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In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. 

After reading the digit from the user, the coordinates (x, y) of the pixels representing the drawn digit are 

used for calculating and normalizing slope values of these coordinates. Successive slope values are then 

used to record the change of direction which used to estimate the slope. Based on the changing of signs 

of the slope values, the primitives are identified and extracted. These primitives represent a specific 

string which is a production of a certain grammar. Each digit can be described by a specific string. In 

order to identify the digit we have to determine to which grammar the string belongs. A Finite 

Transition Network which contains the grammars of the digits is used to match the primitives’ string 

with the corresponding digit to identify the digit. Finally, if there is any ambiguity, it will be resolved. 

The proposed method is tested on a sample of 3000 digits written by 100 different persons; each person 

wrote the 10 digits three times each. The method achieved accuracy of about 95% on the sample test. 

Experiments showed that this technique is flexible and can achieve high recognition accuracy for the 

shapes of the digits represented in this work. 

Povzetek: V prispevku je opisana metoda prepoznavanja arabskih črk. 

 

1 Introduction 
In areas of automatic document analysis and recognition, 

the correct interpretation of digits is very important. 

Automatic recognition of on-line handwriting has a 

variety of applications at the interface between man and 

machine.  

The performance of any system for handwriting 

recognition can be evaluated by several factors, such as 

size of the alphabet, independence of the writing style, 

and speed of recognition.  

Automatic recognition of handwritten digits is 

difficult due to several reasons, including different 

writing styles of different persons, different writing 

devices, and the context of the digit. This leads to digits 

of different sizes and skews, and strokes that vary in 

width and shape.  

Researchers in this field have proposed different 

approaches, such as statistical, structural, and neural 

network approaches [1, 2]. The main primitives that form 

digits are line segments and curves. Different 

arrangements of these primitives form different digits. To 

recognize a digit, we should first determine the structural 

relationships between the features make up the digit. 

The syntactic and structural approaches require 

efficient extraction of primitives [3-5]. 

In this study, we propose an efficient approach for 

extracting features for handwritten digits recognition. 

First, we will review some related work. After 

introducing the Normalization and slope estimation 

method used in this paper, we will discuss the feature 

extraction algorithm used to extract the primary and 

secondary features. Then, we will give an overview of 

the proposed recognition approach. We will also 

illustrate how to resolve ambiguities in some digits. 

Finally, we will present and discuss the experimental 

results and draw some conclusions.   

2 Previous works 
The problem of handwriting recognition has been studied 

for decades and many methods have been developed. 

Verma [6] proposed a contour code feature in 

conjunction with a rule based segmentation for cursive 

handwriting recognition. A heuristic segmentation 

algorithm is used to segment each word. Then the 

segmentation points are passed through the rule-based 

module to discard the incorrect segmentation points and 

include any missing segmentation points. 

You et al. [7] presented an approach for 

segmentation of handwritten touching numeral strings. 

They designed a neural network to deal with various 

types of touching observed frequently in numeral strings. 
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A numeral string image is split into a number of line 

segments while stroke extraction is being performed and 

the segments are represented with straight lines. 

Segmentation points are located using the neural network 

by interpreting the features collected from the primitives.  

Olszewski [8] proposed a recognition approach that 

uses syntactic grammars to discriminate among digits for 

extracting shape-based or structural features and 

performing classification without relying on domain 

knowledge. This system employs a statistical 

classification technique to perform discrimination based 

on structural features is a natural solution. A set of shape-

based features is suggested as the foundation for the 

development of a suite of structure detectors to perform 

generalized feature extraction for pattern recognition in 

time-series data. 

Chan et al. [9] proposed a syntactic approach to 

structural analysis of on-line handwritten mathematical 

expressions. The authors used definite clause grammar 

(DCG) to define a set of replacement rules for parsing 

mathematical expressions. They also proposed some 

methods to increase the efficiency of the parsing process. 

The authors tested the proposed system on some 

commonly seen mathematical expressions and they 

claimed that their method has achieved satisfactory 

results, making mathematical expression recognition 

more flexible for real-world applications. 

Chan et al. [10] discussed a structural approach for 

recognizing on-line handwriting. The recognition process 

starts when getting a sequence of points from the user 

and then by using these points to extract the structural 

primitives. These primitives include different types of 

line segments and curves. The authors demonstrated their 

approach on 62 character classes (digits, uppercase and 

lowercase letters). Each class has 150 different entries. 

They stated that experimental results showed that the 

recognition rates were 98.60% for digits, 98.49% for 

uppercase letters, 97.44% for lowercase letters, and 

97.40% for the combined set. 

Amin [11] reviewed the state of Arabic character 

recognition research throughout the last two decades. 

The author summarized all the work accomplished in the 

past two decades in off-line systems in an attempt to pin-

out the different areas that need to be tackled.  

Behnke et al. [12, 13] proposed a case study on the 

combination of classifiers for the recognition of 

handwritten digits. Four different classifiers are used and 

evaluated; Wavelet-Preprocessing Classifier, Structural 

Classifier, Neural Networks Classifier, and Combined 

Classifier.  

3 Overview of the proposed system 

3.1 Normalization and slope estimation 

The user draws the digit on a special window using a 

digitizer (or mouse). Then the coordinates (x, y) of the 

pixels representing the drawn digit are saved on a file. 

These coordinate values are used for calculating and 

normalizing slope values. Successive slope values are 

then used to record the change of direction which used to 

estimate the slope [14].  

The signs of the slope values (+ and -), the zero 

values, and the infinity values are saved and used in the 

feature extraction step. Figure 1 shows an example, the 

representation of the digit 2. Then, all primitives 

representing each digit are extracted. These primitives 

are identified by locating break points in the digit. Two 

types of break points are identified: Primary Break Points 

(PBP): slope values of infinity (∞) and Secondary Break 

Points (SBP): slope values of zero. The feature extraction 

process depends on the change of the slope signs around 

these break points. Infinity breakpoint is considered to be 

primary breakpoint since all primary features (Figure 3) 

needed for recognition have a slope value of infinity, and 

all the secondary features (Figure 5) have a slope of zero.    

After the slope signs and values are computed, these 

values are normalized. The purpose of this step is to 

eliminate any distortion that might occur during the 

drawing process and to ease the primitive identification 
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Figure 1: Representation of the digit 2 
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process and guarantee accurate identification. Two steps 

of normalization are done: 

1. Removing redundant break points: Eliminating 

adjacent reference points of the same type, except 

the first one. This step is required to record the 

change of the signs; only one break point is 

needed. 

2. A threshold value is used to determine the distance 

(number of slope value signs) between any two 

successive break points of the same type.    

Figure 2 shows an example of these two steps for the 

digit 1. In step 1, the adjacent break points are removed, 

then in step 2 the threshold value was used to remove 

more redundant break points since the distance is less 

than the threshold value, e.g. the slope values between -

0.1 and +0.1 is saved as zero.   The result is only one 

break point with two different slope sings before and 

after it. This result will be used in the primitive 

identification process. 
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Figure 3: Primary Primitives 

Final representation 

In addition to the signs of the slope values and break 

points, the X and the Y positions for the middle pixel in 

which its neighbors (from both sides) used to calculate 

the slope. So the slope value is saved with its X and Y 

positions. Also, the sign of ∆Y i.e. (Y2 – Y1) is used to 

determine the direction of writing or drawing (upward or 

downward). If ∆Y > 0 and the reference point (0, 0) is 

located on the top left corner, then the directing of 

writing is downward, otherwise the directing of writing is 

upward. The final representation of the digit is 

represented as a list of vectors V1, V2, ... , Vn; each 

vector V contains the following data: (slope value (sign 

or break point), Y position, X position, ∆Y sign) [15].     

3.2 Extracting primary primitives 

The final representation of the digit is used to extract 

primary primitives [16]. Figure 3 shows these primitives 

(a, b, c, d, e, or f). These primitives are called primary 

primitives because the primary break points (PBP) are 

used to identify them. 

To extract the primitives we use the following algorithm: 

For each PBP do: 

IF the slope sign before it is (+) and after it is (-) 

then the primitive is 'a'. 

Else if the slope sign before it is (-) and after it is (+) 

then the primitive is 'b'  

Else if the successive slope signs before it is (+) and 

end with SPB then the primitive is d'. 

Else if the successive slope signs after it is (-) and 

end with SPB then the primitive is 'e'. 

Else if the successive slope signs after it is (+) and 

end with SPB then the primitive is 'c'. 

Figure 4 explains this step for the digit 2. Assume that 
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Figure 2: Removing Redundant Break Points 
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Figure 4: Signs and Break Points for the digit 2 
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Figure 6: Identification process 
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the user draw the digit downward. In this case, ∆Y is 

greater than zero for all points, so the algorithm proceeds 

as follows: 

1. Take the first PBP1. 

2. Now, primitive "a" is recognized. 

3. Find the next PBP.  

4. Take the next PBP (PBP2). 

5. Now, primitive "b" is recognized. 

6. No More PBP, end. 

Now the vector contains the primitives "ab". If the user 

draws the digit from bottom to top, the vector will 

contain the primitives "ba". We need also to extract 

starting and ending points for the actual curves drawn 

that represented by primitives "a" and "b".  This step is 

necessary to resolve ambiguity which will be explained 

in section 3.6. Each digit has different patterns which 

captured by the set of primitives that are described in 

Figure 3.    

After feature extraction process, we need to identify 

these features. The primitives which are extracted in the 

previous phases represent a certain string which is a 

production of a certain grammar. 

3.3 Extracting secondary primitives 

After the process of extracting primary primitives 

finishes, another extracting process begins to identify 

another category of primitives called Secondary 

Primitives. Secondary Break Points (SBP), the zero 

values, and the slope signs around them are used to 

identify these primitives which shown in Figure 5. For 

example, the Secondary Primitive "c' " is the same as the 

primary primitive "c" but here there is no PBP and the 

primitive makes acute angle with SBP.  

 

c' d' e' 

 

 

 

  

Figure 5: Secondary Primitives 

 

To extract these primitives we use the following 

algorithm (Figure 6): 

FOR each SBP that is not part of any primary 

primitive: 

IF the slope signs after it are (-) and make lower 

acute angle then the primitive is "c’". 

Else, if the slope signs after it are (+) and make lower 

acute angle then the primitive is "e"’. 

Else, if the slope signs before it are (+) and make 

upper acute angle then the primitive is "d’". 

3.4 Sorting primitives 

At this stage, the primitives' vector contains primary and 

secondary primitives. The order of these primitives 

depends on the drawing style. For example, if the 

drawing style was downward (when drawing digit 2) 

then the primitives' vector will contain "ab", on the other 

hand if the drawing style was upward, it would contain 

"ba". This is confusing and increases the number of 

patterns for the digit. The order is very important in 

translating the primitives into digits. So we need a 

standard order to be used in sorting all primitives.  

The order of the identified primitives must be 

independent from the drawing style and from the order of 

drawing the primitives. The standard order used here is 

the Y position for the break points; they are sorted in 

increasing order. After collecting all primitives, they are 

reordered according to the Y position for the break points 

that used to identify them. When two break points have 

the same Y position the order is based on the order of 

drawing. Indeed this is not a problem, because each 

character has many patterns, as we will see, to deal with 

such problems.  

3.5 Identifying the digit  

Each digit has different patterns which captured by the 

set of primitives, these patterns are shown in Figure 7. 

These primitives represent a specific string which is a 

production of a certain grammar. Each digit can be 

described by a specific string. In order to identify the 

digit we have to determine to which grammar the string 

belongs. A transition network has been used to match the 

primitives’ string with corresponding digit. This network 

is shown in Figure 8.   

3.6 Distinguish ambiguous digits 

As we can see in Figure 8, there are multiple digits which 

have the same string of primitives, for example the string 

"ab" is common for digits 0 and 2.  In this phase this 

ambiguity is removed, and more constrains on some 

digits are applied to guarantee the correct result. The key 

elements, that help us in resolving this ambiguity, are the 

starting and ending points, x-y coordinates, of the actual 

curves representing  primitives "a" and "b". This process 

is done in phase (section) 3.2. Figures 9 and 10 show 

these points.     

3.6.1 Ambiguity in "ab"  

From Figure 8 we can see that the digits 0 and 2 both 

have one string "ba" which is one of their shapes. Now, 

the question is how this ambiguity can be distinguished? 

Assume that, as in Figure 9:  

•  (a1) is the x-y coordinates for the starting point of 

curve a. 

• (a2) is the x-y coordinates for the ending point of 

curve a  

• (b1) is the x-y coordinates for the starting point of 

curve b 

• (b2) is the x-y coordinates for the ending point of 

curve b.  

By using these definitions, we can easily distinguish 

between 2 and 0. Figure 10 shows the distinguishing 

criteria between digits 2 and 0. 
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3.6.2 Ambiguity in "ba" 

As we can see in Figure 8 the production string “ba" 

gives us the digits 0, 5, 6, and 9. The same definitions 

described in the above, in “ab”, are used here. The 

process is more complicated since we have 4 digits. The 

distinguishing criteria are described in Figure 11. The 

digit 2 can be easily distinguished by checking the point 

b1 if it above a1 or not. Now, to distinguish the three 

remaining digits we use the distance between the ending 

points of the drawing curves.  

4 Experimental results and 

discussions 
We used a digitizer with special software with a 1.6 

MHZ PC. One hundred different persons tested the 

program. Each one of them drew all the numbers 3 times. 

So, for each number the program attempts to recognize it 

300 times. As a result, there is only one possible outcome 

in the recognition process: correct or incorrect. We 

summarized the testing result for all digits in Figure 12. 

We can see that the system ability to recognize the 

drawing shape, shown in Figure 7, correctly is about 

95%. There are 5% incorrect results, these results include 

both results; cannot identifying the drawing or 

identifying it incorrectly.  

From the testing process we noticed the following 

important remarks: 

1. The drawing speed may affect on the recognition 

process. If the user draws very quickly, the system 

might not capture all the input pixels representing 

the digit, i.e. the drawing must be connected, so the 

user has to draw the digit as one connected line. 

Only the digits 4 and 7 can be disconnected because 

 

 
Figure 7: Possible handwritten patterns 
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we included the suitable patterns to deal with the 

disconnected line in 4 and 7. 

2. The accuracy rate for digits 6 and 9 is quite low. 

This is because they have the same patterns, i.e. they 

have the same production string "ba" (see Figure 

11). 

3. The proposed system works only on Arabic 

digits. We did not consider non-digits like letters and 

special characters. This task is left for future work 

It can be noticed that the accuracy of the proposed 

approach is lower than the accuracy of Chan et al. [10] 

work in which they have achieved a recognition rate of 

98.60%. The accuracy of the system depends on many 

factors like whether there is noise in the test data, if the 

digit is poorly written, deliberately written in some 

strange and unusual way, or with zig-zag line segments. 

We should take also into account that the writing process 

itself is subjective and depends on the person writing 

style. If the test data are carefully selected then the 

system could give higher accuracy rate. 

Despite these factors our approach has the following 

advantages: 
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Figure 10:  Resolving ambiguity in "ab" 
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Figure 11:  Resolving ambiguity in "ba" 
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Figure 12: Test Results 
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1. In the proposed approach, we used shape-based 

features like curve, line, dot ... etc. together with a 

flexible Transition Network Grammar in the 

recognition process. Our experiment demonstrated 

that the use of shape-based features achieve fairly 

good recognition results since these features are used 

by people visually to recognize digits. Also, we used 

Transition Network since it works in the same 

manner as the human information processing system 

does which reflects one of our main objectives in 

this work, to design an intelligent agent which 

behaves rationally like humans. 

2. The proposed approach can be modified to work on 

letters and other characters.  

3. The proposed approach is unsupervised, i.e. training 

is not necessary. 

5 Conclusions and future work  
A new online structural pattern recognition approach 

is discussed. This approach recognizes the handwritten 

digits; the primitives are determined by identifying the 

changes in the slope’s signs around the zero and the 

infinity values (break points). This technique is 

independent of the type of drawing (upward or 

downward). A special grammar has been used to match 

the string of primitives to the corresponding digit. The 

method is tested on an on-line dataset representing the 

digits 0-9 collected from 100 users. On the average, the 

recognition rate was about 95%. Future work considers 

testing the method on a larger data set to improve the 

effectiveness of the method, since we get most of the 

writing variations of the digits by different users. 

The proposed method will be modified to deal with 

Arabic handwritten characters. In addition, the next 

important work is to add additional constraints on the 

primitives, for example the average length of one 

primitive according to another and do the primitives 

connected correctly or not. These constrains can 

guarantee an accurate results and do not directly match 

the resulting string of primitives to its corresponding 

digit unless the primitives form the digit correctly, one 

important note here is that, more constraints may reduce 

the probability of recognition 
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