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Due to the rapid aging of the European population, an effort needs to be made to ensure that the elderly 

can live longer independently with minimal support of the working-age population. The Confidence 

project aims to do this by unobtrusively monitoring their activity to recognize falls and other health 

problems. This is achieved by equipping the user with radio tags, from which the locations of body parts 

are determined, thus enabling posture and movement reconstruction. In the paper we first give a general 

overview of the research on fall detection and activity recognition. We proceed to describe the machine 

learning approach to activity recognition to be used in the Confidence project. In this approach, the 

attributes characterizing the user’s behavior and a machine learning algorithm must be selected. The 

attributes we consider are the locations of body parts in the reference coordinate system (fixed with 

respect to the environment), the locations of body parts in a body coordinate system (affixed to the 

user’s body) and the angles between adjacent body parts. Eight machine learning algorithms are 

compared. The highest classification accuracy of over 95 % is achieved by Support Vector Machine 

used on the reference attributes and angles. 

Povzetek: Članek opisuje zaznavanje padcev in prepoznavanja aktivnosti nasploh ter izvedbo 

prepoznavanja aktivnosti s strojnim učenjem za potrebe projekta Confidence. 

 

1 Introduction 
The European population is aging due to the increase in 

life expectancy and decrease in birth rate. The percentage 

of population aged over 65 years is anticipated to rise 

from 17.9 % in 2007 to 53.5 % in 2060 [7]. As a 

consequence, the number of the elderly will exceed the 

society’s capacity for taking care of them. Thus an effort 

needs to be made to ensure that the elderly can live 

longer independently with minimal support of the 

working-age population. This is the primary goal of the 

EC Seventh Framework project Confidence [4]. 

The Confidence project will develop a ubiquitous 

care system to unobtrusively monitor the user, raise an 

alarm if a fall is detected and warn of changes in 

behavior that may indicate a health problem. This will 

improve the chances of a timely medical intervention and 

give the user a sense of security and confidence, thus 

prolonging his/her independence. 

The user of the Confidence system will wear small 

inexpensive wireless tags on the significant places on the 

body, such as wrists, elbows, shoulders, ankles, knees 

and hips. The precise number and placement of tags will 

be defined during development. The tags may even be 

sewn into the clothes. The locations of the tags will be 

detected by a base station placed in the apartment and a 

portable device carried outside. This will make it 

possible to reconstruct the user’s posture and movement 

and to recognize his/her activity. Some tags may be 

placed in the user’s environment at locations such as bed 

and chair to recognize activities such as the user lying in 

a bed and sitting in a chair. Finally, the user’s behavior 

will be interpreted as normal or abnormal. An alarm or 

warning will be raised in the latter case. 

This paper describes machine learning methods for 

activity recognition [12][13] to be used in the Confidence 

project. We focus on the selection of attributes and 

machine learning algorithm to maximize the recognition 

accuracy. The activities to recognize are falling, the 

process of lying down, the process of sitting down,  

standing/walking, sitting and lying. Falling is important 

in itself because fall detection is one of the main goals of 

the project. For the processes of lying down and sitting 

down, we wanted to see whether they can be 

distinguished from falling. The recognition of 

standing/walking, sitting and lying is needed to detect 

changes in behavior, such as the user walking less and 

lying more, which may indicate a health problem. 

The paper is structured as follows. Section 2 gives a 

detailed overview of related work on fall detection and 

activity recognition [9]. Section 3 describes the 

recordings of user behavior used as input data. Section 4 

lists the attributes extracted from the input data that are 

fed into the machine learning algorithms. Section 5 

presents the experiments in which the various attributes 

and machine learning algorithms are compared. Finally, 

Section 6 concludes the paper in outlines the future work. 
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2 Related work 
We divide the work on fall detection and activity 

recognition into four approaches presented in the 

following four subsections. They are distinguished by the 

equipment used and by the features extracted from sensor 

data. 

The first approach is based on accelerometers. An 

accelerometer is a device for detecting the magnitude and 

direction of the acceleration along a single axis or along 

multiple axes. Three-axis accelerometers are typically 

used. By detecting the acceleration caused by the earth’s 

gravity, one can also compute the accelerometer’s angle 

with respect to the earth. 

The second approach uses gyroscopes, which 

measure orientation. A gyroscope consists of a spinning 

wheel whose axle is free to take any orientation. It can 

measure the orientation along one axis or multiple axes. 

By equipping an object with the gyroscope(s) to measure 

the orientation along three axes, it is possible to exactly 

determine the object’s orientation and the changes in 

orientation, from which the angular velocity can be 

computed. 

The third approach is denoted visual detection 

without posture reconstruction. It is based on extracting 

input data from still images or from video. Various 

computer vision techniques are applied to the input data, 

but the human posture is not reconstructed explicitly. 

The fourth approach, named visual detection with 

posture reconstruction, is based on 3D locations of 

markers placed on an object, typically human body. The 

approach also uses video recordings, but, in contrast to 

the third approach, the visual information is used only to 

reconstruct the 3D locations of the markers. Additional 

processing uses the markers’ coordinates as input data. If 

a sufficient number of markers are provided, it is 

possible to reconstruct the shape of an object, which in 

our case means the human posture. 

2.1 Accelerometers 

The most common and simple methodology for fall 

detection is using a tri-axial accelerometer with threshold 

algorithms [3][10]. Such algorithms simply raise the 

alarm when the threshold value of acceleration is 

reached. There are several sensors with hardware built-in 

fall detection [1][5][15], having the accuracy of over 

80 %. 

Zhang et al. [25] designed a fall detector based on 

Support Vector Machine (SVM) algorithm. The detector 

was using one waist-worn accelerometer. The features 

for machine learning were the accelerations in each 

direction, changes in acceleration etc. Their method 

detected falls with 96.7 % accuracy. Researches 

embedded an accelerometer in a cell phone [24] and 

detected falls with the proposed method. The cell phone 

was put in a pocket of clothes or hanged around the neck, 

which made the detection more difficult as with the 

body-fixed sensor. The cell-phone system correctly 

raised the alarm in 93.3 % of the cases. 

Tapia et al. [18] presented a real-time algorithm for 

automatic recognition of not only physical activities, but 

also, in some cases, their intensities, using five wireless 

accelerometers and a wireless heart rate monitor. The 

accelerometers were placed at shoulder, wrist, hip, upper 

part of the thigh and ankle. The features, e.g., FFT peaks, 

variance, energy, correlation coefficients, were extracted 

from time and frequency domains using a predefined 

window size on the signal. The classification of activity 

was done with C4.5 and Naïve Bayes classifiers into 

three groups: postures (standing, sitting etc.), activities 

(walking, cycling etc.) and other activities (running, 

using stairs etc). For these three classes they obtained the 

recognition accuracy of 94.6 % using subject-dependent 

training and 56.3 % using subject-independent training. 

Willis [21] developed a fall detection system based 

on belief network models, which enable probabilistic 

modeling of scenarios (e.g., normal walking, 

tripping/stumbling and running) and the transitions 

between them. The sensors were placed under the heel 

and toe, which made it possible to reconstruct gait cycle 

and to detect falls. The accuracy was not reported. 

Researchers using accelerometers give a lot of 

attention to the optimal sensor placement on the body 

[3][10]. A head-worn accelerometer provides excellent 

impact detection sensitivity, but its limitations are 

usability and user acceptance. A better option is a waist-

worn accelerometer. The wrist did not appear to be an 

optimal site for fall detection. Some researchers made a 

step further and used accelerometers for trying to 

recognize the impact and posture after the fall [11]. 

In the Confidence system, accelerations could in 

principle be derived from the movement of tags. 

However, we believe this approach to be unreliable: first, 

because the acceleration is the second derivative of tag 

location and as such strongly affected by sensor noise, 

and second, because the data acquisition frequency in 

Confidence is expected to be relatively low. The studies 

of sensor placement may be valuable for deciding where 

to place tags in Confidence. 

2.2 Gyroscopes 

Bourke and Lyons [2] introduced a threshold algorithm 

to distinguish between normal activities (sitting down 

and standing up, lying down and standing up, getting in 

and out of a car seat, walking etc.) and falls. The ability 

to discriminate was achieved using a bi-axial gyroscope 

mounted on the torso, measuring pitch and roll angular 

velocities. They applied a threshold algorithm to the 

peaks in the angular velocity signal, angular acceleration 

and torso angle change. The system proved 100 % 

successful in fall detection. 

The Confidence system derives velocities from the 

movement of tags. The velocity, being the second 

derivative of tag location and being less affected by the 

low data acquisition frequency, is more reliable than 

acceleration. However, since the data available in 

Confidence is much richer than that provided by 

gyroscopes, we decided against simple threshold-based 

fall detection. 
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2.3 Visual detection without posture 

reconstruction 

Vishwakarma et al. [20] presented a video approach for 

fall detection. First, they eliminated the background of 

the video and extracted a set of features from the 

remaining objects’ bounding boxes, e.g., the aspect ratio, 

horizontal and vertical gradients etc. In the next step they 

detected falls based on the angle between an object’s 

bounding box and the ground. The final step was fall 

confirmation, which was rule-based, e.g., the 

abovementioned angle had to be less than 45°. The 

method achieved 95 % accuracy on single-object fall 

detection and 64 % accuracy on multiple objects. 

Fu et al. [8] described a vision system designed to 

detect accidental falls in elderly home care applications. 

They used a temporal contrast vision sensor, which 

extracts changing pixels from the background. An 

algorithm was observing the dynamic of motion and 

reported falls when it indicated significant changes in the 

vertical downward direction. They were able to 

distinguish falls from normal human behaviors, such as 

walking, crouching down and sitting down. The accuracy 

was not reported. 

The proposed methods are quite capable of dealing 

with fall detection, but it is not clear how to adapt them 

to the sensor data available in the Confidence system. 

2.4 Visual detection with posture 

reconstruction 

Wu [23] studied unique features of the velocity during 

normal and abnormal (i.e. fall) activities so as to make 

the automatic detection of falls during the descending 

phase of a fall possible. Normal activities included 

walking, rising from a chair and sitting down, descending 

stairs, picking up an object from the floor, transferring in 

and out of a tub and lying down on a bed. The study 

provides exhaustive velocity parameters for fall 

detection, gathered by three markers placed on the 

posterior side of the torso, recorded by three cameras 

with the sampling rate of 50 Hz. The aim of the study 

was to suggest velocity characteristics, so the author did 

not actually implement automatic fall detection. 

Qian et al. [16] introduced a gesture-driven 

interactive dance system capable of real-time feedback. 

They used 41 markers on the body recorded by 8 

cameras with the frame rate of 120 Hz to construct a 

human body model. The model was used to extract 

features such as torso orientation, angles between 

adjacent body parts etc., which was used to represent 

different gestures. Each gesture was statistically modeled 

with a Gaussian random vector defined as the statistical 

distribution of the features for that gesture. To recognize 

a new pose, the likelihood of its feature vector given the 

vector of each known gesture was computed. The new 

pose was classified as the gesture for which this 

likelihood was the largest. Experimental results with two 

dancers performing 21 different gestures achieved 

gesture recognition rate of 99.3 %. 

Sukthankar and Sycara [17] presented a system that 

reconstructs the users’ posture and recognizes pre-

defined behaviors. The data were captured with 43 body 

markers and 12 cameras with the sampling rate of 

120 Hz. They constructed a human body model from the 

raw marker coordinates, and computed features, e.g. the 

angles between body parts, limb lengths, range of motion 

etc. from the model. Learning was performed using 

SVM. The method achieved 76.9 % accuracy in 

detecting the following elementary activities: walking, 

running, sneaking, being wounded, probing, crouching, 

and rising. Behavior was defined as a sequence of 

elementary activities and was modeled with Hidden 

Markov models. The authors defined a number of 

behavior models and classified a new sequence of 

activities into the model that fit it best. 

The markers in the proposed systems have the same 

role as the tags in the Confidence system. The methods 

by Qian et al. and even more so by Sukthankar and 

Sycara inspired the approach we used for activity 

recognition in Confidence. We are not aware of anybody 

having used this kind of methods for fall detection, 

though. 

3 Input data 
The goal of our research was to classify the user’s 

behavior into one of the following activities: falling, 

lying down, sitting down, standing/walking, sitting and 

lying. To obtain training data for a classifier to recognize 

these activities, we recorded 45 examples of the behavior 

of three persons. Each recording consisted of multiple 

activities: 

 3 × 15 recordings of falling, consisting of 

standing/walking, falling and lying. 

 3 × 10 recordings of lying down, consisting of 

standing/walking, lying down and lying. 

 3 × 10 recordings of sitting down, consisting of 

walking, sitting down and sitting. 

 3 × 10 recordings of walking. 

The recordings consisted of the coordinates of 12 

body tags attached to the shoulders, elbows, wrists, hips, 

knees and ankles. This is the full complement of tags that 

will probably be reduced in the future. Since the 

equipment with which the Confidence system will 

acquire tag coordinates is still under development, the 

commercially available Smart infrared motion capture 

system [6] was used instead. The coordinates were 

acquired with 60 Hz. The frequency was afterwards 

reduced to 10 Hz, which is the expected Confidence data 

acquisition frequency. To make the recordings even more 

similar to what we expect of the Confidence equipment, 

we added Gaussian noise to them. The standard deviation 

of the noise was 4.36 cm horizontally and 5.44 cm 

vertically. This corresponds to the noise measured in the 

Ubisense real time location system [19]. The Ubisense 

system is similar to the equipment planned for acquiring 

tag coordinates in Confidence. The noise in the 

recordings was smoothed with Kalman filter [14]. 
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4 Attributes for machine learning 
Finding the appropriate representation of the user’s 

behavior activity was probably the most challenging part 

of our research. The behavior needs to be represented 

with simple and general attributes, so that the classifier 

using these attributes will also be general and work well 

on behaviors different from those in our recordings. It is 

not difficult to design attributes specific to our 

recordings; such attributes would work well on them. 

However, since our recordings captured only a small part 

of the whole range of human behavior, overly specific 

attributes would likely fail on general behavior. 

The attribute vector from which the classifier infers 

the user’s activity consists of ten consecutive snapshots 

of the user’s posture, describing one second of activity. 

When multiple activities took place within a given 

second, the attribute vector was assigned the longest one. 

We designed three sets of attributes describing the 

user’s behavior. Reference attributes are expressed in the 

reference coordinate system, which is fixed with respect 

to the user’s environment. Body attributes are expressed 

in a coordinate system affixed to the user’s body. Angle 

attributes are the angles between adjacent body parts. 

4.1 Reference attributes 

When selecting reference attributes, we ignored x and y 

coordinates. These coordinates describe the user’s 

location in the environment, but the activities of interest 

can generally take place at any location. 

In the list of reference attributes, the upper index t 

indicates the time within the one-second interval: t = 1 ... 

10. The lower index i indicates the tag: i = 1 ... 12. The 

lower index R indicates the reference coordinate system 

and distinguishes reference attributes from those 

belonging to the other two sets. 

 z
t
iR … z coordinate of tag i at time t 

 v
t
iR … the absolute velocity of the tag 

 v
t
ziR … the velocity of the tag in the z direction 

 d
t
ijR ... the absolute distance between the tags i 

and j; j = i + 1 ... 12 

 d
t
zijR ... the distance between tags i in j in the z 

direction 

4.2 Body attributes 

Body attributes are expressed in a coordinate system 

affixed to the user’s body. This makes it possible to 

observe x and y coordinates of the user’s body parts, 

since these coordinates no longer depend on the user’s 

location in the environment. 

The body coordinate system is shown in Figure 1. Its 

origin O is at the mid-point of the line connecting the hip 

tags (HR and HL for the right and left hip respectively). 

This line also defines the y axis, which points towards 

the left hip. The z axis is perpendicular to the y axis, 

touches the line connecting both shoulder tags (SR and SL 

for the right and left shoulder respectively) at point Sz, 

and points upwards. The x axis is perpendicular to the y 

and z axes and points forwards. 

 

Figure 1: The body coordinate system. 

In order to translate reference coordinates into body 

coordinates, we need to express the origin O and basis (i, 

j, k) of the body coordinate system in the reference 

coordinate system. Note that bold type denotes vectors 

and x denotes a vector from the origin to the point X. 

Equation (1) expresses the origin of the body coordinate 

system in the reference coordinate system. 

 (1)  

Equation (2) gives us the basis vector j. 

 (2)  

To obtain k, Equation (3) is first used to calculate sz. 

 

 

 

(3)  

Once sz is calculated, Equation (4) gives us k. 

 (4)  

Finally we obtain i using Equation (5). 

 (5)  

We also experimented with a variant of body 

coordinate system with the reference z axis, which is 

shown in Figure 2. Its origin O is again at the mid-point 

of the line connecting the hip tags. The z axis is the z 

axis of the reference coordinate system. The y axis is 

perpendicular to the z axis, lies on the plane defined by 

the hip tags and a point on the z axis, and points towards 

the left hip. The x axis is perpendicular to the y and z 

axes and points forwards when the user is upright (in 

general it points in the direction of the cross product of 

the basis vectors j and k). 
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Figure 2: The body coordinate system with reference z 

axis. 

In the body coordinate system with the reference z 

axis, the origin is again calculated with Equation (1). The 

basis vector k equals the basis vector k in the reference 

coordinate system: k = (0, 0, 1). The basis vector i is 

perpendicular to k and to the vector from O to HL, which 

is expressed with Equation (6). 

 (6)  

The basis vector j is obtained with Equation (7). 

 (7)  

To finally translate the coordinates in the reference 

coordinate system into the coordinates in either of the 

body coordinate systems, Equation (8) is used. The 

vector pR = (xR, yR, zR, 1) corresponds to the point (xR, yR, 

zR) in the reference coordinate system. The vector pB = 

(xB, yB, zB, 1) corresponds to the point (xB, yB, zB) in a 

body coordinate system. TR→B is the transformation 

matrix from the reference to the body coordinate system. 

Notation i(B)R refers to the basis vector i belonging to the 

body coordinate system, expressed in the reference 

coordinate system. 

 

 
(8)  

Body attributes (in either of the body coordinate 

systems) are labeled with a lower index B: 

 (x
t
iB, y

t
iB, z

t
iB) ... coordinates of the tag i at the 

time t 

 v
t
iB … absolute velocity of the tag 

 (φ
t
iB, θ

t
iB) … the angles of movement of the tag 

with respect to the z axis and xz plane 

If a body coordinate system is used, the attributes 

describing its location, orientation and movement with 

respect to the reference coordinate system are added to 

the attribute vector: 

 z
t
OR ... z coordinate of the origin of the body 

coordinate system 

 (Φ
t
OR, Θ

t
OR) ... the direction of the x axis of the 

body coordinate system with respect to the z 

axis and xz plane 

 v
t
OR … absolute velocity of the origin of the 

body coordinate system 

 (φ
t
OR, θ

t
OR) ... the angles of movement of the 

origin of the body coordinate system with 

respect to the z axis and xz plane 

So far we expressed body attributes in the body 

coordinate system of each snapshot of the user's posture. 

However, the attributes in all ten snapshots within a one-

second interval can be expressed in the coordinate 

system belonging to the first snapshot in the interval. 

This captures the changes in the x and y coordinates 

between snapshots within the interval. First-snapshot 

body attributes are the same as body attributes, except 

that they are labeled with Bf instead of B. The attributes 

describing the location and orientation of the first-

snapshot body coordinate system with respect to the 

reference coordinate system are somewhat different, 

though: 

 zOfR … z coordinate of the origin of the first-

snapshot body coordinate system 

 (ΦOfR, ΘOfR) … the direction of the x axis of the 

first-snapshot body coordinate system with 

respect to the z axis and xz plane 

4.3 Angle attributes 

The paper will not delve into the details of the 

computation of body angles. The angles between body 

parts that rotate in more than one direction are expressed 

with quaternions: 

 q
t
SL and q

t
SR ... left and right shoulder angles 

with respect to the upper torso at the time t 

 q
t
HL and q

t
HR ... left and right hip angles with 

respect to the lower torso 

 q
t
T ... the angle between the lower and upper 

torso 

 α
t
EL, α

t
ER, α

t
KL and α

t
KR ... left and right elbow 

angles, left and right knee angles 

5 Machine learning experiments 
We tried various machine learning algorithms to train 

classifiers for classifying the behavior into the six 

activities (falling, lying down, sitting down, 

standing/walking, sitting and lying). To do so, sections of 

the 135 recordings described in Section 3 were first 

manually labeled with the activities. Afterwards, the 

recordings were split into overlapping one-second 

intervals (one interval starting every one-tenth of a 

second). The attributes described in Section 4 were 

extracted from these intervals. This gave us 5,760 

attribute vectors consisting of 240–2,700 attributes each 

(depending on the combination of attributes used). An 

activity was then assigned to each attribute vector. 

Finally these vectors were used as training data for eight 

machine learning algorithms: C4.5 decision trees, 

RIPPER decision rules, Naive Bayes, 3-Nearest 

Neighbors, Support Vector Machine (SVM), Random 
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Forest, Bagging and Adaboost M1 boosting. The 

algorithms were implemented in Weka [22], an open-

source machine learning suite. Default parameter settings 

were used in all cases, except for Adaboost M1, where 

the algorithm to train the base classifier was replaced 

with Fast Decision Tree Learner. Machine learning 

experiments proceeded in two steps. 

In the first step of machine learning experiments we 

compared the classification accuracy of the eight 

machine learning algorithms and of all single attributes 

sets described Section 4: reference, body, body with 

reference z, first-snapshot body, first-snapshot body with 

reference z and angles. The results are shown in Table 1. 

The accuracy was computed with ten-fold cross-

validation. The accuracy of the best attribute set for each 

algorithm is in bold type; the accuracy of the best 

algorithm for each attribute set is on gray background. 

Attribute set 
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 Clean data 

C4.5 decision trees 94.1 92.8 93.7 92.9 93.2 91.8 

RIPPER  

decision rules 
93.1 91.4 92.8 92.0 93.0 90.9 

Naive Bayes 89.5 88.7 90.6 86.8 88.2 76.7 

3-Nearest Neighbor 97.1 92.0 82.8 88.1 85.1 96.9 

SVM 97.7 94.4 95.0 94.1 94.3 90.5 

Random Forest 97.0 96.5 96.8 96.0 96.0 96.8 

Bagging 95.9 95.3 95.7 95.4 94.9 94.5 

Adaboost M1 

boosting 
97.7 94.9 95.3 94.7 94.7 94.4 

 Noisy data 

C4.5 decision trees 90.1 88.4 89.9 88.9 90.0 80.8 

RIPPER  

decision rules 

87.5 84.7 88.1 86.2 88.6 80.0 

Naive Bayes 83.9 79.1 84.0 81.0 82.2 78.2 

3-Nearest Neighbor 95.3 74.6 79.7 73.4 74.7 93.3 

SVM 96.3 87.2 91.6 89.9 91.1 87.2 

Random Forest 93.9 90.5 93.4 91.9 93.2 90.5 

Bagging 93.6 91.8 93.3 92.3 93.5 89.1 

Adaboost M1 

boosting 
93.2 92.0 93.1 92.1 92.9 88.4 

Table 1: Classification accuracy for all the algorithms 

and all single attribute sets. 

For the next step of machine learning experiments, 

we retained the best algorithms and the best attribute 

sets. To rank them, we compared the classification 

accuracies of all pairs of algorithms and all pairs of 

attribute sets. Table 2 shows the number of comparisons 

in which a given algorithm statistically significantly (p < 

0.05) wins over another algorithm, minus the number of 

comparisons where it loses. Table 3 shows the same for 

the attribute sets. The accuracies of the algorithms and 

attribute sets selected for the second step are on grey 

background; the accuracies of the best algorithm and 

attribute set are in bold type. Since the second step 

consisted of combining the attribute sets, the selection of 

the sets to retain was based more on redundancy than 

classification accuracy.  Thus we retained angles, but not 

the two first-snapshot body attributes (even though the 

latter have a higher accuracy), because first-snapshot 

body attributes are very similar to regular body attributes. 

We chose body attributes with the body z axis over body 

attributes with the reference z axis (even though the latter 

again have a higher accuracy), because the reference z 

coordinates are already included in the reference 

attributes. The comparison between every-snapshot and 

first-snapshot body attributes slightly favors the latter, 

but we nevertheless retained the former because they are 

computed more quickly. 

Algorithm Wins – losses 

Clean Noisy 

C4.5 decision trees –12 –10 

RIPPER decision rules –18 –21 

Naive Bayes –38 –34 

3-Nearest Neighbor –13 –16 

SVM 13 11 

Random Forest 38 23 

Bagging 17 25 

Adaboost M1 boosting 13 22 

Table 2: The number of wins – the number of losses of 

every algorithm against the others for clean and noisy 

data 

Attribute set Wins – losses 

Clean Noisy 

reference 25 28 

body –2 –21 

body with reference z 9 20 

first-snapshot body –11 –9 

first-snapshot body with reference z –2 12 

angles –19 –30 

Table 3: The number of wins – the number of losses of 

every single attribute set against the others for clean and 

noisy data 

After selecting the best algorithms and attribute sets, 

we proceeded with the second step of machine learning 

experiments. In this step we tried combinations of 

attribute sets. Table 4 shows the classification accuracy 

for the four algorithms we retained and all the reasonable 

combinations of the remaining attribute sets. The 

accuracy of the best combination of attributes for each 

algorithm is in bold type; the accuracy of the best 

algorithm for each combination of attributes is on gray 

background. 
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 Clean data 

SVM 96.6 96.9 97.7 95.3 95.5 96.7 96.9 

Random Forest 97.0 97.0 97.2 96.7 96.9 97.1 97.0 

Bagging 96.1 96.0 96.1 95.6 95.7 96.3 96.0 

Adaboost M1 

boosting 
95.7 95.6 95.5 95.3 95.3 95.6 95.5 

 Noisy data 

SVM 95.5 95.4 96.5 91.9 92.5 95.6 95.5 

Random Forest 93.8 94.2 94.1 91.8 93.5 93.9 94.0 

Bagging 93.8 94.1 93.7 92.4 93.4 93.8 94.1 

Adaboost M1 

boosting 

93.6 93.7 93.2 93.2 93.3 93.6 93.7 

Table 4: Classification accuracy for the retained 

algorithms and combinations of attribute sets. 

6 Conclusion 
We first investigated the work done so far in the area of 

fall detection and activity recognition. Fall detection 

methods were based on the accelerations and velocities 

of body parts and on visual cues. These data will not be 

available in the Confidence system, at least not directly. 

What will be available are the locations of body parts. 

Accelerations and velocities can be computed from the 

changes in these locations, but with questionable 

accuracy. We decided to use velocities, since they are 

expected to be more accurate than accelerations, and the 

locations of body parts themselves. Some work on 

activity recognition was also based on accelerations and 

velocities, but there were approaches better suited to 

Confidence as well. We were mostly inspired by the 

work of Sukthankar and Sycara [17], who used machine 

learning on attributes representing the body posture. 

We then examined various attributes and machine 

learning algorithms to detect six common activities. The 

attributes were the coordinates of body parts in the 

reference coordinate system, the coordinates of body 

parts in four different body coordinate systems and the 

angles between adjacent body parts. We first compared 

the attribute sets in isolation and then in combinations. 

The reference coordinates were the best single attribute 

set. In combination with the angles, they gave the highest 

overall classification accuracy, although it should be 

noted that all the combinations were close in 

performance. We compared eight machine learning 

algorithms, from which Support Vector Machine 

produced the most accurate classifier: the accuracy on 

clean data was 97.7 % and on noisy data 96.5 %. It was 

closely followed by Random Forest, Bagging and 

Adaboost M1 boosting. 

There are four directions for future work. The first is 

tuning the machine learning algorithms discussed in this 

paper and augment them with feature selection 

techniques. This is done relatively easily, but will 

probably not contribute much to the classification 

accuracy. The second direction is to take into account the 

temporal information: each activity takes usually lasts for 

some time and some transitions between activities are 

more likely than others. This information can help us 

correct some erroneous classifications, e.g., a single 

falling in a long sequence of walking must be an error. 

The third direction is using fewer than 12 tags, since a 

potential product resulting from the Confidence project is 

unlikely to use the full complement of tags. The last 

direction for future work is experimenting with 

recordings of additional behaviors. These may be 

variations of the existing ones to test the robustness of 

the classifier or entirely new activities to increase the 

classifier’s scope. 

Concerning the Confidence project, the results 

described in this paper are encouraging. The 

classification accuracy of over 95 % leads us to believe 

that once the planned improvements are implemented, 

the frequency of false alarms will be low enough for the 

Confidence system to be useful. 

Acknowledgement 
This work was supported by the Slovenian Research 

Agency under the Research Programme P2-0209 

Artificial Intelligence and Intelligent Systems. The 

research leading to these results has also received 

funding from the European Community's Framework 

Programme FP7/2007–2013 under grant agreement nº 

214986. Consortium: CEIT (coordinator), Fraunhofer 

Institute for Integrated Circuits (IIS), Jožef Stefan 

Institute, Ikerlan, COOSS Marche, University of 

Jyväskylä, Umeå Municipality, eDevice, CUP2000 

S.p.A/Ltd., ZENON S.A. Robotics & Informatics. We 

would like to thank Matjaž Gams for suggestions and 

discussion and Barbara Tvrdi for help with 

programming. 

References 
[1] AlertOne Services, Inc.  iLife™ Fall Detection 

Sensor. http://www.falldetection.com, 2008-07-18. 

[2] Bourke, A. K., and Lyons, G. M. A threshold-based 

fall-detection algorithm using a bi-axial gyroscope 

sensor. Medical Engineering & Physics, vol. 30, 

issue 1, pp. 84–90, 2006. 

[3] Bourke, A. K., Scanaill, C. N., Culhane, K. M., 

O'Brien, J. V., and Lyons, G. M. An optimum 

accelerometer configuration and simple algorithm 

for accurately detecting falls. In Proceedings of the 

24th IASTED international Conference on 

Biomedical Engineering, pp. 156–160, 2006. 

[4] Confidence. http://www.confidence-eu.org, 2008-

09-15 

http://www.falldetection.com/
http://www.confidence-eu.org/


212 Informatica 33 (2009) 205–212 M. Luštrek et al. 

[5] Doughty, K., Lewis, R., and McIntosh, A. The 

design of a practical and reliable fall detector for 

community and institutional telecare. Journal of 

Telemedicine and Telecare, vol. 6, pp. 150–154, 

2000. 

[6] eMotion. Smart motion capture system. http://www. 

emotion3d.com/smart/smart.html, 2008-09-15. 

[7] Eurostat. http://epp.eurostat.ec.europa.eu, 2008-09-

09. 

[8] Fu, Z., Culurciello, E., Lichtsteiner, P., and 

Delbruck, T. Fall detection using an address-event 

temporal contrast vision sensor. In Proceedengs of 

the IEEE International Symposium on Circuits and 

Systems – ISCAS 2008, pp.  424–427, 2008. 

[9] Kaluža, B., and Luštrek M.. Fall Detection and 

Activity Recognition Methods for the Confidence 

Project: A Survey. In Proceedings of the 12th 

International Multiconference Information Society 

2008, vol. A, pp. 22–25, 2008. 

[10] Kangas, M., Konttila, A., Lindgren, P., Winblad, P., 

and Jamsa, T. Comparison of low-complexity fall 

detection algorithms for body attached 

accelerometers. Gait & Posture, vol. 28, issue 2, pp. 

285–291, 2008. 

[11] Kangas, M., Konttila, A., Winblad, I., and Jamsa, T. 

Determination of simple thresholds for 

accelerometry-based parameters for fall detection. 

In Proceedings of the 29th Annual International 

Conference of the IEEE, Engineering in Medicine 

and Biology Society, pp. 1367–1370, 2007. 

[12] Luštrek, M., and Gams, M. Posture and movement 

recognition from locations of body tags. European 

Conference on Ambient Intelligence, "Ambient 

Assisted Living" and "Personal Health" – between 

Paragdigms, Projects and Products workshop, 2008. 

[13] Luštrek, M., and Gams, M. Prepoznava položaja 

telesa s strojnim učenjem. In Proceedings of the 

12th International Multiconference Information 

Society 2008, vol. A, pp. 30–33, 2008. 

[14] Maybeck, P. S. Stochastic models, estimation, and 

control. Mathematics in Science and Engineering 

141, 1979. 

[15] Noury, N., Barralon, P., Virone, G., Boissy, P., 

Hamel. M., and Rumeau, P. A smart sensor based 

on rules and its evaluation in daily routines. In 

Proceedings of the 25th Annual International 

Conference of the IEEE, Engineering in Medicine 

and Biology Society, vol. 4, pp. 3286–3289, 2003. 

[16] Qian, G., Guo, F., Ingalls, T., Olson, L., James, J., 

and Rikakis, T. A Gesture-Driven Multimodal 

Interactive Dance System. In Proceedings of the 

International Conference on Multimedia and Expo, 

Taipei, Taiwan, 2004. 

[17] Sukthankar, G., and Sycara, K. A Cost Minimization 

Approach to Human Behavior Recognition. In 

Proceedings of the Fourth international Joint 

Conference on Autonomous Agents and Multiagent 

Systems 2005, pp. 1067–1074, 2005. 

[18] Tapia, E. M., Intille, S. S., Haskell, W., Larson, K., 

Wright, J., King, A., and Friedman, R. Real-Time 

Recognition of Physical Activities and Their 

Intensities Using Wireless Accelerometers and a 

Heart Rate Monitor. In Proceedengs of the 11th 

IEEE International Symposium on Wearable 

Computers, pp. 37–40, 2007. 

[19] Ubisense. http://www.ubisense.net, 2008-09-15. 

[20] Vishwakarma, V., Mandal, C., and Sura, S. 

Automatic Detection of Human Fall in Video. 

Pattern Recognition and Machine Intelligence: 

Automatic Detection of Human Fall in Video, pp. 

616–623, 2007. 

[21] Willis, D. J. Ambulation Monitoring and Fall 

Detection System using Dynamic Belief Networks. 

PhD Thesis, School of Computer Science and 

Software Engineering, Monash University, 2000. 

[22] Witten, I. H., and Frank, E. Data Mining: Practical 

machine learning tools and techniques, 2nd Edition. 

Morgan Kaufmann, San Francisco, USA, 2005. 

[23] Wu, G. Distinguishing fall activities from normal 

activities by velocity characteristics. Journal of 

Biomechanics, vol. 33, issue 11, pp. 1497–1500, 

2000. 

[24] Zhang, T., Wang, J., Liu, P., and Hou, J. Fall 

Detection by Embedding an Accelerometer in 

Cellphone and Using KFD Algorithm. International 

Journal of Computer Science and Network Security, 

vol. 6,  issue 10, 2006. 

[25] Zhang, T., Wang, J., Liu, P., and Hou, J.. Fall 

Detection by Wearable Sensor and One-Class SVM 

Algorithm. Lecture Notes in Control and 

Information Science, issue 345, pp. 858–863, 2006. 

 


