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The conventional neural network (NN) CMAC (Cerebellar Model Articulation Controller) can be 

applied in many real-world applications thanks to its high learning speed and good generalization 

capability. In this paper, it is proposed to utilize a neuro-evolutional approach to adjust CMAC 

parameters and construct mathematical models of nonlinear objects in the presence of the Gaussian 

noise. The general structure of the evolving NN CMAC (ECMAC) is considered. The paper 

demonstrates that the evolving NN CMAC can be used effectively for the identification of nonlinear 

dynamical systems. The simulation of the proposed approach for various nonlinear objects is performed. 

The results proved the effectiveness of the developed methods. 

Povzetek: Razvit je postopek za evolucijsko iskanje najbolj prilagojene CMAC (Cerebellar Model 

Articulation Controller) nevronske mreže za probleme z Gaussovim šumom. 

1 Introduction 
Using a mathematical model of the cerebellar cortex 

developed by D. Marr [1] in 1975 J. Albus proposed a 

model describing the motion control processes that occur 

in the cerebellum, which was subsequently implemented 

in the neural network controller for controlling the robot 

- arm, which he called CMAC - Cerebellar Model 

Articulation Controller [2, 3]. Ease of implementation 

and a good network of approximating properties have 

ensured its wide usage not only in the tasks of controlling 

the robotic arm in real time, but also to solve many other 

practical problems [4-14]. 

However, it should be noted that in designing a 

network CMAC a number of difficulties in the selection 

of parameters such as the number of levels and the 

quantization levels, the shape of the receptive field, the 

type of applied information hashing algorithm and 

training. These parameters have a significant impact on 

the accuracy and speed of CMAC network, and 

therefore, the determination of the optimal values of 

these parameters is an important practical problem.  In 

this article, for eliminating the drawbacks of traditional 

methods of synthesis and functioning ANN CMAC we 

provide the use of a new class of networks - evolving 

ANN (EANN) in which, in addition to traditional 

learning it is used another fundamental form of 

adaptation - evolution, realized by applying the 

evolutionary computation [15-18]. 

The use of two forms of adaptation in EANN - 

evolution, and training, allowing to change the network 

structure, its parameters and learning algorithms without 

external intervention, make the network data most 

suitable for work in non-stationary conditions and 

uncertainty about the properties of the object under study 

and the conditions of its functioning. 

The main advantage of using evolutionary 

algorithms (EA) as learning algorithms is that many 

ANN parameters can be encoded in the genome and 

determined in parallel. Moreover, unlike most 

optimization algorithms designed to solve a problem, EA 

operate with a multitude of solutions - the population, 

which allows reaching a global minimum, without 

getting stuck in the local ones. In this case, information 

about each individual of the population is encoded in a 

chromosome (genotype), and the solution (phenotype) is 

obtained after evolution (selection, crossing, mutation) 

by decoding. 

Among EAs that are stochastic and include 

evolutionary programming, evolutionary strategies, 

genetic algorithms, genetic programming, in particular, 

programming with gene expression, genetic algorithms 

(GA) are the most common [19,20]. GA abstract the 

fundamental processes of Darwinian evolution: natural 

selection and genetic changes due to recombination and 

mutation. 

2 Neural network CMAC 
The modification of the network proposed by Albus is 

shown in Figure 1. The network consists of the input, 

hidden and output layers, labeled L1, L2, L3, 

respectively, and uses two basic conversions: 

    S: XA,                      (1) 

           P: Ay,                             (2) 

where X - N-dimensional space of continuous input 

signals; A - n-dimensional space associations; y - a one-

dimensional output. 
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Converting SA, in turn, consists of two 

transformations: 

           XM   (3) 

           MA,   (4) 

where M - the space of binary variables. 

The principle of the network operation as an 

associative memory is as follows. Approximated function 

y = f (x) is given to a limited number of points (argument 

values) x constituting N-dimensional space of the input 

signals. This space is divided into subspaces M formed 

the input signals x(i) ( M,1i = ). 

A number of subspaces M impacts the accuracy of 

the network and number of utilized memory cells. 

Therefore, on the one hand, side it should be big enough 

to ensure good approximation capabilities of the network 

and on the other hand side, it should be not too big to 

save some memory. In constructing the cerebellum 

model Albus proceeded from the fact that the appearance 

of the excitation signal activates its a certain area of the 

cerebellum, or receptive field, characterized by a 

parameter ρ. 

Therefore, storage of values of y(i) (network output 

signal) corresponding to x(i)  ( M,1i = ), used ρ memory 

cells, the number of which is constant for all vectors of 

the input signals on the network. At receipt of the input 

signal x(i) a signal y(i) appears at network output, which 

is the sum of ρ addressable cells content. 

Associative CMAC properties manifest themselves 

in the form of used addressing, which is based on a 

special coding input information and called hash coding 

or hashing [21-23]. 

3 Encoding information in CMAC 
Information coding in the network means that to each N-

dimensional input vector x(i) an n-dimensional 

association vector a(i), is assigned and stored in virtual 

memory. 

Elements of a(i) can take the values from the interval 

[0, 1] (in the papers cited above it is assumed that these 

elements take the values 0 or 1). Thus only ρ << n 

elements of the vector have non-zero values, i.e. only ρ 

memory elements are active. 

A continuous plurality of input signals by sampling 

(at the level of quantization) is converted into discrete. 

Thus to represent the i-th input signal components Ri 

quantization levels used with the appropriate 

quantization step ri ( ). It should be noted that the 

accuracy of the system identification depends 

substantially on the size of the quantization step, and loss 

of stability is possible in digital automated control 

systems with an incorrect choice of this parameter. 

 

Each stage is characterized by a corresponding 

association matrix Ai , only one element of 

which is different from zero. 

Construction associations vector as follows. For a 

given total number of input signals association matrix Ai 

of each quantization stage ( ) are formed. The 

columns of these matrixes form association vectors ai (

). 

The dimension of these vectors, n, equal to the sum 

of all elements of the matrices Ai ( ) and can be 

calculated by the formula: 

N,1i =

( ),1=i

,1i =

,1i =

,1i =

 
Figure 1: Albus network. 
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where R - the number of used levels for quantizing input 

signals; N - the dimension of the input vector;  - means 

rounded to the nearest whole number. 

Since all ρ matrices Ai ( ,1i = ) have only one non-

zero element, from the n components of the vector a(i) 

only ρ are non-zero. 

The quantization region is arranged in such a way, 

that any of them relating to the adjacent stages have not 

more than (ρ - 1)-th connection. This corresponds to a 

restriction on the maximum total number of cells equal to 

(ρ - 1) used for storing two different vectors of the input 

signals in which their recognition is still possible. 

4 Selecting the basic functions of 

neurons 
Selecting the basic functions of neurons in L1 layer 

significantly affects the approximating properties of 

CMAC network. 

As already noted, the traditional CMAC performs 

piecewise constant approximation, that is a consequence 

of the usage of neurons with a rectangular activation 

function. 

When choosing rectangular basis functions 

computational cost will be minimal. Also, CMAC 

networks widely use B-splines as basis functions.  

B-splines undoubted advantage is the possibility of 

recurrent calculating in both the splines in accordance 

with the formula [24-27]: 
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and their derivatives -order: 
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where j - j-th spline’s node (center of the quantization 

field). 

Thus, after determining the active slot ],( 1 jj  −
 for 

the zero order B-spline, these expressions can be used to 

obtain the values of all nonzero B-spline of higher order 

and, if appropriate, their derivatives.  
Note that traditional СМАС uses zero order B-

spline. Selection of the first order B-spline leads to the 

triangular membership function, and selection of the 

fourth-order B-spline leads to membership function 

similar to the Gaussian. 

The CMAC network also uses Gaussian activation 

function of the form: 
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As a basis one can use trigonometric functions, for 

example, cosine: 
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where - i-th center of the quantization field; rj - 

quantization step of j-th component of the input signal. 

However, it should be noted that although the most 

commonly used Gaussian membership functions also 

allow a very simple calculation of derivatives and have 

the property of a local activation, it is difficult to allocate 

clearly enough their  activation boundary, which is often 

important for the implementation of the network that 

used, for example, scaling basis functions. 

In order to eliminate this disadvantage, one can use a 

modified Gaussian function that has the following form: 
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As seen from the expression (11), the function is 

strictly defined in the range (λ1, λ2), which simplifies the 

process of scaling basis functions when the network 

parameters such as R and ρ are changing. 

5 Network training 

Defining the network parameters, i.e. in the general case 

defining a vector ( )k , that includes all network 

parameters (weights, parameters of basis functions, etc.) 

is accomplished by training with the teacher. 

The training criterion can be presented as follows: 

  ( )
=

=
k

i

iekeF
1

)()(  ,                       (12) 

where ( ))(ie  - some loss function. 

 •
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Gradient network training algorithm has the 

following form: 
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where 0   – parameter that affects the training speed 

and which can be selected differently for different 

network parameters. 

Training of traditional CMAC that uses 

( ) 2( ) 0,5 ( )e i e i =  and rectangular basis functions, 

occurs on each step after the presentation of training 

pairs )}(),({ kykx , where )(ky  – function’s value, 

that corresponds )(kx , and consists in the correction of 

only those of its  weights that correspond to the single 

components of the association vector for a given vector 

)(kx .  

In this case, the training algorithm for all i , j , for 

which 1)()( == kaka ji , is the following: 
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where ]1,0(  – parameter that affects the speed of 

training. 

When membership functions with a form other than 

rectangular are used, this algorithm can be written as 

follows: 
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where )(k  - in general case a variable parameter. 

Multistep network training algorithms were 

considered in [7,8]. 

6 Evolving ANN CMAC 
During switching from ANN to EANN for all types of 

networks the common evolutionary procedure 

(initialization population, an estimation of the 

population, selection, cross-breeding, mutations) is used. 

Differences are only in the method of encoding the 

structure and parameters of a particular form of ANN in 

the chromosome. 

At the beginning of EA functioning, a population 0P  

that consisting of N individuals (ANN):

 NHHHP ,,..., 210 =  
is randomly initialized. The 

proper choice of the N’s value is very important as this 

parameter significantly affects the speed of the algorithm 

and its selection is critical for real-time systems.  

Each individual in the population at the same time 

gets its own unique description, encoded in the 

chromosome  Ljjjj hhhH ,..., 21=
, 

which consists 

of L gene, wherein  maxmin wwhij   - i-th value of j-

gene chromosome (
minw - the minimum and 

maxw - 

maximum allowable values, respectively). 

Figure 1 shows an example ECMAC chromosome’s 

format and the correspondence between genes and 

network parameters stored in the chromosome. It should 

be noted that chromosome length depends on the 

dimensionality of the problem and the maximum amount 

of memory. 

As seen from the drawing, it consists of a 

chromosome gene in which information about 

corresponding network parameters is stored. At the 

beginning of the chromosome, there are genes that 

contain information about the parameters of the noise 

and they are active only in case of the noisy 

measurements. Next gene’s block encodes the number of 

levels and the quantization steps, the shape of the 

receptive field of neurons and type of algorithm that is 

used for hashing information. 

Due to the large amount of the BF that can be used in 

CMAC, there is a special gene in its chromosome BF, 

that is responsible for coding the type of the used 

functions. There is also a gene H in the chromosome, that 

encodes a type of the hashing algorithm (If its value is set 

to 0 then hashing is not used). 

Then, in the chromosome, there is a group of genes 

encoding weighting parameters directly relevant to the 

associative neurons. During the initialization phase, 

initial values are assigned to all these parameters by 

using a random number generator. 

Since during evolution mutation may occur in the 

parameters affecting the amount of used associative 

neurons, the length of the chromosome can vary. The use 

of variable length chromosomes occur individuals with 

specific genetic code segments (introns) which are not 

used for coding characteristics [28-29]. 

Typically, introns are used in the EA: 

- as noncoding bits that are uniformly added to the 

genetic code (in this case, introns only fill the space 

between the active genes of the chromosome); 

- as the nonfunctional parts of the genetic code, i.e., 

parts of the decision which do not actually do anything, 

thus not affect the fitness of the chromosome (this 

usually occurs in the genetic programming and in the 

chromosomes, which are subject to the cycle of 

development after birth); 

-as posterior useless part of the chromosome, which 

do not participate in the calculation of its fitness (usually 

it manifests itself in some types of competitive-trained 

neural networks, in which only neurons-winners in 

contrast to other neurons that are a posteriori useless 

affect network performance results). 

Introns appear in other types of neural networks, 

where they are called potentially useful waste. 

The control of introns amount in the population 

carried out by: 

- the use of special operators, that alter the length of 

the chromosome and add or remove introns 
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(experimental results show that some number of introns 

improves overall properties EA); 

- the use of the selection operator: depending on the 

number of introns, the value of individual fitness 

function will increase or decrease. 

Once the initial population is formed, the fitness of 

each individual part in it evaluates by some defined 

fitness function. 

Conventionally, as such a function the quadratic one 

is used: 

( )
2

1

* )(ˆ)(
1

)( 
=

−=
M

i
ii xyxy

M
xF ,           (17) 

where )(* ky  - the desired network response; )(ˆ ky  - 

real output signal; M – sample size. 

The next step is the selection of individuals, the 

chromosomes of which are involved in the formation of 

the new generation, and subsequent hybridization.  

The task of crossing operator (crossover) is the 

transfer of genetic information from the parent 

individuals to their offspring.  

After completion of the operator’s work, any gene of 

any individual in the new population may mutate, i.e. 

change its value. 

Since chromosome uses hybrid coding, during the 

mutations various operations must be performed for 

different encoding methods.  

For example, in the case of the gene that is 

responsible for neuron’s activation and uses binary 

encoding, inverse mutation should be used.  

For coding the BF and weighting parameters, that 

uses real values, different types of mutations may be 

used. 

Thus ECMAC algorithm can be represented as 

follows: 

- create an initial population (initialization of each 

individual chromosome, estimation of the initial 

population);  

- the stages of evolution - the construction of a new 

generation (selection of candidates for mating /breeding, 

hybridization, i.e. causing by each pair of selected 

candidates some new individuals, mutation, evaluation of 

the new population); 

- check the completion criterion, if not satisfied - go 

back to the stages of evolution. 

7 First Modeling Experiment 
It is considered the problem of nonlinear dynamic object 

identification that is described by the equation: 
2 210 ( ) 50 ( 1)( ) max ;  ;u k y ky k e e− − −=


 

( )2 25 ( ) ( 1)
;  1.25 ( ),

u k y k
e k
− + −  +


         (18) 

where u(k) - the input signal, that is a stationary random 

sequence with the random uniform distribution in the 

interval [-1, 1]. 

During the study of this object, the population of 

CMAC networks consisting of 100 individuals was used.  

The population evolved during 500 epochs. All 

configurable network parameters (including R and ρ) 

were determined by EA.  

It should be noted that the values of R and ρ 

determine the amount of memory that is used for storing 

network parameters and significantly affect the accuracy 

of the approximation.  

Graphs of the network-winner fitness function and 

the required amount of memory to store its parameters 

are shown in Figures 2 and 3. 

 

Figure 2: The network-winner fitness function. 

 

Figure 3: Required amount of memory. 

Results of the stationary object (18) identification are 

shown in Figures 4 and 5. 

So, Figure 4 shows the surface itself, according to 

the equation described, and Figure 5 - the surface 

recovered by ECMAC with ξ (k) = 0.  

The winning network comprises 814 weighting 

parameters with R = 186 and ρ = 95, and rectangular 

activation function was chosen. 

Figure 6 shows the results of the object (18) 

identification in the presence of the random noise ξ (k) 

that is normally distributed in the interval [-0.3, 0.3].  

In this case, the winning network used cosine 

activation functions (10). 
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8 Second Modeling Experiment 
We solved the problem of the identification of a dynamic 

object described by the equation: 
 

2 2

( 1) ( 2) ( 3) ( 4)( ( 3) 1)
( )

1 ( ) ( 2)

y k y k y k y k y k
y k

+u k + y k

− − − − − −
= +

−

 
2 2

( )

1 ( ) ( 2)

u k

+u k + y k
+

−
          (19) 

To solve this problem, we used a population of 

evolving CMAC networks comprising 250 individuals.  

After reaching the required accuracy of 

identification, to assess the quality of the resulting 

model, to the object and the winner network the same 

control actions were given:   

a) ( )=sin 200 cos 400 ;u k ( k / )+ ( k / )   

b) ( )= 1 5 0 001u k . + . k− . 

The experimental results for the cases a) and b) are 

shown in Figure 7 and 8.  

The solid line shows the output signal of the object 

and the dashed - neural network model output.  
 

 

Figure 7: The experimental results for the a)-case. 

 

Figure 8: The experimental results for the b)-case. 

As can be seen from the simulation results, the 

accuracy of identification of a multidimensional object 

(19) via evolving networks CMAC is sufficiently high 

and error – is inessential. 

In Figure 8 there are some minor oscillations that 

appeared due to rounding off calculations. 

9 Third Modeling Experiment 
It is considered the problem of controlling a 

multidimensional nonlinear dynamic object described by 

the following equations: 
 

 
Figure 4: The surface itself, according to the equation 

described. 

 
Figure 5: The surface recovered by ECMAC. 

 
Figure 6: The results of the object (13) identification. 

u(k) 
y(k-1) 

u(k) 
y(k-1) 

y(k) 
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Uncorrelated random sequences with a uniform 

distribution law in the interval [–1, 1] were used as inputs 

of the network during the training.  

Training was carried out on the basis of the 

presentation of a network of 10000 training pairs and the 

following parameters of the CMAC neural network: 

activation functions - trigonometric; R=100; ρ=40.  

The required memory capacity for such parameters is 

5818 memory cells. The size of the population was 300 

individuals.  

The required values of the output signals were set in 

the following way: 
 





=+

=
=

=

.1000,501),500/sin()300/sin(

;500,1,5.0
)(

);100/sin()(

*
2

*
1

kkk

k
ky

kky





(21) 

The results of the neural control are shown in 

Figures 9 and 10.  

 

Figure 9: The experimental results for the y1(k) 

In all these figures, the dotted line shows the 

required output signal )k(y*
i

, solid line – real )k(ŷi
, 

and the line with the circles - the corresponding change 

of the control signal ui(k) (i=1,2). 

 

Figure 10: The experimental results for the y2(k). 

10 Conclusions 
The results showed that the evolving neural network 

CMAC is quite effective and convenient in solving 

practical problems (identification of nonlinear objects, 

control, etc). 

Substantial savings of required memory in 

combination with evolutionary training algorithms make 

it particularly attractive for implementation in real 

complex dynamic object control systems in the presence 

of noisy measurements. 

An additional advantage of the evolutionary 

approach to CMAC network training is the solution of 

the problem of choice the receptive field form of the 

associative neurons that is affecting the method and the 

accuracy of the approximation of the studied functions.  

In the case ECMAC this problem is solved 

automatically.  
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