oscillations of the neighboring popula-
tion activity. Let us dwell on a particular scenario. Suppose
X and Y denote surfaces consisting of neurons and recep-
tor cells respectively, and let f : X−→Y be a mapping of
points of X to assigned points of Y under f .

In the maps/re–entry model [42, 43, 44], such a map-
ping should be considered as a component of the cere-
bral anatomy which is equipped and genetically coded with
such mapping networks, as for instance, the operational
part of the visual cortex. Re–entry is a selective process
whereby a multitude of neuronal groups interact rapidly
by two–way signaling (reciprocity) where parallel signals
are inter–relayed between maps; take for instance the field
of reverberating/signaling cycles active within the thalam-
ocortical meshwork. A priori, such a process is not a feed-
back system since there are many parallel streams operat-
ing simultaneously and re–entry channels serve to link, in
a sense, the compositions f1 ◦ f2 ◦ f3 · · · of distinct maps.
In general these mappings are defined locally throughout,
where a global mapping can be considered as defining a
perceptual category. The maps/re–entry processes com-
prise a representational schemata for external stimuli on the
nervous system, ensuring the context dependence of local
synaptic dynamics at the same time mediating conflicting
signals. Thus re–entrant channels between hierarchial lev-
els of cortical regions assist the synchronous orchestration
of neural processes. Impediments and general malfunction-
ing of information in the re–entry processes (possibly due
to some biochemical imbalance) may then be part expla-
nation for various mental disorders such as depression and
schizophrenia. The association of short–term memory tied
to consciousness within an architecture of thalamocortical
reverberatory loops is proposed in [33]. Further support for
the thalamacortical model as an essential component of the
Workspace is provided in [38] in the context of a neuronal
basis for inattentional blindness, the cognitive malfunction
we had described earlier. From our perspective, the nested
sequences of rate distortion manifolds considered in §6 and
the processing via groupoids in (8.14) as descriptive mech-
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anisms for such interactions, hence appear strikingly rele-
vant.

The efficiency of re–entry is dependent on widespread
variation in strength of connection, orientation and the po-
tential convergenece/divergence of paths in the rate dis-
tortion sense. Suggestive of the 2–categories interpreta-
tion of the Jamesian sense of consciousness through pro-
cesses of processes, the dynamic core hypothesis [44] con-
cerns the strength–framework of neural interactions within
a functional cluster, mainly prevalent in the thalamorcorti-
cal meshwork. A point here is that the dynamic core de-
fines a neuronal state space (space of objects) and paths
connecting points in this space represent a sequence of con-
scious states over time. We suggest that morphisms be-
tween the paths themselves should be admissible. Informa-
tion relayed to the Workspace is proposed in [13] from the
intralaminar nuclei comprising certain collections of thala-
mic regions. The reticular nucleus of the thalamus is con-
sidered in [13] as instrumental in gating attention. Under
the premise that an orchestrated thalamus is a key com-
ponent towards consciousness, the reticular nucleus is one
leading factor to which a network–theoretic analysis/ rate
distortion theory seems applicable.

Our discussion of groupoids concerning the reciprocity
in relay of signaling (invertibility) in such networks, is
a motivation for representing neuronal (groups) clusters
by an appropriate categorical–algebraic structure (much
weaker than the conventional notion of a ‘group’ in a math-
ematical sense). Such categorical representations in the ter-
minology of [46] are called ‘categorical neurons’ (or cat–
neurons for short). Consciousness loops [43], the Global
Neuronal Workspace of [12] are among an assortment of
models that have such a categorical representation. Among
other things, there is proposed several criteria for study-
ing the binding problem via the overall integration of neu-
ronal assemblies and concepts such as the archetypal core:
the cat–neuron resonates as an echo propagated to target
concepts through series of thalamocortical loops. Analo-
gous to how neurons communicate mainly through synap-
tic networks, cat–neurons interact in accordance with cer-
tain linking procedures and can be studied in the context
of categorical logic which in turn may be applied to se-
mantic modeling for neural networks [66, 67]. In this re-
spect (neuro)groupoids with their invertibility property for
all morphisms, provide the descriptive sub–mechanisms for
reciprocity within the constituent assemblies.

9.4 Autopoietic systems and Distributed
Cognition

The viewpoint of Maturana and Varela [93], as supported
by several accounts in this paper, is that cognition is fun-
damentally a biological process and that living systems in-
habit a cognitive domain through the autopoiesis of struc-
turally coupled unitary (self-reproducing) systems that in-
fluence the organization and maintenance between both
themselves and their environment over time. Many types of

systems, be they biological or social, are realized through
the autopoiesis of their various components and the total-
ity of their interactive relations forming a medium in which
these components realize their ontogeny. If anything, this
may simply be for the sake of getting their survival mech-
anisms straight. It is through participation alone that an
autopoietic system determines a social system by realizing
the relations that are characteristic of that system, and it is
reasonable to view their ‘cellular’ models as described in
terms of the information spaces we have considered. The
‘cellular’ organization of cognition adjusts and adapts to
the ever-changing thermodynamic phase transitions of the
environment and subsequent levels of complexity; accord-
ingly, the latter induces by reciprocation a re-adjustment
within the former. Davia [34] suggests defining the range
of thermodynamic conditions in which an organism can
mediate transitions as a catalyst to be its “environmental
survival space”.

The descriptive and causal notions which can be de-
scribed in terms of our groupoid (and other categorical)
structures may be guided by the following principles [93]
(Chapter III):

(1) Relations of constitution that determine the compo-
nents produced constitute the topology in which the
autopoiesis is realized.

(2) Relations of specificity that determine that the com-
ponents produced be the specific ones defined by their
participation in the autopoiesis.

(3) Relations of order that determine that the concatena-
tion of the components in the relations of specifica-
tion, constitution and order be the ones specified by
the autopoiesis.

In this respect, concepts such as the Atlan–Cohen model
and Institutional Cognition would appear to have partial
overlap with autopoietic systems whereby the dynamics of
their constituent cognitive cells can be modeled in terms
of rate distortion manifolds as component representations
of the Global Workspace architecture. Davia [34] argues
that the concept of a soliton wave is ubiquitous to repre-
senting an autpoietic self–sustaining dynamic process. It is
interesting to hypothesize that such wavefronts permeating
through a given cognitive cell may actually be represented
by a ‘foliation’ on a corresponding rate distortion manifold
(such as a ‘noise flow’ as was discussed earlier).

9.5 Distributed and Institutional cognition
Closely related are systems of Distributed Cognition [70]
(as discussed in [134] which dynamically inter–arrange and
marshal their subsystems for task–implementation within
the broader context of cognitive ethnography. In a similar
way to autopoietic transformations, distributed cognition
applies not only in relationship to individual human cog-
nition, but extends to the broader institutional/machine–
based cognition where humans undertake the task of con-
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trolling and navigating through multi–tasking machine
worlds, implementing policies, etc. while embedded in
the ambient ‘memetic’ environment of that culture. Hol-
lan et al. [70] exemplify task–oriented activities of tightly–
knitted groups in relationship to their working environ-
ment, and address the social organization and structure of
activity that induces an information flow as part of the cog-
nitive process necessary for the completion of a given oper-
ation. This may entail certain perceptual inferences within
an evolved ‘conceptual space’ of the tasking environment
(such as realized in the handling of digitally regulated flight
instrumentation [70]). Concerning the interactions between
distributed cognition, ethnography, experiment, work place
and work materials, Hollan et al. [70] identify several
widely applicable core principles such as:

– people establish and coordinate different types
of structure in their environment
– it takes effort to maintain coordination
– people off–load cognitive effort to the envi-
ronment whenever practical
– there are improved dynamics of cognitive
load–balancing available in social
organization.

The ‘culture’ of oceanic navigation, such as described in
[74], with its exclusive range of techniques of measure-
ment, skills, etc., itself becomes a cognitive process. This
way of thinking about how such computational mecha-
nisms are essentially cognitive, is discussed at philosophi-
cal/complexity levels in [119].

Somewhat related to the apparent corporate teamwork
of distributed cognition are other information oriented sys-
tems of cognitive interaction. These may be viewed in
a dynamical systems context which incorporates ‘embod-
iment’ within the context of cultural, linguistic factors,
physical motion, and so on [30]. One such example is
that of social prosthetic systems [83] which describe how
deficiencies in individual (cognitive) capacity can be com-
pensated via participation with the brain–fusion of socio–
environmental networks. The argument is based on how
supposed “selfish” genetic programming, aware of limita-
tions on information handling, motivates reaching into the
environment to attain to conceptual management within the
latter. Loosely speaking, the brain uses the world and “en-
during relationships” as extensions of itself [83].

Once such systems can be represented by their corre-
sponding equivalence classes, configurations of interacting
groupoids can be realized for which the discussion of §7.4
has relevant applicability. These can be compared with,
and applied to, the network analysis and geodesic sub-
graph evolution via ‘small world’ partnerships as discussed
in e.g. [2, 109, 142] and where ‘weak ties’ permit the
formation of Global Workspaces and inter–communication
between them [63, 135]. In this respect, the underlying
graph of a groupoid and the concept of a groupoid atlas
may well become essential techniques for delving further
into the descriptive mechanisms of such systems (see [60]).

Whereas the disciplines of neurophysiology/biology pro-
vide some explanation to the underlying mechanisms of
human consciousness (but often curbed by the strictures of
the ‘mereological fallacy’ [17]), it is of growing importance
to further study the interactive–reciprocity of the individual
body/brain with the environment, as in the way autopoietic
and social prosthetic systems profess to do. Likewise, some
brave new world of consciousness machines will interact
with their embedding systems thus creating new strains of
epidemics and cognitive failures [136].

One may also consider how related social factors on a
more global scale can physically determine and shape the
environment created through the cognitive mechanisms of
its inhabitants. Within a framework of spatial syntax and
information, this has been addressed in [69]. Such factors
lead to multifarious forms of development (and those quite
clearly tied to the influence of institutional cognition) and
are manifest at many levels. For instance, we have the con-
cepts of ‘street’, ‘terrace’, ‘lane’ and how these civil struc-
tures eventually do shape the physical appearance, the cul-
tural character and ethos of a city while reflecting its order
of wealth, industry, affluence, ethnic divisions, and so on.
As much as this development might once have been viewed
as positive over decades, centuries even, inevitably several
‘institutional cognitive modes’ that assisted the creation of
the city in the first place, often are destined to go into re-
verse gear. Consequently, the features of urban atrophy be-
gin to set in: derelict housing, the demise of public services
(health, transport, education, etc.), planned shrinkage and
an upsurge in societal epidemics (HIV, AIDS, obesity, de-
pression, tuberculosis, etc.). A Markov game thus unfolds
between city and suburbs [135, 137].

The ‘wrench in the works’ of social networking as fore-
seen by [63] is often the cause of certain epidemics as a
recent report [29] on obesity suggests: from the embed-
ding in a network, ‘social distance’, friendship (perhaps
more so than within a family) and the network tolerance
towards obesity appear at least as influential as heredity
factors (such as an under–active thyroid gland). One might
also argue that obesity is one of several epidemics realized
at the negative end of social prosthetic systems, as much as
toxic waste is to some ‘thriving’ chemical industry some-
where on the planet.

9.6 Red Queen versus the Pentagon Ratchet

Lewis Carroll’s ‘Red Queen’ has been taken metaphori-
cally to describe an evolutionary system which “keeps run-
ning” in order to co–evolve with ambient competing sys-
tems. The analogy seems to be ubiquitous to modes of
institutional cognition, economic game theory, arms races
and predator–prey type models where advanced capabili-
ties in one system are aimed to decrease those in the other.
For instance, how a slowly evolving cognitive system has to
gear itself to the constant threat of infectious epidemics. In
a similar way it can be viewed as a contest between the in-
ternal cultures of a system (corporation, whatever) on one
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hand, and associated external technologies, policies, leg-
islation, outsourcing etc., on the other. As discussed in
[135, 136] network (giant component) analysis reveals sud-
den and sharp phase transitions on passing critical points
thus forecasting the most efficient co–evolutionary struc-
ture as gaining competitive strength. The Red Queen in-
fluences a multiple Workspace environment (e.g. one that
is socio–economic, institutional or directed cognitive) and
simultaneously interacts with a powerful mutual crosstalk
creating a ‘ratchet–down’ effect. The latter has been coined
the ‘Pentagon Ratchet’ [135, 136] a term suggestive of the
legislative (re)allocation of major resources from the civil-
ian into the military sectors. Likewise, the language of
large-scale cognitive systems within an interactive environ-
ment may undergo a phase transition induced by intense
crosstalk in reversal of their evolution. Thus the Ratchet
gradually breaks down the competitive function of the Red
Queen hence causing its sectors to become fragmented or
to disintegrate altogether. Techniques involve the critical
manifolds of differential game theory and explicit exam-
ples of renormalization modes leading to embeddings into
state spaces, are exhibited in [135](§4.3) and [136](Chapter
4). Let us remark that the corresponding social network of
the game may develop towards a ‘small worlds’ situation,
and as previously mentioned, affording an enrichment of
topological and statistical properties within a graph theo-
retic interpretation (cf [60, 120]).

The Red Queen (RQ) and Pentagon Ratchet (PR) are
deemed to be interacting ‘principal environments’ for each
other. In more general mathematical terms, let GRQ,GPR

denote the corresponding groupoids of path equivalences
and MRQ,MPR denote their respective set of objects (‘ac-
quired characteristics’). Then in the competition we may
regard the groupoids as acting on each other’s set of ob-
jects via crosstalk

GPR yMRQ−→MRQ

GRQ yMPR−→MPR

(9.3)

thus yielding orbit spaces of generally lower dimension
which, for instance, symbolize the curtailment/policy ef-
fect of one upon the other (the notion of a groupoid action
is made specific in Appendix I §11.1). In view of the funda-
mental homology with ‘thermodynamic’ processes, the RQ
along with small world networks are exemplified by certain
distributed and institutional cognitive systems in [60].

There are several evolutionary scenarios tied to RQs and
rate distortion theory that deserve mention. One such con-
cerns a proposal by Eigen [47] of an evolutionary model
which involves selections as a condensation in an informa-
tion space. Some complications arise regarding the matter
of genetic complexity since information has to be encoded
in longer gene sequences by using replication with optimal
fidelity. However, in order to do this, it is necessary to have
a complex replication enzyme which just happens to be elu-
sive, since such an enzyme will itself require a longer gene
and the latter would violate an error threshold [71]. With
the aim of resolving this paradox [141] employ a rate dis-

tortion argument coupled with a RQ coevolutionary rachet
toward establishing an evolutionary condensation that re-
sults in an effective error–correction mechanism. We refer
to [141] for complete details.

9.7 Optimal coding and physiology:
examples

For most species, and whether for predator or prey in par-
ticular, interaural time difference (ITD) is a characteris-
tic property geared to localizing sound sources as crucial
to the survival mechanism. Case studies have revealed
optimal coding strategies depend not only on sound fre-
quency ranges, but also on evolutionary driven physiolog-
ical factors such as cranial size and form. Within groups
of coincidence–detector neurons encoding ITD, each con-
stituent member may be tuned for ITD in relationship to
the ambient physiological range whereby exact tuning is
determined by a time interval of axonal conduction in the
auditory system. For pure tones, there is for each ITD an
interaural phase difference (IPD) whereby an optimal cod-
ing strategy is seen to depend significantly on the relative
width of the physiological range of individual IPDs in com-
parison to their corresponding tuning curves [65]. At the
same time, we expect such strategies are significantly in-
fluenced by the behavioral patterns of the environmental
stimuli; in this respect (auditory) receptors attain to optimal
rather than average performance for most survival purposes
[90].

Such systems are expected not to be free of corruption
by noise. On the other hand, we have noted that noise,
particularly in the case of ‘population’ based phenomena’,
can engender a stochastic resonance which may favorably
enhance and/or optimize the transmission of a weak signal
via sensorimotor integration as shown, for instance, in cer-
tain cognitive studies of controlled visual stimulation [80]
or ‘randomly enhanced’ human gaming strategies [144]. In
[114] is considered the response of a neuron (in relation-
ship to the cat primary visual cortex) on the linear filtering
of the stimulus (luminance) values S by a linear receptive
field L over space–time. In the usual network setting, a
groupoid structure G can be revealed and the convolution
L ? S defined accordingly thus leading to a convolution al-
gebra C(G) over a suitable class (of continuous) function on
G. The output of the filter is then passed through a nonlin-
ear function h : C(G)−→B such that the neurons response
R(t) is specified by h(L ? S). Similar principles may be
applied for explaining how activation receptors on regis-
tering a certain stimulus, transmit pulsations to the sensory
cortex and assimilate the resulting meshwork of convoluted
signals [54].

10 Conclusion

In this paper we have described a structural framework
upon which rate distortion manifolds as representing cer-



338 Informatica 33 (2009) 309–345 J. F. Glazebrook et al.

tain cognitive modules, can be constructed by a vari-
ety of state-of-the-art mathematical concepts. We expect
that implementing these concepts will lead to more ex-
act, conceptually–centered, information–based models of
cognition-at-large. The associated techniques as we have
presented them, provide a method for the construction of
a variety of information spaces structured by the Shan-
non coding and rate distortion theorems besides the means
of describing globalization through local procedures. We
have shown that the flexible, less rigid structures afforded
to us by the notion of an atlas-manifold topology (or more
generally, a groupoid atlas) along with simplicial/graph
theoretic methods, can be adapted to a wide range of cogni-
tive situations operative within the Global Workspace. This
affords greater elegance and meaning to how these pro-
cesses can be modeled without recourse to the traditional
rigid, data–driven techniques which quite often can obscure
some deeper underlying meaning.

In several instances we have employed the groupoid
method as a category theory technique that allows one to re-
duce a vast labyrinthine configuration of networks to their
corresponding sets of equivalence classes. The latter are
computationally more user–friendly and create their own
kind of dynamical systems via groupoid actions, (path)
holonomy, etc. In particular, we should observe that the
techniques we have outlined in the manifold/groupoid set-
ting, are those suited to the description of ‘local-to-global
processing’, seen for instance in the case of scheduling of
paths and in the construction of the holonomy groupoid.
In this way, the dynamics of cognitive processes (par-
ticularly those of the distributed and institutional type)
can be aptly encoded in terms of groupoid actions as re-
vealed, for instance, in the coevolutionary contest between
the Red Queen and the Pentagon Rachet. Likewise, we
have seen how symmetry breaking of the network groupoid
of linked cognitive modules cultivates a giant component
which eventually emerges as a phase transition. In this
respect, the fundamental homology describes close analo-
gies between evolutionary modes (e.g. punctuated equi-
libria) influencing most cognitive processes, and the un-
derlying dynamics of certain statistical–physical systems;
more specifically, how alterations in the information net-
work topology can induce phase–transitional states.

The geometry/topology of a rate distortion manifold thus
represents the shape and form of information flow with re-
spect to its syntatic–semantic content within the cultural
environment of the particular Workspace through which it
passes. In so far that the message transmits the channel,
the former may be susceptible to cultural and evolutionary
impingement. In a related way, a computational scheme
of a cognitive process, may itself be deemed as a form of
cognition. This leads us to questions of ‘higher categori-
cal’ cognition rather befitting the ‘processes of processes’
as was alluded to earlier–clearly a matter that warrants fur-
ther investigation.
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11 Appendix I: Groupoids and their
actions

Since groupoids and related actions have been pinpointed
in the text, we provide the basic definitions and refer to
[21, 31, 92, 143] for further detils. Recall that a groupoid
G is, loosely speaking, a small category with inverses over
its set of objects Ob(G). More specifically :

A groupoid consists of a set G with a distinguished sub-
set denoted G(0) = Ob(G) ⊂ G, called the set of objects of
G, together with maps

r, s : G
r //
s

// G(0) (11.1)

called the range and source maps respectively, together
with a law of composition

◦ : G(2) = {(γ1, γ2) ∈ G× G : s(γ1) = r(γ2)}
−→G

(11.2)

on the set of ‘arrows’ G(2), such that the following hold:

(1) s(γ1 ◦ γ2) = s(γ2), r(γ1 ◦ γ2) = r(γ1), for all
(γ1, γ2) ∈ G(2).

(2) s(x) = r(x) = x , for all x ∈ G(0).

(3) γ ◦ s(γ) = γ, r(γ) ◦ γ = γ, for all γ ∈ G.

(4) (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3).
(5) Each γ has a two–sided inverse γ−1 with γγ−1 =

r(γ), γ−1γ = s(γ).

Often one denotes by Gy
x = s−1(x) ∩ r−1(y) the set of

morphisms in G from x to y, and Gx
x denotes the isotropy

group at x ∈ G(0).

Example 11.1. An equivalence relation R on a set X can
constitute a groupoid in the following way. Specifically,
R ⊂ X × X is identifiable with the set of ordered pairs
(x, y) satisfying xRy, whereby the morphisms are

Rx
y =

{
{(x, y)} , if xRy,

0, otherwise.
(11.3)

The composition is given by

◦ : Rx
y ×Ry

z−→Rx
z ,

(x, y) ◦ (y, z) = (x, z),
(11.4)

where (x, x) is the identity and (x, y)−1 = (y, x). Accord-
ingly, the orbit R(x) is the equivalence class of x ∈ X .
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Conversely, a groupoid G may induce an equivalence re-
lation R on the set X , for which the equivalence classes
R(x) are the orbits G(x), for all x in X . This is subject to
a forgetful functor F : G−→R, such that F (g) = (y, x) if
and only if g ∈ Gy

x.

Example 11.2. Clearly, any group is a groupoid whereby
the object set consists of the single element {e} the iden-
tity (e.g the fundamental group π1(M) of a manifold M ,
is a groupoid). Thus groupoids may be seen as consisting
of ‘multiple identities’. Indeed, any manifold M can be
viewed as a groupoid over itself where all morphisms are
units (that is, the arrow set of M is M itself). We also
have the pair groupoid M ×M

// // M where the nat-
ural projections from each factor comprise the range and
source maps.

11.1 Groupoid actions
Let X be a topological space admitting an action ‘y’ of a
group G. Specifically y: X ×G−→X , with y (x, g) =
xg and x(g1g2) = (xg1)g2, for all x ∈ X and g ∈ G.
Here we have a natural groupoid G = X ×G with G(0) =
X × {1}, and for which the following conditions hold:

(1) r(x, g) = x, s(x, g) = xg, for all
(x, g) ∈ X ×G.

(2) (x, g1)(y, g2) = (x, g1g2) if xg1 = y.

(3) (x, g)−1 = (xg, g−1), for all (x, g) ∈ X ×G.

Consider a groupoid G ⇒ B over its set of objects B =
G(0). Let M be a topological space and f : M−→B a
continuous map. Consider the set

GyM = { (g, u) ∈ G×M : sg = f(u) }
⊂ G×M.

(11.5)

An action of G on (M,f,B) is a continuous map G ×
M−→M , given by (g, u) 7→ gu satisfying:

(1) f(gu) = rg, for all (g, u) ∈ GyM .

(2) h(gu) = (hg)u, for all (h, g) ∈ G×G, (g, u) ∈ Gy
M .

(3) f̃(u)u = u, for all u ∈ M , where ∼ denotes the cor-
responding groupoid isomorphism.

We call GyM−→M the action groupoid. For u ∈ M ,
the subset G[u] = {gu : g ∈ G}, is the orbit of u under G .
These concepts generalize the notion of a group action on
a topological space.

11.2 Proper groupoids and orbifolds
Firstly, G is said to be a Lie groupoid when G(0) and G(2)

have the structures of differentiable (Hausdorff) manifolds,
the map s is a differentiable submersion (with Hausdorff
fibers), and all other structure maps are differentiable. A

Lie groupoid is said to be proper if it is Hausdorff and the
map (s, r) : G(2)−→G(0) × G(0) is proper (that is, each
inverse image of a compact subset is compact).

An orbifold atlas of dimension n of a topological space
Q is a collection of pairwise compatible orbifold charts

U = {(Ui, Gi, φi)}i∈I , (11.6)

of dimension n on Q, where the Gi ⊂ Diff(Ui) are finite
subgroups, such that

⋃
i∈I φi(Ui) = Q. Two orbifold at-

lases of Q are equivalent if their union is an orbifold atlas.
Then an orbifold of dimension n is a pair (Q,U) when Q
is a (second countable) Hausdorff topological space and U
is a maximal orbifold atlas of dimension n of Q. For fur-
ther details see [96]. In particular, there is an associated
pseudogroup of transitions Ψ(U) and an effective proper
groupoid Γ(U) = Γ(Ψ(U)) associated to Ψ(U) (see [96]
§5.6).

12 Appendix II: Briefly simplicial
complexes and triangulations

Let K be a simplicial complex, that is, K contains a set
of objects V (K) called vertices and a set of non–empty
subsets of V (K) called simplices. If σ ⊂ V (K) is a given
simplex and κ ⊂ σ, κ 6= ∅, then κ is also a simplex. The
geometric realization (or polyhedron) of K, denoted |K|,
comprises the set of all functions V (K)−→[0, 1], such that:

1. If α ∈ |K|, the set {v ∈ V (K) : α(v) 6= 0} is a
simplex of K.

2.
∑

v∈V (K) α(v) = 1.

If s ∈ K, we let |s| denote the set

|s| = {α ∈ |K| : α(v) 6= 0 ⇒ v ∈ s}, (12.1)

and

〈s〉 = {α ∈ |K| : α(v) 6= 0 ⇔ v ∈ s}. (12.2)

We call α(v) the v–th barycentric coordinate of α and
pV (α) = α(v) : |K|−→[0, 1] is the corresponding v–th
barycentric projection. A metric d( , ) can be defined on
|K| by setting

d(α, β) =
[ ∑

v∈V (K)

(pv(α)− pv(β))
2
] 1

2 , (12.3)

with the resulting initial topology for barycentric projec-
tions.

Often it is useful to pass to a subdivision of a given sim-
plicial complex K. A subdivision of K is a simplicial com-
plex K ′ satisfying:

a) the vertices of K ′ are identified as points of |K|;
b) if s′ is a simplex of K ′, there exists a simplex s in K

such that s′ ⊂ |s|; and
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c) the map |K ′|−→|K| extending the map of vertices of
K ′ to their corresponding points of |K|, is a homeo-
morphism.

Let Kp denote the set of p–simplices of K. If σ =
{vo, . . . , vp} ∈ Kp, then its barycenter b(σ) is the point

b(σ) =
∑

0≤i≤p

1

p+ 1
vi ∈ |K|. (12.4)

Accordingly, we may speak of a barycentric subdivision K̂
of K as the simplicial complex with vertices the barycen-
ters of the simplices of K, and whose simplices are finite
non–empty collections of barycentres of simplices totally
ordered by the face relations of K.

Suppose now U = {Uλ : λ ∈ Λ} is an open covering
of M . We assign an ordering to the indexing set Λ of the
cover and then let

Λ(n) = {(λ0, λ1, . . . , λn−1) ∈ Λ : λ0 6 λ1 6
. . . 6 λn−1}.

(12.5)

The nerve NU of the cover U is defined as follows. Firstly,
let

(NU)n :=
⊔

ν∈Λ(n+1)

Uν , (12.6)

where Uν = Uλ0 ∩ · · · ∩ Uλn . In this way an element of
(NU)n consists of an (n+2)–tuple (x, λ0, . . . , λn), where
x ∈ Uν and ν = (λ0, . . . , λn) ∈ Λ(n+1). Then the nerve
of U is given by NU := limn(NU)n.

12.1 Triangulations
A triangulation (K,φ) of a space M means we have a
simplicial complex K together with a homeomorphism
φ : |K|−→M . For any vertex v in K, we define its (open)
star by

st(v) = {α ∈ |K| : α(v) 6= 0}. (12.7)

Alternatively,

st(v) =
⋃

{〈s〉 : v is a vertex of s}, (12.8)

that is, the union of interiors of all simplices having s as
a vertex. Note that U = {st(v) : v ∈ K} provides an
open covering of |K|. References to these topics are [20,
76, 117].

13 Appendix III: Differentiable
structures on path space

13.1 Plots and iterated integrals
Let us recall the state space EΓ over the alphabet Γ. In gen-
eral, we do not expect EΓ to have a differentiable structure
in the conventional sense of classical calculus, but one of
several concepts of abstract ‘differentiable spaces’, might

be applicable. One such structure uses an abstract notion
of ‘plots’ [27], permitting a ‘differentiable space’ structure
on EΓ in terms of the following conditions. We consider a
collection of maps f : Rn−→EΓ (where n can be arbitrar-
ily large), called plots, such that:

1. If f : Rn−→EΓ is a plot, and if g ∈ C∞(Rm,Rn) is
a smooth map in the usual sense, then f ◦ g is a plot.

2. If gα : Rn−→Rn is a collection of embeddings whose
images cover Rn, and f : Rn−→EΓ is a map such
that f ◦ gα is a plot, then f is also a plot.

3. Every map f : R0−→EΓ is a plot.

Given another such differentiable space Y , a map ψ :
EΓ−→Y is said to be differentiable if for every plot f in
EΓ, f ◦ ψ is a plot in Y .

Relevant here is that the information (path) space X =
P(EΓ), supposedly as a length space, with its rate distor-
tion measure sX , could be assumed as endowed with a dif-
ferentiable space structure as well. Effectively, we can view
a path in EΓ as a plot of the type γ : I−→EΓ. For every
set map α : U−→X = P(EΓ), there is a corresponding
suspension map

λα : I × U−→EΓ

(t, ξ) 7→ α(ξ)(t).
(13.1)

Then X = P(EΓ) can be viewed as a differentiable space
when assigned plots of the type α : U−→X , such that λα

is a plot of EΓ.
Suppose that A denotes some suitable (alphabetical or

events) algebra and that EΓ admits some choice of algebra
A–valued 1–forms w1, . . . , wr ∈ Ω1(EΓ,A), then once
given a path γ : I−→EΓ of sufficiently differentiability,
[27] introduces the notion of iterated integrals

∫

γ

w1, . . . , wr :=

∫ 1

0

f1dt1, . . . , frdtr, (13.2)

where fi(t) = wi(γ(t), γ
′(t)), or in terms of the pull–back,

γ∗wi = fi(t)dt. Subsequently, this defines a map
∫

γ

: (X, sX)−→A. (13.3)

This makes the same sense if we replace (X, sX) by its
canonical model (M, sM ):

∫

γ

: (M, sM )−→A. (13.4)

Higher degree (differential) forms can be treated accord-
ingly.

13.2 Fröhlicher spaces
The above notion of ‘differentiability’ via plots and iterated
integrals is a relatively weak one that may be suited to rate
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distortion theory. There are other possibilities that provide
an approach to calculus on spaces more ‘pathological’ than
standard differentiable manifolds (such as to be found in
e.g. [55, 81]). For instance in [55], a Fröhlicher space X
consists of a triple (X, CX ,FX) where X is a set, CX is
a subset of all mappings R−→X , and FX is the set of all
functions X−→R, satisfying the properties:

(1) A function f : X−→R belongs to FX if and only if
f ◦ c ∈ C∞(R,R), for all c ∈ CX .

(2) A map c : R−→X belongs to CX if and only if f ◦c ∈
C∞(R,R), for all f ∈ FX .

A morphism of ϕ : X−→Y of Fröhlicher spaces X,Y
is said to be smooth when the following three equivalent
conditions hold:

(1) For each c ∈ CX , the composition ϕ ◦ c ∈ CY .

(2) For each f ∈ FX , the composition f ◦ ϕ ∈ FX .

(3) For each c ∈ CX , and for each f ∈ FX , the composi-
tion f ◦ ϕ ◦ c ∈ C∞(R,R).

In short, the space X admits an admissible family of curves
CX together with an admissible family of functions FX

whose respective elements satisfy the above conditions.
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[146] R. Živaljević (2008), Combinatorial groupoids, cu-
bical complexes, and the Lovász conjecture, Discrete
and Computational Geometry 41(1), 135–161.



346 Informatica 33 (2009) 309–345 J. F. Glazebrook et al.


