
https://doi.org/10.31449/inf.v42i3.2244 Informatica 42 (2018) 301–311 301

Time-stamp Incremental Checkpointing and its Application for an
Optimization of Execution Model to Improve Performance of CAPE

Van Long Tran
Samovar, Télécom SudParis, CNRS, Université Paris-Saclay - 9 rue Charles Fourier, Évry, France
E-mail: van_long.tran@telecom-sudparis.eu and www.telecom-sudparis.eu
Hue Industrial College - 70 Nguyen Hue street, Hue city, Vietnam
E-mail: tvlong@hueic.edu.vn and www.hueic.edu.vn

Éric Renault
Samovar, Télécom SudParis, CNRS, Université Paris-Saclay - 9 rue Charles Fourier, Évry, France
E-mail: eric.renault@telecom-sudparis.eu and www.telecom-sudparis.eu

Viet Hai Ha
College of Education, Hue University - 34 Le Loi street, Hue city, Vietnam
E-mail: haviethai@gmail.com and www.dhsphue.edu.vn

Xuan Huyen Do
College of Sciences, Hue University - 77 Nguyen Hue street, Hue city, Vietnam
E-mail: doxuanhuyen@gmail.com and www.husc.edu.vn

Keywords: OpenMP, OpenMP on cluster, CAPE, Checkpointing-Aided Parallel Execution, Checkpointing, Incremental
checkpointing, DICKPT, TICKPT

Received: March 29, 2018

CAPE, which stands for Checkpointing-Aided Parallel Execution, is a checkpoint-based approach to au-
tomatically translate and execute OpenMP programs on distributed-memory architectures. This approach
demonstrates high-performance and complete compatibility with OpenMP on distributed-memory systems.
In CAPE, checkpointing is one of the main factors acted on the performance of the system. This is shown
over two versions of CAPE. The first version based on complete checkpoints is too slow as compared to the
second version based on Discontinuous Incremental Checkpointing. This paper presents an improvement
of Discontinuous Incremental Checkpointing, and a new execution model for CAPE using new techniques
of checkpointing. It contributes to improve the performance and make CAPE even more flexible.

Povzetek: Predstavljena je izboljšava CAPE - paralelno izvajanje, usmerjeno s podporo redundance.

1 Introduction

In order to minimize programmers’ difficulties when de-
veloping parallel applications, a parallel programming tool
at a higher level should be as easy-to-use as possible.
MPI [1], which stands for Message Passing Interface, and
OpenMP [2] are two widely-used tools that meet this re-
quirement. MPI is a tool for high-performance computing
on distributed-memory environments, while OpenMP has
been developed for shared-memory architectures. If MPI is
quite difficult to use for non programmers, OpenMP is very
easy to use, requesting the programmer to tag the pieces of
code to be executed in parallel.

Some efforts have been made to port OpenMP on
distributed-memory architectures. However, apart from our
solution, no solution successfully met the two following
requirements: 1) to be fully compliant with the OpenMP
standard and 2) high performance. Most prominent ap-
proaches include the use of an SSI [3], SCASH [4], the
use of the RC model [5], performing a source-to-source

translation to a tool like MPI [6, 7] or Global Array [8], or
Cluster OpenMP [9].

Among all these solutions, the use of a Single Sys-
tem Image (SSI) is the most straightforward approach.
An SSI includes a Distributed Shared Memory (DSM) to
provide an abstracted shared-memory view over a physi-
cal distributed-memory architecture. The main advantage
of this approach is its ability to easily provide a fully-
compliant version of OpenMP. Thanks to their shared-
memory nature, OpenMP programs can easily be com-
piled and run as processes on different computers in an
SSI. However, as the shared memory is accessed through
the network, the synchronization between the memories in-
volves an important overhead which makes this approach
hardly scalable. Some experiments [3] have shown that the
larger the number of threads, the lower the performance.
As a result, in order to reduce the execution time over-
head involved by the use of an SSI, other approaches have
been proposed. For example, SCASH only maps the shared
variables of the processes onto a shared-memory area at-

302 Informatica 42 (2018) 301–311 V.L. Tran et al.

tached to each process, the other variables being stored
in a private memory, and the RC model uses the relaxed
consistency memory model. However, these approaches
have difficulties to identify the shared variables automat-
ically. As a result, no fully-compliant implementation of
OpenMP based on these approaches has been released so
far. Some other approaches aim at performing a source-to-
source translation of the OpenMP code into a MPI code.
This approach allows the generation of high-performance
codes on distributed-memory architectures. However, not
all OpenMP directives and constructs can be implemented.
As yet another alternative, Cluster OpenMP, proposed by
Intel, also requires the use of additional directives of its
own (ie. not included in the OpenMP standard). Thus, this
one cannot be considered as a fully-compliant implemen-
tation of the OpenMP standard either.

Concerning to bypass these limitations, we developed
CAPE [10, 15] which stands for Checkpointing-Aided Par-
allel Execution. CAPE is a solution that provides a set
of prototypes and frameworks to automatically translate
OpenMP programs for distributed memory architectures
and make them ready for execution. The main idea of
this solution is using incremental checkpoint techniques
(ICKPT) [11, 12] to distribute the parallel jobs and their
data to other processes (the fork phase of OpenMP), and
collect the results after the execution of the jobs from all
processors (the join phase of OpenMP). ICKPT is also used
to deal with the exchange of shared data automatically.

Although CAPE is still under development, it has shown
its ability to provide a very efficient solution. For example,
a comparison with MPI showed that CAPE is able to reach
up to 90% of the MPI performance [13, 14]. This has to
be balanced with the fact that CAPE for OpenMP requires
the introduction of few pragma directives only in the se-
quential code, i.e. no complex code from the user point of
view, while writing a MPI code might require the user to
completely refactorise the code. Moreover, as compared to
other OpenMP for distributed-memory solutions, CAPE is
fully compatible with OpenMP [13, 15].

This paper presents an improvement of DICKPT – a
checkpoint technique for CAPE, and a new execution
model applied these new checkpoints, that improves the
performance and the flexibility of CAPE. A part of these
results were also presented and published at the SoICT’s
2017 conference [16]. The paper is organized as follows:
the next section describes CAPE mechanism, capabilities
and restrictions in details. Section 3 presents a develop-
ment of checkpointing that are used in CAPE. Then, Sec-
tion 4 presents the design and the implementation of the
new execution model based on the new checkpointing tech-
niques. The analysis and evaluation of both new check-
pointing and execution model are presented in Section 5.
Section 4 shows the result of the experimental analysis. Fi-
nally, Section 5 concludes the paper and presents our future
works.

2 CAPE principles
In order to execute an OpenMP program on distributed-
memory systems, CAPE uses a set of templates to translate
an OpenMP source code into a CAPE source code. Then,
the generated CAPE source code is compiled using a tra-
ditional C/C++ compiler. At last, the binary code can be
executed independently on any distributed-memory system
supporting the CAPE framework. The different steps of the
CAPE compilation process for C/C++ OpenMP programs
is shown in the Figure 1.

Figure 1: Translation of OpenMP programs with CAPE.

2.1 Execution model
The CAPE execution model is based on checkpoints that
implement the OpenMP fork-join model. This mecha-
nism is shown in Figure 2. To execute a CAPE code on a
distributed-memory architecture, the program first runs on
a set of nodes, each node being run as a process. Whenever
the program meets a parallel section, the master node dis-
tributes the jobs among the slave processes using the Dis-
continuous Incremental Checkpoints (DICKPT) [12, 13]
mechanism. Through this approach, the master node gen-
erates DICKPTs and sends them to the slave nodes, each
slave node receives a single checkpoint. After sending
checkpoints, the master node waits for the results to be re-
turned from the slaves. The next step is different depending
upon the nature of the node: the slave nodes receive their
checkpoint, inject it into their memory, execute their part
of the job, and sent back the result to the master node by
using DICKPT; the master node waits for the results and af-
ter receiving them all, merges them before injection into its
memory. At the end of the parallel region, the master sends
the resulting checkpoint to every slaves to synchronize the
memory space of the whole program.

2.2 Translation from OpenMP to CAPE
In the CAPE framework, a set of functions has been
defined and implemented to perform the tasks devoted
to DICKPT, typically, distributing checkpoints, send-
ing/receiving checkpoints, extracting/injecting a check-
point from/to the program’s memory, etc. Besides, a set
of templates has been defined in the CAPE compiler to
perform the translation of the OpenMP program into the
CAPE program automatically and make it executable in
the CAPE framework. So far, nested loops and shared-data
variable constructs are not supported yet. However, this is
not regarded as an issue as this can be solved at the level

Time-stamp Incremental Checkpointing and its Application. . . Informatica 42 (2018) 301–311 303

Figure 2: CAPE execution model.

of the source-to-source translation and does not require any
modifications in the CAPE philosophy. In this end, CAPE
can only be applied to OpenMP programs matching the
Bernstein’s conditions [17].

After the translations operated by the CAPE compiler,
the OpenMP source code is free of any OpenMP directives
and structures. Figure 3 presents an example of code sub-
stitution for the specific case of the parallel for con-
struct. This example is typical of those we implemented
for the other constructs [7]. The automatically generated
code is based on the following functions that are part of the
CAPE framework:

– start() sets up the environment for the genera-
tion of DICKPTs.

– stop() restores the environment used for the gen-
eration of DICKPT.

– create(file) generates a checkpoint with name
file.

– inject(file) injects a checkpoint into the mem-
ory of the current process.

– send(file, node) sends a checkpoint from the
current process to another.

– wait_for(file) waits for checkpoints and
merges them to create another one.

– merge(file1,file2) merges two checkpoints
together.

Figure 3: Template for the parallel for with incre-
mental checkpoints.

– broadcast(file) sends a checkpoint to all slave
nodes.

– receive(file) waits for and receives a check-
point.

2.3 Discontinuous incremental
checkpointing on CAPE

Checkpointing is the technique that saves the images of a
process at a point during its lifetime, and allows it to be
resumed at the saving’s time if necessary [11, 18]. Using
checkpointing, processes can resume their execution from a
checkpoint state when a failure occurs. So, no need to take
time to initialize and execute it from the begin. These tech-
niques are introduced since two decades ago. Nowadays,
they are researched and used widely on fault-tolerance, ap-
plications trace/debugging, roll-back/animated playback,
and process migration.

Basically, checkpointing techniques can be categorized

304 Informatica 42 (2018) 301–311 V.L. Tran et al.

into two groups: completed checkpoints and incremental
checkpoints. Completed checkpointing [18, 19, 20] saves
all information regarding the process at the points that it
generate checkpoints. The advantages of this technique is
reducing the time of generation and restoration. However,
the checkpoint’s size is too large. Incremental checkpoint-
ing [11, 21, 22, 23, 12, 24] only saves the modified infor-
mation as compared to the previous checkpoint. This tech-
nique reaches advantages of reducing checkpoint’s over-
head and checkpoint’s size, so it is in widely used in dis-
tributed computing. Besides, using data compression to re-
duce checkpoint’s size [11, 21, 24], it is also focus on the
techniques that detect modified data but reach the minimum
of size. Some typical techniques are using page-based pro-
tection to identify the pages in memory that have been mod-
ified [11, 22, 23], using word-level granularity [21, 12], us-
ing block encoding [22], using user-directed and memory
exclusion [11], using live variable analysis [24].

Figure 4: Principle of DICKPT in cases of checkpointing.

In CAPE, Discontinuous Incremental Checkpointing
(DICKPT) is a development based on incremental check-
pointing, that contains two kinds of data, register infor-
mation and modified data of the process. In which, the
first one is copied from all register data of the process, and
the second one is identified based on write-protection tech-
niques.

Figure 4 shows the steps to monitor and generate a

checkpoint of a process on CAPE. It is done by an other
process making use of the ptrace Unix system call. The
idea of these steps is that, at the beginning of the paral-
lel region, the monitor sets all page of monitor process at
write-protected. Whenever the monitored process wants to
write into any write-protected page, a SIGSEGV signal is
generated. Then, the monitor saves the data of this page, re-
moves the write-protection and lets the monitored process
write into the page. At the end of the region, the monitor
compares the saved data with the current data of monitored
process page. The difference are extracted and saved into
checkpoint file.

2.4 Remarks
The good performance of CAPE as compared to those of
MPI and the full compliance to the OpenMP specifica-
tions [13, 15, 14] have made CAPE a good alternative to
port OpenMP on distributed-memory architectures. So far,
the implementation of CAPE is not complete, some disad-
vantages can be listed:

1. DICKPT saves all modified data of process, including
temporary and private variables. This is an unneces-
sary synchronization inside an OpenMP program.

2. As shown in Figure 2, the master node might act as
a bottleneck while waiting for checkpoints from the
salves, merging checkpoints and/or sending back data
to slaves for memory synchronization.

3. To distribute jobs to slaves, the master node gener-
ates a number of checkpoints that depends upon the
number of slave nodes and so that each slave node re-
ceives a checkpoint (see Figure 7). This method can
reach a high-level of optimization. However, it might
not be enough flexible for some cases like 1) the num-
ber of slaves may not be identified at compile time,
2) the OpenMP source code should be modified to de-
tect when the master generates the checkpoint and 3)
the dynamic scheduling of OpenMP cannot be imple-
mented using this method.

4. After distributing the jobs, the slave nodes execute the
divided jobs while the master does nothing until the
reception of the resulting checkpoints from the slaves,
which clearly wastes resources.

5. For synchronization, the checkpoints should be sent
by order in order to resume exactly the last state of
process.

3 Time-stamp incremental
checkpointing (TICKPT)

Time-stamp Incremental Checkpointing (TICKPT) is an
improvement of DICKPT by adding new factor – time-
stamp – into incremental checkpoints and by removing un-

Time-stamp Incremental Checkpointing and its Application. . . Informatica 42 (2018) 301–311 305

necessary data based on data-sharing variable attributes of
OpenMP program.

Basically, TICKPT contains three mandatory elements
including register’s information, modified region in mem-
ory of the process, and their time-stamp. As well as
DICKPT, in TICKPT, the register’s information are ex-
tracted from all registers of the process in the system. How-
ever, the time-stamp is added to identify the order of the
checkpoints in the program. This contributes to reduce the
time for merging checkpoints and selecting the right ele-
ment if located at the same place in memory. In addition,
only the modified data of shared variables are detected and
saved into checkpoints. It makes checkpoint’s size signif-
icantly reduced depending on the size of private variables
of the OpenMP program.

To present the order of checkpoints in a program, time-
stamps have to represent the order of the instructions when
it is executed. For the general case, an activation tree [25]
can be used to identify the sequence of function call in a
program. For CAPE, checkpoints are always generated in
same level of functions, so that the program counter can
be used to ensure simplicity. However, if the instruction
is a loop, the program counter is combined with the loop
iteration to represent the order of the loop exactly.

To detect modified data, the write-protection mechanism
is used. However, only the shared variables are written
down in the checkpoint file. The matter in here is how to
detect private and shared variables.

Figure 5: Allocation of OpenMP program’s variables in
virtual process memory.

In an OpenMP program, data-sharing variable attributes
can be set up either, implicitly or explicitly [2]. All vari-
ables declared outside an #pragma omp parallel di-
rective are implicitly shared. This includes all global and

static local variables allocated in heap and data seg-
ments of the process’s memory, and local variables allo-
cated on the stack (see Figure 5). The variables in heap
and data segments can easily be identified by their ad-
dress. For the variables on the stack, we save the stack
pointer before entering the #pragma omp parallel
region. Variables declared before the stack pointer are
shared. The others, are private.

To explicitly, change the status of a variable, the pro-
grammer can use data-sharing attributes like OpenMP di-
rective #pragma omp threadprivate (list of
variables) and relative clauses. The OpenMP data-
sharing clauses are shown in Table 1.

Clauses Description
default(none|shared) Specifying the default behavior

of variables
shared(list) Specifying the list of shared

variables
private(list) Specifying the list of private

variables
firstprivate(list) Allowing to access value of the

list of private variables in the
first time

lastprivate(list) Allowing to share value of the
list of private variables at the
end of parallel region

copyin(list) Allowing to access value of
threadprivate variables

copyprivate(list) Specifying the list of private
variables that should be shared
among all threads.

reduction(list, ops) Specifying the list of variables
that are subject to a reduction
operation at the end of the par-
allel region.

Table 1: OpenMP data-sharing clauses.

4 A new execution model for CAPE
In order to improve the performance of CAPE and its flexi-
bility, we designed a new execution model that extends the
one presented in Section 2.1. In this new execution model,
DICKPT is replaced by TICKPT. Figure 6 illustrates the
model which can be described as follows:

1. At the beginning of the program, all nodes in the sys-
tem execute the same sequential code.

2. When a parallel region is reached, the master process
creates a set of incremental checkpoints. The number
of incremental checkpoints depends upon the num-
ber of tasks in the parallel region. Each incremen-
tal checkpoint contains the state of the program to be

306 Informatica 42 (2018) 301–311 V.L. Tran et al.

Figure 6: The new execution model for CAPE.

used to resume its execution in another process at the
saved time.

3. The master process scatters the set of incremental
checkpoints. Each node receives some of the check-
points generated by the master process. This step is
illustrated in the Figure 8.

4. The received incremental checkpoints are injected
into the slave processes’ memories.

5. The slave processes resume their execution.

6. Results on slave processes are extracted by identify-
ing the modified regions and saved as an incremental
checkpoint.

7. Incremental checkpoints of each process is sent back
to the master node. Incremental checkpoints are com-
bined altogether to generate a single checkpoint. This
step can be distributed among the processes if need be.

8. The final combined incremental checkpoint is injected
in the master process’ memory and the master process
can resume its execution.

Changing the execution model implies changing the
translation templates. Figure 9 presents the template for the
#pragma omp parallel for directive that adapts to
the new execution model. The other OpenMP directives
can be designed in a similar way. For this template, CAPE
operates as follows:

Figure 7: Scheduling method in CAPE-2.

Figure 8: Scheduling method with the new execution
model.

– generate_dickpt(beforei) (line 3): at each loop it-
eration, the master process generates an incremental
checkpoint.

– scatter(before, &recvn, master) (line 4): the mas-
ter process scatters the checkpoints to the available
processes, including itself. Each process receives
some of the checkpoints (recvn).

– inject(recvn) (line 5): each checkpoint is injected
into the target process’ memory.

– the execution is resumed on instruction D (line 6).

– generate_dickpt(aftern) (line 7): each process gen-
erates an incremental checkpoint that saves the result
of its execution.

– allreduce(aftern, &after, [< ops >]) (line 8): the
aftern checkpoint of process n is sent to the other
processes. Checkpoints are combined, calculated and
saved in a new after checkpoint. With TICKPT, the
order of checkpoints is presented in each of them, so
this is performed using the Recursive Doubling algo-
rithm [26] as illustrated in Figure 10.

– inject(after) (line 9): incremental checkpoint after

Time-stamp Incremental Checkpointing and its Application. . . Informatica 42 (2018) 301–311 307

Figure 9: Prototype for the parallel for with the new
execution model.

Figure 10: Recursive doubling for allreduce.

is injected into the application’s memory to synchro-
nize the state of the program on all nodes.

5 Analysis and evaluation

5.1 From DICKPT to TICKPT

As presented in Section 3, TICKPT is an evolution of
DICKPT. It creates and adds time-stamps into checkpoints
to make them more flexible and to reduce synchronization
time when applying on CAPE. In addition, it removes un-
necessary data to reduce checkpoint’s size. For the syn-
chronization time, we will analyse and evaluate the whole
performance of CAPE. For checkpoint’s size, we consider
the amount of the modified data generated by TICKPT and
DICKPT after having executed the piece of code in Fig-
ure 11 in each node, with various values for N .

Data contained in A, B and C variables are changed.
The DICKPT counts them all, while TICKPT only counts
data in variable C. Therefore, the amount of modified data
significantly reduced with TICKPT as shown in Figure 12.

5.2 Analysis of the new execution model

Moving from a scheduling of CAPE processes based on
the number of nodes (Figure 7) to a scheduling based on

#define N 1000
...
int A[N], B[N], C[N], i;
...
#pragma omp parallel for

private(A,B) shared(C)
for(i = 0; i <N; i++){

A[i] = i;
B[i] = N - i;
C = A[i] + B[i] ;

}

Figure 11: A piece of OpenMP code used to consider the
amount of modified data with the two checkpoint tech-
niques.

Figure 12: Amount of modified data (in bytes) generated
by both methods.

the number of jobs (Figure 8) makes CAPE more flexible
at least for the three following reasons:

1. The number of available processes can be identified at
runtime. The master node can distribute the jobs to all
available processes.

2. All OpenMP scheduling mechanisms such as
static and dynamic can be implemented on
CAPE. This is because the master node generates a
number of checkpoints depending on the number of
jobs. First step, one checkpoint can be sent to each
slave node to execute a divided job. When the slave
node finishes, it is sent the next checkpoint that has
not been executed yet.

3. There is no need to modify the OpenMP source code
to detect the location of the master process that gener-
ated the incremental checkpoints and sent them to the
slave nodes.

For performance analysis and evaluation, considering
that both initial and sequential codes of the program are ex-
ecuted in the same way in any processes of the system, only
the execution time of the parallel regions has been consid-
ered.

Let tf be the execution time of the fork phase, tc be the
computation time to execute the divided jobs and tj be the

308 Informatica 42 (2018) 301–311 V.L. Tran et al.

time for the join phase, ie. the time to synchronize data af-
ter executing the divided jobs at all nodes. For each parallel
region, the execution time can be computed using equa-
tion 1.

t = tf + tc + tj (1)

Note that tf is similar for both methods as both consider
the work-shared steps and the generation of incremental
checkpoints, and an incremental checkpoint only consist
of very few bytes, ie. the time for the fork phase is close to
zero.

In the previous execution model, the master process was
not involved in the computation phase, and resources ware
wasted. Let n be the number of jobs and p be the number of
processes. Assume that each process takes one unit of time
to execute a job, and the number of jobs is equally divided
equally among the processes. The value for tc becomes:

tc =

⌈
n

p− 1

⌉
(2)

With the new execution model, all processes are involved
in the computation phase so that tc is equal to:

tc =

⌈
n

p

⌉
(3)

tj is also impacted by the new execution model. In the
previous model, the value for tj is equal to the time for the
slave processes to send their results to the master node for
combination plus the time to receive the final checkpoint
and inject it into the process’ memory. This work is done
sequentially. Thus, the time to send or receive a checkpoint
is given by:

tj = 2(p− 1) (4)

With the new execution model, the Recursive Doubling
algorithm [26] is applied to communicate between all pro-
cesses, so that tj becomes:

tj = dlog2(p)e (5)

Computation time tc is the most important factor that
affects the execution time of a parallel region. From equa-
tions (2) and (3), it is easy to demonstrate that tc for the
previous execution model is always larger than tc for the
new execution model, ie. the execution time for CAPE is
reduced with this new execution model. And the resources
are used more efficiently.

Besides, the use of the Recursive Doubling algorithm
during the join phase with the new execution model allows
saving time when synchronizing data between processes.
This is highlighted by comparing equations (4) and (5) with
the previous execution model and the new execution model
respectively.

6 Experiments
In order to measure the impact of the new execution model
on the performance, as mathematically analyzed in Sec-
tion 5, some experiments were conducted. These exper-
iments were performed on 4-node and 16-node clusters.
Each node includes an Intel core i3-2100, a dual-core 4-
thread CPU running at 3.10 GHz and 2 GB of RAM. These
computers are connected using a 100 Mb/s Ethernet net-
work. To avoid external influence as much as possible, the
entire system was dedicated to the tests during all of the
performance of the measurement campaign.

The program used as the basis for these experiments is
the classic matrix-matrix multiplication. The sizes of the
matrices are increased from 1600×1600, 3200×3200 to
9600×9600. Each program is executed at least 10 times to
measure the total execution times and a confidence interval
of at least 98% has been always achieved for the measures.
Data reported here are the means of the 10 measures.

Figure 13: Total execution time (in seconds) for both mod-
els on 4-node clusters.

Figure 13 and 14 present the total execution time of
CAPE on 4-node and 16-node clusters respectively. As can
be seen from these figures, the execution time of both mod-
els are shown, the gray color (OLD) represents the previ-
ous execution model, and the blue one (NEW) represents
the new execution model. The horizontal axis shows the
size of the matrix and the vertical axis shows the execution
time in seconds.

For the 4-node cluster, as compared with the previous
model, the execution time of the new model is reduced sig-
nificantly and the reduction is inversely proportional to the
size of the matrix. The larger the size of the matrix, the
shorter in time. This is due to the fact that there are only
three nodes executing the divided jobs on the previous ex-
ecution model. The master just divides and distributes jobs
to slaves, and then waits for the results return. It does not
participate in the computational part. In contrast, with the
new execution model, master node receives and executes a
part of the divided jobs. Therefore the computation time
(tc) on this model is much lower than on previous model,
especially on the cluster with only 4 nodes.

For the 16-node cluster, the result in Figure 14 shows the

Time-stamp Incremental Checkpointing and its Application. . . Informatica 42 (2018) 301–311 309

Figure 14: Total execution time (in seconds) of two models
on 16-node clusters.

same trend, ie. the new execution model is better than the
previous one. However, the distance between the execution
time of both models is closer. It maintains a saving time
around 10%. This is due to the larger number of nodes that
leads to less time to compute the divided jobs. Therefore,
the total saving time of tc in this case is smaller.

Figure 15 presents the execution time of the fork (tf),
computation (tc) and join (tj) phases for both previous and
new execution models on the master node with the 16-node
cluster. The matrix size 9600 × 9600 is selected in this
case.

Figure 15: Execution time (in seconds) fork, computation
and join phases for both previous and new execution mod-
els on the master node.

In the previous model, after the fork operation, the mas-
ter node waits for the results from the slave nodes. There-
fore, the value for tc is equal to zero. For the same phase
using the new execution model, the master node partici-
pates in the execution together with the slave nodes, so that
tc is much larger than zero. However, the new execution
model uses the free resources of the master node to com-
pute a part of the jobs of the whole program. This does
not increase the whole execution time, but also contributes
to improve the global efficiency of the system. The join
phase comes right after the computation phase in the pre-
vious execution model. At this time, the master node waits

for the results from the slave nodes and the synchronization
of data. With the new execution model, this time is dedi-
cated to the synchronization of data. Therefore, tj is much
smaller for the new execution model as compared with the
previous execution one.

Indeed, both the theoretical analysis and the practical ex-
periments on clusters composed of 4 nodes and 16 nodes
when comparing the previous execution model and the new
execution model show that the resources of the system are
used more efficiently and the execution time is significantly
reduced (decreased at least by 10%). This shows that the
new execution model is a good direction to pursue the de-
velopment of CAPE in the future.

7 Conclusion and future works
In this paper, we presented and analysed the disadvantages
of previous version of CAPE. We also proposed a new
method name TICKPT to improve the previous checkpoint-
ing technique. Then, TICKPT is applied to improve the
previous execution model. Both theoretical analysis and
experimentation showed that checkpoint’s size and risk of
bottlenecks in execution model are reduced significantly
while the performance and the flexibility of CAPE are im-
proved.

For the future, we will keep on developing CAPE using
this new execution model. We will also try to determine
how to combine checkpoints more efficiently to implement
OpenMP’s shared-data environment variables.

Acknowledgement
We thank the technical program committee members of
SoICT 2017 conference for their reviews and comments
that greatly improved the manuscript. We also thank Prof.
Zhenjiang Hu, chair of the Software Engineering section
for the discussion at the conference, that provided us ideas
to extend this article.

References
[1] Message Passing Interface Forum (2014)

MPI: A Message-Passing Interface Standard,
http://mpi-forum.org/docs/mpi-3.1/
mpi31-report.pdf.

[2] OpenMP ARB (2013) OpenMP application program
interface version 4.0, http://www.openmp.
org.

[3] Morin, Christine and Lottiaux, Renaud and Val-
lée, Geoffroy and Gallard, Pascal and Utard, Gaël
and Badrinath, Ramamurthy and Rilling, Louis
(2003) Kerrighed: a single system image clus-
ter operating system for high performance comput-
ing, Euro-Par 2003 Parallel Processing, Springer,

310 Informatica 42 (2018) 301–311 V.L. Tran et al.

pp. 1291–1294. https://doi.org/10.1007/
978-3-540-45209-6_175.

[4] Sato, Mitsuhisa and Harada, Hiroshi and Hasegawa,
Atsushi and Ishikawa, Yutaka (2001) Cluster-enabled
OpenMP: An OpenMP compiler for the SCASH
software distributed shared memory system, Scien-
tific Programming, Hindawi, pp. 123–130. http:
//doi.org/10.1155/2001/605217.

[5] Karlsson, Sven and Lee, Sung-Woo and Brors-
son, Mats (2002) A fully compliant OpenMP im-
plementation on software distributed shared mem-
ory, High Performance Computing—HiPC 2002,
Springer, Berlin, pp. 195–206. https://doi.
org/10.1007/3-540-36265-7_19.

[6] Basumallik, Ayon and Eigenmann, Rudolf (2005)
Towards automatic translation of OpenMP to MPI,
Proceedings of the 19th annual international con-
ference on Supercomputing (SC), ACM, pp. 189–
198. https://doi.org/10.1145/1088149.
1088174.

[7] Dorta, Antonio J and Badía, José M and Quintana,
Enrique S and de Sande, Francisco (2005) Imple-
menting OpenMP for clusters on top of MPI , Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, Springer, pp. 148–155. https:
//doi.org/10.1007/11557265_22.

[8] Huang, Lei and Chapman, Barbara and Liu,
Zhenying (2005) Towards a more efficient im-
plementation of OpenMP for clusters via transla-
tion to global arrays, Parallel Computing, Elsevier,
pp. 1114–1139. https://doi.org/10.1016/
j.parco.2005.03.015.

[9] Hoeflinger, Jay P (2006) Extending OpenMP to clus-
ters, White Paper, Intel Corporation.

[10] Renault, Éric (2007) Distributed Implementa-
tion of OpenMP Based on Checkpointing Aided
Parallel Execution, A Practical Programming
Model for the Multi-Core Era, Springer, pp.
195–206. https://doi.org/10.1007/
978-3-540-69303-1_22.

[11] Plank, James S and Beck, Micah and Kings-
ley, Gerry and Li, Kai (1994) Libckpt: Trans-
parent checkpointing under unix, White Pa-
per, Computer Science Department. https:
//pdfs.semanticscholar.org/bd21/
4d6a94edf9bd4f97b4467c545dafd8138e8a.
pdf.

[12] Ha, Viet Hai and Renault, Éric (2011) Dis-
continuous Incremental: A new approach to-
wards extremely lightweight checkpoints, Com-
puter Networks and Distributed Systems (CNDS),

IEEE, pp. 227–232. https://doi.org/10.
1109/CNDS.2011.5764578.

[13] Ha, Viet Hai and Renault, Eric (2011) Design and per-
formance analysis of CAPE based on discontinuous
incremental checkpoints, IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Pro-
cessing, IEEE, pp. 862-867. https://doi.org/
10.1109/PACRIM.2011.6033008.

[14] Tran, Van Long and Renault, Eric and Ha, Viet
Hai (2016) Analysis and evaluation of the perfor-
mance of CAPE, IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communi-
cations, Cloud and Big Data Computing, Internet
of People, and Smart World Congress, IEEE,
pp. 620–627. https://doi.org/10.1109/
UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.
2016.0104.

[15] Ha, Viet Hai and Renault, Eric (2011) Im-
proving performance of CAPE using dis-
continuous incremental checkpointing, High
Performance Computing and Communica-
tions (HPCC), IEEE, pp. 802–807. https:
//doi.org/10.1109/HPCC.2011.114.

[16] Tran, Van Long and Renault, Éric and Do, Xuan
Huyen and Ha, Viet Hai (2017) Design and im-
plementation of a new execution model for CAPE,
Proceedings of the Eighth International Sympo-
sium on Information and Communication Technol-
ogy (SoICT’s 2017), ACM, pp. 453–459. https:
//doi.org/10.1145/3155133.3155199.

[17] Bernstein (1966) Analysis of Programs for Parallel
Processing, IEEE Transaction on Electronic Comput-
ers, IEEE, pp. 757–763. https://doi.org/10.
1109/PGEC.1966.264565.

[18] Cores, Iván and Rodríguez, Mónica and González,
Patricia and Martín, María J (2016) Reducing the
overhead of an MPI application-level migration
approach, Parallel Computing, Elsevier, pp. 72–
82. https://doi.org/10.1016/j.parco.
2016.01.012.

[19] Li, C-CJ and Fuchs, W Kent (1990) Catch-compiler-
assisted techniques for checkpointing, Fault-Tolerant
Computing (FTCS), IEEE, pp. 74–81. https://
doi.org/10.1109/FTCS.1990.89337.

[20] Chen, Zhengyu and Sun, Jianhua and Chen, Hao
(2016) Optimizing Checkpoint Restart with Data
Deduplication, Scientific Programming, Hin-
dawi. https://doi.org/10.1155/2016/
9315493.

[21] Plank, James S and Xu, Jian and Netzer, Robert HB
(1995) Compressed differences: An algorithm for fast

Time-stamp Incremental Checkpointing and its Application. . . Informatica 42 (2018) 301–311 311

incremental checkpointing, Technical Report CS-95-
302, University of Tennessee.

[22] Hyochang, NAM and Jong, KIM and Hong, Sung
Je and Sunggu, LEE (1997) Probabilistic checkpoint-
ing, Proceedings of IEEE 27th International Sympo-
sium on Fault Tolerant Computing, IEEE. https:
//doi.org/10.1109/FTCS.1997.614077.

[23] Mehnert-Spahn, John and Feller, Eugen and Schoet-
tner, Michael (2009) Incremental checkpointing for
grids, Proceedings of the Linux Symposium, Mon-
treal, Quebec, Canada, pp. 201–220.

[24] Cores, Iván and Rodríguez, Gabriel and González,
Patricia and Osorio, Roberto R and others (2013) Im-
proving scalability of application-level checkpoint-
recovery by reducing checkpoint sizes, New Genera-
tion Computing, Springer, pp. 163–185. https://
doi.org/10.1007/s00354-013-0302-4.

[25] Alfred, V.Aho and Monica, S. Lam and Ravi, Sethi
and Jeffrey, D. Ullman (2006) Compilers Principles,
Techniques,& Tools, Addion Wesley.

[26] Thakur, Rajeev and Rabenseifner, Rolf and Gropp,
William (2005) Optimization of collective commu-
nication operations in MPICH, International Journal
of High Performance Computing Applications, Sage
Publications, pp. 49–66. https://doi.org/10.
1177/1094342005051521.

312 Informatica 42 (2018) 301–311 V.L. Tran et al.

