
Informatica 32 (2008) 383–396 383

On Interchange between Drools and Jess

Oana Nicolae, Adrian Giurca and Gerd Wagner
Brandenburg University of Technology, Germany
E-mail: {nicolae, giurca, G.Wagner}@tu-cottbus.de

Keywords: Drools (aka JBossRules), Jess, RuleML, R2ML, RIF, Rete, ReteOO, business rules, interchange, standardis-
ation

Received: March 15, 2008

There is a growing demand for research in order to provide insights into challenges and solutions based on
business rules, related to target PSMs (Platform Specific Model in OMG’s MDA terms - Implementation
Model). As an answer to these needs, the paper argues on the relevance of business rules target platforms
for the actual IT and business context, by emphasising the important role of business rules interchange
initiatives. Therefore, the rule-system developers can do their work without any concern about a vendor-
specific format, and in particular without any concern about the compatibility between the technologies.
The paper provides a description of the business rules translation from a particular object oriented rule-
system such as Drools, to another rule-system as Jess coming from the AI area, using R2ML as interchange
language. The transformation preserves the semantic equivalence for a given rule set, taking also into
account the rules vocabulary.

Povzetek: Prispevk opisuje prenos pravil iz objektnega sistema Drools v AI sistem Jess.

1 Introduction
There is a growing request for business rules technology
standardisation from both UML and ontology architects
communities. Due to these reasons, business rules aim to
express rules in a platform independent syntax.

A number of initiatives on rules interchange have been
started. They include the RuleML (2), OMG Production
Rules Representation (PRR) (8), RIF (1), and the REW-
ERSE I1 Rule Markup Language (R2ML1) (10). We men-
tion here the efforts to establish some standards for express-
ing business rules and their vocabularies in natural lan-
guage such as OMG’s SBVR (9) and Attempto Controlled
English (ACE) (4). SBVR, this human readable format of
business rules comes under OMG’s Model Driven Archi-
tecture (MDA2) standards and is defined as Computation-
Independent Model (CIM3). CIM is most frequently used
in the context of the Model Driven Architecture (MDA) ap-
proach which corresponds the Object Management Group
(OMG) vision of Model Driven Engineering (MDE). The
Meta-Object Facility (MOF), is the OMG standard for
Model Driven Engineering.

The second layer in OMG’s MDA is Platform-
Independent Model (PIM)4 where rule interchange formats
(i.e. RuleML, RIF, R2ML) try to accomplish their gen-
eral purpose: a PSM to PSM business rules migration
through the PIM level. The third MDA level is Platform-

1R2ML - http://oxygen.informatik.tu-cottbus.de/
rewerse-i1/?q=node/6

2MDA - Model Driver Architecture is a framework for distinguishing
different abstraction levels defined by the Object Management Group.

3CIM - Computational Independent Model
4PIM - Platform Independent Model

Specific Model (PSM5) containing rule specific languages
together with their specific engines/platforms like: F-Logic
(5), JRules(ILOG6), Jess7 or Drools8.

The main purpose of an interchanging approach is to
provide means for reusing, publication and interchange of
rules between different systems and tools. Actually, it also
plays an important role in facilitating business-to-customer
(B2C) and business-to-business (B2B) interactions over the
Internet. Moreover, an interchange approach always sup-
poses less transformations than PSM-to-PSM translations.

Our rule interchange work addresses Drools as source
platform and Jess as a target platform, using the approach
suggested by OMG’s MDA, because these languages are
actually in business market interest as popular business
logic frameworks, used by Java developers to create com-
plex rule-based applications by combining Java platform
and business rule technology. Another reason for choos-
ing these two rule systems is their efficiency in "pattern"
matching, especially to handle updates to its working set
of facts, as both Drools and Jess use an algorithm known
as the Rete (i.e. Latin for "net") algorithm. Computational
complexity per iteration of this algorithm is linear in the
size of the fact base.

The main standardisation communities, OMG9 and
W3C10 focus their work on providing business rules spec-
ification languages for all MDA layers of models in order

5PSM - Platform Specific Model
6ILog, http://www.ilog.com
7Jess, http://herzberg.ca.sandia.gov/jess/
8JBossRules, http://labs.jboss.com/jbossrules/
9OMG - http://www.omg.org/

10W3C - http://www.w3.org/



384 Informatica 32 (2008) 383–396 O. Nicolae et al.

to obtain rules interchange. Their standards are not sus-
tained by most of business rules management system tools,
as they implement proprietary rule languages. The reasons
for this situation imply the existence of only a few inter-
change works in the academia i.e. RIF (1) language still
has no well defined guidelines of how to implement the
transformations and it also does not specify how to test the
correction of the translation.

In this context, EU network of Excelence REWERSE11

developed R2ML as an interchange language for deploy-
ing and sharing rules between different rule systems and
tools (e.g. Object Oriented rule languages, Semantic Web
rule languages, Artificial Intelligence rule languages). Ac-
tually, R2ML (now at version 0.5) is a mature and ex-
perienced enough rule interchange language to provide
a concrete interchange format for different rule systems
and languages (i.e.http://oxygen.informatik.
tu-cottbus.de/rewerse-i1/?q=node/15).

R2ML has a rich syntax, so it can represent business
rules from both Drools and Jess languages, providing this
way the interchange possibility. As an interchange lan-
guage, R2ML addresses the PIM level. The main idea is to
use a model transformation language (MTL), or an appli-
cation transformation language (ATL) to transform a PIM
model into a PSM as in the Figure 1.

Business rules are built following a business model rep-
resentation. In many cases, a business model is first repre-
sented in a natural language description based on core on-
tologic concepts like classes and variables (OMG’s MDA -
CIM level).

At this stage, we can identify all objects referenced in the
rules, and for each object we identify all referenced prop-
erties. For each property, we identify all its constraints.

2 Drools to R2ML mapping
In this section we describe the general JBoss business rules
transformation into R2ML interchange language. Drools
engine project, (now at version 4.0.x) is an open source
and standards-based business rule engine and it uses an en-
hanced implementation named ReteOO12.

Drools is classified as an Object-Oriented Production
Rules engine written entirely in Java language, and more
specifically it is a Forward-Chaining rule engine.

A Production Rules System (i.e. PRS) relies on an Infer-
ence Engine that is able to scale to a large number of rules
and facts. The Inference Engine matches facts and data,
against PRs, also called Productions or just Rules, to infer
conclusions which result in actions. The Rules are stored
in the Production Memory. The facts that the Inference En-
gine matches against the rules are stored in the Working
Memory.

R2ML is a visual rule markup, XML-based language,

11REWERSE - http://rewerse.net/
12RETE adaptation for an object-oriented language, a descendant of the

well-known RETE algorithm

whose purpose is to capture rules formalised in different
languages and to interchange them between rule systems
and tools. It provides support for all kind of rules:

– Integrity Rules

– Derivation Rules

– Production Rules

– Reaction Rules

A R2ML production rule has conditions and post-
conditions. The conditions and post-conditions of a R2ML
production rule are usually interpreted as logical formulae
which correspond to a general first order formula: quanti-
fied formula, existentially quantified or universally quanti-
fied (i.e. R2ML uses the concept of r2ml:QuantifiedFormula
and by default, all R2ML formulae are universally quan-
tified). Usually, PRS does not explicitly refer to events,
but events can be simulated in a production rule system by
externally asserting corresponding facts into the Working
Memory. The R2ML production rules metamodel is de-
picted in the Figure 2:

The mapping from Drools to R2ML is possible as R2ML
supports the representation of the PRs by relying on the
OMG’s PRR (8) Specification. Following sections describe
general principles of mapping from JBoss rules into R2ML
PRs.

2.1 Mapping rules vocabularies
Object oriented rules systems as Drools and ILOG JRules
are build on top of Java vocabularies. Drools is designed to
use Java beans as facts. These facts represent the domain of
the rules, meaning the rules vocabulary. Java beans objects
are defined by users in their applications.

These objects inserted into Working Memory represent
the valid facts that rules can access. Facts are the applica-
tion data, meanwhile the rules represent the logic layer of
the application. This vocabulary is used by rules through
the import declarations, which are specified inside of the
rules file (drl files or xml files). For example, a rule from
Drools may use one or many Java beans classes in order
to describe its own vocabulary. The Java bean classes rep-
resent a description of the facts used by the Drools rule
engine.

A R2ML rule always refers to a vocabulary which can
be R2ML own vocabulary or an imported one (i.e. UML13,
RDF(S)14 and OWL15 - see lines 3.-4. from Section 2.2 i.e.
an example of the importing an OWL external vocabulary
for an entire R2ML production rule set). R2ML vocab-
ulary is a serialisation of an UML fragment of class dia-
grams. Below, we describe the corresponding translation
class from a usual Java bean into R2ML elements of the
vocabulary namespace with the help of the optionally el-
ement r2mlv:Vocabulary i.e. Since almost all names from

13UML - http://www.uml.org
14RDF(S) - http://www.w3.org/TR/rdf-schema
15OWL - http://www.w3.org/2004/OWL



ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 385

Figure 1: Interchanging between Drools and Jess.

Figure 2: R2ML Production Rules Representation Metamodel.

1.<r2ml:RuleBase
2. xmlns:r2ml=

"http://www.rewerse.net/I1/2006/R2ML"
3. xmlns:dc=

"http://purl.org/dc/elements/1.1/"
4. xmlns:ex=

"http://www.businessrulesforum.com/2007/"
5. xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
6. xsi:schemaLocation=

"http://www.rewerse.net/I1/2006/R2ML
7. http://oxygen.informatik.tu-cottbus.de/

R2ML/0.5/R2ML.xsd"
8.<r2mlv:Vocabulary>
9. <r2mlv:Class r2mlv:ID="Cheese">
10. <r2mlv:Attribute r2mlv:ID="type">
11. <r2mlv:range><r2mlv:Datatype

r2mlv:ID="xs:string"/>
12. </r2mlv:range>
13. </r2mlv:Attribute>
14. <r2mlv:Attribute r2mlv:ID="price">
15. <r2mlv:range><r2mlv:Datatype

r2mlv:ID="xs:integer"/>
16. </r2mlv:range>
17. </r2mlv:Attribute>
18. <r2mlv:Attribute r2mlv:ID="bestBefore">
19. <r2mlv:range><r2mlv:Datatype

r2mlv:ID="xs:dateTime"/>
20. </r2mlv:range>
21. </r2mlv:Attribute>
22. </r2mlv:Class>
23.</r2mlv:Vocabulary>
24.</r2mlv:RuleBase>

R2ML rule bases are qualified names (xs:QName), they
must have declared the corresponding namespaces (i.e. see
above lines 2.-5.). In the same manner, any Java qual-
ified class name will be translated into a qualified name
(xs:QName) together with the corresponding names dec-
larations.

For example, if we assume the Drools import declaration
(i.e. a Java qualified name): org.drools.usecase.Cheese,
this will translate into the following namespace declaration
xmlns:ex="http://www.drools.org/usecase" used in the qual-

ified name (i.e. ex:Cheese), in order to reference the class
name.

2.2 Rule Sets Mapping
All imported Java beans in Drools rule packages form the
rules vocabulary. The set of Drools rules is individualized
by its package namespace, declared at the beginning of the
rules file, namespace that can be equal or can differ from
Drools import declarations i.e. The Drools package of rules

package org.drools.rules;

import org.drools.usecase.Cheese;
/* set of Drools rules */

finds its correspondent into the r2ml:ProductionRuleSet ele-
ment. It contains three optional attributes:

– r2ml:ruleSetID - is the name of the rule set. The name
of the Java package of classes identifies in an unique
way the name of a R2ML ProductionRuleSet (i.e. see
line 2. from below R2ML code example).

– r2ml:externalVocabulary - represents an URI of an ex-
ternal vocabulary. We used OWL to represent the vo-
cabulary of the rule.

– r2ml:externalVocabularyLanguage - refers the language
of the external vocabulary.

1. <r2ml:ProductionRuleSet
2. r2ml:ruleSetID="org.drools.rules"
3. r2ml:externalVocabulary="http://..."
4. r2ml:externalVocabularyLanguage="OWL">

Excepting the rules and their import declarations, a Drools
package may contain other specific constructs like: glob-
als, user-defined functions and queries, but they do not rep-
resent the subject of our translation.



386 Informatica 32 (2008) 383–396 O. Nicolae et al.

1. rule "<name>"
2. when
3. <LHS>
4. then
5. <RHS>
6. end

// java-like, single line comment
# single line comment
/* ...

java-like, multi lines comment
... */

2.3 Rule Mapping
In Drools, a rule consists of the rule identifier, the condi-
tions part called LHS (i.e. Left Hand Side) and the actions
part called RHS (i.e. Right Hand Side). The general princi-
ples of mapping a Drools rule into a R2ML production rule
is:

– Every JBoss production rule is translated into a
r2ml:ProductionRule element. An optional element
r2ml:Documentation can contain elements which com-
prise the rule text and also the representation of the
rule in a specific rules language.

– A R2ML r2ml:ruleID production rule attribute is
generated using the JBoss <name> value. The
r2ml:ruleID unique identifies a rule inside a rule set.

– A JBoss rule has a conditions part (i.e. when part)
and an action part (i.e. then part). The condition
part of a JBoss rule is mapped into the content of
r2ml:conditions role element. The RHS part of a
JBoss rule which contains multiple actions maps into
the content of r2ml:producedActionExpr role element.

– The Drools language syntax also contains the com-
ments expressed in Java-like syntax, such as:

When translated into R2ML syntax, they map into the
XML <[!CDATA[...]]> construct. For example:

1.<r2ml:Documentation>
2. <r2ml:RuleText r2ml:textFormat="plain">
3. <[!CDATA[
4. JBoss rule expressed in natural language...
5. ]]>
6. </r2ml:RuleText>
7.</r2ml:Documentation>

In the following lines we describe the mapping of Drools
conditions into R2ML appropriate ones.

The LHS (i.e. when part) of a JBoss rule consists of
patterns (i.e. columns) and eval as Conditional Elements
(i.e. CE) in order to facilitate the encoding of propositional
logic and First Order Logic i.e. FOL. The entire LHS of
a Drools rule is in fact a tuple of facts (i.e. a tuple of pat-
terns). Each pattern may have zero or more field constraints
i.e. the pattern terms (see Figure 4). The and (i.e. &&) CE
is implicit when the JBoss rule condition contains multi-
ple patterns. Field constraints compare and assess the field
values from the fact object instances. Drools facts from

Working Memory are Java beans objects instances, there-
fore these field constraints can be accessed from the "no ar-
guments" methods, also called the accessors (i.e. getters).

2.3.1 Mapping Drools patterns without Field
Constraints

A Drools pattern without field constraints, will map into the
r2ml:ObjectClassificationAtom. For example, the following
Drools pattern, which corresponds to universally quantified
formula from classical logic: ∀?c Cheese(?c) is expressed
in Drools as following:

$c: Cheese()

This Drools pattern finds its R2ML translation into the
below code. As an explanation, we mention that all the
R2ML formulae are implicitly universal quantified:

1.<r2ml:ObjectClassificationAtom
2. r2ml:class="Cheese">
3. <r2ml:ObjectVariable r2ml:name="c"
4. r2ml:class="Cheese"/>
5.</r2ml:ObjectClassificationAtom>

Following RuleML, R2ML framework defines the
generic concepts of variable. However, R2ML makes a
clear distinction between object terms and data terms.

Typed terms are either object terms standing for objects,
or data terms standing for data values. The concrete syn-
tax of first-order non-Boolean OCL (7) expressions can be
directly mapped to R2ML abstract concepts of ObjectTerm
and DataTerm, which can be viewed as a predicate-logic-
based reconstruction of the standard OCL abstract syntax.

The bounded variable c represents the value of
the r2ml:name attribute of the corresponding term
(r2ml:ObjectName and/or r2ml:ObjectVariable) and the
name of the Java bean class (i.e. Cheese) is the value
of r2ml:class attribute. The above Drools pattern can
be declared inside rules conditions also without the c
variable, such as: Cheese(), but to be able to refer to the
matched facts, usually, the rules conditions use a pattern
binding variable such as c (i.e. in Drools terminology we
refer to it as a fact variable or declaration).

Any JBoss variables translate into R2ML variables. No-
tice that the translation of the Drools variables into R2ML
eliminates the $ symbol (used in Drools only as a notation
convention) from the names of the variables. The JBoss
fact variable used in the previous pattern example (i.e.
c:Cheese()) is mapped into r2ml:ObjectVariable using
the value of r2ml:name="c" property to describe the vari-
able name, which represents an instance of the Cheese
class (see lines 3.-4.). The usage of this instance gives us
the possibility to call properties and functions of Cheese
class in the actions part of a JBoss rule. The optional
r2ml:class property (see line 4. from the above example) spec-
ifies the type of the object variable (i.e. Cheese). An
r2ml:ObjectVariable is a variable that can be only instanti-
ated by objects.



ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 387

2.4 Mapping Drools patterns with Field
Constraints

In many cases, a JBoss pattern (see Figure 3) may contain
many field constraints, all of them referring to the same
context variable. The Drools field constraints may be of
the following possible types (i.e. string, numeric, boolean
and date). When separated by the following operators (i.e.
enumerated here in their priority order see also Figure 5):
&&, || and , (i.e. comma), they form a Drools pattern
formula.

A Drools pattern formula translates into R2ML for-
mula, using the R2ML simple/imbricated concepts of
r2ml:qf.Disjunction and r2ml:qf.Conjunction (qf stands
for "quantifier free") applied on R2ML atoms, in order to
serialize the Drools CE || and &&, respectively.

In the example below, we have two Drools patterns that
in classical logic have the following representation, taking
into account the operators order from Drools i.e.

∀?c ∀?p ∃?youngCheese (Person(?p) ∧
like(?p, ?youngCheese) ∧ (Cheese(?c) ∧
(type(?c, ?youngCheese) ∧ price(?c) < 10) ∨
bestBefore(?c) < ”27−Oct− 2010”))

1.$p:Person($youngCheese:like)
2.$c:Cheese(type == $youngCheese &&
3. price < 10 ||
4. bestBefore < "27-Oct-2010")

The Cheese pattern (see lines 2.-4.) has three field con-
straints combined with a conjunctive connector (i.e. &&)
and a disjunctive connector (i.e. ||). We mention that the
comma represents by default the conjunctive logic oper-
ator. The pattern refers literal constraints used to match
the facts (i.e. instances of Cheese class): type (i.e.
string constraint), price (i.e. numeric constraint) and
bestBefore (i.e. date type constraint). The valid op-
erators that apply for the numeric and date operands are:
==, !=, <,>, <=, >=.

The above Drools pattern translates into the following
R2ML formula (i.e. the example below describes only the
imbrication of the operators (&&, ||) inside the Drools pat-
tern):

1.<r2ml:qf.Disjunction>
2. <r2ml:qf.Conjunction>
3. <r2ml:DatatypePredicateAtom>
6. ...
7. </r2ml:DatatypePredicateAtom>
8. <r2ml:DatatypePredicateAtom>
9. ...
10. </r2ml:DatatypePredicateAtom>
11. </r2ml:qf.Conjunction>
12. <r2ml:DatatypePredicateAtom>
14. ...
15. </r2ml:DatatypePredicateAtom>
16.</r2ml:qf.Disjunction>

In the absence of the qf.Disjunction or qf.Conjunction,
all atoms from the R2ML rule body are implicitly con-
nected by conjunction.

First pattern from the Drools example above (see line
1.) contains as field constraint a bound variable, called

declaration. The JBoss variable $youngCheese is
bound to the like property, so it can later constrain
the type property of the Cheese class. Since the
like property is a data type property (i.e. String),
the R2ML mapping is an r2ml:AttributionAtom, while for
an object type property would find its mapping into the
r2ml:ReferencePropertyAtom.

<!--$p:Person($youngCheese:like)-->
1.<r2ml:AttributionAtom
2. r2ml:attribute="ex:Person.like">
3. <r2ml:subject>
4. <r2ml:ObjectVariable
5. r2ml:name="p"
6. r2ml:class="Person"/>
7. </r2ml:subject>
8. <r2ml:dataValue>
9. <r2ml:DataVariable
10. r2ml:name="youngCheese"
11. r2ml:datatype="xs:string"/>
12. </r2ml:dataValue>
13.</r2ml:AttributionAtom>

The r2ml:AttributionAtom contains the r2ml:subject el-
ement which encloses the object term we refer. This
can be expressed, for example, by an r2ml:ObjectVariable

(i.e. lines 4.-6.). The value of the JBoss property is re-
ferred by the r2ml:dataValue. In this example, the value
is encoded by the r2ml:DataVariable element (i.e. lines
9.-12.). The youngCheese variable borrows the type of
the youngCheese property. R2ML uses XML Schema
Datatypes16 as its default namespace for encoding basic
datatypes. The usage of this set of pre-declared datatypes
is not mandatory, the user can specify any other appropri-
ate URI and namespace for referring later in the rules its
datatypes declaration. The Java/XML type correspondence
it is done according to the JAXB17 binding style correspon-
dence principle, therefore a Java String value will be trans-
lated into xs:string qualified name (see line 11.).

The relational operations from Drools are serialized into
R2ML language using the r2ml:DatatypePredicateAtom con-
struct. Until this version, R2ML had not declared its
own built-in constructs, but it allows the use of external
ones, such as SWRL18 built-ins for representing the predi-
cate type of the relational operations (i.e. swrlb:lessThen).
We also use the construct of r2ml:DatatypePredicateAtom

to serialize the Drools literal field constraints that test
equality / inequality of data types properties. When se-
rializing object types literal field constraints we use the
r2ml:EqualityAtom to express the concept of equality and
the r2ml:InequalityAtom to express the concept of inequal-
ity (!=).

The following Drools pattern describes a Drools
literal String constraint. Drools pattern trans-
lates into r2ml:DatatypePredicateAtom using the
r2ml:datatypePredicate="swrlb:equal" SWRL build-

in to represent the equality operator and serialises the
type property into the r2ml:AttributeFunctionTerm (see

16XML Schema Part 2: Datatypes Second Edition - http://www.
w3.org/TR/xmlschema-2/

17Java Architecture for XML Binding - java.sun.com/
developer/technicalArticles/WebServices/jaxb/

18SWRL - http://www.w3.org/Submission/SWRL



388 Informatica 32 (2008) 383–396 O. Nicolae et al.

Figure 3: Drools Pattern concept.

Figure 4: Drools Field Constraint concept.

lines 4.-10.). The r2ml:dataArguments attribute comprises

$c:Cheese(type == $youngCheese)

the Drools operands translation into R2ML terms objects
or data types, depending on the types of the involved
properties. The Drools $youngCheese variable is
expressed using the concept of r2ml:DataVariable i.e.

<!--$c:Cheese(type == $youngCheese)-->
1.<r2ml:DatatypePredicateAtom
2. r2ml:datatypePredicate="swrlb:equal">
3. <r2ml:dataArguments>
4. <r2ml:AttributeFunctionTerm
5. r2ml:attribute="ex:Cheese.type">
6. <r2ml:contextArgument>
7. <r2ml:ObjectVariable r2ml:name="c"
8. r2ml:class="ex:Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:AttributeFunctionTerm>
11. <r2ml:DataVariable r2ml:name="youngCheese"
12. r2ml:datatype="xs:string"/>
13. </r2ml:dataArguments>
14.</r2ml:DatatypePredicateAtom>

The relational operation $c:Cheese(price < 10) is
expressed by the r2ml:DatatypePredicateAtom and the
build-in swrlb:lessThan. The case also involves the
r2ml:AttributeFunctionTerm for representing the property
price of the Cheese class (i.e. ex:Cheese.price
(see lines 4.-10.) and the r2ml:TypedLiteral term (see lines
11.-12.) for encoding the Java integer value into XML
xs:integer.

<!--$c:Cheese(price < 10)-->
1.<r2ml:DatatypePredicateAtom
2. r2ml:datatypePredicate="swrlb:lessThan">
3. <r2ml:dataArguments>
4. <r2ml:AttributeFunctionTerm
5. r2ml:attribute="ex:Cheese.price">
6. <r2ml:contextArgument>
7. <r2ml:ObjectVariable r2ml:name="c"
8. r2ml:class="ex:Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:AttributeFunctionTerm>
11. <r2ml:TypedLiteral r2ml:lexicalValue="10"
12. r2ml:datatype="xs:integer"/>
13. </r2ml:dataArguments>
14.</r2ml:DatatypePredicateAtom>

The Drools literal date type field constraints are repre-
sented into R2ML using XML qualified name xs:dateTime.

The Drools numeric operators work analogous for this
type of field constraint, so the serialization into R2ML code
is also the r2ml:DatatypePredicateAtom i.e.

<!--$c:Cheese(bestBefore<"27-Oct-2007")-->
1.<r2ml:DatatypePredicateAtom
2. r2ml:datatypePredicate="swrlb:lessThan">
3. <r2ml:dataArguments>
4. <r2ml:AttributeFunctionTerm
5. r2ml:attribute="bestBefore">
6. <r2ml:contextArgument>
7. <r2ml:ObjectVariable r2ml:name="c"
8. r2ml:class="Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:AttributeFunctionTerm>
11. <r2ml:TypedLiteral
12. r2ml:datatype="xs:dateTime"
13. r2ml:lexicalValue="2007-10-27Z"/>
14. </r2ml:dataArguments>
15.</r2ml:DatatypePredicateAtom>

Another meaningful example of Drools field constraints
is testing the equality or inequality of a property against the
Java null value i.e.

$c:Cheese(buyer == null)
$c:Cheese(buyer != null)

The corresponding formula from the classical logic
would be:

∀?c ∀?t Cheese(?c) ∧ ¬buyer(?c, ?t)

∀?c ∃?t Cheese(?c) ∧ buyer(?c, ?t)

Taking into account the above classical logi-
cal formula, the R2ML serialization results in the
r2ml:EqualityAtom, having its meaning negated using
r2ml:isNegated=true attribute. The child elements for
the r2ml:EqualityAtom are object terms. Our example
involves an r2ml:ReferencePropertyTerm with the attribute
r2ml:referenceProperty="ex:Cheese.buyer" and a generated
object term expressed using r2ml:ObjectVariable with the
generated attribute value r2ml:name="t_24535899" and the
r2ml:class="ex:Person" as the type of the buyer property.

The second logic formula involves the existence of
a Cheese fact into Working Memory, whose buyer prop-
erty is not null. The R2ML first step in the R2ML
serialization is the generation of an object term (i.e.
the r2ml:ObjectVariable t_57685642) of ex:Person type
which is bounded to buyer property. We use the
r2ml:ReferencePropertyAtom element i.e.

We have mentioned before that implicitly, the and oper-
ator binds the Drools patterns inside the rule condition.



ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 389

<!--$c:Cheese(buyer==null)-->
1.<r2ml:EqualityAtom
2. r2ml:isNegated="true">
3. <r2ml:ReferencePropertyFunctionTerm
4. r2ml:referenceProperty="ex:Cheese.buyer">
5. <r2ml:contextArgument>
6. <r2ml:ObjectVariable
7. r2ml:name="c"
8. r2ml:class="ex:Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:ReferencePropertyFunctionTerm>
11. <r2ml:ObjectVariable
12. r2ml:name="t_24535899"
13. r2ml:class="ex:Person"/>
14.</r2ml:EqualityAtom>

<!--$c:Cheese(buyer!=null)-->
1.<r2ml:ReferencePropertyAtom
2. r2ml:referenceProperty="ex:Cheese.buyer">
3. <r2ml:subject>
4. <r2ml:ObjectVariable
5. r2ml:name="c" r2ml:class="ex:Cheese"/>
6. </r2ml:subject>
7. <r2ml:object>
8. <r2ml:ObjectVariable r2ml:name="t_57685642"
9. r2ml:class="ex:Person"/>
10. </r2ml:object>
11.</r2ml:ReferencePropertyAtom>

//$p:Person()
1.$c:Cheese(buyer == $p, inStock == true)

A Drools pattern containing a formula that implies only
field constraints conjunctions, can be split into as many
Drools patterns as field constraints it contains i.e.

//$p:Person()
1.$c:Cheese(buyer == $p)
2.$c:Cheese(inStock == true)

There are two possibilities to markup the above Cheese

patterns (see lines 1.-2.): to use a conjunction of R2ML
appropriate atoms or to use the r2ml:ObjectDescriptionAtom

construct.
First option implies the use of the

r2ml:ReferencePropertyAtom in order to markup the
first pattern (see line 1. from Drools example) and a
r2ml:AttributionAtom for the data type boolean field
constraint (see line 2. from Drools example) i.e.

<!--$c:Cheese(buyer == $p)-->
1.<r2ml:ReferencePropertyAtom
2. r2ml:referenceProperty="ex:Cheese.buyer">
3. <r2ml:subject>
4. <r2ml:ObjectVariable
5. r2ml:name="c"
6. r2ml:class="ex:Cheese"/>
7. </r2ml:subject>
8. <r2ml:object>
9. <r2ml:ObjectVariable
10. r2ml:name="p"

Figure 5: Drools constraints inside a pattern.

11. r2ml:class="ex:Person"/>
12. </r2ml:object>
13.</r2ml:ReferencePropertyAtom>

A r2ml:ReferencePropertyAtom associates two object
terms, having different meanings: subject (see lines 3.-7.)
and object (see lines 8.-12.). For example, to express the
concept of: "buyer of cheese" we use the code above, where
the subject is a Cheese instance and the object is a Person in-
stance.

The second solution translates directly the two Cheese

patterns of the rule using the r2ml:ObjectDescriptionAtom.
The referred R2ML serialization is a conjunction of equal-
ity constraints i.e. an enumeration of r2ml:DataSlot(s) or
r2ml:ObjectSlot, depending on the type of the involved
properties objects or data, respectively. The attribute
r2ml:class="Cheese" corresponds to the patterns name from
Drools implementation i.e.

1.<r2ml:ObjectDescriptionAtom
2. r2ml:class="Cheese">
3. <r2ml:subject>
4. <r2ml:ObjectVariable r2ml:name="c"/>
5. </r2ml:subject>
6. <r2ml:ObjectSlot
7. r2ml:referenceProperty="Cheese.buyer">
8. <r2ml:object>
9. <r2ml:ObjectVariable r2ml:name="p"
10. r2ml:class="Person"/>
11. </r2ml:object>
12. </r2ml:ObjectSlot>
13. <r2ml:DataSlot
14. r2ml:attribute="ex:Cheese.inStoc">
15. <r2ml:value>
16. <r2ml:DataVariable
17. r2ml:name="true"
18. r2ml:datatype="xs:boolean"/>
19. </r2ml:value>
20. </r2ml:DataSlot>
21.</r2ml:ObjectDescriptionAtom>

Another CE from the LHS of a Drools rule is the pattern
disjunction (|| / or). The Drools disjunction of multi-
ple patterns results in multiple rule generation, called sub-
rules, for each possible outcome i.e.
∀?c Cheese(?c) ∧ (type(?c, stilton) ∨
type(?c, cheddar))

1.Cheese(type=="stilton") or Cheese(type=="cheddar")
2.Cheese(type=="stilton") || Cheese(type=="cheddar")

In the above examples the Drools or CE is a shortcut
for generating two additional rules. There can be multi-
ple activations for a rule, if both sides of the CE are true.
The R2ML serialization uses the r2ml:qf.Disjunction that
contains each of the Cheese properties mapped with the
r2ml:AttributionAtom.

The Drools negation not represents the existential
quantifier that checks for the non existence of some facts
in Working Memory. Currently, this existential quantifier it
is applied only for patterns i.e. ∀?c ¬Cheese(?c).

not Cheese()

The above pattern tests if there are not Cheese facts in
the Working Memory. The "not" pattern (see Figure 7) can



390 Informatica 32 (2008) 383–396 O. Nicolae et al.

Figure 6: Drools "or" CE.

not have a pattern binding. We still can not serialize the
existentially quantifier concept into R2ML language.

But, by applying the negation to the entire formula, we
obtain the following expression from the classical logic:
∀?c ¬ Cheese(?c). The R2ml serialization of the above
formula uses the concept of r2ml:qf.Negation which em-
beds a r2ml:ObjectClassificationAtom.

1. <r2ml:ObjectClassificationAtom r2ml:isNegated="true"
2. r2ml:classID="Car">
3. <r2ml:ObjectVariable r2ml:name="c_974376"/>
4. </r2ml:ObjectClassificationAtom>

not Cheese(type == "stilton")

The above pattern tests if there are not Cheese facts of
type stilton in the Working Memory. In the classical
logic would be i.e.

∀?c Cheese(?c) ∧ ¬ type(?c, stilton)

. We serialize it using the r2ml:AttributionAtom i.e.

1.<r2ml:AttributionAtom
2. r2ml:attribute="ex:Cheese.type"
3. r2ml:isNegated="true">
4. <r2ml:subject>
5. <r2ml:ObjectVariable r2ml:name="c_6587483"
6. r2ml:class="ex:Cheese"/>
7. </r2ml:subject>
8. <r2ml:dataValue>
9. <r2ml:TypedLiteral
10. r2ml:lexicalValue="stilton"
11. r2ml:datatype="xs:string"/>
12. </r2ml:dataValue>
13.</r2ml:AttributionAtom>

2.4.1 Mapping Drools Actions

Java beans objects/instances are defined by users in their
applications. These objects inserted into Working Mem-
ory (i.e. WM) represent the valid facts which the rules can
access. Facts are the application data, meanwhile the rules
represent the logic layer of the application. The term Work-
ing Memory Actions is used to describe assertions, retrac-
tions and modifications of facts within Working Memory.
When discussing about the Drools - R2ML mapping of ac-
tions, we are only referring to the JBoss rule actions that
find their mapping into R2ML.

R2ML actions are built according with the OMG
PRR Specification (8), which stipulates that an ac-
tion is either an r2ml:InvokeActionExpression or an
r2ml:UpdateStateActionExpr. The R2ML actions are
encoded by the content of r2ml:producedActionExpr role
element i.e.

r2ml:InvokeActionExpression - invokes an operation (by
means of the r2ml:operation attribute) with an ordered,
possible empty list of parameter arguments represented as
R2ML terms. In the following example, we map a Java
output operation, which has as r2ml:arguments the Cheese
instance (i.e. c), previously, supposed to be declared in the
JBoss rule condition (see lines 4.-5.) and a String argument,
that is translated into r2ml:TypedLiteral (see lines 6.-8.).

then
System.out.println($c+" out of stock.");
end

The R2ML translation:

1.<r2ml:InvokeActionExpression
2. r2ml:operation="System.out.println">
3. <r2ml:arguments>
4. <r2ml:ObjectVariable r2ml:name="c"
5. r2ml:Class="ex:Cheese"/>
6. <r2ml:TypedLiteral
7. r2ml:lexicalValue=" out of stock"
8. r2ml:datatype="xs:string"/>
9. </r2ml:arguments>
10.</r2ml:InvokeActionExpression>

AssertActionExpr - contains a collection of slots i.e.
property-value pairs (e.g. r2ml:DataSlot / r2ml:ObjectSlot)
in order to represent the data/object type properties of
a fact. We use this R2ML action call in order to map
the JBoss insert(object) / insertLogical(object) Working
Memory Actions, which has the purpose to insert new
memory data.

then
// Offer(cheese, price)
Offer offer = new Offer($cheese,100)
insert(offer);

end

The R2ML translation needs an instance of the
Offer class for its r2ml:contextArgument, which en-
code the context of the action call, so we generate an
r2ml:ObjectVariable with the r2ml:name="offer". We trans-
late the instance of the Cheese class to a r2ml:ObjectSlot

and the direct value 100 as a r2ml:TypedLiteral having
the type of the price property of the Offer class (i.e.
xs:integer).

1.<r2ml:AssertActionExpr
2. r2ml:class="ex:Offer">
3. <r2ml:contextArgument>
4. <r2ml:ObjectVariable
5. r2ml:name="offer"
6. r2ml:class="ex:Offer"/>
7. </r2ml:contextArgument>
8. <r2ml:ObjectSlot
9. r2ml:referenceProperty="ex:Offer.cheese">
10. <r2ml:object>
11. <r2ml:ObjectVariable
12. r2ml:name="cheese"



ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 391

Figure 7: Drools "not" CE.

13. r2ml:class="ex:Cheese"/>
14. </r2ml:object>
15. </r2ml:ObjectSlot>
16. <r2ml:DataSlot
17. r2ml:attribute="ex:Offer.price">
18. <r2ml:value>
19. <r2ml:TypedLiteral
20. r2ml:datatype="xs:integer"
21. r2ml:lexicalValue="100"/>
22. </r2ml:value>
23. </r2ml:DataSlot>
24.</r2ml:AssertActionExpr>

RetractActionExpr - deletes an object. Its
r2ml:contextArgument always evaluates to an object
term. We use this R2ML construct to map the JBoss
WM Action for removing a previously declared fact (i.e.
c:Cheese()) from the memory i.e.

then
retract($c);

end

The R2ML translation is:

1.<r2ml:RetractActionExpr r2ml:class="ex:Cheese">
2. <r2ml:contextArgument>
3. <r2ml:ObjectVariable
4. r2ml:name="c"
5. r2ml:class="ex:Cheese"/>
6. </r2ml:contextArgument>
7.</r2ml:RetractActionExpr>

UpdateActionExpr - updates a property of a specific ob-
ject term specified by the r2ml:contextArgument. The below
Drools example modifies the type property of a particular
Cheese instance (i.e. c). The update(c) is necessary
in order to notify the Drools engine about the changes from
WM.

then
$c.setType("cheddar");
update($c);
end

The R2ML translation is:

1.<r2ml:UpdateActionExpr
2. r2ml:property="ex:Cheese.type">
3. <r2ml:contextArgument>
4. <r2ml:ObjectVariable r2ml:name="c"
5. r2ml:class="ex:Cheese"/>
6. </r2ml:contextArgument>
7. <r2ml:TypedLiteral
8. r2ml:lexicalValue="cheddar"
9. r2ml:datatype="xs:string"/>
10.</r2ml:UpdateActionExpr>

3 R2ML to Jess mapping
In this section we describe how R2ML rules are translated
into Jess rule language. In Jess, rules are defined using the

defrule construct. They are, in fact written as lists where
the head is the special symbol defrule.

Jess provides two main categories of rules: forward-
chaining rules and backward-chaining rules. Forward-
chaining rules are the most common and used rules in Jess,
and our translation will obtain Jess forward-rules. Jess is
a forward-chaining reasoning engine, backward-chaining
rules being simulated in terms of forward chaining (3).

To translate a R2ML rule into a Jess rule we will use Jess
unordered facts. Unordered facts from Jess are alternatives
for Java bean instances: objects that have named fields (i.e.
properties) in which data appears (although the properties
are traditionally called slots (see code example from 3.1)).

Any R2ML rule will translate into a Jess rule which
uses unordered facts, because they are nice structured and
are better emulating the internal structure of a R2ML rule
(which includes the rule vocabulary).

We also use the new-style, simplified syntax of the Jess
language, introduced in version 7.019. We mention that
the Drools language syntax had received and still receives
a strong influence from Clips/Jess made and ongoing re-
searches.

3.1 Mapping rules vocabulary

Jess business rules vocabulary consists of
deftemplate(s) structures.

A deftemplate describes a fact, in the same way
as a Java class describes an object. In particular, a
deftemplate is a Jess concept which includes a name,
an optional documentation string, an optional "extends"
clause, an optional list of declarations, and a list of zero
or more member variables (called slot descriptions) with a
type qualifier. Each slot description can optionally include
a type qualifier or a default value qualifier.

Using vocabulary classes from R2ML, corresponding
Jess deftemplates are generated. The deftemplate20

structure corresponds to the class description from the
R2ML vocabulary 2.1 i.e. They can be placed in the same

(deftemplate Cheese
(slot type (type STRING))
(slot price (type INTEGER))
(slot bestBefore (type OBJECT)) )

19Jess 7.0 - http://herzberg.ca.sandia.gov/docs/70/
release_notes.html

20http://herzberg.ca.sandia.gov/docs/71/api/
jess/Deftemplate.html



392 Informatica 32 (2008) 383–396 O. Nicolae et al.

file as the rules, or in a separate file, which need to be im-
ported into the rules file, using the import keyword.

3.2 Rule Sets Mapping

The output of the translation from R2ML to Jess is a
.jess batch file (i.e. a Jess knowledge base). This batch
file contains the facts and the rules which represent the in-
put data and the logic for the Jess Rete engine, of which the
current version is 7.0. A Jess rule set is a Jess batch file.
The name of this file is obtained from the r2ml:ruleSetID

attribute (see Section 2.2).

3.3 Rule Mapping

– The r2ml:ruleID attribute value is used to obtain a Jess
rule ID, which is not allowed to contain spaces.

– In R2ML framework the content of r2ml:conditions

role element which corresponds to an universally
quantified formula is translated into the conditions
part of a Jess rule i.e. LHS pattern. The LHS of a
Jess rule consists of patterns that match facts.

– The content of a r2ml:producedActionExpr is markup as
the actions part of a Jess rule i.e. RHS pattern intro-
duced by the symbol => , which roughly denotes
implication. The actions of a Jess rule are composed
only of function calls.

– Jess language supports two kinds of comments: Lisp-
style line comments (;) and C-style block comments
(/*...*/), in order to translate the R2ML comments.

(defrule ruleName
(pattern1)
(pattern2)
;; ...

=>
(function calls))

3.3.1 Mapping r2ml:ObjectClassificationAtom

An R2ML atom corresponds to a Jess pattern. The
r2ml:ObjectClassificatioAtom is used to capture the in-
stanceOf relationship between objects and classes. Any
R2ML object classification atom consists from a manda-
tory attribute r2ml:class with a (xs:QName) value and an ob-
ject term as an argument.

A positive r2ml:ObjectClassificationAtom (see Sec-
tion 2.3.1) is mapped into a Jess pattern without
field constraints i.e. ?fact_variable <- (PatternName{})

where ?fact_variable is the corresponding term (i.e.
r2ml:ObjectVariable) and PatternName is the value of
r2ml:class attribute i.e.

?c <- (Cheese{})

3.3.2 Mapping R2ML Formulae

Any r2ml:qf.Conjunction (qf stands from quantifier free) of
atoms corresponds to a conjunction inside of Jess patterns.
It represents an enumeration of Jess field constraints. If
conjunctions contain conditions referring to the same con-
text, then we translate all the R2ML atoms (i.e. the R2ML
formula) into a Jess single pattern with a number of field
constraints. Every R2ML atom finds its mapping into the
Jess field constraint concept.

Any R2ML variable name is mapped into Jess vari-
able identifier by adding the ? symbol as first charac-
ter: ?fact_variables and ?field_variables. R2ML vari-
ables are provided in the form of r2ml:ObjectVariable

and r2ml:DataVariable. r2ml:ObjectVariable are variables
that can be only instantiated by objects, meanwhile
r2ml:DataVariable are variables that can be only instanti-
ated by data literals.

The r2ml:ObjectVariable is mapped into the Jess concept
of ?fact_variable using the value of the r2ml:name attribute
as the variable name with type xs:NCName. The optional
r2ml:class attribute specifies the membership of the object
variable.

The r2ml:DataVariable with attribute
r2ml:typeCategory=’individual’ is mapped into Jess
as ?field_variable, being instantiated only by data literal
types properties.

The r2ml:AttributionAtom captures data
valued properties of objects. Any
r2ml:AttributionAtom maps into a Jess pattern i.e.
?fact_variable<-(PatternName {property ?value}) where
?fact_variable is the content of the child role element
r2ml:subject of the involved atom (see Section 2.4 lines
3.-7.), PaternName represents the content of attribute
r2ml:class (see Section 2.4 line 6.), property is the value
of the attribute r2ml:attribute and ?value is the content
of the child role element r2ml:dataValue of the atom (see
Section 2.4 lines 8.-12.). The appropriate translation into
Jess language is:

?p <- (Person{} (like ?youngCheese))

The r2ml:DatatypePredicateAtom is designed to capture
built-in predicates. It refers to a user-defined datatype pred-
icate by its mandatory r2ml:datatypePredicate attribute and
consists of a number of data terms as data arguments (the
children of r2ml:dataArguments attribute).

Current translation in Jess supports only op-
erations which have two arguments. The
r2ml:datatypePredicate, represents qualified names
which express the appropriate build-ins: (e.g. swrlb:equal,
swrlb:lessThan, swrlb:lessThanOrEqual, swrlb:greaterThan,
swrlb:greaterThanOrEqual), and corresponds to appropriate,
Jess operators used inside the patterns (==, <, <=, >, >=,
!=, <>).

The r2ml:DatatypePredicateAtom code examples from
Section 2.4 find their mapping into the following Jess pat-
tern with field constraints i.e.



ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 393

?c <- (Cheese{type == ?youngCheese &&
price < 10 ||
bestBefore <= "27/10/2010"})

The r2ml:AttributeFunctionTerm is used by R2ML in
order to express data valued properties of objects.
The name of the attribute is revealed through the
mandatory r2ml:attribute value. Usually, a R2ML
r2ml:AttributeFunctionTerm is contained, as a child
of r2ml:dataArguments construct in R2ML atoms (i.e.
r2ml:DatatypePredicateAtom), in order to assign values to
object properties (i.e. type, price, bestBefore).

The Jess translation will always take into consideration,
the relation between r2ml:AttributeFunctionTerm and other
R2ML atoms (see Section 2.4 lines 3.-10.).

R2ML data literals i.e. r2ml:TypedLiteral are mapped
into Jess using the values of the r2ml:lexicalValue and
r2ml:datatype attributes, into corresponding, Jess valid
types. Internally, all Jess values (symbols, numbers,
strings, lists etc) are represented by instances of the class
jess.Value. Its possible values are enumerated by a set
of constants defined into the jess.RU (i.e. Rete Utilities)
class (i.e. ANY, INTEGER, FLOAT, NUMBER, SYM-
BOL, STRING, LEXEME, and OBJECT).

As Jess language does not provide a particular datatype
in order to express the XML xs:dateTime value, a possible
translation could be the use of the Jess class: jess.RU (i.e.
OBJECT constant). As a consequence, the bestBefore slot
from the cheese deftemplate construct has the type OBJECT

and encapsulates the java.util.Date class.
An R2ML r2ml:ReferencePropertyAtom associates an ob-

ject term as r2ml:subject with other object term as
r2ml:object.

Therefore, the R2ML example of
r2ml:ReferencePropertyAtom (see Section 2.4) will translate
into the following Jess patterns:

?p <- (Person{})
?c <- (Cheese{buyer == ?p &&

inStock == true})

The r2ml:EqualityAtom is intended to express equality of
two object terms (i.e. r2ml:ObjectVariable). The corre-
sponding translation into Jess implementation is the sym-
bol of == operator. The r2ml:isNegated attribute set to
true value, involves the use of != operator.

The r2ml:InequalityAtom is just a convenience construct
to express the negation of the object terms equality. The
corresponding translation into Jess implementation is the
symbol of != operator. The r2ml:isNegated attribute set to
true value, involves the use of == operator.

The Jess nil value has an equivalent meaning with the
null value from Java language. Therefore, the corre-
sponding mappings from Section 2.4 are the following i.e.

?c <- (Cheese{type == nil})
?c <- (Cheese{type != nil})

The r2ml:ObjectDescriptionAtom is a convenience con-
struct to describe a set of property-object value pairs and/or

a set of attribute-value pairs which refer to the same object
as r2ml:subject.

We translate the r2ml:ObjectDescriptionAtom into a Jess
pattern with field constraints. These constraints refer
to the same child role element r2ml:subject and can
be object terms (i.e. r2ml:ObjectVariable) captured in
r2ml:ObjectSlots, or data terms (i.e. r2ml:DataVariable)
captured in r2ml:DataSlots.

The R2ML code example from Section 2.4 will translate
into:

?p <- (Person{})
?c <- (Cheese{buyer == ?p &&

inStock == true})

Any r2ml:qf.Disjunction (qf stands from quantifier free)
is translated into a disjunctive list of Jess patterns, using
the Jess conditional element or, all bound to the same fact-
variable. Any number of patterns can be enclosed in a list
with or conditional element as the head.

This structure is a shortcut for generating two or more
additional rules. For a rule which contains such disjunction
of patterns, there could be multiple activations if multiple
sides of the or are true i.e.

(or (Cheese{type=="stilton"})
(Cheese{type=="cheddar"}) )

All R2ML negations i.e. r2ml:qf.Negation, and
here we refer to both r2ml:qf.StrongNegation, and
r2ml:qf.NegationAsFailure collapse in the Jess negation de-
noted by the keyword not, which currently applies only
for patterns (see R2ML example from Section 2.4).

not(Cheese{})

Any R2ML atom has an optional, boolean property
r2ml:isNegated which tells if the atom is, or is not
negated. The corresponding Jess translation describes
the negated R2ML atom. If the attribute r2ml:isNegated

is missing, this is interpreted in R2ML by the default
r2ml:isNegated="false". The example from Section 2.4 de-
scribes an r2ml:AttributionAtom which supports a negation
through its property r2ml:isNegated="true". The Jess corre-
sponding translation pattern is:

not (Cheese{type == "stilton"})

We mention that a not pattern cannot define any vari-
ables that are used in subsequent patterns (since a not pat-
tern does not match any facts, it can not be used to define
the values of any variables). Also, in our both previous
examples a not pattern can not have a pattern binding.

3.4 Mapping R2ML actions into Jess
Function Calls

The possibles actions of a R2ML production rule are
defined using OMG’s PRR Proposal (the content of
r2ml:producedActionExpr role element). They are mapped
into the corresponding Jess function calls i.e.



394 Informatica 32 (2008) 383–396 O. Nicolae et al.

3.4.1 Mapping r2ml:InvokeActionExpression

An r2ml:InvokeActionExpression will map into Jess into a
function call with/without arguments. Notice that ?c is a
bound variable to the Cheese pattern in the LHS of the
rule. The R2ML code example from Section 2.4.1 finds its
translation into the following Jess code:

(printout t ?c " out of stock!")

3.4.2 Mapping r2ml:AssertActionExpr

The r2ml:AssertActionExpr assert a new data into Working
Memory. The analogous construct in Jess is the assert
function containing the name of the deftemplate name
and (slot value) pairs. The R2ML code example from Sec-
tion 2.4.1 translates into:

(assert(offer (cheese ?c) (price 100)) )

3.4.3 Mapping r2ml:RetractActionExpr

The r2ml:RetractActionExpr deletes an object term from
WM. According with the R2ML code from Section 2.4.1
the corresponding Jess translation is:

(retract (?c))

3.4.4 Mapping r2ml:UpdateActionExpr

The r2ml:UpdateActionExpr from our R2ML rule example
(see Section 2.4.1) corresponds to the modify function
invocation from Jess language, which updates an unordered
fact from WM. Notice that ?c is a bound variable to the
score field value i.e.

(modify ?c (type cheddar))

4 Limitations of the proposed
interchange

The translation process from PSM to PSM using interme-
diate R2ML (as PIM level) demands also the mapping of
rules vocabulary. The Drools to R2ML Translator is a Java
application that requests access to the Drools vocabulary
(Java compiled classes) in order to establish the types of ob-
jects and primitives. As R2ML supports Production Rules
format(8), the Drools to R2ML translation of rule condi-
tions part relies naturally.

Interchange limits appear in the translation of the actions
part of a JBoss rule, which may contain any Java valid
code: variable declaration, non-declarative structures like
if...then structures or cycling structures(i.e. while,
for).

R2ML intends to solve this problem by providing in its
future version an <r2ml:OpaqueExpression> with the role to
encapsulate the code which do not find its semantic equiv-
alent into R2ML <r2ml:producedActionExpr> role element.

Also Drools tries to emerge its syntax from the OMG pro-
posal for PRR, therefore the future design will take much
more into consideration the standard actions.

The purpose of R2ML, as PIM level markup language,
is to provide PSM to PSM rules translation by sharing
a vocabulary model (actually R2ML vocabulary), which
can easily be mapped into Jess vocabulary (deftemplate(s)
structures) i.e.

VDrools → VR2ML → VJess

Therefore, it makes possible the translation from R2ML to
Jess language, as the business rules expressed in R2ML for-
mat do not require any conceptual changes in order to be
implemented in PSM target platforms (e.g. Jess, F-Logic,
RuleML, OCL, SWRL, Drools, Jena21). However, R2ML
is not concerned with the vocabulary interchange issues,
therefore this interchange of rules depends of the capabil-
ities of a vocabulary interchange format. In this case, we
use the R2ML vocabulary but rules may come with differ-
ent vocabularies (for example UML, RDF(S) or OWL).

5 Interchange soundness
The soundness of the discussed interchange brought under
attention the lack of a well established semantics for both
languages (i.e. Drools and Jess). Our solution to establish
the interchange soundness is by testing rules.

Let W0 = {f1, . . . , fm} the initial facts from Drools
Working Memory andR = {R1, . . . , Rn} the current rules
set of Drools encapsulating the logic of a specific applica-
tion. The inference engine (Drools) will execute the rule
set R against W0 obtaining W = {g1, . . . , gp}.

We encode the logic of the same application using the
following set of Jess rules: R′ = {R′1, . . . , R′n} and as
data the initial set of facts W ′

0 = {f ′1, . . . , f ′m}. Running
the Jess Inference Engine, we obtain a set of final Jess facts
i.e. W ′ = {g′1, . . . , g′p}.

We translate the JBoss production rules into Jess imple-
mentation via R2ML and we execute those rules based on
analogous facts from the Working Memory. The correct-
ness of the translation implies the same obtained results
regarding the facts from Working Memory.

A translation from Drools to Jess involves:

– a transformation function

Tr(Drools,R2ML) : Drools → R2ML

describing the serialisation from Drools to R2ML,
where: Drools = (VDrools x W x R)

– a transformation function

Tr(R2ML,Jess) : R2ML → Jess

describing the mapping from R2ML to Jess, where:
Jess = (VJess x W ′ x R′)

21Jena Framework - http://jena.sourceforge.net/



ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 395

Table 1: Drools to Jess Mapping Rules
Excerpt from Mapping from Drools to Jess

Drools R2ML Jess
Drools rule R2ML PR Jess rule

import JavaBeans files declare R2ML vocabulary import deftemplates
fact variable ObjectVariable fact variable
field variable ObjectVariable field variable

Drools pattern ObjectClassificationAtom LHS’s pattern
conjunction of field constraints ObjectDescriptionAtom conjunction of field constraints

field variable binding AttributionAtom field variable binding
relational operators on data DatatypePredicateAtom relational operators
==/!= operators on objects ReferencePropertyAtom ==/!= on object terms

not isNegated="true" Jess negation
Drools pattern conjunction qf.Conjunction Jess conjunction
Drools pattern disjunction qf.Disjunction Jess disjunction

function call InvokeActionExpression Jess function call
create/assert an object AssertActionExpr assert function call

delete an object RetractActionExpr retract function call
setter call UpdateActionExpr modify function call

– a translation function T(Drools,Jess) =
Tr(Drools,R2ML)(Tr(R2ML,Jess))

and results in:

– T(Drools,Jess)(VDrools x W x R) = (VJess x W ′

x R′) (i.e. by applying the translation function
T(Drools,Jess) on the W = {g1, . . . , gp} set of
facts, we obtain the following set of facts Wh =
{h1, . . . , hp} which is semantically and syntactically
equivalent with the set W ′ = {g′1, . . . , g′p}, obtained
from Jess inference process.

An informal rules translation from Drools to Jess, using
R2ML as interchange language is presented in Table 1. The
reverse translation, from Jess to Drools is also possible, as
Jess supports a new richer syntax22 which offers the capa-
bility to represent object types using deftemplate structures.
One limitation of this syntax is that it can only be used with
unordered facts.

6 Conclusion and future works
The paper provides a description of rule translation from
Drools, an Object Oriented rule language, into Jess, an
Artificial Intelligence rule language using R2ML as in-
terchange format. The results presented in this paper are
based on our previous work (6).

Our future works intend to establish a mathematical
model of semantic soundness of rule interchange. Also
compatibility of the interchange with the work in progress
of W3C (i.e. RIF) will be analysed. Further results will be
reported in a future work.

22http://herzberg.ca.sandia.gov/docs/71/memory.html

Acknowledgements
We would like to thanks to Edson Tirelli and Kris Verlae-
nen from the Drools Team for their helpful comments on
our questions as well to Ernest Friedman-Hill, a precious
mentor in all issues concerning the Jess language.

References
[1] H. Boley, M. Kifer (2007). RIF Core Design, W3C

Working Draft, March 30, 2007 http://www.w3.
org/TR/rif-core/

[2] H. Boley, S. Tabet and G.Wagner (2001) Design Ra-
tionale of RuleML: A Markup Language for Seman-
tic Web Rules,In Proc. of Int. Semantic Web Working
Symposium (SWWS), Stanford University, California,
USA.

[3] E.Friedman-Hill (2003), Jess in Action - Rule-Based
Systems in Java, Manning Publications Co.

[4] N. E. Fuchs, U. Schwertel, R. Schwitter (1997),
Attempto Ů Englisch als (formale) Spezifikation-
ssprache, In: F. Bry, B. Freitag, D. Seipel (eds.), Pro-
ceedings of the Twelfth Workshop on Logic Program-
ming WLP, Munich.

[5] M. Kifer, G. Lausen and J. Wu, Logical Foun-
dations of Object-Oriented and Frame-Based Lan-
guages, Journal of ACM, May 1995.

[6] Oana Nicolae, Adrian Giurca and Gerd Wagner.On
Interchange between JBossRules and Jess Proceed-
ings of 1st International Symposium on Intelligent



396 Informatica 32 (2008) 383–396 O. Nicolae et al.

and Distributed Computing (IDC 2007), October,
2007.

[7] OMG (2005). OCL 2.0 Specification, June 06, 2005,
www.omg.org/docs/ptc/05-06-06

[8] OMG (2007). Production Rule Representation Ver.
1.0 , March 5, 2007, http://www.omg.org/
docs/bmi/07-03-05.pdf

[9] OMG (2006). Semantics of Business Vocabulary and
Business Rules (SBVR), http://www.omg.org/
docs/dtc/06-03-02.pdf

[10] G. Wagner, A. Giurca and S. Lukichev (2005),
R2ML: A General Approach for Marking up Rules,
Dagstuhl Seminar Proceedings 05371, In F. Bry,
F. Fages, M.Marchiori, H. Ohlbach (Eds.) Prin-
ciples and Practises of Semantic Web Reasoning,
ISSN:1862-4405.


