
 Informatica 32 (2008) 327-335 327

Balancing Load in a Computational Grid Applying Adaptive,

Intelligent Colonies of Ants

Mohsen Amini Salehi
Department of Software Engineering, Faculty of Engineering,
Islamic Azad University, Mashhad Branch, Iran
E-mail: Amini@mshdiau.ac.ir

Hossein Deldari
Department of Software Engineering, Faculty of Engineering
Ferdowsi University of Mashhad, Iran
E-mail: hd@um.ac.ir

Bahare Mokarram Dorri
Management and Planning Organisation of Khorasan, Mashhad, Iran
E-mail: mokarram@mpo-kh.ir

Keywords: grid computing, load balancing, ant colony, agent-based resource management system (ARMS)

Received: July 1, 2007

Load balancing is substantial when developing parallel and distributed computing applications. The

emergence of computational grids extends the necessity of this problem. Ant colony is a meta-heuristic

method that can be instrumental for grid load balancing. This paper presents an echo system of adaptive

fuzzy ants. The ants in this environment can create new ones and may also commit suicide depending on

existing conditions. A new concept called Ant level load balancing is presented here for improving the

performance of the mechanism. A performance evaluation model is also derived. Then theoretical analyses,

which are supported with experiment results, prove that this new mechanism surpasses its predecessor.

Povzetek: Za porazdeljevanje obremenitev je predlagana nova metoda s kolonijami mravelj.

1 Introduction
A computational grid is a hardware and software
infrastructure which provides consistent, pervasive and
inexpensive access to high end computational capacity. An
ideal grid environment should provide access to all the
available resources seamlessly and fairly.
The resource manager is an important infrastructural
component of a grid computing environment. Its overall
aim is to efficiently schedule applications needing
utilization of available resources in the grid environment.
A grid resource manager provides a mechanism for grid
applications to discover and utilize resources in the grid
environment. Resource discovery and advertisement offer
complementary functions. The discovery is initiated by a
grid application to find suitable resources within the grid.
Advertisement is initiated by a resource in search of a
suitable application that can utilize it. A matchmaker is a
grid middleware component which tries to match
applications and resources. A matchmaker may be
implemented in centralized or distributed ways. As the grid
is inherently dynamic, and has no boundary [1], so the
distributed approaches usually show better results [2] and
are also more scalable. A good matchmaker (broker)
should uniformly distribute the requests, along the grid
resources, with the aid of load balancing methods.

As mentioned in [1], the grid is a highly dynamic
environment for which there is no unique administration.
Therefore, the grid middleware should compensate for the
lack of unique administration.
ARMS is an agent-based resource manager infrastructure
for the grid [3, 4]. In ARMS, each agent can act
simultaneously as a resource questioner, resource provider,
and the matchmaker. Details of the design and
implementation of ARMS can be found in [2]. In this
work, we use ARMS as the experimental platform.
Cosy is a job scheduler which supports job scheduling as
well as advanced reservations [5]. It is integrated into
ARMS agents to perform global grid management [5];
Cosy needs a load balancer to better utilize available
resources. This load balancer is introduced in part 3.
The rest of the paper is organized as follows: Section 2
introduces the load balancing approaches for grid resource
management. In Section 3, ant colony optimization and
self-organizing mechanisms for load balancing are
discussed. Section 4 describes the proposed mechanism.
Performance metrics and simulation results are included in
Section 5. Finally, the conclusion of the article is presented
as well as future work related to this research.

328 Informatica 32 (2008) 327–335 M.A. Salehi et al.

2 Load balancing
Load balancing algorithms are essentially designed to
spread the resources’ load equally thus maximizing their
utilization while minimizing the total task execution time
[7]. This is crucial in a computational grid where the most
pressing issue is to fairly assign jobs to resources. Thus,
the difference between the heaviest and the lightest
resource load is minimized.
A flexible load sharing algorithm is required to be general,
adaptable, stable, scalable, fault tolerant, transparent to the
application and to also induce minimum overhead to the
system [8]. The properties listed above are interdependent.
For example, a lengthy delay in processing and
communication can affect the algorithm overhead
significantly, result in instability and indicate that the
algorithm is not scalable.
The load balancing process can be defined in three rules:
the location, distribution and selection rule [7]. The
location rule determines which resource domain will be
included in the balancing operation. The domain may be
local, i.e. inside the node, or global, i.e. between different
nodes. The distribution rule establishes the redistribution
of the workload among available resources in the domain,
while the selection rule decides whether the load balancing
operation can be performed preemptively or not [7].

2.1 Classification of load balancing

mechanisms
In general, load balancing mechanisms can be broadly
categorized as centralized or decentralized, dynamic or
static [10], and periodic or non-periodic [11].
In a centralized algorithm, there is a central scheduler
which gathers all load information from the nodes and
makes appropriate decisions. However, this approach is not
scalable for a vast environment like the grid. In
decentralized models, there is usually not a specific node
known as a server or collector. Instead, all nodes have
information about some or all other nodes. This leads to a
huge overhead in communication. Furthermore, this
information is not very reliable because of the drastic load
variation in the grid and the need to update frequently.
Static algorithms are not affected by the system state, as
their behaviour is predetermined. On the other hand,
dynamic algorithms make decisions according to the
system state. The state refers to certain types of
information, such as the number of jobs waiting in the
ready queue, the current job arrival rate, etc [12]. Dynamic
algorithms tend to have better performance than static ones
[13].
Some dynamic load balancing algorithms are adaptive; in
other words, dynamic policies are modifiable as the system
state changes. Via this approach, methods adjust their
activities based on system feedback [13].

3 Related works
Swarm intelligence [14] is inspired by the behaviour of
insects, such as wasps, ants or honey bees. The ants, for
example, have little intelligence for their hostile and

dynamic environment [15]. However, they perform
incredible activities such as organizing their dead in
cemeteries and foraging for food. Actually, there is an
indirect communication among ants which is achieved
through their chemical substance deposits [16].
This ability of ants is applied in solving some heuristic
problems, like optimal routing in a telecommunication
network [15], coordinating robots, sorting [17], and
especially load balancing [6, 9, 18, 19].
Messor [20] is the main contribution to the load balancing
context.

3.1 Messor
Messor is a grid computing system that is implemented on
top of the Anthill framework [18].
Ants in this system can be in Search–Max or Search–Min
states. In the Search–Max state, an ant wanders around
randomly until it finds an overloaded node. The ant then
switches to the Search–Min state to find an underloaded
node. After these states, the ant balances the two
overloaded and underloaded nodes that it found. Once an
ant encounters a node, it retains information about the
nodes visited. Other ants which visit this node can apply
this information to perform more efficiently. However,
with respect to the dynamism of the grid, this information
cannot be reliable for a long time and may even cause
erroneous decision-making by other ants.

3.2 Self-Organizing agents for grid load

balancing
In [6], J.Cao et al propose a self-organizing load balancing
mechanism using ants in ARMS. As this mechanism is
simple and inefficient, we call it the “seminal approach”.
The main purpose of this study is the optimization of this
seminal mechanism. Thus, we propose a modified
mechanism based on a swarm of intelligent ants that
uniformly balance the load throughout the grid.
In this mechanism an ant always wanders ‘2m+ 1’ steps to
finally balance two overloaded and underloaded nodes.
As stated in [6], the efficiency of the mechanism highly
depends on the number of cooperating ants (n) as well as
their step count (m). If a loop includes a few steps, then the
ant will initiate the load balancing process frequently,
while if the ant starts with a larger m, then the frequency of
performing load balancing decreases. This implies that the
ant’s step count should be determined according to the
system load. However, with this method, the number of
ants and the number of their steps are defined by the user
and do not change during the load balancing process. In
fact, defining the number of ants and their wandering steps
by the user is impractical in an environment such as the
grid, where users have no background knowledge and the
ultimate goal is to introduce a transparent, powerful
computing service to end users.
Considering the above faults, we propose a new
mechanism that can be adaptive to environmental
conditions and turn out better results. In the next section,
the proposed method is described.

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 329

4 Proposed method
In the new mechanism, we propose an echo system of
intelligent ants which react proportionally to their
conditions. Interactions between these intelligent,
autonomous ants result in load balancing throughout the
grid.
In this case, an echo system creates ants on demand to
achieve load balancing during their adaptive lives. They
may bear offspring when they sense that the system is
drastically unbalanced and commit suicide when they
detect equilibrium in the environment. These ants care for
every node visited during their steps and record node
specifications for future decision making. Moreover, every
ant in the new mechanism hops ‘m’ steps (the value of ‘m’
is determined adaptively) instead of ‘2m+1’. At the end of
the ‘m’ steps, ‘k’ overloaded are equalized with ‘k’
underloaded nodes, in contrast to one overloaded with one
underloaded according to the previous method. This results
in an earlier convergence with fewer ants and less
communication overhead.
In the next sections, the proposed method is described in
more detail.

4.1 Creating ants
If a node understands that it is overloaded, it can create a
new ant taking only a few steps to balance the load as
quickly as possible. Actually, as referred in [2],
neighbouring agents, in ARMS, exchange their load status
periodically. If a node’s load is more than the average of its
neighbours, for several periods of time, and it has not been
visited by any ant during this time, then the node creates a
new ant itself to balance its load throughout a wider area.
Load can be estimated several ways by an agent to
distinguish whether a node is overloaded or not. For the
sake of comparison with similar methods, the number of
waiting jobs in a node is considered the criterion for load
measurement.

4.2 Decision-making
Every ant is allocated to a memory space which records
specifications of the environment while it wanders. The
memory space is divided into an underloaded list (Min
List) and an overloaded list (Max List). In the former, the
ant saves specifications of the underloaded nodes visited.
In the latter, specifications of the overloaded nodes visited
are saved.
At every step, the ant randomly selects one of the node’s
neighbours.

4.2.1 Deciding algorithm
After entering a node, the ant first checks its memory to
determine whether this node was already visited by the ant
itself or not. If not, the ant can verify the condition of the
node, i.e. overloaded, underloaded or at an equilibrium,
using its acquired knowledge from the environment.
As the load quantity of a node is a linguistic variable and
the state of the node is determined relative to system

conditions, decision making is performed adaptively by
applying fuzzy logic [21, 22].
To make a decision, the ant deploys the node’s current
workload and the remaining steps as two inputs into the
fuzzy inference system. Then, the ant determines the state
of the node, i.e. Max, Avg or Min.
The total average of the load visited is kept as the ant’s
internal knowledge about the environment. The ant uses
this for building membership functions of the node’s
workload, as shown in Figure1.a. The membership
functions of Remain steps and Decide, as the output, are on
the basis of a threshold and are presented in Figures 1.b,
1.c:

Figure 1: Membership functions of fuzzy sets

a) The Node’s Load, b) Remain steps, c) Decide.

The inference system can be expressed as the following
relation:

><→

><><

MaxAvgMinDecide

VAFRmStepHMHMLLLoadRA

,,

,,*,,,:

 (1)

Where L, ML, MH, H in Figure1.a indicates Low, Medium
Low, Medium High, High respectively and F, A, V in
Figure 1.b indicates Few, Average and Very.
Thus, the ant can make a proper decision. If the result is
“Max” or “Min”, the node’s specifications must be added
to the ant’s max-list or the min-list. Subsequently, the
corresponding counter for Max, Min, or Avg increases by
one. These counters also depict the ant’s knowledge about
the environment. How this knowledge is employed is
explained in the next sections.

4.2.2 Ant level load balancing
In the subtle behaviour of ants and their interactions, we
can see that when two ants face each other, they stop for a
moment and touch tentacles, probably for recognizing their
team members. This is what inspired the first use of ant
level load balancing.
With respect to the system structure, it is probable that two
or more ants meet each other on the same node. As
mentioned earlier, each of these ants may gather

F A V

RmStep Decide

Min Avg Max

µ µ

(c)

L ML MH H

Max load
Load

Total avg

(a)

(b)

330 Informatica 32 (2008) 327–335 M.A. Salehi et al.

specifications of some overloaded and underloaded nodes.
The amount of information is not necessarily the same for
each ant, for example one ant has specifications of four
overloaded and two underloaded while the other has two
overloaded and six underloaded nodes in the same
position. In this situation, ants extend their knowledge by
exchanging them. We call this “ant level load balancing.”
In the aforementioned example, after ant level load
balancing of the two co-positions, the ants have
specifications of three overloaded and four underloaded
nodes in their memories. This leads to better performance
in the last step, when the ants want to balance the load of
‘k’ overloaded with ‘k’ underloaded nodes. This operation
can be applied to more than two ants.
Actually, when two or more co-positioned ants exchange
their knowledge, they extend their movement radius to a
bigger domain, thus improving awareness of the
environment. Another idea is taken from the ant’s
pheromone deposits while travelling, which is used by ants
to pursue other ants. This is applied in most ant colony
optimization problems [23, 24]. There is, however, a subtle
difference between these two applications. In the former
the information retained by the ant may become invalid
over time. This problem can be solved by evaporation [23,
24]. Evaporation, however, is not applicable in some cases,
e.g. in the grid, where load information varies frequently.
On the other hand, in the latter application, the knowledge
exchanged is completely reliable.

4.2.3 How new ants are created
In special conditions, particularly when the its life span is
long, the ant’s memory may fill up, even though the ant
may still be encountering nodes which are overloaded or
underloaded. In this situation, if a node is overloaded, the
ant bears a new ant with predefined steps. If encountering
an underloaded node, the ant immediately exchanges the
node’s specification with the biggest load on the list of
underloaded elements. This results in better balancing
performance and adaptability to the environment. Here,
adaptability translates into increasing the number of ants
automatically, whenever there is an abundance of
overloaded nodes.

4.3 Load balancing, starting new

itineration
When its journey ends, the ant has to start a balancing
operation between the overloaded (Max) and underloaded
(Min) elements gathered during its roaming. In this stage,
the number of elements in the Max-list and Min-list is
close together (because of ant level load balancing). To
achieve load balancing, the ant recommends underloaded
nodes to the overloaded nodes and vice versa. In this way,
the amount of load is dispersed equally among
underloaded and overloaded nodes.
After load balancing, the ant should reinitiate itself to
begin a new itineration. One of the fields that must be
reinitiated is the ant’s step counts. However, as stated in
previous sections, the ant’s step counts (m) must be

commensurate to system conditions [6]. Therefore, if most
of the visited nodes were underloaded or in equilibrium,
the ant should prolong its wandering steps i.e. decrease the
load balancing frequency and vice versa. Doing this
requires the ant’s knowledge about the environment. This
knowledge should be based on the number of overloaded,
underloaded and equilibrium nodes visited during the last
itineration.
Because of fuzzy logic power in the adaptation among
several parameters in a problem [22] and the consideration
of the step counts (m) as a linguistic variable, e.g. short,
medium, long, it is rational to use fuzzy logic for
determining the next itineration step counts.
Actually, this is an adaptive fuzzy controller which
determines the next itineration step counts (NextM, for
short) based on the number of overloaded, underloaded and
equilibrium nodes visited, along with the step counts
during the last itineration (LastM). In other words, the
number of overloaded, underloaded and equilibrium nodes
encountered during the LastM indicate the recent condition
of the environment, while the LastM, itself, reports the
lifetime history of the ant.
The membership functions of the fuzzy sets are shown in
Figure 2.

(c)

Figure 2: Membership functions of fuzzy sets
a) Last m, b) Next m, c) count of Max, Min and Average

nodes visited

Where TL, L, M, H, TH shows Too Low, Low, Medium,
High and Too High in Figure 2.a, 2.b and L, M, H
indicates Low, Medium and High in Figure 2.c.
This fuzzy system can be displayed as a relation and a
corresponding function as follows:

µ
 L M H

m
Last m

TL L M H TH Dead

Max m
(b)

TL L M H TH

µ

Last M

Max m

µ

Next M

(a)

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 331

>

<>→<

><><

DeadTHH

MLTLNextMhmlAvg

mhlMinCounthmlMaxCountRB

,,

,,,,,*

,*,,:

 (2)

∑∏

∑ ∏

= =

= ==
135

1

4

1

135

1

4

1

)(

)(*

)(

r i

iB

r i

iB

r

x

xy

xf

r
i

r
i

µ

µ

 (3)

Where ix
 shows the input data into the system,

r
y is the

centre of the specific membership function declared in

rule r .
)(iB

xr
i

µ
 indicates the membership value of the i

th input in membership functions of the r th rule. In this
inference system, we also have 4 inputs and 135 rules
defined, as stated in (3).
In this system, a large number of underloaded and,
especially, equilibrium elements indicate equilibrium
states. Consequently, the NextM should be prolonged, thus
lowering the load balancing frequency. One can say that, if
an ant’s step counts extend to extreme values, its effect
tends to be zero. Based on this premise, we can conclude
that an ant with overly long step counts does not have any
influence on the system balance. Rather, the ant imposes
its communication overhead on the system. In this
situation, the ant must commit suicide. This is the last ring
of the echo system. Therefore, if the NextM is fired in the
“Dead” membership function, the ant does not start any
new itineration.
Below is a diagram exhibiting the ant’s behaviour in
different environmental conditions. Figure 3.a shows the
relation between the LastM and the amount of overloaded
nodes visited, while Figure 3.b illustrates the relation
between the LastM and the number of equilibrium nodes
visited.

Figure 3: Schematic view of adaptive determining of next

itineration step counts. a) LastM –MaxCount–output,
b)LastM – avgCount–output

5 Performance valuations
In this section, several common statistics are investigated,
which show the performance of the mechanism.

5.1 Efficiency
To prove that the new mechanism increases efficiency, it
should be compared with the mechanism described in [4].
First, we introduce some of the most important criteria in
load balancing:
Let P be the number of agents and Wpk where (p: 1, 2... P)

is the workload of the agent p at step k . The average
workload is:

P

W

W

P

p

pk

k

∑
=

=
1

 (4)
The mean square deviation of Wpk, describing the load
balancing level of the system, is defined as:

P

WW

L

P

p

pkk

k

∑
=

−

=
1

2)(

 (5)

(b)

(a)

332 Informatica 32 (2008) 327–335 M.A. Salehi et al.

Finally, The system load balancing efficiency (e) is
defined as:

k

k

k
C

LL
e

−
= 0

 (6)
Where ek means efficiency at step k and Ck is the total
number of agent connections that have achieved a load
balancing level Lk. To compare the efficiency of these two

mechanisms, we should consider Tradnew kk ee /
.

As L0 indicates the load balancing level at the beginning
of the load balancing process and is also equal in both new
and seminal mechanisms, we shall discuss the value of Lk.
For the sake of simplicity, assume that every node gets to

kW after the balancing process and no longer requires
balancing, i.e.

0=− pkk WW
 (7)

On the other hand, after the k stage, if the memory space
considered for overloaded and underloaded elements is
equal to ‘a’ (a>2), then we have ka elements balanced:

P

WW

L

kap

p

pkk

knew

∑
−

=

−

=
1

2)(

 (8)
While in the seminal approach we have:

P

WW

L

kp

p

pkk

kTrad

∑
−

=

−

=

2

1

2)(

 (9)
If we suppose that a>2, we can conclude:

kaPkP −>− 2 (10)
After the k stages, the difference in the balanced nodes in
these two mechanisms is:

)2(2 −=+−− akkaPaP (11)
Then:

P

WW

P

WW

L

kp

kap

pkk

kap

p

pkk

kTrad

∑∑
−

=

−

=

−

+

−

=

2
2

1

2)()(

 (12)

P

WW

L

kap

p

pkk

knew

∑
−

=

−

=
1

2)(

 (13)

newTrad kk LL > →

1<
Trad

new

k

k

L

L

 (14)
With respect to (14), we have:

2
)(2

0

0
>⇒

−

−
=

Trad

new

Trad

new

Trad

new

k

k

k

k

k

k

e

e

LL

LL

e

e

 (15)
One of the most important parameters in the efficiency of
the new mechanism is the ant’s memory space (a). In an
extreme case, if a=2, then the mechanism resembles the
seminal one, with half steps (S), i.e.

Tradnew SS *21=
 (16)

Consider that memory space (a) is effective if and only if it
can be filled during the ant’s wandering steps. Therefore, if
a increases, then the amount of steps (S) must increase
accordingly to prevent performance degradation. This
means that:

If ∞→a then ∞→S (17)
Increasing S causes a decrease in load balancing frequency
and consequently an increase in convergence time.

Overly long trips also lead to many reserved nodes. At the
same time, there may be other roaming ants looking for
free, unbalanced nodes. On the other hand, expanding the
ant’s memory leads to occupying too much bandwidth as
well as increasing processing time. Actually, there is a
trade-off between the step counts (S) and the memory
allocated to each ant (a).

If a<<S, then the memory allocated expires rapidly and the
ant is compelled to generate new ants. This explodes the
ant population, subsequently augments their
communication and the remaining pheromone and finally
leads to an increase in time. However, as the probability of
balancing every node more than once rises, the load
balancing level falls.
On the other side, if a�S, then the probability of creating
new ants lessens. Subsequently, the ant’s population is
reduced. Cutting down on the ant population results in
faster speed, diminished communication and the
pheromone left by the ants. The final result, however, is
not satisfactory (final load balancing level is high). Due to
the reasons discussed and with respect to several
experiments shown in Figures 4, 5 and Table 1, we deduce
that, in order to satisfy the different parameters mentioned,
it is better to set the allocated memory at about half of the
step counts.

2/Sa ≅ (18)
Experiments achieved with a different memory size
allocated, where S=15 initially, are reported here.

0

2

4

6

8

10

0 10 20

a

L

0

3000

6000

9000

12000

0 10 20

a

T

0

300

600

900

1200

1500

0 5 10 15

a

Ant

Figure 4: Relation between memory allocated to each ant

(a) and a) load balancing level(L) b) time(T) base on
millisecond c) Ant no (Ant), where the Ant initial Step

Counts (S)=1

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 333

a Time(ms) Level Ant No

5 10274 1.9455 1197

8 4906 3.0363 797

14 971 8.6015 325

Table 1: Relation between ants’ memory size (a) and Ants
with initial Step Counts (S=15).

5.2 Load balancing speed
Adaptively determining the step counts, actually, causes a
differentiation in load balancing frequency over time. In
other words, as time increases, the whole system
approaches convergence and the load balancing frequency
lessens, hence postponing the final convergence time. On
the contrary, the new mechanism imposes less overhead as
the system nears the balance state. In reality, in an
environment such as the grid, attaining final convergence
is impractical because of its inherent dynamism and
vastness. However, if balancing occurs, it would not last
long.
Figure 5 shows a schematic comparison for load balancing
frequency between the new and the seminal mechanism.

0

2000

4000

6000

8000

0 5 10 15

T

F

Trad

New

Figure 5: Comparison between the Seminal (Trad) and the

new method’s load balancing frequency (F).

5.3 Experimental results
Experiments are achieved according to the specifications
of Simorgh mini-grid [25]. This mini-grid will include
different clusters throughout Ferdowsi University.
However, as this mini-grid is under construction now, we
have simulated its behaviour. In this simulation, Agent
system, Workload, and Resources are modelled as follows:
• Agents. Agents are mapped to a square grid. This
simplification has been done in similar works [6, 13]. All
of experiments described later include 400 agents.
• Workload. A workload value and corresponding
distribution are used to characterize the system workload.
The value is generated randomly in each agent.
• Resources. Resources are defined in the same way as
workload.
The first experiment involves total network connections. In
this experiment, as shown in Figure 6.a, ant
communication in the new mechanism is drastically less
than in the seminal approach. This is mainly because every
time an ant wanders ‘S’ steps in the new method, it
balances ‘k’ elements. In the traditional method, however,
the ant wanders ‘2S+1’ steps and then balances only two
elements. Therefore, as seen below, with an equal initial
step count (S=15), the ant in the new mechanism only goes

through 2,000 stages to achieve final convergence, while in
the traditional method, the ant passes 7,000 stages. Figure
6.b illustrates the comparison between a colony of ants
using S=15 and a memory size=7. This figure elucidates
that, in the new mechanism, the communication count goes
flat. This occurs when the step counts enlarge and load
balancing frequency decreases, i.e. in the last seconds.

0

50000

100000

150000

200000

250000

0 5 10 15 20

T(s)

C

New method

Trad

0

200000

400000

600000

0 5 10 15 20

T(s)

C

New Method

Trad

Figure 6: Comparing agent communications (C) between

the new and seminal (Trad) method. Final results using. a)
One ant S=15, a=7 b) a colony of ants, N=220, S=15, a=7

The second experiment focuses on the relation between
load balancing levels and the number of dead ants. As
illustrated in Figure 7, as the number of dead ants rises, the
load balancing level declines, i.e. it approaches final
convergence. This experiment is conducted with different
initial ants. Repeating the experiment with a different
number of initial ants proves that, deploying more ants
would result in better balancing level.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400

Dead Ant No

L

init 250

init 200
init 190

init 145

Figure 7: Impact number of created ants (DeadAntNo) on
the load balancing level (L), the experiment achieved with

different numbers of initial ants (init).

(b)

(a)

334 Informatica 32 (2008) 327–335 M.A. Salehi et al.

The third experiment concentrates on the correlation
between an ant’s step counts and the load balancing level.
The average step counts of the swarm over time are used
for measurement. As Figure 8 shows, the step count
increases by approaching convergence. This results in
delay to achieve final convergence.

0

50

100

150

200

250

8 10 12 14 16 18

avg step

L

Figure 8: Relation between average Step count (avgStep)
and load balancing Level (L)

The fourth experiment indicates the effect of proposed load
balancing method on the final job distribution. As
understood from Figure 9, ant level load balancing
produces a better convergence.

0

30

60

90

0 20 40 60 80 100

T

L

with ant level balance

without ant level balance

Figure 9: Comparison between effects of using ant level

load balancing on final balancing level (L) during the time
(T).

It is clear that this load balancing method cannot be
achieved without any cost. As illustrated in Figure 9,
although the proposed method results are better than
previous ones, it consumes more time. We must
acknowledge that the new method enables the ant to obtain
global information even while moving locally.
Furthermore, the validity of the exchanged information is
guaranteed in contrast to using the pheromone, which is
not, even with evaporation.
The fifth experiment presents the efficiency of the new
method in comparison with the seminal approach. Figure
10 illustrates that the new method, with different initial
steps and different memory allocated, is more efficient
than the seminal one.
On the other hand, comparing the new method’s
efficiencies, with different initial step counts(S) and
different memory allocated shows the effect of the trade-
off in determining the memory allocated to each ant (a). In
this case, if the memory allocated is high, e.g. a=10, then

the probability of creating new ants decreases. So, the
probability of visiting a node by different ants is decreased
which causes a fall in efficiency. In the other way, as
mentioned earlier, low values for memory allocated (a),
e.g. a=5, increase the ant population and consequently their
interconnections (Ck). This again results in decreasing the
final efficiency in regard to (6).
Consider that stages do not have a completely standard
meaning in our method. Thus, we think of periods of time
as stages (k).

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2 4 6 8 10T(s)

e

S=15, a=7

Traditional

S=20, a=10

S=10, a=5

.
Figure 10: Efficiency (e) comparison between the

traditional and the new method with different step counts
and memory allocated, during the time (T).

6 Conclusion
As described in the previous sections, equalizing the load
of all available resources is one of the most important
issues in the grid. In this way, with respect to grid
specifications, an echo system of autonomous, rational and
adaptive ants is proposed to meet the challenges of load
balancing. There are great differences between the
proposed mechanism and similar mechanisms which
deploy ant colony optimization. We believe that ant level
load balancing is the most important difference.
In future work, we plan to extend the applications of ant
level load balancing in addition to implementing this
mechanism in a more realistic environment. Promoting ant
intelligence and adaptation, establishing billing contracts
among resources as they exchange customer loads, as well
as overcoming security concerns are other future work.

References

[1] F. Berman, Anthony J.G. Hey, Geoffrey C. Fox
(2003) Grid Computing Making the Global

Infrastructure a Reality WILEY SERIES IN
COMMUNICATIONS NETWORKING &
DISTRIBUTED SYSTEMS.

[2] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G.
R. Nudd (2002) ARMS: an Agent-based Resource

Management System for Grid Computing, Scientific

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 335

Programming, Special Issue on Grid Computing Vol.
10, No. 2 pp. 135-148.

[3] M. Baker, R. Buyya, and D. Laforenza (2002) Grids

and Grid Technologies for Wide-area Distributed

Computing, Software: Practice and Experience Vol.
32, No. 15 pp. 1437-1466.

[4] J. Cao, D. J. Kerbyson, G. R. Nudd (2001)
Performance evaluation of an agent-based resource

management infrastructure for grid computing in
Proc. 1st IEEE Int. Symp. on Cluster Computing and
the Grid, pp. 311-318.

[5] J. Cao and F. Zimmermann (2004) Queue Scheduling

and Advance Reservations with COSY in Proc. of
18th IEEE Int. Parallel and Distributed Processing
Symp pp. 120-128.

[6] J. Cao (2004) Self-Organizing Agents for Grid Load

Balancing Proc. of the 5th IEEE/ACM Int. Workshop
on Grid Computing, pp.168-176.

[7] A. Y. Zomaya, and Y. The (2001) Observations on

using genetic algorithms for dynamic load-balancing,
IEEE Trans. on Parallel and Distributed Systems,
Vol. 12, No. 9, pp. 899-911.

[8] O. Remien, J. Kramer (1992) Methodical analysis of

adaptive load sharing algorithms, IEEE Trans. on
Parallel and Distributed Systems, Vol. 3, No: 11, pp.
747-760.

[9] Bing Qi Chunhui Zhao (2007) Ant Algorithm Based
Load Balancing for Network Sessions, ICNC 2007,
3th Int. Conference on Natural Computation, pp. 771-
775.

[10] Y. Lan, T. Yu (1995) A Dynamic Central Scheduler

Load-Balancing Mechanism, Proc. 14th IEEE Conf.
on Computers and Communication, Tokyo, Japan, pp.
734-740.

[11] H.C. Lin, C.S. Raghavendra (1992) A Dynamic Load-

Balancing Policy with a Central Job Dispatcher

(LBC), IEEE Transaction on Software Engineering,
Vol. 18, No. 2, pp. 148-158.

[12] Z. Zeng, B. Veeravalli (2004) Rate-Based and

Queue-Based Dynamic Load Balancing Algorithms in

Distributed Systems, Proc. 10th IEEE Int. Conf. on
Parallel and Distributed Systems, pp. 349- 356.

[13] M. Amini, H. Deldari (2006) Grid Load Balancing

Using an Echo System of Ants, Proc. Of 24th
IASTED Int. Conf, Innsbruck, pp. 47–52.

[14] E. Bonabeau, M. Dorigo, G. Theraulaz (1999) Swarm

Intelligence: from natural to artificial systems,
Oxford University Press, pp: 75-98.

[15] M. T. Islam, P. Thulasiraman, R. K. Thulasiram
(2003) A Parallel Ant Colony Optimization Algorithm

for All-Pair Routing in MANETs, Proc. 3th Int.
Symp., Parallel and Distributed Processing, pp. 259-
270.

[16] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul
Hanan Abdullah, and Chai Chompoo-inwai (2007) An

Ant Colony Optimization for Dynamic Job Scheduling

in Grid Environment, Int. Journal of Computer and
Information Science and Engineering Volume 1
Number 4, pp. 207-214.

[17] J. Deneubourg, S. Goss, N. Franks (1990) The

dynamics of collective sorting robot-like ants and ant-

like robots, Proc. of the 1st Int. Conf. on Simulation
of Adaptive Behavior, pp. 356-363.

[18] Ö. Babaoglu, H. Meling, A. Montresor (2002)
Anthill: A Framework for the Development of Agent-

Based Peer-to-Peer Systems, in Proc. of 22th IEEE
Int. Conf. on Distributed Computing Systems,
Vienna, Austria, pp. 15-22.

[19] J. Liu, X. Jin, and Y. Wang (2005) Agent-Based Load

Balancing on Homogeneous Minigrids: Macroscopic

Modeling and Characterization, IEEE TRANS. ON
PARALLEL AND DISTRIBUTED SYSTEMS, VOL
16, NO 7, pp.586-598.

[20] A. Montresor, H. Meling, and Ö. Babaoglu (2002),
Messor: Load-Balancing through a Swarm of

Autonomous Agents, in Proc. of 1st ACM Int. Joint
Conf. on Autonomous Agents and Multi-Agent
Systems, Bologna, Italy, pp.112-120.

[21] A. Shaout, P. McAuliffe (1998) Job scheduling using

fuzzy load balancing in distributed system,
ELECTRONICS LETTERS, Vol. 34, No. 20, pp. 56-
62.

[22] Hai Zhuge, Jie Liu (2004) A fuzzy collaborative

assessment approach for Knowledge Grid, Int.
Journal of Future Generation Computer Systems, Vol.
2, No 20, pp. 101-111.

[23] M. Dorigo, L. Maria (1997) Ant Colony System: A

Cooperative Learning Approach to the Traveling

Salesman Problem, Transactions ON
EVOLUTIONARY COMPUTATION, VOL. 1, NO.
1, pp. 53-66.

[24] M. Dorigo, G. Carol (1999) Ant Colony Optimization:

A New Meta-Heuristic, proc. Of 3th Fuzzy Sets and
Systems, pp. 21–29.

[25] http://profsite.um.ac.ir/~hpcc

