
https://doi.org/10.31449/inf.v43i2.2303 Informatica 43 (2019) 291–298 291

Evolving Neural Network CMAC and its Applications

Oleg Rudenko, Oleksandr Bessonov and Oleksandr Dorokhov

Kharkiv National University of Economics, Nauka Ave 9a, 61166 Kharkiv, Ukraine

E-mail: aleks.dorokhov@meta.ua

Keywords: neural network, training, nonlinear object, identification, adaptive control

Received: April 21, 2018

The conventional neural network (NN) CMAC (Cerebellar Model Articulation Controller) can be

applied in many real-world applications thanks to its high learning speed and good generalization

capability. In this paper, it is proposed to utilize a neuro-evolutional approach to adjust CMAC

parameters and construct mathematical models of nonlinear objects in the presence of the Gaussian

noise. The general structure of the evolving NN CMAC (ECMAC) is considered. The paper

demonstrates that the evolving NN CMAC can be used effectively for the identification of nonlinear

dynamical systems. The simulation of the proposed approach for various nonlinear objects is performed.

The results proved the effectiveness of the developed methods.

Povzetek: Razvit je postopek za evolucijsko iskanje najbolj prilagojene CMAC (Cerebellar Model

Articulation Controller) nevronske mreže za probleme z Gaussovim šumom.

1 Introduction
Using a mathematical model of the cerebellar cortex

developed by D. Marr [1] in 1975 J. Albus proposed a

model describing the motion control processes that occur

in the cerebellum, which was subsequently implemented

in the neural network controller for controlling the robot

- arm, which he called CMAC - Cerebellar Model

Articulation Controller [2, 3]. Ease of implementation

and a good network of approximating properties have

ensured its wide usage not only in the tasks of controlling

the robotic arm in real time, but also to solve many other

practical problems [4-14].

However, it should be noted that in designing a

network CMAC a number of difficulties in the selection

of parameters such as the number of levels and the

quantization levels, the shape of the receptive field, the

type of applied information hashing algorithm and

training. These parameters have a significant impact on

the accuracy and speed of CMAC network, and

therefore, the determination of the optimal values of

these parameters is an important practical problem. In

this article, for eliminating the drawbacks of traditional

methods of synthesis and functioning ANN CMAC we

provide the use of a new class of networks - evolving

ANN (EANN) in which, in addition to traditional

learning it is used another fundamental form of

adaptation - evolution, realized by applying the

evolutionary computation [15-18].

The use of two forms of adaptation in EANN -

evolution, and training, allowing to change the network

structure, its parameters and learning algorithms without

external intervention, make the network data most

suitable for work in non-stationary conditions and

uncertainty about the properties of the object under study

and the conditions of its functioning.

The main advantage of using evolutionary

algorithms (EA) as learning algorithms is that many

ANN parameters can be encoded in the genome and

determined in parallel. Moreover, unlike most

optimization algorithms designed to solve a problem, EA

operate with a multitude of solutions - the population,

which allows reaching a global minimum, without

getting stuck in the local ones. In this case, information

about each individual of the population is encoded in a

chromosome (genotype), and the solution (phenotype) is

obtained after evolution (selection, crossing, mutation)

by decoding.

Among EAs that are stochastic and include

evolutionary programming, evolutionary strategies,

genetic algorithms, genetic programming, in particular,

programming with gene expression, genetic algorithms

(GA) are the most common [19,20]. GA abstract the

fundamental processes of Darwinian evolution: natural

selection and genetic changes due to recombination and

mutation.

2 Neural network CMAC
The modification of the network proposed by Albus is

shown in Figure 1. The network consists of the input,

hidden and output layers, labeled L1, L2, L3,

respectively, and uses two basic conversions:

 S: XA, (1)

 P: Ay, (2)

where X - N-dimensional space of continuous input

signals; A - n-dimensional space associations; y - a one-

dimensional output.

292 Informatica 43 (2019) 291–298 O. Rudenko et al.

Converting SA, in turn, consists of two

transformations:

 XM (3)

 MA, (4)

where M - the space of binary variables.

The principle of the network operation as an

associative memory is as follows. Approximated function

y = f (x) is given to a limited number of points (argument

values) x constituting N-dimensional space of the input

signals. This space is divided into subspaces M formed

the input signals x(i) (M,1i =).

A number of subspaces M impacts the accuracy of

the network and number of utilized memory cells.

Therefore, on the one hand, side it should be big enough

to ensure good approximation capabilities of the network

and on the other hand side, it should be not too big to

save some memory. In constructing the cerebellum

model Albus proceeded from the fact that the appearance

of the excitation signal activates its a certain area of the

cerebellum, or receptive field, characterized by a

parameter ρ.

Therefore, storage of values of y(i) (network output

signal) corresponding to x(i) (M,1i =), used ρ memory

cells, the number of which is constant for all vectors of

the input signals on the network. At receipt of the input

signal x(i) a signal y(i) appears at network output, which

is the sum of ρ addressable cells content.

Associative CMAC properties manifest themselves

in the form of used addressing, which is based on a

special coding input information and called hash coding

or hashing [21-23].

3 Encoding information in CMAC
Information coding in the network means that to each N-

dimensional input vector x(i) an n-dimensional

association vector a(i), is assigned and stored in virtual

memory.

Elements of a(i) can take the values from the interval

[0, 1] (in the papers cited above it is assumed that these

elements take the values 0 or 1). Thus only ρ << n

elements of the vector have non-zero values, i.e. only ρ

memory elements are active.

A continuous plurality of input signals by sampling

(at the level of quantization) is converted into discrete.

Thus to represent the i-th input signal components Ri

quantization levels used with the appropriate

quantization step ri (). It should be noted that the

accuracy of the system identification depends

substantially on the size of the quantization step, and loss

of stability is possible in digital automated control

systems with an incorrect choice of this parameter.

Each stage is characterized by a corresponding

association matrix Ai , only one element of

which is different from zero.

Construction associations vector as follows. For a

given total number of input signals association matrix Ai

of each quantization stage () are formed. The

columns of these matrixes form association vectors ai (

).

The dimension of these vectors, n, equal to the sum

of all elements of the matrices Ai () and can be

calculated by the formula:

N,1i =

(),1=i

,1i =

,1i =

,1i =

Figure 1: Albus network.

Evolving Neural Network CMAC and... Informatica 43 (2019) 291–298 293























+

−
=

N

1
1R

n



, (5)

where R - the number of used levels for quantizing input

signals; N - the dimension of the input vector; - means

rounded to the nearest whole number.

Since all ρ matrices Ai (,1i =) have only one non-

zero element, from the n components of the vector a(i)

only ρ are non-zero.

The quantization region is arranged in such a way,

that any of them relating to the adjacent stages have not

more than (ρ - 1)-th connection. This corresponds to a

restriction on the maximum total number of cells equal to

(ρ - 1) used for storing two different vectors of the input

signals in which their recognition is still possible.

4 Selecting the basic functions of

neurons
Selecting the basic functions of neurons in L1 layer

significantly affects the approximating properties of

CMAC network.

As already noted, the traditional CMAC performs

piecewise constant approximation, that is a consequence

of the usage of neurons with a rectangular activation

function.

When choosing rectangular basis functions

computational cost will be minimal. Also, CMAC

networks widely use B-splines as basis functions.

B-splines undoubted advantage is the possibility of

recurrent calculating in both the splines in accordance

with the formula [24-27]:

)()()(,1

1

1,1

1

, xB
x

xB
x

xB jn

njj

j

jn

njj

nj

jn −

+−

−−

−−

−













−

−
+













−

−
=








 (6)

and their derivatives -order:

()

()

, 1, 1

1

(1)
() ()

(1)

j n

n j n j

j j n

xn
B x B x

n






  

−

− −

− −

 −−
= + 

− − −  

()

1,

1

(1)
()

(1)

j

n j

j j n

xn
B x

n





  
−

− +

 −−
+  

− − −  

 (7)

Here:

)






= −

otherwise; ,0

;, xif ,1)(1
,0

jj
j xB 

)






= −

otherwise; ,0

;, xif ,1)(1
,0

)0(
jj

j xB 













−
−













−
=

+−

−

−

−−

−−

−

1

,1

)1(

1

1,1

)1(

,

)(
)()(

)(
njj

jn

njj

jn

jn

xBxB
xB





 (8)

where j - j-th spline’s node (center of the quantization

field).

Thus, after determining the active slot],(1 jj  −
 for

the zero order B-spline, these expressions can be used to

obtain the values of all nonzero B-spline of higher order

and, if appropriate, their derivatives.
Note that traditional СМАС uses zero order B-

spline. Selection of the first order B-spline leads to the

triangular membership function, and selection of the

fourth-order B-spline leads to membership function

similar to the Gaussian.

The CMAC network also uses Gaussian activation

function of the form:













 −
−=

2

2)
exp)(



i

ji xФ
μ(x j (9)

As a basis one can use trigonometric functions, for

example, cosine:

()







+−














−

=

otherwise, 0

];
2

r
,

2

r
(хif

r
cos

)(
jj

j
j










iiij

ji

x
xФ

(10)

where - i-th center of the quantization field; rj -

quantization step of j-th component of the input signal.

However, it should be noted that although the most

commonly used Gaussian membership functions also

allow a very simple calculation of derivatives and have

the property of a local activation, it is difficult to allocate

clearly enough their activation boundary, which is often

important for the implementation of the network that

used, for example, scaling basis functions.

In order to eliminate this disadvantage, one can use a

modified Gaussian function that has the following form:


















−−

−
−

=

otherwise. 0

);,(хif
))((

4/)(
exp

)(21
21

2
1 




xxxФi

2 (11)

As seen from the expression (11), the function is

strictly defined in the range (λ1, λ2), which simplifies the

process of scaling basis functions when the network

parameters such as R and ρ are changing.

5 Network training

Defining the network parameters, i.e. in the general case

defining a vector ()k , that includes all network

parameters (weights, parameters of basis functions, etc.)

is accomplished by training with the teacher.

The training criterion can be presented as follows:

  ()
=

=
k

i

iekeF
1

)()( , (12)

where ())(ie - some loss function.

 •

i

294 Informatica 43 (2019) 291–298 O. Rudenko et al.

Gradient network training algorithm has the

following form:

(())ˆ ˆ() (1) ()
j

F e k
k k k  




= − +


, (13)

or

()
()ˆ ˆ() (1) () ()

j

e k
k k k e k   




= − +


 (14)

where 0  – parameter that affects the training speed

and which can be selected differently for different

network parameters.

Training of traditional CMAC that uses

() 2() 0,5 ()e i e i = and rectangular basis functions,

occurs on each step after the presentation of training

pairs)}(),({ kykx , where)(ky – function’s value,

that corresponds)(kx , and consists in the correction of

only those of its  weights that correspond to the single

components of the association vector for a given vector

)(kx .

In this case, the training algorithm for all i , j , for

which 1)()(== kaka ji , is the following:

1

1
(1) () () () ,

n

j j i

i

w k w k y k w k
 =

 
+ = + −  

 
 (15)

where]1,0( – parameter that affects the speed of

training.

When membership functions with a form other than

rectangular are used, this algorithm can be written as

follows:

,)()(
)()(

)()()()(
)()()1(

2 











 −
+=+ kax

kax

kwxkaky
kkwkw

T





 (16)

where)(k - in general case a variable parameter.

Multistep network training algorithms were

considered in [7,8].

6 Evolving ANN CMAC
During switching from ANN to EANN for all types of

networks the common evolutionary procedure

(initialization population, an estimation of the

population, selection, cross-breeding, mutations) is used.

Differences are only in the method of encoding the

structure and parameters of a particular form of ANN in

the chromosome.

At the beginning of EA functioning, a population 0P

that consisting of N individuals (ANN):

 NHHHP ,,..., 210 =
is randomly initialized. The

proper choice of the N’s value is very important as this

parameter significantly affects the speed of the algorithm

and its selection is critical for real-time systems.

Each individual in the population at the same time

gets its own unique description, encoded in the

chromosome  Ljjjj hhhH ,..., 21=
,

which consists

of L gene, wherein  maxmin wwhij  - i-th value of j-

gene chromosome (
minw - the minimum and

maxw -

maximum allowable values, respectively).

Figure 1 shows an example ECMAC chromosome’s

format and the correspondence between genes and

network parameters stored in the chromosome. It should

be noted that chromosome length depends on the

dimensionality of the problem and the maximum amount

of memory.

As seen from the drawing, it consists of a

chromosome gene in which information about

corresponding network parameters is stored. At the

beginning of the chromosome, there are genes that

contain information about the parameters of the noise

and they are active only in case of the noisy

measurements. Next gene’s block encodes the number of

levels and the quantization steps, the shape of the

receptive field of neurons and type of algorithm that is

used for hashing information.

Due to the large amount of the BF that can be used in

CMAC, there is a special gene in its chromosome BF,

that is responsible for coding the type of the used

functions. There is also a gene H in the chromosome, that

encodes a type of the hashing algorithm (If its value is set

to 0 then hashing is not used).

Then, in the chromosome, there is a group of genes

encoding weighting parameters directly relevant to the

associative neurons. During the initialization phase,

initial values are assigned to all these parameters by

using a random number generator.

Since during evolution mutation may occur in the

parameters affecting the amount of used associative

neurons, the length of the chromosome can vary. The use

of variable length chromosomes occur individuals with

specific genetic code segments (introns) which are not

used for coding characteristics [28-29].

Typically, introns are used in the EA:

- as noncoding bits that are uniformly added to the

genetic code (in this case, introns only fill the space

between the active genes of the chromosome);

- as the nonfunctional parts of the genetic code, i.e.,

parts of the decision which do not actually do anything,

thus not affect the fitness of the chromosome (this

usually occurs in the genetic programming and in the

chromosomes, which are subject to the cycle of

development after birth);

-as posterior useless part of the chromosome, which

do not participate in the calculation of its fitness (usually

it manifests itself in some types of competitive-trained

neural networks, in which only neurons-winners in

contrast to other neurons that are a posteriori useless

affect network performance results).

Introns appear in other types of neural networks,

where they are called potentially useful waste.

The control of introns amount in the population

carried out by:

- the use of special operators, that alter the length of

the chromosome and add or remove introns

Evolving Neural Network CMAC and... Informatica 43 (2019) 291–298 295

(experimental results show that some number of introns

improves overall properties EA);

- the use of the selection operator: depending on the

number of introns, the value of individual fitness

function will increase or decrease.

Once the initial population is formed, the fitness of

each individual part in it evaluates by some defined

fitness function.

Conventionally, as such a function the quadratic one

is used:

()
2

1

*)(ˆ)(
1

)(
=

−=
M

i
ii xyxy

M
xF , (17)

where)(* ky - the desired network response;)(ˆ ky -

real output signal; M – sample size.

The next step is the selection of individuals, the

chromosomes of which are involved in the formation of

the new generation, and subsequent hybridization.

The task of crossing operator (crossover) is the

transfer of genetic information from the parent

individuals to their offspring.

After completion of the operator’s work, any gene of

any individual in the new population may mutate, i.e.

change its value.

Since chromosome uses hybrid coding, during the

mutations various operations must be performed for

different encoding methods.

For example, in the case of the gene that is

responsible for neuron’s activation and uses binary

encoding, inverse mutation should be used.

For coding the BF and weighting parameters, that

uses real values, different types of mutations may be

used.

Thus ECMAC algorithm can be represented as

follows:

- create an initial population (initialization of each

individual chromosome, estimation of the initial

population);

- the stages of evolution - the construction of a new

generation (selection of candidates for mating /breeding,

hybridization, i.e. causing by each pair of selected

candidates some new individuals, mutation, evaluation of

the new population);

- check the completion criterion, if not satisfied - go

back to the stages of evolution.

7 First Modeling Experiment
It is considered the problem of nonlinear dynamic object

identification that is described by the equation:
2 210 () 50 (1)() max ; ;u k y ky k e e− − −=



()2 25 () (1)
; 1.25 (),

u k y k
e k
− + −  +


 (18)

where u(k) - the input signal, that is a stationary random

sequence with the random uniform distribution in the

interval [-1, 1].

During the study of this object, the population of

CMAC networks consisting of 100 individuals was used.

The population evolved during 500 epochs. All

configurable network parameters (including R and ρ)

were determined by EA.

It should be noted that the values of R and ρ

determine the amount of memory that is used for storing

network parameters and significantly affect the accuracy

of the approximation.

Graphs of the network-winner fitness function and

the required amount of memory to store its parameters

are shown in Figures 2 and 3.

Figure 2: The network-winner fitness function.

Figure 3: Required amount of memory.

Results of the stationary object (18) identification are

shown in Figures 4 and 5.

So, Figure 4 shows the surface itself, according to

the equation described, and Figure 5 - the surface

recovered by ECMAC with ξ (k) = 0.

The winning network comprises 814 weighting

parameters with R = 186 and ρ = 95, and rectangular

activation function was chosen.

Figure 6 shows the results of the object (18)

identification in the presence of the random noise ξ (k)

that is normally distributed in the interval [-0.3, 0.3].

In this case, the winning network used cosine

activation functions (10).

)(ky

)(ku)1(−ky

k

)(ky

)(ky

)(ky

k

k

296 Informatica 43 (2019) 291–298 O. Rudenko et al.

8 Second Modeling Experiment
We solved the problem of the identification of a dynamic

object described by the equation:

2 2

(1) (2) (3) (4)((3) 1)
()

1 () (2)

y k y k y k y k y k
y k

+u k + y k

− − − − − −
= +

−

2 2

()

1 () (2)

u k

+u k + y k
+

−
 (19)

To solve this problem, we used a population of

evolving CMAC networks comprising 250 individuals.

After reaching the required accuracy of

identification, to assess the quality of the resulting

model, to the object and the winner network the same

control actions were given:

a) ()=sin 200 cos 400 ;u k (k /)+ (k /) 

b) ()= 1 5 0 001u k . + . k− .

The experimental results for the cases a) and b) are

shown in Figure 7 and 8.

The solid line shows the output signal of the object

and the dashed - neural network model output.

Figure 7: The experimental results for the a)-case.

Figure 8: The experimental results for the b)-case.

As can be seen from the simulation results, the

accuracy of identification of a multidimensional object

(19) via evolving networks CMAC is sufficiently high

and error – is inessential.

In Figure 8 there are some minor oscillations that

appeared due to rounding off calculations.

9 Third Modeling Experiment
It is considered the problem of controlling a

multidimensional nonlinear dynamic object described by

the following equations:

Figure 4: The surface itself, according to the equation

described.

Figure 5: The surface recovered by ECMAC.

Figure 6: The results of the object (13) identification.

u(k)
y(k-1)

u(k)
y(k-1)

y(k)

Evolving Neural Network CMAC and... Informatica 43 (2019) 291–298 297

).1(
)1(1

)1()1(
)(

)1(
)1(1

)1(
)(

22
2

21
2

12
2

1
1

−+
−

−−
=

−+
−

−
=

ku
k+y

kyky
ky

;ku
k+y

ky
ky

 (20)

Uncorrelated random sequences with a uniform

distribution law in the interval [–1, 1] were used as inputs

of the network during the training.

Training was carried out on the basis of the

presentation of a network of 10000 training pairs and the

following parameters of the CMAC neural network:

activation functions - trigonometric; R=100; ρ=40.

The required memory capacity for such parameters is

5818 memory cells. The size of the population was 300

individuals.

The required values of the output signals were set in

the following way:





=+

=
=

=

.1000,501),500/sin()300/sin(

;500,1,5.0
)(

);100/sin()(

*
2

*
1

kkk

k
ky

kky





(21)

The results of the neural control are shown in

Figures 9 and 10.

Figure 9: The experimental results for the y1(k)

In all these figures, the dotted line shows the

required output signal)k(y*
i

, solid line – real)k(ŷi
,

and the line with the circles - the corresponding change

of the control signal ui(k) (i=1,2).

Figure 10: The experimental results for the y2(k).

10 Conclusions
The results showed that the evolving neural network

CMAC is quite effective and convenient in solving

practical problems (identification of nonlinear objects,

control, etc).

Substantial savings of required memory in

combination with evolutionary training algorithms make

it particularly attractive for implementation in real

complex dynamic object control systems in the presence

of noisy measurements.

An additional advantage of the evolutionary

approach to CMAC network training is the solution of

the problem of choice the receptive field form of the

associative neurons that is affecting the method and the

accuracy of the approximation of the studied functions.

In the case ECMAC this problem is solved

automatically.

References
[1] Marr, D. (1969). Theory of Cerebellar Cortex.

Journal Physiology, Vol. 202, 437-470.

[2] Albus, J. (1975). A new approach to manipulator

control: the cerebellar model articulation controller

(CMAC). J. Dynamic Systems, Measurement, and

Control, Vol. 97, №3, 220-227.

https://doi.org/10.1115/1.3426922

[3] Albus, J. (1975). Data storage in cerebellar model

articulation controller (CMAC). J. Dynamic Systems,

Measurement and Control, Vol. 97, №3, 228-233.

https://doi.org/10.1115/1.3426923

[4] Miller, W., Glanz, F., Kraft, L. (1990). CMAC: An

associative neural network alternative to

backpropagation. Proc. of the IEEE, Vol. 78, №10,

1561–1567.

https://doi.org/10.1109/5.58338

[5] Miller, T., Hewes, R., Glanz, F., Kraft, L. (1990).

Real-time dynamic control of industrial manipulator

using a neural-network-based learning controller.

IEEE Trans. Robot. Automat., Vol. 6, 1-9.

https://doi.org/10.1109/70.88112

[6] Iigumi, Y. (1996). Hierarchical image coding via

cerebral model arithmetic computers. IEEE Trans.

Image Processing, Vol. 5, 1393-1401.

https://doi.org/10.1109/83.536888

[7] Avdeyan, E., Hormel, M. (1991). The increase of the

rate of convergence of the learning process in a

special system of associative memory. Automation

and telemechanics, Vol. 6, 1-9.

[8] Rudenko, O., Bessonov, A. (2005). CMAC Neural

Network and Its Use in Problems of Identification

and Control of Nonlinear Dynamic Objects.

Cybernetics and Systems Analysis, Vol.41, Issue 5,

647–658.

https://doi.org/10.1007/s10559-006-0002-x

[9] Li, H.-Y., Yeh, R.-G., Lin, Y.-C., Lin, L.-Y., Zhao,

J., Rudas, I. (2016). Medical Sample Classifier

Design Using Fuzzy Cerebellar Model Neural

Networks. Acta polytechnica Hungarica, Vol. 13,

№6, 7-24.

y2(k)

k

https://doi.org/10.1115/1.3426922
https://doi.org/10.1115/1.3426923
https://doi.org/10.1109/70.88112
https://doi.org/10.1109/83.536888
https://doi.org/10.1007/s10559-006-0002-x

298 Informatica 43 (2019) 291–298 O. Rudenko et al.

https://doi.org/10.12700/aph.13.6.2016.6.1

[10] Shafik, A., Abdelhameed, M., Kassem ,A. (2014).

CMAC Based Hybrid Control System for Solving

Electrohydraulic System Nonlinearities. Int. Journal

of Manufacturing, Materials, and Mechanical

Engineering, Vol.4(2), 20-26.

https://doi.org/10.4018/ijmmme.2014040104

[11] Lee, C.-H., Chang, F.-Y. (2014). An Efficient

Interval Type-2 Fuzzy CMAC for Chaos Time-

Series Prediction and Synchronization. IEEE

Transactions on Cybernetics, Vol. 44, №3, 329-341.

https://doi.org/10.1109/tcyb.2013.2254113

[12] Chung, C.-C., Lin, C.-C. (2015). Fuzzy Brain

Emotional Cerebellar Model Articulation Control

System Design for Multi-Input Multi-Output

Nonlinear. Acta Polytechnica Hungarica, Vol. 12,

№ 4. 39-58.

https://doi.org/10.12700/aph.12.4.2015.4.3

[13] Dorokhov, O., Chernov, V., Dorokhova, L.,

Streimkis, J. (2018). Multi-criteria choice of

alternatives under fuzzy information,

Transformations in Business and Economics, Vol. 2,

95-106.

[14] Маlyarets L., Dorokhov, O., Dorokhova L. (2018).

Method of constructing the fuzzy regression model

of bank сompetitiveness. Journal of Central Banking

Theory and Practice, Vol. 7, №2, 139–164.

https://doi.org/10.2478/jcbtp-2018-0016

[15] Xu, S., Jing, Y. (2016). Research and Application

of the Pellet Grate Thickness Control System Base

on Improved CMAC Neural Network Algorithm.

Journal of Residuals Science & Technology, Vol. 13,

№ 6, 1501-1509.

[16] Floreano, D., Mattiussi, C. (2008). Bio-Inspired

Artificial Intelligence Theories, Methods, and

Technologies. The MIT Press Cambridge,

Massachusetts-London, England.

[17] Andries, P. (1997). Engelbrecht Computational

Intelligence An Introduction. John Wiley & Sons.

[18] Yao, X. (1993). A Review of Evolutionary

Artificial Neural Networks. Int. J. Intell. Syst., №8

(4), 539-567.

[19] Yao, X. (1999). Evolving Artificial Neural

Networks. Proc. of the IEEE, Vol. 87, №9,1423-

1447.

https://doi.org/10.1109/5.784219

[20] Holland, J. (1975). Adaptation in Natural and

Artificial Systems. An Introductory Analysis With

Application to Biology, Control and Artificial

Intelligence. University of Michigan.

[21] Goldberg, D. (1989). Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-

Wesley, MA.

[22] Knuth, D. (1973). Sorting and Searching, in the Art

of Computer Programming. Menlo Park, Calif.,

Addison Wesley.

[23] Wang, Z.-Q., Schiano, J., Ginsberg, M. (1996).

Hash-Coding in CMAC Neural Networks. IEEE Int.

Conf. on Neural Networks, Vol. 3, 1698-1703.

https://doi.org/10.1109/icnn.1996.549156

[24] Rudenko, O., Bessonov, O.(2004). Hashing

information in a neural network СМАС. Control

Systems and Machines, №5, 67-73.

[25] Chiang, C.-T., Lin, C.-S. (1996). CMAC with

General Basis Functions. Neural Networks, Vol. 7,

№7, 1199-1211.

[26] Lane, S., Handelman, D., Gelfand, J. (1992). Theory

and Development of Higher-Order CMAC Neural

Networks. IEEE Control Systems, Vol. 12, № 2, 23-

30.

https://doi.org/10.1109/37.126849

[27] Rudenko, O., Bessonov, O. (2004). On the Choice

of Basis Functions in a Neural Network СМАС.

Problems of Control and Informatics, № 2, 143–154.

[28] Wu, A.(1995). Empirical Studies of the Genetic

Algorithm with Non-Coding Segments.

Evolutionary Computation, Vol. 3(2), 121-147.

[29] Castellano, J. (2001). Scrapping or Recycling: the

Role of Chromosome Length-Altering Operators in

Genetic Algorithms. GeNeura Group, Department of

Architecture and Computer Technology, University

of Granada. (2001).

https://doi.org/10.12700/aph.13.6.2016.6.1
https://doi.org/10.4018/ijmmme.2014040104
https://doi.org/10.1109/tcyb.2013.2254113
https://doi.org/10.12700/aph.12.4.2015.4.3
https://doi.org/10.2478/jcbtp-2018-0016
https://doi.org/10.1109/5.784219
https://doi.org/10.1109/icnn.1996.549156
https://doi.org/10.1109/37.126849

