
 Informatica 32 (2008) 275–281 275

Recognition of On-line Handwritten Arabic Digits Using Structural

Features and Transition Network

Al-Taani Ahmad

Department of Computer Sciences, Yarmouk University, Jordan

E-mail: ahmadta@yu.edu.jo

Hammad Maen

Department of Computer Sciences, the Hashemite University, Jordan

E-mail: maen@hu.edu.jo

Keywords: on-line digit recognition, pattern recognition, feature extraction, structural primitives, document

processing, transition networks

Received: September 12, 2006

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed.

After reading the digit from the user, the coordinates (x, y) of the pixels representing the drawn digit are

used for calculating and normalizing slope values of these coordinates. Successive slope values are then

used to record the change of direction which used to estimate the slope. Based on the changing of signs

of the slope values, the primitives are identified and extracted. These primitives represent a specific

string which is a production of a certain grammar. Each digit can be described by a specific string. In

order to identify the digit we have to determine to which grammar the string belongs. A Finite

Transition Network which contains the grammars of the digits is used to match the primitives’ string

with the corresponding digit to identify the digit. Finally, if there is any ambiguity, it will be resolved.

The proposed method is tested on a sample of 3000 digits written by 100 different persons; each person

wrote the 10 digits three times each. The method achieved accuracy of about 95% on the sample test.

Experiments showed that this technique is flexible and can achieve high recognition accuracy for the

shapes of the digits represented in this work.

Povzetek: V prispevku je opisana metoda prepoznavanja arabskih črk.

1 Introduction
In areas of automatic document analysis and recognition,

the correct interpretation of digits is very important.

Automatic recognition of on-line handwriting has a

variety of applications at the interface between man and

machine.

The performance of any system for handwriting

recognition can be evaluated by several factors, such as

size of the alphabet, independence of the writing style,

and speed of recognition.

Automatic recognition of handwritten digits is

difficult due to several reasons, including different

writing styles of different persons, different writing

devices, and the context of the digit. This leads to digits

of different sizes and skews, and strokes that vary in

width and shape.

Researchers in this field have proposed different

approaches, such as statistical, structural, and neural

network approaches [1, 2]. The main primitives that form

digits are line segments and curves. Different

arrangements of these primitives form different digits. To

recognize a digit, we should first determine the structural

relationships between the features make up the digit.

The syntactic and structural approaches require

efficient extraction of primitives [3-5].

In this study, we propose an efficient approach for

extracting features for handwritten digits recognition.

First, we will review some related work. After

introducing the Normalization and slope estimation

method used in this paper, we will discuss the feature

extraction algorithm used to extract the primary and

secondary features. Then, we will give an overview of

the proposed recognition approach. We will also

illustrate how to resolve ambiguities in some digits.

Finally, we will present and discuss the experimental

results and draw some conclusions.

2 Previous works
The problem of handwriting recognition has been studied

for decades and many methods have been developed.

Verma [6] proposed a contour code feature in

conjunction with a rule based segmentation for cursive

handwriting recognition. A heuristic segmentation

algorithm is used to segment each word. Then the

segmentation points are passed through the rule-based

module to discard the incorrect segmentation points and

include any missing segmentation points.

You et al. [7] presented an approach for

segmentation of handwritten touching numeral strings.

They designed a neural network to deal with various

types of touching observed frequently in numeral strings.

276 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

A numeral string image is split into a number of line

segments while stroke extraction is being performed and

the segments are represented with straight lines.

Segmentation points are located using the neural network

by interpreting the features collected from the primitives.

Olszewski [8] proposed a recognition approach that

uses syntactic grammars to discriminate among digits for

extracting shape-based or structural features and

performing classification without relying on domain

knowledge. This system employs a statistical

classification technique to perform discrimination based

on structural features is a natural solution. A set of shape-

based features is suggested as the foundation for the

development of a suite of structure detectors to perform

generalized feature extraction for pattern recognition in

time-series data.

Chan et al. [9] proposed a syntactic approach to

structural analysis of on-line handwritten mathematical

expressions. The authors used definite clause grammar

(DCG) to define a set of replacement rules for parsing

mathematical expressions. They also proposed some

methods to increase the efficiency of the parsing process.

The authors tested the proposed system on some

commonly seen mathematical expressions and they

claimed that their method has achieved satisfactory

results, making mathematical expression recognition

more flexible for real-world applications.

Chan et al. [10] discussed a structural approach for

recognizing on-line handwriting. The recognition process

starts when getting a sequence of points from the user

and then by using these points to extract the structural

primitives. These primitives include different types of

line segments and curves. The authors demonstrated their

approach on 62 character classes (digits, uppercase and

lowercase letters). Each class has 150 different entries.

They stated that experimental results showed that the

recognition rates were 98.60% for digits, 98.49% for

uppercase letters, 97.44% for lowercase letters, and

97.40% for the combined set.

Amin [11] reviewed the state of Arabic character

recognition research throughout the last two decades.

The author summarized all the work accomplished in the

past two decades in off-line systems in an attempt to pin-

out the different areas that need to be tackled.

Behnke et al. [12, 13] proposed a case study on the

combination of classifiers for the recognition of

handwritten digits. Four different classifiers are used and

evaluated; Wavelet-Preprocessing Classifier, Structural

Classifier, Neural Networks Classifier, and Combined

Classifier.

3 Overview of the proposed system

3.1 Normalization and slope estimation

The user draws the digit on a special window using a

digitizer (or mouse). Then the coordinates (x, y) of the

pixels representing the drawn digit are saved on a file.

These coordinate values are used for calculating and

normalizing slope values. Successive slope values are

then used to record the change of direction which used to

estimate the slope [14].

The signs of the slope values (+ and -), the zero

values, and the infinity values are saved and used in the

feature extraction step. Figure 1 shows an example, the

representation of the digit 2. Then, all primitives

representing each digit are extracted. These primitives

are identified by locating break points in the digit. Two

types of break points are identified: Primary Break Points

(PBP): slope values of infinity (∞) and Secondary Break

Points (SBP): slope values of zero. The feature extraction

process depends on the change of the slope signs around

these break points. Infinity breakpoint is considered to be

primary breakpoint since all primary features (Figure 3)

needed for recognition have a slope value of infinity, and

all the secondary features (Figure 5) have a slope of zero.

After the slope signs and values are computed, these

values are normalized. The purpose of this step is to

eliminate any distortion that might occur during the

drawing process and to ease the primitive identification

1 2 3

V1
V2

V2

4
-

-

0

-

∞

+

∞

-

0 0

+

Figure 1: Representation of the digit 2

RECOGNITION OF ON-LINE HANDWRITTEN... Informatica 32 (2008) 275–281 277

process and guarantee accurate identification. Two steps

of normalization are done:

1. Removing redundant break points: Eliminating

adjacent reference points of the same type, except

the first one. This step is required to record the

change of the signs; only one break point is

needed.

2. A threshold value is used to determine the distance

(number of slope value signs) between any two

successive break points of the same type.

Figure 2 shows an example of these two steps for the

digit 1. In step 1, the adjacent break points are removed,

then in step 2 the threshold value was used to remove

more redundant break points since the distance is less

than the threshold value, e.g. the slope values between -

0.1 and +0.1 is saved as zero. The result is only one

break point with two different slope sings before and

after it. This result will be used in the primitive

identification process.

a b c d e f

Figure 3: Primary Primitives

Final representation

In addition to the signs of the slope values and break

points, the X and the Y positions for the middle pixel in

which its neighbors (from both sides) used to calculate

the slope. So the slope value is saved with its X and Y

positions. Also, the sign of ∆Y i.e. (Y2 – Y1) is used to

determine the direction of writing or drawing (upward or

downward). If ∆Y > 0 and the reference point (0, 0) is

located on the top left corner, then the directing of

writing is downward, otherwise the directing of writing is

upward. The final representation of the digit is

represented as a list of vectors V1, V2, ... , Vn; each

vector V contains the following data: (slope value (sign

or break point), Y position, X position, ∆Y sign) [15].

3.2 Extracting primary primitives

The final representation of the digit is used to extract

primary primitives [16]. Figure 3 shows these primitives

(a, b, c, d, e, or f). These primitives are called primary

primitives because the primary break points (PBP) are

used to identify them.

To extract the primitives we use the following algorithm:

For each PBP do:

IF the slope sign before it is (+) and after it is (-)

then the primitive is 'a'.

Else if the slope sign before it is (-) and after it is (+)

then the primitive is 'b'

Else if the successive slope signs before it is (+) and

end with SPB then the primitive is d'.

Else if the successive slope signs after it is (-) and

end with SPB then the primitive is 'e'.

Else if the successive slope signs after it is (+) and

end with SPB then the primitive is 'c'.

Figure 4 explains this step for the digit 2. Assume that

∞

∞

∞

-

-

∞

∞

∞

∞

Step 1

∞

∞

Step 2

Figure 2: Removing Redundant Break Points

index(PBP1) -1

+

-

0

-

∞

+

-

0

+

∞

+

PBP1

PBP2

index(PBP1) +1

a

Figure 4: Signs and Break Points for the digit 2

 c ' d ' e '

SBP

- +

SBP

SBP

-

- -

-

-
+

+

Figure 6: Identification process

278 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

the user draw the digit downward. In this case, ∆Y is

greater than zero for all points, so the algorithm proceeds

as follows:

1. Take the first PBP1.

2. Now, primitive "a" is recognized.

3. Find the next PBP.

4. Take the next PBP (PBP2).

5. Now, primitive "b" is recognized.

6. No More PBP, end.

Now the vector contains the primitives "ab". If the user

draws the digit from bottom to top, the vector will

contain the primitives "ba". We need also to extract

starting and ending points for the actual curves drawn

that represented by primitives "a" and "b". This step is

necessary to resolve ambiguity which will be explained

in section 3.6. Each digit has different patterns which

captured by the set of primitives that are described in

Figure 3.

After feature extraction process, we need to identify

these features. The primitives which are extracted in the

previous phases represent a certain string which is a

production of a certain grammar.

3.3 Extracting secondary primitives

After the process of extracting primary primitives

finishes, another extracting process begins to identify

another category of primitives called Secondary

Primitives. Secondary Break Points (SBP), the zero

values, and the slope signs around them are used to

identify these primitives which shown in Figure 5. For

example, the Secondary Primitive "c' " is the same as the

primary primitive "c" but here there is no PBP and the

primitive makes acute angle with SBP.

c' d' e'

Figure 5: Secondary Primitives

To extract these primitives we use the following

algorithm (Figure 6):

FOR each SBP that is not part of any primary

primitive:

IF the slope signs after it are (-) and make lower

acute angle then the primitive is "c’".

Else, if the slope signs after it are (+) and make lower

acute angle then the primitive is "e"’.

Else, if the slope signs before it are (+) and make

upper acute angle then the primitive is "d’".

3.4 Sorting primitives

At this stage, the primitives' vector contains primary and

secondary primitives. The order of these primitives

depends on the drawing style. For example, if the

drawing style was downward (when drawing digit 2)

then the primitives' vector will contain "ab", on the other

hand if the drawing style was upward, it would contain

"ba". This is confusing and increases the number of

patterns for the digit. The order is very important in

translating the primitives into digits. So we need a

standard order to be used in sorting all primitives.

The order of the identified primitives must be

independent from the drawing style and from the order of

drawing the primitives. The standard order used here is

the Y position for the break points; they are sorted in

increasing order. After collecting all primitives, they are

reordered according to the Y position for the break points

that used to identify them. When two break points have

the same Y position the order is based on the order of

drawing. Indeed this is not a problem, because each

character has many patterns, as we will see, to deal with

such problems.

3.5 Identifying the digit

Each digit has different patterns which captured by the

set of primitives, these patterns are shown in Figure 7.

These primitives represent a specific string which is a

production of a certain grammar. Each digit can be

described by a specific string. In order to identify the

digit we have to determine to which grammar the string

belongs. A transition network has been used to match the

primitives’ string with corresponding digit. This network

is shown in Figure 8.

3.6 Distinguish ambiguous digits

As we can see in Figure 8, there are multiple digits which

have the same string of primitives, for example the string

"ab" is common for digits 0 and 2. In this phase this

ambiguity is removed, and more constrains on some

digits are applied to guarantee the correct result. The key

elements, that help us in resolving this ambiguity, are the

starting and ending points, x-y coordinates, of the actual

curves representing primitives "a" and "b". This process

is done in phase (section) 3.2. Figures 9 and 10 show

these points.

3.6.1 Ambiguity in "ab"

From Figure 8 we can see that the digits 0 and 2 both

have one string "ba" which is one of their shapes. Now,

the question is how this ambiguity can be distinguished?

Assume that, as in Figure 9:

• (a1) is the x-y coordinates for the starting point of

curve a.

• (a2) is the x-y coordinates for the ending point of

curve a

• (b1) is the x-y coordinates for the starting point of

curve b

• (b2) is the x-y coordinates for the ending point of

curve b.

By using these definitions, we can easily distinguish

between 2 and 0. Figure 10 shows the distinguishing

criteria between digits 2 and 0.

RECOGNITION OF ON-LINE HANDWRITTEN... Informatica 32 (2008) 275–281 279

3.6.2 Ambiguity in "ba"

As we can see in Figure 8 the production string “ba"

gives us the digits 0, 5, 6, and 9. The same definitions

described in the above, in “ab”, are used here. The

process is more complicated since we have 4 digits. The

distinguishing criteria are described in Figure 11. The

digit 2 can be easily distinguished by checking the point

b1 if it above a1 or not. Now, to distinguish the three

remaining digits we use the distance between the ending

points of the drawing curves.

4 Experimental results and

discussions
We used a digitizer with special software with a 1.6

MHZ PC. One hundred different persons tested the

program. Each one of them drew all the numbers 3 times.

So, for each number the program attempts to recognize it

300 times. As a result, there is only one possible outcome

in the recognition process: correct or incorrect. We

summarized the testing result for all digits in Figure 12.

We can see that the system ability to recognize the

drawing shape, shown in Figure 7, correctly is about

95%. There are 5% incorrect results, these results include

both results; cannot identifying the drawing or

identifying it incorrectly.

From the testing process we noticed the following

important remarks:

1. The drawing speed may affect on the recognition

process. If the user draws very quickly, the system

might not capture all the input pixels representing

the digit, i.e. the drawing must be connected, so the

user has to draw the digit as one connected line.

Only the digits 4 and 7 can be disconnected because

Figure 7: Possible handwritten patterns

 b1

a

b

b2 a2

a1

Figure 8: Transition Network Figure 9: Ending Points

280 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

we included the suitable patterns to deal with the

disconnected line in 4 and 7.

2. The accuracy rate for digits 6 and 9 is quite low.

This is because they have the same patterns, i.e. they

have the same production string "ba" (see Figure

11).

3. The proposed system works only on Arabic

digits. We did not consider non-digits like letters and

special characters. This task is left for future work

It can be noticed that the accuracy of the proposed

approach is lower than the accuracy of Chan et al. [10]

work in which they have achieved a recognition rate of

98.60%. The accuracy of the system depends on many

factors like whether there is noise in the test data, if the

digit is poorly written, deliberately written in some

strange and unusual way, or with zig-zag line segments.

We should take also into account that the writing process

itself is subjective and depends on the person writing

style. If the test data are carefully selected then the

system could give higher accuracy rate.

Despite these factors our approach has the following

advantages:

b1 is above a2 and above the PBP of a

b a

b1(x,y)

b2(x,y)

a1(x,y)

a2(x,y)

b

a

b2(x,y)

b1 is below a2 and below the PBP of a

a2(x,y)

b1(x,y)

a1(x,y)

Figure 10: Resolving ambiguity in "ab"

b

a b
a

b

a a

b1 is above both a1 and a2

b

b
a b

a

b

a
b

a

Distance (threshold value) between

b2 and a2

a1 is above b2

Distance (threshold value) between

b1 and a1

Figure 11: Resolving ambiguity in "ba"

Digit Correct Percent

1 288/300 0.96

2 290/300 0.97

3 289/300 0.96

4 288/300 0.96

5 285/300 0.95

6 274/300 0.91

7 287/300 0.96

0.88

0.90

0.92

0.94

0.96

0.98

1 2 3 4 5 6 7 8 9 10

Accuracy

0

Figure 12: Test Results

RECOGNITION OF ON-LINE HANDWRITTEN... Informatica 32 (2008) 275–281 281

1. In the proposed approach, we used shape-based

features like curve, line, dot ... etc. together with a

flexible Transition Network Grammar in the

recognition process. Our experiment demonstrated

that the use of shape-based features achieve fairly

good recognition results since these features are used

by people visually to recognize digits. Also, we used

Transition Network since it works in the same

manner as the human information processing system

does which reflects one of our main objectives in

this work, to design an intelligent agent which

behaves rationally like humans.

2. The proposed approach can be modified to work on

letters and other characters.

3. The proposed approach is unsupervised, i.e. training

is not necessary.

5 Conclusions and future work
A new online structural pattern recognition approach

is discussed. This approach recognizes the handwritten

digits; the primitives are determined by identifying the

changes in the slope’s signs around the zero and the

infinity values (break points). This technique is

independent of the type of drawing (upward or

downward). A special grammar has been used to match

the string of primitives to the corresponding digit. The

method is tested on an on-line dataset representing the

digits 0-9 collected from 100 users. On the average, the

recognition rate was about 95%. Future work considers

testing the method on a larger data set to improve the

effectiveness of the method, since we get most of the

writing variations of the digits by different users.

The proposed method will be modified to deal with

Arabic handwritten characters. In addition, the next

important work is to add additional constraints on the

primitives, for example the average length of one

primitive according to another and do the primitives

connected correctly or not. These constrains can

guarantee an accurate results and do not directly match

the resulting string of primitives to its corresponding

digit unless the primitives form the digit correctly, one

important note here is that, more constraints may reduce

the probability of recognition

References
[1] C. C. Tappert, C. Y. Suen, and T. Wakahara. The

state of the art in on-line handwriting recognition.

IEEE Trans. On Pattern Analysis and Machine

Intelligence, 12 (8), pp. 787-808, 1990.

[2] R. G. Casey and E. Lecolinet. Strategies in

character segmentation: A survey. Proceedings of

International Conference on Document Analysis

and Recognition, pp. 1028-1033, 1995.

[3] K. S. Fu. Syntactic Pattern Recognition and

Applications. Prentice-Hall, Englewood Cliffs, NJ,

1982.

[4] T. Pavlidis. Structural Pattern Recognition.

Springer, New York, 1977.

[5] S. Lucas, E. Vidal, A. Amiri, S. Hanlon, and J.C.

Amengual. A comparison of syntactic and

statistical techniqes for off-line OCR. in: R. C.

Carrasco, J. Oncina (Eds.), Grammatical

Inferrence and Applications (ICGI-94), Springer,

Berlin, pp. 168-179, 1994.

[6] Brijesh Verma. A Contour Code Feature Based

Segmentation For Handwriting Recognition.

Proceedings of the Seventh International

Conference on Document Analysis and Recognition

(ICDAR 2003), Vol. 1, PP. 1203 – 1207. 2003.

[7] Daekeun You and Gyeonghwan Kim. An approach

for locating segmentation points of handwritten

digit strings using a neural network. Proceedings of

the Seventh International Conference on Document

Analysis and Recognition (ICDAR 2003), Vol. 1,

PP. 142 – 146.

[8] Robert T. Olszewski. Generalized Feature

Extraction for Structural Pattern Recognition in

TimeSeries Data. PhD thesis, University-

Pittsburgh, 2001.

[9] Kam-Fai Chan and Dit-Yan Yeung. An effecient

syntactic approach to structural analysis of on-line

handwritten mathematical expressions. Pattern

Recognition, Vol. 33, pp. 375 - 384, 2000.

[10] Kam-Fai Chan and Dit-Yan Yeung. Recognizing

on-line handwritten alphanumeric characters

through flexible structural matching. Pattern

Recognition, Vol 32, pp. 1099 - 1114, 1999.

[11] Adnan Amin. Off-Line Arabic Character

Recognition: The State Of The Art. Pattern

Recognition, 31 (5), pp. 517 - 530, 1998.

[12] Sven Behnke, Marcus Pfisher, and Raul Rojas, "A

Study on the Combination of Classifiers for

Handwritten Didit Recognition", Proceedings of

Neural Networks in Applications, Third

International Workshop (NN'98), Magdeburg,

Germany, pp. 39-46, 1998.

[13] Sven Behnke, Raul Rojas, and Marcus Pfister.

Recognition of Handwritten Digits using Structural

Information. Proceedings of the International

Conference of Neural Network, Houston TX, Vol.

3, pp. 139 1- 1396, 1997.

[14] S. Madhvanath, G. Kim, and V. Govindaraju.

Chaincode Contour Processing for Handwritten

Word Recognition. IEEE Trans. On Pattern

Analysis and Machine Intelligence, 21 (9), pp. 928

- 932, 1999.

[15] Robert Schalkoff. Pattern Recognition: Statistical,

Structural, and Neural Approaches. John Wiley

and Sons Inc. 1992.

[16] Rafael C. Gonzalez and Michael G. Thomason.

Syntactic Pattern Recognition: An Introduction.

Addison Wesley Publishing Company, 1978.

[17] H. Freeman. Computer processing of line drawing

images. ACM Computing Surveys (CSUR), 6 (1),

pp. 57 – 97, 1974.

