
Informatica 33 (2009) 143–149 143

Similarity Measures for Relational Databases

Melita Hajdinjak
University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
melita.hajdinjak@fe.uni-lj.si and http://matematika.fe.uni-lj.si/

Andrej Bauer
University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, 1000 Ljubljana, Slovenia
andrej.bauer@fmf.uni-lj.si and http://andrej.com/

Keywords: relational algebra, related answers, similarity search

Received: November 5, 2008

We enrich sets with an integrated notion of similarity, measured in a (complete) lattice, special cases of
which are reflexive sets and bounded metric spaces. Relations and basic relational operations of traditional
relational algebra are interpreted in such richer structured environments. An canonical similarity measure
between relations is introduced. In the special case of reflexive sets it is just the well known Egli-Milner
ordering while in the case of bounded metric spaces it is the Hausdorff metric. Some examples of how to
perform approximate searches (e.g., similarity search and relaxed answers) are given.

Povzetek: Z željo po iskanju bližnjih informacij in relaksiranih odgovorov množice obogatimo z merami
podobnosti. Interpretiramo relacije in operacije relacijske algebre.

1 Introduction

The relational algebra (4; 15), a relational data model with
five basic operations on relations, i.e., Cartesian product×,
projection π, selection σ, union∪, and set difference−, and
several additional operations such as θ-join or intersection,
has three main advantages over non-relational data models
(13):

– From the point of view of usability, the model has a
simple interpretation in terms of real-world concepts,
i.e., the essential data structure of the model is a rela-
tion, which can be visualized in a tabular format.

– From the point of view of applicability, the model
is flexible and general, and can be easily adapted to
many applications.

– From the point of view of formalism, the model is el-
egant enough to support extensive research and analy-
sis.

Hence, the relational data models have gained acceptance
from a broad range of users, they have gained popularity
and credibility in a variety of application areas, and they
facilitate better theoretical research in many fundamental
issues arising from database query languages and depen-
dency theory.

However, there are several applications that have evolved
beyond the capabilities of traditional relational data mod-
els, such as applications that require databases to coop-
erate with the user by suggesting answers which may be

helpful but were not explicitly asked for. The cooperative-
behaviour or cooperative-answering techniques (5) may be
differentiated into the following categories:

i.) consideration of specific information about a user’s
state of mind,

ii.) evaluation of presuppositions in a query,

iii.) detection and correction of misconceptions in a query,

iv.) formulation of intensional answers,

v.) generalization of queries and of responses.

The cooperative behaviour plays an important part, for
instance, in information-providing dialogue systems (7),
where the most vital cooperative-answering technique
leading to user satisfaction is generalization of queries and
of responses as shown by Hajdinjak and Mihelič (8). Gen-
eralization of queries and of responses, the aim of which is
to capture possibly relevant information, is often achieved
by query relaxation (6).

Another kind of applications not suitable for the tradi-
tional relational data models are applications which require
the database to be enhanced with a notion of similarity that
allows one to perform approximate searches (9). The goal
in these applications is often one of the following:

i.) Find objects whose feature values fall within a given
range or where the distance from some query object
falls into a certain range (range queries).
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ii.) Find objects whose features have values similar to
those of a given query object or set of query objects
(nearest neighbour queries and approximate nearest
neighbour queries).

iii.) Find pairs of objects from the same set or different
sets which are sufficiently similar to each other (clos-
est pairs queries).

Examples of such approximate-matching or similarity-
search applications are databases storing images, finger-
prints, audio clips or time sequences, text databases with
typographical or spelling errors, text databases where we
look for documents that are similar to a given document,
and computational-biology applications where we want to
find a DNA or a protein sequence in a database allowing
some errors due to typical variations.

Persuaded that many applications will never reach the
limitations of the widespread relational data model this
article focuses on traditional relational algebra equipped
with extra features that allow query relaxation and simi-
larity searches. Although a large body of work has ad-
dressed how to extend the relational data model to incor-
porate cooperativity, neighbouring information, and/or or-
derings (2; 3; 10; 11; 13), neither of them have succeeded
to fit into the representational and operational uniformity
of traditional relational algebra or even to reach a certain
degree of generality.

Therefore, we are going to talk about domains, similar-
ity, approximate answers, and nearness of data in a highly
systematic and comprehensive way, which will lead us to-
wards an usable, applicable, and a formaly strong general-
ization of the relational data model.

2 Sets with similarity
Most applications and proposed solutions of non-exact
matches and similarity search, which are not covered by
traditional relational algebra, have some common charac-
teristics – there is a universe of objects and a non-negative
distance or distance-like function defined among them. The
distance function measures how close are the non-exact
matches to the exact specifications that were given by the
user willing to accept approximate answers.

Instead of restricting only to distance metrics, we con-
sider more general similarity measures that satisfy the only
condition of being reflexive, i.e., every object is most simi-
lar to itself. Hence, rather than focusing on (ordinary sets)
or metric spaces, we will consider more general sets with
similarity, where a measure of similarity assigns to a pair of
objects a similarity value, which tells us how similar they
are. Note, we speak of similarity instead of distance – if a
point x moves toward a point y, the distance between x and
y gets smaller, but their similarity gets larger.

For the domain of possible similarity values we choose
complete lattices, i.e., partially ordered sets in which all
subsets have both a least upper bound (join) and a greatest
lower bound (meet).

Definition 1. A set with similarity is an ordered triple

A = (A,LA, ρA),

where A is the underlying set, LA is a complete lattice with
the least element 0A and the greatest element 1A, and

ρA : A×A → LA

is a measure of similarity in A satisfying the reflexivity con-
dition

ρA(x, x) = 1A

for all x ∈ A.

In the trivial case, if we take the complete lattice L2 of
boolean values {0, 1} equipped with minimum and maxi-
mum as the operations meet and join, respectively, ordered
with relation ≤, and define the similarity by

ρ(x, y) =

{
1, if x = y

0, if x 6= y,

the resulting set with similarity gains no additional struc-
ture. That is, it is equivalent to the underlying set.

There are many non-trivial similarities and, conse-
quently, non-trivial sets with similarity, such as reflexive
sets and bounded metric spaces.

Definition 2. A reflexive set is an ordered pair (A, /A),
where A is the underlying set, and

/A : A×A → L2

is a reflexive relation in A. Habitually, instead of
/A(x, y) = 1 we write x /A y.

Since x /A x for all x ∈ A, the reflexive relation /A can
be understood as a special case of a measure of similarity,
thus the reflexive set (A, /A) can be transformed to the set
with similarity (A,L2, /A) and embedded into sets with
similarity.

Definition 3. A bounded metric space is an ordered pair
(A, dA), where A is the underlying set, and

dA : A×A → [0,∞]

is a distance function, which satisfies the conditions of non-
negativity, symmetry, and triangle inequality:

a.) d(x, y) ≥ 0 (non-negativity)
and d(x, y) = 0 ⇐⇒ x = y,

b.) d(x, y) = d(y, x), (symmetry)

c.) d(x, y) ≤ d(x, y) + d(y, z).
(triangle inequality)
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In an arbitrary metric space the distance is measured by
values strictly smaller than ∞. By allowing ∞ as a dis-
tance we have in effect restricted to bounded metric spaces.
While the modest generalization of allowing ∞ as a sim-
ilarity value does not pose a serious restriction (databases
are usually built from finite, and therefore bounded sets of
data), it makes the set [0,∞], when ordered by the usual ≥
relation, a complete lattice L[0,∞] as required in sets with
similarity. Meet and join are computed as supremum and
infimum, respectively. Note that we turned [0,∞] upside
down so that the least element is ∞ and the greatest is 0.

Hence the metric dA is again a special case of a mea-
sure of similarity because dA(x, x) = 0, which is the
greatest element of the complete lattice L[0,∞]. Thus the
bounded metric space (A, dA) can be transformed to the
set with similarity (A,L[0,∞], dA) and embedded into sets
with similarities.

3 Tables, relations, and basic
relational operations

A relational database is composed of several relations in the
form of two-dimensional tables of rows and columns con-
taining related tuples. The rows (tuples) are called records
and the columns (fields in the record) are called attributes.
Each attribute has a data type that defines the set of possible
values. Thus a relation is a subset of a Cartesian product of
sets (value domains).

3.1 Cartesian products and subsets

In order to use sets with similarity instead of (ordinary)
sets we need a suitable notion of relation between sets with
similarity. Hence we first need to know how to interpret
Cartesian products and subsets of sets with similarity in a
natural and effective way.

Definition 4. The Cartesian product of sets with similarity
A = (A,LA, ρA) and B = (B,LB , ρB) is the set with
similarity

A×B = (A×B, LA × LB , ρA×B),

where A×B is the Cartesian product of sets, LA×LB is the
product of complete lattices, and the measure of similarity
ρA×B is given by

ρA×B((x1, y1), (x2, y2)) = (ρA(x1, x2), ρB(y1, y2)).

The corresponding canonical projections are (π1, p1) :
A × B → A and (π2, p2) : A × B → B, where π1 and
π2 are projections of sets, but p1 and p2 are projections of
complete lattices.

This interpretation of Cartesian products of sets with
similarity is sound since a product of complete lattices is

a complete lattice (14) and ρA×B satisfies the condition of
being a measure of similarity:

ρA×B((x, y), (x, y)) = (ρA(x, x), ρB(y, y))
= (1A, 1B)
= 1A×B ,

where 1A is the greatest element of LA, 1B is the greatest
element of LB , and 1A×B is the greatest element of the
complete lattice LA × LB .

Further, we have decided to consider only those sub-
objects or substructures I of the set with similarity A =
(A, LA, ρA) whose similarity measure is induced by the
structure of A. That is, the underlying set is a subset of
A but the measure of similarity and the corresponding lat-
tice are inherited from (A). Even though the domain of the
measure of similarity has changed from A×A to I× I , we
will keep the notation ρA and write I = (I, LA, ρA).

Definition 5. (i.e., the Egli-Milner ordering and the Haus-
dorff metric) A subset of the set with similarity A =
(A, LA, ρA) is a set with similarity I = (I, LA, ρA), where
I ⊆ A. Subsets of sets with similarity will also be called
induced subobjects.

3.2 Relations and basic relational
operations

The family of subsets of A, denoted by IndSub(A), is es-
sentially just the power set P(A).

Theorem 1. The induced subobjects of a set with simi-
larity A = (A,LA, ρA) form a complete boolean algebra
equivalent to P(A), in which all the basic relational opera-
tions can be properly interpreted.

The formal proof is given in (7). However, the Boolean
lattice IndSub(A) is ordered with the usual subset rela-
tion, where the least element is the empty subobject ∅ =
(∅, LA, ρA) and the greatest element is A. Hence selection,
union, and difference are calculated as usual (A1, A2 ⊆ A):

σF (A1, LA, ρA) = (σF (A1), LA, ρA),
(A1, LA, ρA) ∪ (A2, LA, ρA) = (A1 ∪A2, LA, ρA),
(A1, LA, ρA)− (A2, LA, ρA) = (A1 −A2, LA, ρA).

Moreover, Cartesian products, projections, selections,
unions, and differences of induced subobjects satisfy all the
abstract properties that are axiomatized by relational calcu-
lus (15; 16).

A relation between two objects of the category of simi-
larities, namely A = (A,LA, ρA) and B = (B, LB , ρB),
is now determined by a subset R ⊆ A×B, which induces
a subobject (R, LA × LB , ρA×B) of the Cartesian product
A × B. Hence tables and answers to queries are modeled
as induced subobjects.
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4 Similarity of relations
Sets with similarity enjoy additional constructions, which
do not exist at the level of underlying sets. For instance, a
suitable notion of similarity / between induced subobjects
can be defined.

In the case of the reflexive set (A, /A), which is equipped
with a reflexive relation /A establishing connections be-
tween certain elements of A, we propose to take the nat-
urally integrated Egli-Milner ordering. Its importance in
data models was also recognized by Buneman, Jung, and
Ohori (1).

Definition 6. Let A1 = (A1, /A) and A2 = (A2, /A) be
two induced subobjects of the reflexive set A = (A, /A).
The Egli-Milner ordering is given as follows:

A1 / A2 ⇐⇒ (∀x ∈ A1 ∃y ∈ A2 : x /A y) and
(∀y ∈ A2 ∃x ∈ A1 : x /A y).

On the other hand, in the case of the bounded metric
space (A, dA), which is equipped with a distance function
dA, we propose to take the well-known Hausdorff metric.
It has several applications, for instance, in fractal geometry,
in numerical mathematics, and in pattern recognition.

Definition 7. Let A1 = (A1, dA) and A2 = (A2, dA) be
two induced subobjects of the bounded metric space A =
(A, dA). The Hausdorff metric is defined as follows:

d(A1, A2) = max{supx∈A1
infy∈A2{dA(x, y)},

supy∈A2
infx∈A1{dA(x, y)}}.

Note, in the trivial example of ordinary sets (without
similarity), it is straightforward that two induced subob-
jects (ordinary subsets) of a given set can only be similar if
they are equal, i.e., if they share all the elements.

The following theorem generalizes the above-defined,
special notions of similarity between induced subobjects
and proposes a similarity measure in IndSub(A).

Theorem 2. Let A1 = (A1, LA, ρA) and A2 =
(A2, LA, ρA) be two induced subobjects of the set with
similarity A = (A,LA, ρA). The Egli-Milner ordering
from reflexive sets and the Hausdorff metric from bounded
metric spaces can be generalized to sets with similarity as
follows:

ρ(A1, A2) =

= (
∧

x∈A1

∨

y∈A2

ρA(x, y) ) ∧ (
∧

y∈A2

∨

x∈A1

ρA(x, y) ),

where all the meets and joins are computed in the complete
lattice LA.

The proof of this theorem and some highly-desirable
properties of the generalized similarity measure ρ, such as

i.) the empty induced subobject is completely dissimilar
to any other induced subobject and

ii.) every induced subobject is most similar to itself,

are given in (7). Note, if infinite sets are allowed, theorem 2
requires from the sets with similarity to be equipped with
complete (!) lattices (see definition 1).

5 Approximate searches

As already explained, tables and answers to queries are
modeled as induced subobjects. Each column is equipped
with its own measure of similarity (integrated within sets
with similarity), and from all these we build the measure
of similarity for the whole table (see definition 4), which
can be used to make comparisons between pairs of rows,
find rows whose distance from some origin falls into a cer-
tain range, find nearest neighboring rows or closest pairs of
rows. Hence we can perform all types of similarity search.

Moreover, the measure of similarity ρ (see theorem 2)
between induced subobjects could serve to measure the
nearness or exchangeability of the exact and the relaxed
answer to a query, for comparing instances of a time-
dependent table, or track changes made to a table. While
in the special case of reflexive sets, the Egli-Milner rela-
tion tells us only when a table or an answer is interchange-
able with another one, in the special case of bounded met-
ric spaces, the Hausdorff metric allows a more fine-grained
control of relaxation.

Example 1. Let tables 1 and 2 contain data about the users
of an Internet forum at two consecutive days (day 1 and day
2).

NAME NICK CITY
Marko obi Maribor
Maja maja Ljubljana

Darko Koren dare Koper

Table 1: Table of users at day 1.

NAME NICK CITY
Hujs Marko marko Pragersko

Maja maja Ljubljana
Darko Koren dare Koper
Meta Novak metan Maribor

Jernej jernej Kranj

Table 2: Table of users at day 2.

The relational schema of tables 1 and 2 is

[P : NAME,N : NICK, C : CITY],

where the domains corresponding to the atributes P , N ,
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and C are the following sets with similarity:

NAME = (Strings, LStrings, ρStrings),
NICK = (Strings, LStrings, ρStrings),
CITY = (Cities, L[0,∞], dCities).

Here, Strings is the set of all strings of maximum length
30 and Cities is the set of all possible cities, towns, and
villages in the world. The complete lattice LStrings is the
linearly ordered set {0, 1, . . . , 30} with the order relation
≥ and L[0,∞] is the complete lattice from definition 3. The
measures of similarity are defined as follows:

• The measure of similarity ρStrings is the Damerau-
Levenshtein distance (12), given as the minimum
number of operations needed to transform one string
into the other, where an operation is an insertion, dele-
tion, or substitution of a single character or a transpo-
sition of two characters. Since the length of the strings
is bounded by 30, the Damerau-Levenshtein distance
is at least 0 (the greatest element in the lattice LStrings)
and at most 30 (the least element in the lattice LStrings).

• The measure of similarity dSlovenia calculates the
similarity of two cities as their air distance given as the
Euclidean distance (in kilometres) between the Gauss-
Krüger coordinates of the city centers (we have used
the tool from http://www2.arnes.si/).

The measure of similarity corresponding to the Cartesian
product

USERS = NAME× NICK× CITY

of given sets with similarity is defined in accordance with
definition 4:

ρUsers((p1, n1, c1), (p2, n2, c2)) =
= (ρStrings(p1, p2), ρStrings(n1, n2), dCities(c1, c2)),

where (p1, n1, c1) and (p1, n1, c1) are two rows of the
given table instance, i.e., elements of the Cartesian prod-
uct of sets:

Users = Strings× Strings× Cities.

For instance, the similarity between the first rows of the
two tables 1 and 2 is equal to (5, 5, 18.3), but the similar-
ity of the last two rows of table 2 is equal to (9, 5, 189.9).
Clearly, (9, 5, 189.9) ≥ (5, 5, 18.3), which means that the
first pair of rows is more similar than the second one, i.e.,
the similarity value of the first pair is higher in the complete
lattice

LUsers = LStrings × LStrings × L[0,∞]

than the similarity value of the second pair. Note, since
LUsers is not linearly ordered, there are also uncomparable
elements in the lattice.

Furthermore, the measure of similarity ρ between in-
duced subobjects A and B of the Cartesian product USERS
can be defined in accordance with theorem 2:

ρ(A, B) =

= (
∧

x∈A

∨

y∈B

ρUsers(x, y) ) ∧ (
∧

y∈B

∨

x∈A

ρUsers(x, y) ),

where all the meets and joins are computed in the complete
lattice LUsers. Hence the similarity between the given ta-
ble instances is equal to (9, 4, 106.9). The similarity would
certainly decrease if one of the tables would be increased
in size by users living far from Slovenia and/or have or
use much longer names or nicks. Clearly, if the similar-
ity measures integrated within the sets with similarity were
changed, the similarity value between the two table in-
stances would also change and possibly have a different
interpretation. Hence the usefullness of the calculated sim-
ilarity values depends highly on the definitions of the basic
similarity measures.

Example 2. Let table 3 contain a portion of public-
transport bus routes in Ljubljana (Slovenia).

The relational schema of table 3 corresponding to rela-
tion BUSES is

[R : ROUTE,D : DEPATURE,DT : DTIME,

A : ARRIVAL,AT : ATIME],

where the domains corresponding to the atributes R, D,
DT , A, and AT are the following sets with similarity:

ROUTE = (Buses, L2, σBuses),
DEPARTURE = (Stops, LStops, σStops),

DTIME = (Time, LTime, σTime),
ARRIVAL = (Stops, LStops, σStops),

ATIME = (Time, LTime, σTime).

Here, Buses and Stops are the sets of bus routes and bus
stops in Ljubljana, respectively. Time is the set of all pos-
sible times of the form HH:MM, where HH denotes hours
written as 00, 01, . . . , 23 and MM denotes minutes writ-
ten as 00, 01, . . . , 59. The complete lattice LStops is the
linearly ordered set {0, 1, . . . ,M,∞} of non-negative in-
tegers (smaller than the number of all bus stops M ) and the
infinity value ∞ with the order relation ≥. The complete
lattice LTime is the linearly ordered set Time with 23:59 be-
ing the least element and 00:00 being the greatest element.
Moreover, lattice L2 is the lattice of boolean values from
definition 2.

The measures of similarity are defined as follows:

• The measure of similarity σBuses says 1 if the given bus
routes are equal and 0 if they are not.

• The measure of similarity σStops calculates the similar-
ity of the given bus stops as the minimum number of
bus stops needed to pass by bus to come from the first
bus stop to the second. If it is impossible to do this,
the similarity value given is equal to ∞.
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ROUTE DEPARTURE DTIME ARRIVAL ATIME Exchangeability

9 (Štep. naselje-Trnovo) 145 (Emona) 9:58 026 (Konzorcij) 10:25 (1,0,23:58,4,00:25)
5 (Štep. naselje-Podutik) 145 (Emona) 10:10 025 (Hotel Lev) 10:26 (1,0,00:10,6,00:26)
13 (Sostro-Bežigrad) 145 (Emona) 10:11 059 (Bavarski dvor) 10:24 (1,0,00:11,5,00:24)
9 (Štep. naselje-Trnovo) 145 (Emona) 10:14 026 (Konzorcij) 10:41 (1,0,00:14,4,00:41)
6 (Črnuče-Dolgi most) 058 (Bavarski dvor) 10:29 034 (Hajdrihova) 10:32 (1,6,00:29,0,00:32)
1 (Vižmarje-Mestni log) 024 (Kolizej) 10:36 034 (Hajdrihova) 10:49 (1,7,00:36,0,00:49)
6 (Črnuče-Dolgi most) 026 (Konzorcij) 10:41 034 (Hajdrihova) 10:46 (1,8,00:41,0,00:46)
1 (Vižmarje-Mestni log) 026 (Konzorcij) 10:44 034 (Hajdrihova) 10:49 (1,8,00:44,0,00:49)
6 (Črnuče-Dolgi most) 026 (Konzorcij) 10:47 034 (Hajdrihova) 10:54 (1,8,00:47,0,00:54)

Table 3: Table of public-transport bus routes in Ljubljana. The last column contains data about the exchangeability of
each row with an exact answer to the query given within example 2.

• The measure of similarity σTime calculates the similar-
ity of two time moments as their difference (second
minus first) in form of HH:MM.

Now consider the query “It is 10 o’clock and I am at
the Emona bus stop. Are there any buses to Hajdrihova?
I would like to arrive as soon as possible.”, written in the
language of relational algebra (4):

σD=Emona∧DT =10:00∧A=Hajdrihova∧AT =10:00(BUSES).

The last column of table 3 contains the calculated similarity
or exchangeability values of the exact and the possibly re-
laxed answer (row). Notice that in table 3 there are no buses
satisfying all the conditions given by the user but there are
several buses that could be interesting for the user, such as
the buses described by the second or the third row. These
have a different destination, which is not a real handicap
since the user could take another bus to come to Hajdri-
hova, i.e., bus routes 1 and 6, respectively. However, if
we would like to suggest a suitable bus or a sequence of
buses, we just need to calculate a θ-join of the given re-
lation with the requirement that the arrival bus stop of the
first and the departure bus stop of the second bus are (basi-
cally) the same, i.e., there are no bus stops between them,
maybe one only needs to cross the street.

6 Conclusion
We have defined the mathematical structure of sets with
similarity that allows us to treat the features of richly-
structured data, such as order, distance, and similarity, in
a theoretically sound and uniform way. The proposed mea-
sures of similarity allow us to perform all types of similar-
ity search.

In addition, we now briefly discuss possible implemen-
tations of the resulting databases enriched with measures of
similarity. Clearly, the user should be able to query approx-
imate or cooperative data from databases without being
concerned about the internal structure of data. Hence some
default similarity measures should be integrated within the
database. But still, the user should have the opportunity to
modify the default notions of similarity if he/she is willing
to do this.

However, the question that arises is how to store the de-
fined similarity measures. When the size of the data set
A is small, the evident way to store a similarity measure
ρA : A×A → LA is in tabular form, i.e., as a relation

ρA ⊆ A×A× LA.

This kind of representation quickly becomes inefficient
since it requires space quadratic in the size of A. Fortu-
nately, in most cases the similarity measure can be easily
calculated so that there is no need for storing it.

There are two typical examples of similarity measures
that can be computed rather than stored. First, distance-
like similarities are computed from auxiliary data, such as
geographic location, duration, and various other features
that only require a minimal amount of additional storage.

Second, reflexive relations are often defined in terms of
deduction rules, e.g., it may be known that the relation is
symmetric or transitive. In such cases we only store the
base cases in a database, and deduce the rest from them.
This is precisely the idea behind deductive database lan-
guages, such as Datalog.
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Evaluation Framework: Issues and Findings, Compu-
tational Linguistics 32/2, MIT Press, pp. 263–272.

[9] G. R. Hjaltason, H. Samet (2003) Index-Driven Simi-
larity Search in Metric Spaces, ACM Transactions on
Database Systems 28/4, Association for Computing
Machinery, pp. 517–580.

[10] A. Motro (1988) VAGUE: A User Interface to Re-
lational Databases that Permits Vague Queries, ACM
Transactions on Office Information Systems 6/3, As-
sociation for Computing Machinery, pp. 187–214.

[11] A. Motro (1990) FLEX: A Tolerant and Cooperative
User Interface to Databases, IEEE Transactions on
Knowledge and Data Engineering 2/2, IEEE Com-
puter Society, pp. 231–246.

[12] G. Navarro (2001) A guided tour to approximate
string matching, ACM Computing Surveys 33/1, As-
sociation for Computing Machinery, pp. 31–88.

[13] W. Ng (2001) An Extension of the Relational Data
Model to Incorporate Ordered Domains, ACM Trans-
actions on Database Systems 26/3, Association for
Computing Machinery, pp. 344–383.

[14] D. E. Rutherford (1965) Introduction to Lattice The-
ory, Oliver & Boyd, Edinburgh, London.

[15] J. D. Ullman (1988) Principles of Database and
Knowledge-Base Systems, Volume I, Computer Sci-
ence Press Inc., Rockville, Maryland.

[16] J. D. Ullman (1989) Principles of Database and
Knowledge-Base Systems, Volume II: The New Tech-
nologies, Computer Science Press, Inc., Rockville,
Maryland.



150 Informatica 33 (2009) 143–149 M. Hajdinjak et al.


