
Informatica 32 (2008) 307–317 307

A Distributed Multilevel Ant Colonies Approach

Katerina Taškova, Peter Korošec and Jurij Šilc
Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
E-mail: katerina.taskova@ijs.si

Keywords: ant-colony optimization, distributed computing, mesh partitioning, multilevel approach

Received: May 20, 2008

The paper presents a distributed implementations of an ant colony optimization metaheuristic for the solu-
tion of a mesh partitioning problem. The usefulness and efficiency of the algorithm, in its sequential form,
to solve that particular optimization problem has already been shown in previous work. In this paper a
straightforward implementations on a distributed architecture is presented and the main algorithmic issues
that had to be addressed are discussed. Algorithms are evaluated on a set of well known graph-partitioning
problems from the Graph Collection Web page.

Povzetek: V sestavku je predstavljena porazdeljena izvedba metahevristične optimizacije s kolonijami
mravelj, ki je uporabljena pri reševanju problema razdelitve mreže.

1 Introduction
Real engineering problems have complex dynamic behav-
ior and one of the widely accepted formalisms for their
modeling are partial differential equations (PDEs). The
fraction of PDEs that have solutions in a closed analyti-
cal form is quite small and in general their solution relies
on numerical approximations. Finite-element method is a
well known numerical method that efficiently solves com-
plex PDEs problems. In order to find an approximation of
an unknown solution function f(x), this method discretizes
the underlying domain into a set of geometrical elements
consisting of nodes. This process is known as meshing.
The value of the function f(x) is then computed for each
of these nodes, and the solutions for the other data points
are interpolated from these values [4].

Generated mesh structures can have large number of
elements, therefore a common approach would involve a
mesh-partitioning task in order to solve the finite-element
method using multiple parallel processors. Consequently,
the mesh-partitioning task aims to achieve minimal inter-
processor communication and at the same time to maintain
a processor workload balance.

Mesh-partitioning problem is a combinatorial optimiza-
tion problem. Namely, it is a special case of the well-
known graph-partitioning problem, which is known to be
a NP -hard and is defined as follows: If G(V, E) de-
notes an undirected graph consisting of a non-empty set
V of vertices and a set E ⊆ V × V of edges, then k-
partition D of G comprises k mutually disjointed subsets
D1, D2, . . . , Dk (domains) of V whose union is V . The
set of edges that connect the different domains of a par-
tition D is called an edge-cut. A partition D is balanced
if the sizes of the domains are roughly the same, i.e., if
b(D) = max1≤i≤k |Di| −min1≤i≤k |Di| ≈ 0. The graph-
partitioning problem is to find a balanced partition with a

minimum edge-cut, denoted by ζ(D).

Employing metaheuristic approach in optimization has
introduced efficient and practical solution of many complex
real-world problems. A variety of heuristic based methods
are used for solving the mesh-partitioning problem as well
[1, 10, 12]. In spite of being very powerful approach, meta-
heuristic can still easily reach the computational time lim-
its for large and difficult problems. Moreover, heuristics do
not guarantee an optimal solution, and in general their per-
formance could depend on the particular problem setting.
An important issue that arises here is not only how to de-
sign/calibrate the algorithm for a maximum performance,
but also how to make it robust in terms of dealing with dif-
ferent types of problems and settings. Parallel processing
is an straightforward approach that addresses both issues,
computational time and robustness.

One relatively new and promising metaheuristic that is
competitive with standard mesh-partitioning tools, such as
Chaco [9], JOSTLE (that has recently been commercialised
and is available under the name of NetWorks), and k-
METIS [11], is known as Multilevel Ant-Colony Algorithm
(MACA) [14]. This method is a nature inspired heuristic
that uses population of agents (artificial ants) mediated by
pheromone trails to find a desired goal, i.e., an ant-colony
optimization algorithm [6] for solving mesh-partitioning
problem. In experimental analysis so far, MACA has per-
formed very well on different size test graph problems [14].
Since it is a population-based algorithm, MACA is inher-
ently suitable for parallel processing on many levels. Mo-
tivated by the good performance of MACA in the previous
work and the possibility to improve it’s performance (com-
putational cost and/or solution quality), in this paper we
discus the result of parallelizing MACA on largest scale,
executing entire algorithm runs concurrently on a multi-
ple instruction stream, multiple data stream (MIMD) ma-

308 Informatica 32 (2008) 307–317 K. Taškova et al.

chine architecture. Explicitly, we present and experimen-
tally evaluate two distributed versions of MACA, the Semi-
Independent Distributed MACA and the Interactive Dis-
tributed MACA approach on a set of well known graph-
partitioning problems from the Graph Partitioning Archive
[8]. Both distributed approaches show comparable or bet-
ter (stable) quality performance. Semi-independent dis-
tributed approach can obtain same or better quality for less
computational time, which is gain on both scales: quality
and cost.

The rest of the paper is organized as follows: Section
2 describes the MACA algorithm for solving the mesh-
partitioning problem. Section 3 outlines possible parallel
strategies and in detail describes the two distributed im-
plementations of MACA. The experimental results are pre-
sented and discussed in Section 4. Conclusions and possi-
ble directions for further work are given in Section 5.

2 The multilevel ant-colony
algorithm

The MACA is an ant-colony algorithm [6] for k-way
mesh (graph) partitioning enhanced with a multilevel tech-
nique [17] for global improvement of the partitioning
method. The MACA is a recursive-like procedure that
combines four basic methods: graph partitioning (the basic
ant-colony optimization metaheuristic), graph contraction
(coarsening), partitioned graph expansion (refinement) and
bucket sorting.

2.1 The basic ant-colony algorithm
The main idea of the ant-colony algorithm for k-way par-
titioning [13] is very simple: We have k colonies of ants
that are competing for food, which in this case represents
the vertices of the graph. Final outcome of ants activities is
stored food in their nests, i.e., they partition the mesh into
k submeshes.

The outline of the core optimization procedure in the
MACA pseudocode is given in Algorithm 1. The algo-
rithm begins with a initialization procedure that performs
a random mapping of the input graph onto a grid, which
represents the place where ants can move, locates the nests
position on the grid and places the ants initially in their
nest locus. While gathering food, the artificial ants per-
form probabilistic movements on the grid in three possible
directions (forward, left and right), based on the pheromone
intensity. When an ant finds food, it picks it up if the quan-
tity of the temporarily gathered food in its nest is below a
specified limit (the capacity of storage is limited in order to
maintain the appropriate balance between domains); other-
wise, the ant moves in a randomly selected direction. The
weight of the food is calculated from the number of the cut
edges created by assigning the selected vertex to the parti-
tion associated with the nest of the current ant. If the food
is too heavy for one ant to pick it up then an ant sends a

help signal (within a radius of a few cells) to its neighbor
coworkers to help it carrying the food to the nest locus. On
the way back to the nest locus an ant deposits pheromone
on the trail that it is making, so the other ants can follow
its trail and gather more food from that, or a nearby, cell.
When an ant reaches the nest locus, it drops the food in the
first possible place around the nest (in a clockwise direc-
tion)and starts a new round of foraging.

Along with foraging food, ants can gather food from
other nests as well. In this case when the food is too heavy
to be picked up, the ant moves on instead of sending a help
signal. In this way the temporary solution is significantly
improved. Furthermore, the algorithm tries to maintain a
high exploration level by restoring cells pheromone inten-
sity to the initial value whenever the pheromone intensity
of a certain cell drops below a fixed value.

2.2 The multilevel framework

The multilevel framework [2] as presented in Algorithm 2
and Fig. 3 combines a level based coarsening strategy to-
gether with a level based refinement method (in reverse
order) to promote faster convergence of the optimization
metaheuristic and solution to a larger problems.

Coarsening is a graph contraction procedure that is iter-
ated L times (on L levels). Adequately, a coarser graph
G`+1(V`+1, E`+1) is obtained from a graph G`(V`, E`)
by finding the largest independent subset of graph edges
and then collapsing them. Each selected edge is collapsed
and the vertices u1, u2 ∈ V` that are at either end of it
are merged into the new vertex v ∈ V`+1 with weight
|v| = |u1| + |u2|. The edges that have not been col-
lapsed are inherited by the new graph G`+1 and the edges
that have become duplicated are merged and their weight
summed. Because of the inheritance the total weight of
the graph remains the same and the total edge weight is re-
duced by an amount equal to the weight of the collapsed
edges, which have no impact on the graph balance or the
edge-cut.

Refinement is a graph expansion procedure that applies
on a partitioned graph G` (partitioned with the ant-colony
algorithm), which interpolates it onto its parent graph
G`−1. Because of the simplicity of the coarsening proce-
dure, the interpolation itself is a trivial task. Namely, if a
vertex v ∈ V` belongs to the domain Di, then after the re-
finement the matched pair u1, u2 ∈ V`−1 that represents
the vertex v, will also be in the domain Di. In this way we
expand the graph to its original size, and on every level ` of
our expansion we run our basic ant-colony algorithm.

Large graph problems and the multilevel process by it-
self induce rapid increase of the number of vertices in a
single cell as the number of levels goes up. To overcome
this problem MACA employs a method, based on the basic
bucket sort idea [7], that accelerates and improves the al-
gorithm’s convergence by choosing the most “promising"
vertex from a given cell. Inside the cell, all vertices with a
particular gain g are put together in a “bucket" ranked g and

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 309

Procedure Ant_Colony_Algorithm
For all ants of colony Do

For all colonies Do
If carrying food Then

If in nest locus Then Drop_Food()
Else Move_to_Nest()
End If

Else If food here Then Pick_Up_Food()
Else If food ahead Then Move_Forward()

Else If in nest locus Then Move_To_Away_Pheromone()
Else If help signal Then Move_To_Help()

Else Follow_Strongest_Forward_Pheromone()
End If

End If
End If

End If
End If

End For
End For

End Ant_Colony_Algorithm.

Figure 1: Basic ant-colony algorithm

Procedure Multilevel_Framework
structure[0] = Initialization()
For ` = 0 To L− 1 Do

structure[` + 1] = Coarsening(structure[`])
End For
For ` = L Downto 0 Do

Solver(structure[`])
If ` > 0 Then

structure[`− 1] = Refinement(structure[`])
End If

End For
End Multilevel_Framework.

Figure 2: Multilevel framework

310 Informatica 32 (2008) 307–317 K. Taškova et al.

all nonempty buckets, implemented as double-linked list of
vertices, are organized in a 2-3 tree. Additionally, MACA
keeps separate 2–3 tree for each colony on every grid cell
that has vertices in order to gain even faster searches.

3 Distributed multilevel ant-colony
approaches

In general, ant-colony optimization algorithms can be par-
allelized on four different levels [5, 15, 16], as follows: (i)
parallelism on colony level, (ii) parallelism on ant level,
(iii) data level parallelization, and (iv) functional paral-
lelization, where each one is differing in granularity and
communication overhead between processors. We will in
brief, in the first subsection, describe all four paralleliza-
tion approaches, making a ground base for introduction of
the proposed Semi-Independent Distributed MACA and In-
teractive Distributed MACA approaches in the second, and
the third subsection, respectively.

3.1 Parallelization strategies
(i) Parallelism on colony level is the most simple coarse-
grained parallelization of the ant-colony optimization al-
gorithms, where the problem is instantiated and solved si-
multaneously on all available processors. Furthermore, if
no communication is required between processors (paral-
lel independent algorithms searches, introduced by Stützle
[16]), then this approach is refereed to as parallel inde-
pendent ant colonies and it is suitable for algorithms that
perform stochastic searches. Otherwise, if colonies, while
searching for food, exchange information at a specified iter-
ation (requires synchronized communication which implies
master/slave implementation), then we refer to this ap-
proach as parallel interactive ant colonies. The communi-
cation cost of the second approach can become very expen-
sive due to the required broadcasting of entire pheromone
structures.

(ii) Parallelism on ant level is the first proposed paral-
lel implementation [3] of an ant-colony optimization algo-
rithm, where each ant (or a group of ants) is assigned a
separate processor to build a solution. This means mainte-
nance of a separate pheromone structures on every proces-
sor and therefore this approach requires a master processor
that will synchronize the work of the rest (slave proces-
sors), including ant-processor scheduling, initializations,
global pheromone updates and producing of the final so-
lution.

(iii) Data level parallelization is a suitable approach for
solving the multi-objective optimization problems, since it
divides the main problem into a number of subproblems
(objectives to optimize) and each one is solved by a colony
on a separate processor.

(iv) Functional parallelization is a parallelization that in-
troduces a concurrent execution of a specified operations
(local search, solution construction, solution evaluation)

performed by a single colony on a master-slave architec-
ture. When local heuristic searches are computationally
expensive, a so-called parallel local searches are the pre-
ferred case. In particular, the assignment of a slave proces-
sor is to refine the solutions received from the master with
local search heuristics, while the master is responsible for a
solution construction, pheromone updates and collection of
the refined solutions. The parallel solution construction is
a second approach that organizes the available slave proces-
sors in two operational groups. Processors in the first one
are responsible for a solution construction, while the sec-
ond group processors are additionally grouped and sched-
uled to refine the corresponding solutions constructed by
the first group processors. The last functional paralleliza-
tion approach is called parallel evaluation of solution ele-
ments. This approach gives best performance in case of a
computationally expensive solution evaluations. Compared
to all aforementioned parallel strategies parallel evaluation
of solution elements is the only approach that does not ex-
ploits parallelism within the metaheuristic algorithm.

An efficient parallelization of a given algorithm depends
mainly on the available computing platform, the underlying
problem and the algorithm itself. If there is a large com-
munication overhead between the processors, then parallel
performance can be degraded. When the algorithms uses
global structures, such as the pheromone matrix or the grid
matrix of 2–3 trees in MACA case, a shared memory sys-
tem would gain on communication (less) over a distributed
memory system. On the other hand, the most common and
cheaper approach in the same time is a parallelization using
distributed memory systems, i.e., MIMD architecture such
as cluster of workstations. Our proposed MACA paral-
lelization assumes distributed memory system as well and
it is implemented on a cluster of workstations.

3.2 The semi-independent distributed
MACA

The Semi-Independent Distributed MACA (SIDMACA) is
basically a distributed MACA approach that allows ex-
change of the best temporal solution at the end of every
level of the multilevel optimization process. This exchange
requires that the parallel executions of MACA instances
on the available processors have to be synchronized once
per level. Namely, the master processor is responsible for
synchronizing the work of all slave processor that execute
a copy of MACA, by managing the exchange information
and communication process (sending commands and con-
firmation, such as Start, Stop, Initialize, Goto New Level,
Best Partition, etc.), while the slave processors have to ex-
ecute the instances of the MACA code, signal when finish
the current level optimization and send the best partition to
the master. When all finish the current level, the master de-
termines the best solution and broadcasts it to the slaves.
In order to proceed with next level optimization, slave pro-
cessors have to first update local memory structures (grid
matrix) and afterwards perform partition expansion (refine-

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 311

K-partition (Graph [L]) = Graph* [L]

K-partition (Refine (Graph* [L]))

K-partition (Refine (Graph* [L-1]))

K-partition (Refine (Graph* [1]))

Coarse (Graph [0])

Coarse (Graph [1])

Coarse (Graph [L-1])

Level 0

Level 1

Level L-1

Level L

Figure 3: The three phases of multilevel k-way graph partitioning.

ment).

3.3 The interactive distributed MACA
The Interactive Distributed MACA (ItDMACA) is based
on the parallel interactive colony approach which, by def-
inition, implies master/slave implementation and synchro-
nized communication. The information exchange between
the colonies across the concurrent processors is initiated
every time a piece of food has been taken or dropped on
a new position. The information about the specific food,
its new position and its owner is part of the message sent
to and received from the master processor when picked up
or dropped food. The master keeps and updates its own lo-
cal grid matrix of temporal food positions (plays the role of
shared memory) in order to maintain normal and consistent
slaves activities.

The master processors is responsible for the synchro-
nized work and communication of the slave processors,
which includes listening, processing and broadcasting of
the incoming clients messages during level optimization.
When all slave processors finish level or run, it collects
the best-level solution, determines and broadcast the global
best-level solution to the slaves and guides them when to
start the refinement procedure and all necessary updates in
order to perform the next level optimization activities or a
new run.

A slave processor executes a single instance of the
MACA code. While optimization executing informs the
master and waits for master’s confirmation on every poten-

tial drop/pick, signals when finishes the current level opti-
mization and send the best partition to the master. In the
meantime, while waiting to go on the next level, it listens
for an eventual changes send by the unfinished clients and
performs the eventual updates on the grid. When the mas-
ter signals that the current level is finished, by sending the
new best temporal solution, the slave processor has to per-
form partition expansion (refinement) in order to start the
next level optimization.

4 Experimental evaluation

The proposed distributed versions of MACA were applied
on a set of well-known graph problems and the results from
their experimental evaluation are presented and discussed
in this section. The section is structured in two subsection.
The first subsection describes the implementation of the
distributed code, the experimental setting and the bench-
mark suite, whereas the second subsection presents and dis-
cusses the evaluation results.

4.1 Setup

Based on the MACA sequential code, both proposed dis-
tributed version, SIDMACA and ItDMACA, were imple-
mented in Borland R© DelphiTM, using TCP/IP protocol for
the server/client communication, based on the open source
library Indy Sockets 10 (which supports clients and servers

312 Informatica 32 (2008) 307–317 K. Taškova et al.

of TCP, UDP and RAW sockets as well as over 100 higher
level protocols).

All experiments were performed on a 8-node cluster con-
nected via a Giga-bit switch, where each node consists of
two AMD OpteronTM1.8-GHz processors, 2GB of RAM,
and Microsoft R©Windows R©XP operating system.

The benchmark graphs used in the experimental analysis
were taken from the Graph Collection Web page [8], and
are described in Table 1.

Graph G(V, E) |V | |E|
grid1 252 476
grid2 3296 6432
crack 10240 30380
U1000.05 1000 2394
U1000.10 1000 4696
U1000.20 1000 9339

Table 1: Benchmark graphs

Number of processors
Parameters 1 2 4 6 8
ants/colony 120 60 30 20 15
iteration/level 600 600 600 600 600
runs 20 20 20 20 20

Table 2: Distribution of ants per colonies and number of
iterations per level w.r.t the number of processors

The total number of ants per colony was 120. As pre-
sented in Table 2, the number of ants per sub-colony is dif-
ferent and depends on the number p of processors, i.e., 1

p
of the total number of ants, while the number of total itera-
tions per level per colony is constant.

All experiments were run 20 times on each graph with
each algorithm and as final results were presented the mean
value (also best and worst values for edge-cut) of the con-
sidered evaluation criteria over all performed runs.

4.2 Results
The results presented in the following tables show the per-
formance of the introduced DMACA approaches on the 2-
partitioning and 4-partitioning graph problem. The qual-
ity of the partitioned graph is described with the edge-cut,
ζ(D), and the balance, b(D). Balance is defined as the dif-
ference (in the number of vertices) between the largest and
the smallest domain.

Beside the quality, the second evaluation criteria is the
effectiveness of the parallel algorithm which is, in our case,
given by the speed-up measure, S, defined as:

S(p) =
tS

tT(p)

and by the relative speed-up measure, Sr, which is defined
as:

Sr(p) =
tT(1)
tT(p)

,

where tS is the time to solve a problem with the sequential
code, tT(1) is time to solve a problem with the parallel
code with the one processor, and tT(p) is time to solve the
same problem with the parallel code on p processors. Note
that S(p) and Sr(p) were calculated based on the average
time values of the 20 runs.

By theory, correct speed-up metric should be calculated
according to the performance (elapsed computational time)
of the best serial code for the underlying algorithm, as de-
fined above and denoted with S(p), whereas in practice this
is usually translated into calculation of the relative speed-
up metric Sr(p), since the best serial code is not available
and writing two codes is not acceptable. In our case the
serial code is available, and the values of both speed-up
metrics are included in the tables with results.

Additionally, for the reason of comparison, in the ta-
bles are given the measured CPU time for the computa-
tion of the obtained solutions, tT, as a triple of the time
spent on pure computations, the time for communication
with the master processor, tC, and the time for internal up-
dates caused by the synchronization, tU. Note that tC and
tU are part of the tT spent for communication and updates,
respectively.

Results in in Table 3 and Table 4 summarize the per-
formance of SIDMACA for solving 2-partitioning and
4-partitioning graph problem, respectively, on the given
graph set.

General observation is that parallel performance of the
system w.r.t speed-up over the serial MACA is poor com-
pared to the theoretical expected speed-up of p when used
p processors, having maximal speed-up of 2.29 (graph
crack , p = 8) in case of 2-partitioning problem and max-
imal speed-up of 2.72 (graph U1000.05 , p = 8) in case of
4-partitioning problem overall considered graphs and par-
allel scenarios (p = 2, 4, 6, 8). For more then 2 proces-
sors employed S > 1 (except for the graph U1000.10 ,
p = 4, k = 4), while for 2-processor parallelization of
the problems is evident speed-down up to 27% in case of
4-partitioning of graph grid2 . On the other side, results on
SIDMACA show overall comparable/improved quality of
the obtained solutions. The best solutions found in case of
2-partitioning are equal or better then the best serial code
produced solutions (except for graph U1000.10 , p = 4
and crack , p = 6). Moreover, the worst solutions found
by SIDMACA are better than the ones from the MACA
on the U1000 graph set and crack graph. When solved
the 4-partitioning problem, best found solution better than
the best ones from the serial code are observed for graphs:
grid2 , U1000.05 and U1000.10 . The remark on the bet-
ter quality of the worst case found solutions is confirmed
in case of graphs U1000.10 , U1000.10 and partially for
graphs grid2 , U1000.05 and crack .

Correspondingly, Table 5 and Table 6 illustrate the ItD-
MACA performance on the same graph set for the 2- and
4-partitioning graph problems when 2, 4 and 8 processor
employed in parallel. Note that for p = 8 results are avail-
able only for the graphs grid1 , U1000.10 and U1000.20 .

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 313

Quality Time [s] Speed-up
ζ(D) b(D) tT tC S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean

1* 18 18 18 0 9.80 0 1.00
grid1 1 18 18 18 0 10.03 0.10 1.00

2 18 18 18 0 10.41 0.69 0.94 0.96
4 18 18 19 0 10.00 2.67 0.98 1.00
6 18 18 21 0 7.17 1.75 1.37 1.40
8 18 19 21 0 5.60 1.44 1.75 1.79
1* 35 44 68 0 20.37 0 1.00

grid2 1 34 41 68 0 23.81 0.21 1.00
2 35 40 69 0 23.28 1.58 0.88 1.02
4 35 40 69 0 15.86 2.99 1.28 1.50
6 35 41 70 0 11.73 2.51 1.74 2.03
8 35 49 70 0 9.31 2.22 2.19 2.56
1* 1 1 2 0 87.53 0 1.00

U1000.05 1 1 1 3 0 88.80 0.39 1.00
2 1 1 2 0 83.10 1.81 1.05 1.07
4 1 1 1 0 60.86 4.54 1.44 1.46
6 1 1 1 0 42.15 6.09 2.08 2.11
8 1 1 1 0 32.19 6.16 2.72 2.76
1* 50 62 78 1 14.49 0 1.00

U1000.10 1 39 62 73 1 15.03 0.17 1.00
2 40 59 76 1 14.97 1.16 0.97 1.00
4 40 59 71 1 11.88 2.57 1.22 1.27
6 50 61 72 1 8.72 1.95 1.66 1.72
8 57 61 72 1 7.12 1.76 2.04 2.11
1* 221 277 370 8 12.14 0 1.00

U1000.20 1 221 256 337 6 13.03 0.15 1.00
2 219 259 373 7 12.48 0.99 0.97 1.04
4 219 266 369 7 10.67 2.51 1.14 1.22
6 219 288 368 10 7.75 1.75 1.58 1.68
8 219 278 370 9 6.05 1.34 2.01 2.15
1* 185 211 234 1 64.91 0 1.00

crack 1 184 204 277 1 85.02 0.29 1.00
2 184 195 231 0 80.48 6.28 0.81 1.06
4 185 203 246 0 52.25 10.40 1.24 1.63
6 186 202 230 0 39.70 9.25 1.64 2.14
8 185 203 225 0 32.04 8.45 2.03 2.65

* sequential code

Table 3: Experimental results: 2-partitioning problem with SIDMACA

314 Informatica 32 (2008) 307–317 K. Taškova et al.

Quality Time [s] Speed-up
ζ(D) b(D) tT tC S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean

1* 38 39 41 1 18.01 0 1.00
grid1 1 38 39 42 1 19.67 0.08 1.00

2 38 39 41 0 19.38 0.67 0.93 1.01
4 38 39 41 0 18.12 2.72 0.99 1.09
6 38 39 41 0 13.50 1.69 1.33 1.46
8 38 39 41 0 10.42 1.14 1.73 1.89
1* 96 104 118 4 47.38 0 1.00

grid2 1 95 102 111 3 63.08 0.23 1.00
2 94 106 116 3 65.21 4.78 0.73 0.97
4 92 105 123 2 47.96 10.14 0.99 1.32
6 93 106 116 2 35.35 8.18 1.34 1.78
8 93 103 115 2 28.16 6.89 1.68 2.24
1* 9 14 20 3 50.78 0 1.00

U1000.05 1 7 14 22 2 57.88 0.20 1.00
2 9 14 23 2 60.96 8.28 0.83 0.95
4 7 14 21 1 45.15 12.00 1.12 1.28
6 8 13 18 0 36.26 9.99 1.40 1.60
8 7 11 17 0 36.03 11.15 1.41 1.61
1* 95 114 166 3 35.17 0 1.00

U1000.10 1 102 113 133 3 43.09 0.12 1.00
2 98 110 133 2 40.76 2.89 0.86 1.06
4 92 112 163 2 39.03 10.12 0.90 1.10
6 101 113 162 2 27.14 6.64 1.30 1.59
8 91 115 161 3 19.96 4.64 1.76 2.16
1* 485 580 856 6 32.27 0 1.00

U1000.20 1 479 592 838 6 36.77 0.13 1.00
2 485 586 817 6 36.19 1.85 0.89 1.02
4 490 593 687 5 32.29 7.85 1.00 1.14
6 490 632 730 6 22.65 4.70 1.42 1.62
8 491 649 727 8 17.02 3.34 1.90 2.16
1* 373 415 522 15 191.07 0 1.00

crack 1 374 425 496 14 259.03 0.27 1.00
2 377 426 495 11 217.40 14.39 0.88 1.19
4 373 423 506 8 139.52 25.92 1.34 1.86
6 384 431 493 6 109.29 23.66 1.75 2.37
8 378 429 526 6 83.35 18.40 2.29 3.11

* sequential code

Table 4: Experimental results: 4-partitioning problem with SIDMACA

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 315

Quality Time [s] Speed-up
ζ(D) b(D) tT tC tU S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean mean

1* 18 18 18 0 9.80 0 0 1.00
grid1 1 18 18 18 0 44.79 34.45 0.11 1.00

2 18 18 18 0 37.61 17.87 1.54 0.26 1.19
4 18 18 18 0 18.86 8.26 3.01 0.52 2.38
8 18 18 18 0 11.83 5.01 3.00 0.83 3.79
1* 35 44 68 0 20.37 0 0 1.00

grid2 1 35 45 69 0 143.34 118.24 0.29 1.00
2 34 42 68 0 92.74 56.55 9.08 0.22 1.55
4 35 39 53 0 52.29 26.57 13.44 0.39 2.74
1* 1 1 2 0 87.53 0 0 1.00

U1000.05 1 1 1 2 0 463.82 373.45 0.32 1.00
2 1 1 2 0 295.38 190.25 41.64 0.30 1.57
4 1 1 2 0 182.04 90.89 61.65 0.48 2.55
1* 50 62 78 1 14.49 0 0 1.00

U1000.10 1 39 60 76 1 44.47 27.11 0.20 1.00
2 39 63 77 1 30.27 11.54 4.58 0.48 1.47
4 40 59 71 1 21.16 6.63 4.77 0.68 2.10
8 40 59 70 1 14.73 4.45 4.32 0.98 3.02
1* 221 277 370 8 12.14 0 0 1.00

U1000.20 1 219 268 373 7 24.41 11.23 0.15 1.00
2 219 272 371 8 21.83 5.43 2.58 0.56 1.12
4 219 255 368 7 16.48 2.77 3.92 0.74 1.48
8 235 262 308 5 10.65 1.73 3.14 1.14 2.29
1* 185 211 234 1 64.91 0 0 1.00

crack 1 184 191 262 0 312.25 205.08 0.42 1.00
2 184 189 211 0 223.60 95.82 57.03 0.29 1.40
4 184 187 207 0 150.94 48.21 63.33 0.43 2.07

* sequential code

Table 5: Experimental results: 2-partitioning problem with ItDMACA

The results show no speed-up in case of 2-processor
and 4-processor parallelization. Speed-up S ≥ 1 is evi-
dent when 8 processor applied on the graphs for solving
the 4-partitioning problem and for 2-partitioning of graphs
U1000.10 , U1000.20 . Speed-down and low speed-ups are
due to the big amount of time spent on communication
and memory updates (synchronizations) during level op-
timization activities. The performance of ItDMACA w.r.t
the quality of obtained solutions confirms the observation
from the SIDMACA results. More specifically for the 2-
partitioning problem, equal partition solutions in all runs
are obtained for graphs grid1 and U1000.05 , while signifi-
cant improvement is evident for the U1000.10 , and slightly
better solution for the rest of the graphs.

In general, comparable or improved solution quality is
observed in the case of solving the 4-partitioning problem
with ItDMACA as well. For p = 8, we gain speed-up
and (i) better solution for graph U1000.20 , (ii) equal best
found solution for graph grid1 , (iii) comparable solutions
for graph U1000.10 .

As expected, the results on relative speed-up Sr(p) are
better than the speed-up S(p) results. How big this differ-

ence is, is dependent on the size of the problem and algo-
rithm implementation. Consequently, for SIDMACA the
difference is not significant (except for graph grid2 and
crack) compared to the ones in the ItDMACA, which in
case of the grid2 graph yields 7 times higher Sr(p) than
S(p). This difference reveals that ItDMACA suffers from
communication/update overhead, which for specific prob-
lems could be disadvantageous.

Additional experiments are needed in order to confirm
the conclusions drawn from the initial experimental evalu-
ations results, based on small number of processing nodes
and a small set of graphs. There is a large space with pos-
sible directions for further work, such as:

– application on additional new graph problems, spe-
cially large and complex ones,

– try to solve the partitioning problem with more than
8 processors in parallel and find how the number of
processors influences the solution quality and speed-
up,

– shared memory implementation, since distributed im-
plementations suffer from increased communication

316 Informatica 32 (2008) 307–317 K. Taškova et al.

Quality Time [s] Speed-up
ζ(D) b(D) tT tC tU S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean mean

1* 38 39 41 1 18.01 0 0 1.00
grid1 1 38 40 42 0 58.03 38.39 0.28 1.00

2 38 40 43 0 47.97 16.25 1.38 0.38 1.21
4 38 39 41 1 26.45 11.07 3.35 0.68 2.19
8 38 40 43 1 14.00 5.43 2.22 1.29 4.15
1* 96 104 118 4 47.38 0 0 1.00

grid2 1 94 106 116 4 332.74 259.84 0.89 1.00
2 95 103 114 4 210.78 110.65 45.41 0.22 1.58
4 95 105 118 4 132.13 66.09 30.91 0.36 2.52
1* 9 14 20 3 50.78 0 0 1.00

U1000.05 1 9 14 21 3 342.12 278.76 0.62 1.00
2 7 16 33 3 225.56 134.97 37.33 0.23 1.52
4 7 15 22 2 160.29 91.36 38.15 0.32 2.13
1* 95 114 166 3 35.17 0 0 1.00

U1000.10 1 93 116 159 3 79.74 34.02 0.53 1.00
2 96 112 129 3 63.46 17.23 7.32 0.55 1.26
4 98 117 197 5 46.29 8.99 9.70 0.76 1.73
8 98 118 157 3 26.08 5.13 7.34 1.35 3.06
1* 485 580 856 6 32.27 0 0 1.00

U1000.20 1 480 594 888 8 63.64 25.31 0.49 1.00
2 487 583 759 6 51.82 11.07 4.39 0.62 1.22
4 486 594 762 5 36.72 6.65 7.51 0.88 1.73
8 474 584 805 5 24.25 3.52 6.50 1.33 2.62
1* 373 415 522 15 191.07 0 0 1.00

crack 1 372 415 507 15 720.23 401.47 1.11 1.00
2 377 433 496 11 565.13 194.86 150.72 0.34 1.27
4 382 415 492 9 411.00 104.70 197.98 0.46 1.75

* sequential code

Table 6: Experimental results: 4-partitioning problem with ItDMACA

and local memory updates,

– how statistically significant is the difference in the per-
formances of the proposed parallel implementations
among them or/and vs. the sequential MACA algo-
rithm.

5 Conclusions

An efficient parallelization of a given algorithm depends
mainly on the available computing platform, the underlying
problem and the algorithm itself. If there is a large com-
munication overhead between the processors, then parallel
performance can be degraded. When the algorithms uses
global structures, such as the pheromone matrix or the grid
matrix of 2–3 trees in MACA case, a shared memory sys-
tem would gain on communication (less) over a distributed
memory system. On the other hand, the most common and
cheaper approach in the same time is a parallelization using
distributed memory systems, i.e., MIMD architecture such
as cluster of workstations.

In this paper, two distributed MACA versions were pre-

sented, Semi-Independent and Interactive, implemented on
a cluster of workstations. The initial experimental eval-
uations confirms that parallelization efficiency is problem
dependent. Overall, both approaches show comparable or
better (stable) quality performance. While ItDMACA is
more sensitive on the parallel performance efficiency, due
to the synchronization overhead, SIDMACA can obtain
same or better quality for less computational time, which
is gain on both scales: quality and cost.

In order to see how significant is this improvement and
how robust is this approach additional experimental anal-
ysis regarding different problem type (large and complex)
and experiment setup should be performed.

References

[1] A. Bahreininejad, B.H.V. Topping, and A.I. Khan.
Finite Element Mesh Partitioning Using Neural Net-
works. Adv. Eng. Softw., 27(1-2):103–115, 1996.

[2] S.T. Barnard and H.D. Simon. A Fast Multilevel
Implementation of Recursive Spectral Bisection for

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 317

Partitioning Unstructured Problems. Concurr. Comp.-
Pract. E., 6(2):101–117, 1994.

[3] M. Blondi and M. Bondanza. Parallelizzazione di
un Algoritmo per la Risoluzione del Problema del
Commesso Viaggiatore. Master’s thesis, Politecnico
di Milano, 1993.

[4] R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt.
Concepts and Applications of Finite Element Analy-
sis. John Wiley & Sons, 2001.

[5] M. Dorigo, G. Di Caro. The Ant Colony Opti-
mization Meta-Heuristic. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization,
McGraw-Hill, 1999.

[6] M. Dorigo. Optimization, Learning and Natural Algo-
rithms. PhD Thesis, Dipartimento di Elettronica, Po-
litecnico di Milano, 1992.

[7] C.M. Fiduccia and R.M. Mattheyses. A Linear Time
Heuristic for Improving Network Partitions. In Proc.
19th IEEE Design Automation Conf., Las Vegas, NV,
1982, pages 175–181.

[8] Graph Collection. wwwcs.uni-paderborn.de/
cs/ag-monien/RESEARCH/PART/graphs.
html.

[9] B. Hendrickson and R. Leland. A Multilevel Algo-
rithm for Partitioning Graphs. In Proc. ACM/IEEE
Conf. Supercomputing, San Diego, CA, 1995.

[10] P. Kadłuczka and K. Wala. Tabu Search and Genetic
Algorithms for the Generalized Graph Partitioning
Problem. Control Cybern., 24(4)459–476, 1995.

[11] G. Karypis and V. Kumar. Multilevel k-way Partition-
ing Scheme for Irregular Graphs. J. Parallel Distr.
Com., 48(1):96–129, 1998.

[12] B.W. Kernighan and S. Lin. An Efficient Heuristic
Procedure for Partitioning Graph. Bell Sys. Tech. J.,
49(2)291–307, 1970.

[13] A.E. Langham and P.W. Grant. Using Competing Ant
Colonies to Solve k-way Partitioning Problems with
Foraging and raiding strategies. Lect. Notes Comp.
Sc., 1674:621–625, 1999.

[14] P. Korošec, J. Šilc, and B. Robič. Solving the Mesh-
partitioning Problem with an Ant-colony Algorithm.
Parallel Comput., 30(5-6):785–801, 2004

[15] M. Randall and A. Lewis. A Parallel Implementation
of Ant Colony Optimization. J. Parallel Distr. Com.,
62(9):1421–1432, 2002.

[16] T. Stützle. Parallelization Strategies for Ant Colony
Optimization. Lect. Notes Comp. Sc., 1498:722–741,
1998.

[17] C. Walshaw and M. Cross. Mesh Partitioning: A Mul-
tilevel Balancing and Refinement Algorithm. SIAM J.
Sci. Comput., 22(1):63–80, 2001.

