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Load balancing is substantial when developing parallel and distributed computing applications. The 

emergence of computational grids extends the necessity of this problem. Ant colony is a meta-heuristic 

method that can be instrumental for grid load balancing. This paper presents an echo system of adaptive 

fuzzy ants. The ants in this environment can create new ones and may also commit suicide depending on 

existing conditions. A new concept called Ant level load balancing is presented here for improving the 

performance of the mechanism. A performance evaluation model is also derived. Then theoretical analyses, 

which are supported with experiment results, prove that this new mechanism surpasses its predecessor. 

Povzetek: Za porazdeljevanje obremenitev je predlagana nova metoda s kolonijami mravelj. 

 

1 Introduction 
A computational grid is a hardware and software 
infrastructure which provides consistent, pervasive and 
inexpensive access to high end computational capacity. An 
ideal grid environment should provide access to all the 
available resources seamlessly and fairly. 
The resource manager is an important infrastructural 
component of a grid computing environment. Its overall 
aim is to efficiently schedule applications needing 
utilization of available resources in the grid environment. 
A grid resource manager provides a mechanism for grid 
applications to discover and utilize resources in the grid 
environment. Resource discovery and advertisement offer 
complementary functions. The discovery is initiated by a 
grid application to find suitable resources within the grid. 
Advertisement is initiated by a resource in search of a 
suitable application that can utilize it. A matchmaker is a 
grid middleware component which tries to match 
applications and resources. A matchmaker may be 
implemented in centralized or distributed ways. As the grid 
is inherently dynamic, and has no boundary [1], so the 
distributed approaches usually show better results [2] and 
are also more scalable. A good matchmaker (broker) 
should uniformly distribute the requests, along the grid 
resources, with the aid of load balancing methods.  

As mentioned in [1], the grid is a highly dynamic 
environment for which there is no unique administration. 
Therefore, the grid middleware should compensate for the 
lack of unique administration.  
ARMS is an agent-based resource manager infrastructure 
for the grid [3, 4]. In ARMS, each agent can act 
simultaneously as a resource questioner, resource provider, 
and the matchmaker. Details of the design and 
implementation of ARMS can be found in [2]. In this 
work, we use ARMS as the experimental platform.  
Cosy is a job scheduler which supports job scheduling as 
well as advanced reservations [5]. It is integrated into 
ARMS agents to perform global grid management [5]; 
Cosy needs a load balancer to better utilize available 
resources. This load balancer is introduced in part 3. 
The rest of the paper is organized as follows: Section 2 
introduces the load balancing approaches for grid resource 
management. In Section 3, ant colony optimization and 
self-organizing mechanisms for load balancing are 
discussed. Section 4 describes the proposed mechanism. 
Performance metrics and simulation results are included in 
Section 5. Finally, the conclusion of the article is presented 
as well as future work related to this research. 
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2 Load balancing 
Load balancing algorithms are essentially designed to 
spread the resources’ load equally thus maximizing their 
utilization while minimizing the total task execution time 
[7]. This is crucial in a computational grid where the most 
pressing issue is to fairly assign jobs to resources. Thus, 
the difference between the heaviest and the lightest 
resource load is minimized. 
A flexible load sharing algorithm is required to be general, 
adaptable, stable, scalable, fault tolerant, transparent to the 
application and to also induce minimum overhead to the 
system [8]. The properties listed above are interdependent. 
For example, a lengthy delay in processing and 
communication can affect the algorithm overhead 
significantly, result in instability and indicate that the 
algorithm is not scalable.  
The load balancing process can be defined in three rules: 
the location, distribution and selection rule [7]. The 
location rule determines which resource domain will be 
included in the balancing operation. The domain may be 
local, i.e. inside the node, or global, i.e. between different 
nodes. The distribution rule establishes the redistribution 
of the workload among available resources in the domain, 
while the selection rule decides whether the load balancing 
operation can be performed preemptively or not [7]. 
  

2.1 Classification of load balancing 

mechanisms 
In general, load balancing mechanisms can be broadly 
categorized as centralized or decentralized, dynamic or 
static [10], and periodic or non-periodic [11]. 
In a centralized algorithm, there is a central scheduler 
which gathers all load information from the nodes and 
makes appropriate decisions. However, this approach is not 
scalable for a vast environment like the grid. In 
decentralized models, there is usually not a specific node 
known as a server or collector. Instead, all nodes have 
information about some or all other nodes. This leads to a 
huge overhead in communication. Furthermore, this 
information is not very reliable because of the drastic load 
variation in the grid and the need to update frequently.  
Static algorithms are not affected by the system state, as 
their behaviour is predetermined. On the other hand, 
dynamic algorithms make decisions according to the 
system state. The state refers to certain types of 
information, such as the number of jobs waiting in the 
ready queue, the current job arrival rate, etc [12]. Dynamic 
algorithms tend to have better performance than static ones 
[13].  
Some dynamic load balancing algorithms are adaptive; in 
other words, dynamic policies are modifiable as the system 
state changes. Via this approach, methods adjust their 
activities based on system feedback [13]. 

3 Related works 
Swarm intelligence [14] is inspired by the behaviour of 
insects, such as wasps, ants or honey bees. The ants, for 
example, have little intelligence for their hostile and 

dynamic environment [15]. However, they perform 
incredible activities such as organizing their dead in 
cemeteries and foraging for food. Actually, there is an 
indirect communication among ants which is achieved 
through their chemical substance deposits [16]. 
This ability of ants is applied in solving some heuristic 
problems, like optimal routing in a telecommunication 
network [15], coordinating robots, sorting [17], and 
especially load balancing [6, 9, 18, 19].  
Messor [20] is the main contribution to the load balancing 
context. 
 

3.1 Messor 
Messor is a grid computing system that is implemented on 
top of the Anthill framework [18]. 
Ants in this system can be in Search–Max or Search–Min 
states. In the Search–Max state, an ant wanders around 
randomly until it finds an overloaded node. The ant then 
switches to the Search–Min state to find an underloaded 
node. After these states, the ant balances the two 
overloaded and underloaded nodes that it found. Once an 
ant encounters a node, it retains information about the 
nodes visited. Other ants which visit this node can apply 
this information to perform more efficiently. However, 
with respect to the dynamism of the grid, this information 
cannot be reliable for a long time and may even cause 
erroneous decision-making by other ants.  
 

3.2 Self-Organizing agents for grid load 

balancing 
In [6], J.Cao et al propose a self-organizing load balancing 
mechanism using ants in ARMS. As this mechanism is 
simple and inefficient, we call it the “seminal approach”. 
The main purpose of this study is the optimization of this 
seminal mechanism. Thus, we propose a modified 
mechanism based on a swarm of intelligent ants that 
uniformly balance the load throughout the grid.  
In this mechanism an ant always wanders ‘2m+ 1’ steps to 
finally balance two overloaded and underloaded nodes. 
As stated in [6], the efficiency of the mechanism highly 
depends on the number of cooperating ants (n) as well as 
their step count (m). If a loop includes a few steps, then the 
ant will initiate the load balancing process frequently, 
while if the ant starts with a larger m, then the frequency of 
performing load balancing decreases. This implies that the 
ant’s step count should be determined according to the 
system load. However, with this method, the number of 
ants and the number of their steps are defined by the user 
and do not change during the load balancing process. In 
fact, defining the number of ants and their wandering steps 
by the user is impractical in an environment such as the 
grid, where users have no background knowledge and the 
ultimate goal is to introduce a transparent, powerful 
computing service to end users. 
Considering the above faults, we propose a new 
mechanism that can be adaptive to environmental 
conditions and turn out better results. In the next section, 
the proposed method is described. 
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4 Proposed method   
In the new mechanism, we propose an echo system of 
intelligent ants which react proportionally to their 
conditions. Interactions between these intelligent, 
autonomous ants result in load balancing throughout the 
grid.  
In this case, an echo system creates ants on demand to 
achieve load balancing during their adaptive lives. They 
may bear offspring when they sense that the system is 
drastically unbalanced and commit suicide when they 
detect equilibrium in the environment. These ants care for 
every node visited during their steps and record node 
specifications for future decision making. Moreover, every 
ant in the new mechanism hops ‘m’ steps (the value of ‘m’ 
is determined adaptively) instead of ‘2m+1’. At the end of 
the ‘m’ steps, ‘k’ overloaded are equalized with ‘k’ 
underloaded nodes, in contrast to one overloaded with one 
underloaded according to the previous method. This results 
in an earlier convergence with fewer ants and less 
communication overhead.  
In the next sections, the proposed method is described in 
more detail. 
 

4.1 Creating ants 
If a node understands that it is overloaded, it can create a 
new ant taking only a few steps to balance the load as 
quickly as possible. Actually, as referred in [2], 
neighbouring agents, in ARMS, exchange their load status 
periodically. If a node’s load is more than the average of its 
neighbours, for several periods of time, and it has not been 
visited by any ant during this time, then the node creates a 
new ant itself to balance its load throughout a wider area. 
Load can be estimated several ways by an agent to 
distinguish whether a node is overloaded or not. For the 
sake of comparison with similar methods, the number of 
waiting jobs in a node is considered the criterion for load 
measurement. 

 

4.2 Decision-making 
Every ant is allocated to a memory space which records 
specifications of the environment while it wanders. The 
memory space is divided into an underloaded list (Min 
List) and an overloaded list (Max List). In the former, the 
ant saves specifications of the underloaded nodes visited. 
In the latter, specifications of the overloaded nodes visited 
are saved. 
At every step, the ant randomly selects one of the node’s 
neighbours.  

 

4.2.1 Deciding algorithm 
After entering a node, the ant first checks its memory to 
determine whether this node was already visited by the ant 
itself or not. If not, the ant can verify the condition of the 
node, i.e. overloaded, underloaded or at an equilibrium, 
using its acquired knowledge from the environment. 
As the load quantity of a node is a linguistic variable and 
the state of the node is determined relative to system 

conditions, decision making is performed adaptively by 
applying fuzzy logic [21, 22].  
To make a decision, the ant deploys the node’s current 
workload and the remaining steps as two inputs into the 
fuzzy inference system. Then, the ant determines the state 
of the node, i.e. Max, Avg or Min. 
The total average of the load visited is kept as the ant’s 
internal knowledge about the environment. The ant uses 
this for building membership functions of the node’s 
workload, as shown in Figure1.a. The membership 
functions of Remain steps and Decide, as the output, are on 
the basis of a threshold and are presented in Figures 1.b, 
1.c:  

 
 
 

 

 
Figure 1: Membership functions of fuzzy sets  

a) The Node’s Load, b) Remain steps, c) Decide. 
 

The inference system can be expressed as the following 
relation: 
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Where L, ML, MH, H in Figure1.a indicates Low, Medium 
Low, Medium High, High respectively and F, A, V in 
Figure 1.b indicates Few, Average and Very. 
Thus, the ant can make a proper decision. If the result is 
“Max” or “Min”, the node’s specifications must be added 
to the ant’s max-list or the min-list. Subsequently, the 
corresponding counter for Max, Min, or Avg increases by 
one. These counters also depict the ant’s knowledge about 
the environment. How this knowledge is employed is 
explained in the next sections. 
 

4.2.2 Ant level load balancing 
In the subtle behaviour of ants and their interactions, we 
can see that when two ants face each other, they stop for a 
moment and touch tentacles, probably for recognizing their 
team members. This is what inspired the first use of ant 
level load balancing. 
With respect to the system structure, it is probable that two 
or more ants meet each other on the same node. As 
mentioned earlier, each of these ants may gather 
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specifications of some overloaded and underloaded nodes. 
The amount of information is not necessarily the same for 
each ant, for example one ant has specifications of four 
overloaded and two underloaded while the other has two 
overloaded and six underloaded nodes in the same 
position. In this situation, ants extend their knowledge by 
exchanging them. We call this “ant level load balancing.” 
In the aforementioned example, after ant level load 
balancing of the two co-positions, the ants have 
specifications of three overloaded and four underloaded 
nodes in their memories. This leads to better performance 
in the last step, when the ants want to balance the load of 
‘k’ overloaded with ‘k’ underloaded nodes. This operation 
can be applied to more than two ants.  
Actually, when two or more co-positioned ants exchange 
their knowledge, they extend their movement radius to a 
bigger domain, thus improving awareness of the 
environment. Another idea is taken from the ant’s 
pheromone deposits while travelling, which is used by ants 
to pursue other ants. This is applied in most ant colony 
optimization problems [23, 24]. There is, however, a subtle 
difference between these two applications. In the former 
the information retained by the ant may become invalid 
over time. This problem can be solved by evaporation [23, 
24]. Evaporation, however, is not applicable in some cases, 
e.g. in the grid, where load information varies frequently. 
On the other hand, in the latter application, the knowledge 
exchanged is completely reliable. 
 

4.2.3 How new ants are created 
In special conditions, particularly when the its life span is 
long, the ant’s memory may fill up, even though the ant 
may still be encountering nodes which are overloaded or 
underloaded. In this situation, if a node is overloaded, the 
ant bears a new ant with predefined steps. If encountering 
an underloaded node, the ant immediately exchanges the 
node’s specification with the biggest load on the list of 
underloaded elements. This results in better balancing 
performance and adaptability to the environment. Here, 
adaptability translates into increasing the number of ants 
automatically, whenever there is an abundance of 
overloaded nodes.  
 

4.3 Load balancing, starting new 

itineration 
When its journey ends, the ant has to start a balancing 
operation between the overloaded (Max) and underloaded 
(Min) elements gathered during its roaming. In this stage, 
the number of elements in the Max-list and Min-list is 
close together (because of ant level load balancing). To 
achieve load balancing, the ant recommends underloaded 
nodes to the overloaded nodes and vice versa. In this way, 
the amount of load is dispersed equally among 
underloaded and overloaded nodes.  
After load balancing, the ant should reinitiate itself to 
begin a new itineration. One of the fields that must be 
reinitiated is the ant’s step counts. However, as stated in 
previous sections, the ant’s step counts (m) must be 

commensurate to system conditions [6]. Therefore, if most 
of the visited nodes were underloaded or in equilibrium, 
the ant should prolong its wandering steps i.e. decrease the 
load balancing frequency and vice versa. Doing this 
requires the ant’s knowledge about the environment. This 
knowledge should be based on the number of overloaded, 
underloaded and equilibrium nodes visited during the last 
itineration. 
Because of fuzzy logic power in the adaptation among 
several parameters in a problem [22] and the consideration 
of the step counts (m) as a linguistic variable, e.g. short, 
medium, long, it is rational to use fuzzy logic for 
determining the next itineration step counts.  
Actually, this is an adaptive fuzzy controller which 
determines the next itineration step counts (NextM, for 
short) based on the number of overloaded, underloaded and 
equilibrium nodes visited, along with the step counts 
during the last itineration (LastM). In other words, the 
number of overloaded, underloaded and equilibrium nodes 
encountered during the LastM indicate the recent condition 
of the environment, while the LastM, itself, reports the 
lifetime history of the ant. 
The membership functions of the fuzzy sets are shown in 
Figure 2. 

 

 
 

 

 
(c) 

Figure 2: Membership functions of fuzzy sets  
a) Last m, b) Next m, c) count of Max, Min and Average 

nodes visited 
 

Where TL, L, M, H, TH shows Too Low, Low, Medium, 
High and Too High in Figure 2.a, 2.b and L, M, H 
indicates Low, Medium and High in Figure 2.c. 
This fuzzy system can be displayed as a relation and a 
corresponding function as follows: 
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Where ix
 shows the input data into the system, 

r
y  is the 

centre of the specific membership function declared in 

rule r . 
)( iB

xr
i

µ
 indicates the membership value of the i 

th input in membership functions of the r th rule. In this 
inference system, we also have 4 inputs and 135 rules 
defined, as stated in (3). 
In this system, a large number of underloaded and, 
especially, equilibrium elements indicate equilibrium 
states. Consequently, the NextM should be prolonged, thus 
lowering the load balancing frequency. One can say that, if 
an ant’s step counts extend to extreme values, its effect 
tends to be zero. Based on this premise, we can conclude 
that an ant with overly long step counts does not have any 
influence on the system balance. Rather, the ant imposes 
its communication overhead on the system. In this 
situation, the ant must commit suicide. This is the last ring 
of the echo system. Therefore, if the NextM is fired in the 
“Dead” membership function, the ant does not start any 
new itineration. 
Below is a diagram exhibiting the ant’s behaviour in 
different environmental conditions. Figure 3.a shows the 
relation between the LastM and the amount of overloaded 
nodes visited, while Figure 3.b illustrates the relation 
between the LastM and the number of equilibrium nodes 
visited.  
 

 
   
Figure 3: Schematic view of adaptive determining of next 

itineration step counts. a) LastM –MaxCount–output, 
b)LastM – avgCount–output 

 

5 Performance valuations 
In this section, several common statistics are investigated, 
which show the performance of the mechanism. 
 

5.1 Efficiency 
To prove that the new mechanism increases efficiency, it 
should be compared with the mechanism described in [4]. 
First, we introduce some of the most important criteria in 
load balancing: 
Let P be the number of agents and Wpk where (p: 1, 2... P) 

is the workload of the agent p at step k . The average 
workload is: 
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The mean square deviation of Wpk, describing the load 
balancing level of the system, is defined as: 
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Finally, The system load balancing efficiency ( e ) is 
defined as: 

k

k

k
C

LL
e

−
= 0

 (6) 
Where ek means efficiency at step k and Ck is the total 
number of agent connections that have achieved a load 
balancing level Lk. To compare the efficiency of these two 

mechanisms, we should consider Tradnew kk ee /
.  

 
As L0 indicates the load balancing level at the beginning 
of the load balancing process and is also equal in both new 
and seminal mechanisms, we shall discuss the value of Lk. 
For the sake of simplicity, assume that every node gets to 

kW after the balancing process and no longer requires 
balancing, i.e.  

0=− pkk WW
  (7) 

On the other hand, after the k stage, if the memory space 
considered for overloaded and underloaded elements is 
equal to ‘a’ (a>2), then we have ka elements balanced:  
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While in the seminal approach we have: 
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If we suppose that a>2, we can conclude: 
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After the k stages, the difference in the balanced nodes in 
these two mechanisms is: 
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With respect to (14), we have: 
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One of the most important parameters in the efficiency of 
the new mechanism is the ant’s memory space (a). In an 
extreme case, if a=2, then the mechanism resembles the 
seminal one, with half steps (S), i.e.  

Tradnew SS *21=
 (16) 

Consider that memory space (a) is effective if and only if it 
can be filled during the ant’s wandering steps. Therefore, if 
a increases, then the amount of steps (S) must increase 
accordingly to prevent performance degradation. This 
means that: 

If ∞→a  then ∞→S      (17) 
Increasing S causes a decrease in load balancing frequency 
and consequently an increase in convergence time.  
 
Overly long trips also lead to many reserved nodes. At the 
same time, there may be other roaming ants looking for 
free, unbalanced nodes. On the other hand, expanding the 
ant’s memory leads to occupying too much bandwidth as 
well as increasing processing time. Actually, there is a 
trade-off between the step counts (S) and the memory 
allocated to each ant (a). 
 
If a<<S, then the memory allocated expires rapidly and the 
ant is compelled to generate new ants. This explodes the 
ant population, subsequently augments their 
communication and the remaining pheromone and finally 
leads to an increase in time. However, as the probability of 
balancing every node more than once rises, the load 
balancing level falls. 
On the other side, if a�S, then the probability of creating 
new ants lessens. Subsequently, the ant’s population is 
reduced. Cutting down on the ant population results in 
faster speed, diminished communication and the 
pheromone left by the ants. The final result, however, is 
not satisfactory (final load balancing level is high). Due to 
the reasons discussed and with respect to several 
experiments shown in Figures 4, 5 and Table 1, we deduce 
that, in order to satisfy the different parameters mentioned, 
it is better to set the allocated memory at about half of the 
step counts. 

2/Sa ≅  (18) 
Experiments achieved with a different memory size 
allocated, where S=15 initially, are reported here. 
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Figure 4: Relation between memory allocated to each ant 

(a) and a) load balancing level(L) b) time(T) base on 
millisecond c) Ant no (Ant), where the Ant initial Step 

Counts (S)=1 
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a Time(ms) Level Ant No 

5 10274 1.9455 1197 

8 4906 3.0363 797 

14 971 8.6015 325 
 

Table 1: Relation between ants’ memory size (a) and Ants 
with initial Step Counts (S=15). 

 

5.2 Load balancing speed 
Adaptively determining the step counts, actually, causes a 
differentiation in load balancing frequency over time. In 
other words, as time increases, the whole system 
approaches convergence and the load balancing frequency 
lessens, hence postponing the final convergence time. On 
the contrary, the new mechanism imposes less overhead as 
the system nears the balance state. In reality, in an 
environment such as the grid, attaining final convergence 
is impractical because of its inherent dynamism and 
vastness. However, if balancing occurs, it would not last 
long. 
Figure 5 shows a schematic comparison for load balancing 
frequency between the new and the seminal mechanism. 
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Figure 5: Comparison between the Seminal (Trad) and the 

new method’s load balancing frequency (F). 
 

5.3 Experimental results 
Experiments are achieved according to the specifications 
of Simorgh mini-grid [25]. This mini-grid will include 
different clusters throughout Ferdowsi University. 
However, as this mini-grid is under construction now, we 
have simulated its behaviour. In this simulation, Agent 
system, Workload, and Resources are modelled as follows: 
• Agents. Agents are mapped to a square grid. This 
simplification has been done in similar works [6, 13]. All 
of experiments described later include 400 agents. 
• Workload. A workload value and corresponding 
distribution are used to characterize the system workload. 
The value is generated randomly in each agent. 
• Resources. Resources are defined in the same way as 
workload. 
The first experiment involves total network connections. In 
this experiment, as shown in Figure 6.a, ant 
communication in the new mechanism is drastically less 
than in the seminal approach. This is mainly because every 
time an ant wanders ‘S’ steps in the new method, it 
balances ‘k’ elements. In the traditional method, however, 
the ant wanders ‘2S+1’ steps and then balances only two 
elements. Therefore, as seen below, with an equal initial 
step count (S=15), the ant in the new mechanism only goes 

through 2,000 stages to achieve final convergence, while in 
the traditional method, the ant passes 7,000 stages. Figure 
6.b illustrates the comparison between a colony of ants 
using S=15 and a memory size=7. This figure elucidates 
that, in the new mechanism, the communication count goes 
flat. This occurs when the step counts enlarge and load 
balancing frequency decreases, i.e. in the last seconds.  
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Figure 6: Comparing agent communications (C) between 

the new and seminal (Trad) method. Final results using. a) 
One ant S=15, a=7 b) a colony of ants, N=220, S=15, a=7 

 
The second experiment focuses on the relation between 
load balancing levels and the number of dead ants. As 
illustrated in Figure 7, as the number of dead ants rises, the 
load balancing level declines, i.e. it approaches final 
convergence. This experiment is conducted with different 
initial ants. Repeating the experiment with a different 
number of initial ants proves that, deploying more ants 
would result in better balancing level. 
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Figure 7: Impact number of created ants (DeadAntNo) on 
the load balancing level (L), the experiment achieved with 

different numbers of initial ants (init). 
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The third experiment concentrates on the correlation 
between an ant’s step counts and the load balancing level. 
The average step counts of the swarm over time are used 
for measurement. As Figure 8 shows, the step count 
increases by approaching convergence. This results in 
delay to achieve final convergence. 
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Figure 8: Relation between average Step count (avgStep) 
and load balancing Level (L) 

 

The fourth experiment indicates the effect of proposed load 
balancing method on the final job distribution. As 
understood from Figure 9, ant level load balancing 
produces a better convergence. 
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Figure 9: Comparison between effects of using ant level 

load balancing on final balancing level (L) during the time 
(T). 

 
It is clear that this load balancing method cannot be 
achieved without any cost. As illustrated in Figure 9, 
although the proposed method results are better than 
previous ones, it consumes more time. We must 
acknowledge that the new method enables the ant to obtain 
global information even while moving locally. 
Furthermore, the validity of the exchanged information is 
guaranteed in contrast to using the pheromone, which is 
not, even with evaporation. 
The fifth experiment presents the efficiency of the new 
method in comparison with the seminal approach. Figure 
10 illustrates that the new method, with different initial 
steps and different memory allocated, is more efficient 
than the seminal one.  
On the other hand, comparing the new method’s 
efficiencies, with different initial step counts(S) and 
different memory allocated shows the effect of the trade-
off in determining the memory allocated to each ant (a). In 
this case, if the memory allocated is high, e.g. a=10, then 

the probability of creating new ants decreases. So, the 
probability of visiting a node by different ants is decreased 
which causes a fall in efficiency. In the other way, as 
mentioned earlier, low values for memory allocated (a), 
e.g. a=5, increase the ant population and consequently their 
interconnections (Ck). This again results in decreasing the 
final efficiency in regard to (6). 
Consider that stages do not have a completely standard 
meaning in our method. Thus, we think of periods of time 
as stages (k).  
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Figure 10: Efficiency (e) comparison between the 

traditional and the new method with different step counts 
and memory allocated, during the time (T). 

   

6 Conclusion 
As described in the previous sections, equalizing the load 
of all available resources is one of the most important 
issues in the grid. In this way, with respect to grid 
specifications, an echo system of autonomous, rational and 
adaptive ants is proposed to meet the challenges of load 
balancing. There are great differences between the 
proposed mechanism and similar mechanisms which 
deploy ant colony optimization. We believe that ant level 
load balancing is the most important difference. 
In future work, we plan to extend the applications of ant 
level load balancing in addition to implementing this 
mechanism in a more realistic environment. Promoting ant 
intelligence and adaptation, establishing billing contracts 
among resources as they exchange customer loads, as well 
as overcoming security concerns are other future work. 
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