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Program slicing is a decomposition technique which has many applications in various software engineering
activities such as program debugging, testing, maintenance etc. Aspect-oriented programming (AOP) is
a new programming paradigm that enables modular implementation of cross-cutting concerns such as
exception handling, security, synchronization, logging etc. The unique features of AOP such as join-point,
advice, aspect, introduction etc. pose difficulties for slicing of AOPs. We propose a dynamic slicing
algorithm for aspect-oriented programs. Our algorithm uses a dependence-based representation called
Dynamic Aspect-Oriented Dependence Graph (DADG) as the intermediate program representation. The
DADG is an arc-classified digraph which represents various dynamic dependences between the statements
of the aspect-oriented program. We have used a trace file to store the execution history of the program. We
have developed a tool called Dynamic Depenedence Slicing Tool (DDST) to implement our algorithm. We
have tested our algorithm on many programs for 40-50 runs. The resulting dynamic slice is precise as we
create a node in the DADG for each occurrence of the statement in the execution trace.

Povzetek: Opisana je modularna gradnja objektno orientiranih programov.

1 Introduction

The concept of a program slice was first introduced by
Weiser [26]. Program slicing [38] is a decomposition tech-
nique which extracts program statements related to a par-
ticular computation from a program. A program slice is
constructed with respect to a slicing criterion. A slicing
criterion is a tuple < s, v > where s is a statement in a
program and v is a variable used or defined at s. A pro-
gram slice can be static or dynamic. A static slice consists
of all statements of a program that might affect the value of
a variable at a program point of interest for every possible
inputs to the program. In contrast, a dynamic slice consists
of only those statements that actually affect the value of a
variable at a program point of interest for a particular set

of inputs to the program.
Aspect-oriented programming (AOP) is a new program-

ming paradigm that enables modular implementation of
cross-cutting concerns [17] such as exception handling, se-
curity, synchronization, logging. This concept was pro-
posed by Gregor Kiczales et al. [16]. Expressing such
cross-cutting concerns using standard language constructs
produces poorly structured code since these concerns are
tangled with the basic functionality of the code. This
increases the system complexity and makes maintenance
considerably more difficult.

AOP [2, 3] attempts to solve this problem by allowing
the programmer to develop cross-cutting concerns as full
stand-alone modules called aspects. The main idea behind
AOP is to construct a program by describing each concern
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separately.
Aspect-oriented programming languages present unique

opportunities and problems for program analysis schemes.
For example, to perform program slicing on aspect-
oriented software, specific aspect-oriented features such as
join-point, advice, aspect, introduction must be handled ap-
propriately. Although these features provide great strengths
to model the cross-cutting concerns in an aspect-oriented
program, they introduce difficulties to analyze the program.

A major aim of any slicing technique is to realize as
small a slice with respect to a slicing criterion as possible
since smaller slices are found to be more useful for differ-
ent applications. Much of the literature on program slic-
ing is concerned with improving the algorithms for slicing
in terms of reducing the size of the slice and improving
the efficiency of the slicing algorithm. Now-a-days, many
programs are aspect-oriented. These aspect-oriented pro-
grams are quite large and complex. It is much difficult
to debug and test these products. Program slicing tech-
niques have been found to be useful in applications such
as program understanding, debugging, testing, software
maintenance and reverse engineering etc. [12, 27, 29, 31].
Particularly dynamic program slicing is used in interac-
tive applications such as debugging and testing of pro-
grams. Therefore the dynamic slicing techniques need to
be efficient. This requires to develop efficient slicing al-
gorithms as well as suitable intermediate representations
for aspect-oriented programs. Researchers have developed
many representations for procedural and object-oriented
programs [11, 21, 24, 27, 28, 29, 33, 39], but very few
work has been carried out for representation of aspect-
oriented programs [22, 25]. Due to the specific features
of aspect-oriented programming language, existing slicing
algorithms for procedural or object-oriented programming
languages cannot be applied directly to aspect-oriented
programs. Therefore, there is a pressing necessity to de-
vise suitable intermediate representations and efficient al-
gorithms for dynamic slicing of aspect-oriented programs.

With this motivation for developing techniques for dy-
namic slicing of aspect-oriented programs, we identify the
following objective. The main objective of our research
work is to develop an efficient dynamic slicing algorithm.
To address this broad objective, we identify the following
goals:

– to develop a suitable intermediate representation for
aspect-oriented programs on which the slicing algo-
rithm can be applied.

– to develop a dynamic slicing algorithm for aspect-
oriented programs, using the proposed intermediate
representation.

In this paper, we propose a new intermediate represen-
tation for aspect-oriented programs. We call this represen-
tation as Dynamic Aspect-Oriented Dependence Graph
(DADG). Then, we propose a dynamic slicing algorithm
for aspect-oriented programs. We have used a trace file

to store the execution history of the source code. So, we
have named our algorithm Trace file Based Dynamic Slic-
ing (TBDS) algorithm. Our algorithm computes precise
dynamic slices as we create a node in the DADG for each
occurrence of the statement in the execution trace.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss some related works. In Section 3, we
present a brief introduction to Aspect-Oriented Program-
ming (AOP). In Section 4, we describe some notions of
dynamic slices of aspect-oriented programs. Section 5
discusses the dynamic aspect-oriented dependence graph
(DADG) for aspect-oriented programs and also describes
the construction of DADG. In Section 6, we discuss the
computation of dynamic slices of aspect-oriented programs
using DADG. In Section 7, we present the implementation
details of our work. Section 8 concludes the paper.

2 Related work

Horwitz et al. [33] developed a system dependence graph
(SDG) as an intermediate program representation for pro-
cedural programs with multiple procedures. They proposed
a two-phase graph reachability algorithm on the SDG to
compute inter-procedural slice. The slice consists of the
union of vertices marked in both the phases.

Later, Larsen and Harrold [24] extended the SDG
of Horwitz et al. [33] to represent object-oriented pro-
grams. Their [24] extended SDG incorporates many
object-oriented features such as classes, objects, inheri-
tance, polymorphism etc. After constructing the SDG,
Larsen and Harrold [24] used the two-phase algorithm to
compute the static slice of an object-oriented program.
Later, Liang and Harrold [11] developed a more effi-
cient intermediate representation of object-oriented pro-
grams which is an extension to the SDG of Larsen and
Harrold [24]. Their [11] SDG represents objects that are
used as parameters or data members in other objects, the ef-
fects of polymorphism on parameters and parameter bind-
ings. The data members for different objects can be distin-
guished using this approach. Later many researchers have
extended the work on static slicing of object-oriented pro-
grams [11, 39]. But they [11, 39] have not considered the
aspect-oriented features.

Also dynamic slicing of OOPs have been addressed by
several researchers [21, 27, 28, 29]. Korel and Laski [7] in-
troduced the concept of dynamic program slicing. Agrawal
and Horgan [19] presented the first algorithm for finding
dynamic slices of procedural programs using dependence
graphs.

Zhao [21] extended the dynamic dependence graph
(DDG) of Agarwal and Horgan [18] for the representa-
tion of various dynamic dependences between statement
instances for a particular execution of an object-oriented
program. Zhao [21] named this graph dynamic object-
oriented dependence graph (DODG). He used a two-phase
algorithm on the DODG for the computation of dynamic
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slices of object-oriented programs.
Song et al. [36] proposed a method to compute forward

dynamic slices of object-oriented programs using dynamic
object relationship diagram (DORD). They computed the
dynamic slices for each statement immediately after the
statement is executed. The dynamic slices of all executed
statements have been obtained after the execution of the
last statement.

Xu et al. [9] extended their earlier work [39] to dynam-
ically slice object-oriented programs. Their method uses
object program dependence graph (OPDG) and other static
information to reduce the information to be traced during
execution and computes dynamic slices combining static
dependence information and dynamic execution of the pro-
gram.

Wang et al. [37] proposed a new algorithm for dynamic
slicing of Java programs which operates on compressed
bytecode traces. According to their approach, first, the
bytecode stream corresponding to an execution trace of a
Java program is compactly represented. Then, a backward
traversal of the compressed program trace is performed to
compute data/control dependences on-the-fly. The slice is
updated as these dependences are encountered during trace
traversal.

Mohapatra et al. [29, 30] have developed edge-marking
and node-marking dynamic slicing techniques for object-
oriented programs. Their algorithms are based on mark-
ing and unmarking the edges (nodes) of the graph appro-
priately, as and when dependences arise and cease. Many
researchers [8, 21, 28, 31] have extended the work on dy-
namic slicing of object-oriented programs. But, none of
the researchers [8, 21, 28, 29, 30, 31] have considered the
aspect-oriented features.

Zhao [22] was the first to develop the aspect-oriented
system dependence graph (ASDG) to represent aspect-
oriented programs. The ASDG is constructed by com-
bining the SDG for non-aspect code, the aspect depen-
dence graph (ADG) for aspect code and some additional
dependence arcs used to connect the SDG and ADG. Then,
Zhao [22] used the two-phase slicing algorithm proposed
by Larsen and Harrold [24] to compute static slice of
aspect-oriented programs.

Braak [34] extended the ASDG proposed by Zhao [22,
23] to include inter-type declarations in the graph. Each
inter-type declaration was represented in the form of a field
or a method as a successor of the particular class. Then,
Braak [34] used the two-phase slicing algorithm of Hor-
witz et al. [33] to find the static slice of an aspect-oriented
program. Braak [34] has not addressed the dynamic slicing
aspects.

We have proposed an approach for computation of dy-
namic slice using a dependence graph based intermediate
representation called dynamic aspect-oriented dependence
graph (DADG). We have used a trace file to store the exe-
cution history of the aspect-oriented program. Our DADG
correctly represents the aspect-oriented features such as
pointcuts, advices etc. Also, weaving process is correctly

represented in the DADG. The TBDS algorithm computes
precise dynamic slices as we create separate vertices in the
DADG for each occurrence of the statement in the execu-
tion trace.

3 Aspect-oriented programming

In this section, we first discuss the basic concepts of aspect-
oriented programming. Then, we briefly describe As-
pectJ: an aspect-oriented programming language. Next, we
present some features of AspectJ.

3.1 Basic concepts

Gregor Kiczales et al. [16] introduced the concept of
Aspect-Oriented Programming (AOP) at Xerox Palo Alto
Research Center (PARC) in 1996. An aspect is an area of
concern that cuts across the structure of a program. Con-
cern is defined as some functionality or requirement nec-
essary in a system, which has been implemented in a code
structure [4, 6, 17, 35]. Examples of aspects are data stor-
age, user interface, platform-specific code, security, distri-
bution, logging, class structure, threading etc.

The strength of aspect-oriented programming is the en-
abling of a better separation of concerns, by allowing the
programmer to create cross-cutting concerns as program
modules. Cross-cutting concerns are those parts, or as-
pects, of the program that are scattered across multiple pro-
gram modules, and tangled with other modules in standard
design.

}
}

tx.rollback();
catch(Exception e){

systemLog.logOperation(OP_TRANSFER,fromAccount,toAccount,amount);
tx.commit();
toAccount.deposit(amount);
fromAccount.withdraw(amount);

try{
Transaction tx=database.newTransaction();

throw new InsufficientFundsException();
if (fromAccount.getBalance()<amount){

throw new NegativeTransferException();
if (amount<0){

throw new SecurityException();
if (!getCurrentUser().canPerform(OP_TRANSFER)){

void transfer(Account fromAccount, Account toAccount, int amount){

}

}

}

}

Figure 1: An example program

Let us consider the example program given in Figure 1.
The objective of this program is to transfer an amount from
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one account to another in a banking application. In this ex-
ample, various cross-cutting concerns such as transactions,
security, logging etc. are tangled with the basic function-
ality (sometimes called as the business logic concern). If
there is a need to change the security considerations for
the application, then it would require a major effort since
security-related operations appear scattered across numer-
ous methods. This means that the cross-cutting concerns
do not get properly encapsulated in their own modules and
this increases the system complexity.

The goal of aspect-oriented programming (AOP) is to
make it possible to deal with cross-cutting aspects of a
system’s behavior as separately as possible. Although
the hierarchical modularity of object-oriented languages is
extremely useful, they are inherently unable to modular-
ize cross-cutting concerns in complex systems. Aspect-
oriented programming provides language mechanisms to
explicitly capture the cross-cutting structure.

To better support the expression of cross-cutting design
decisions, AOP uses a component language to describe the
basic functionality of the system and aspect languages to
describe the different cross-cutting properties. The com-
ponents and the aspects are then combined into a system
using an aspect weaver [10]. The aspect weaver makes it
possible for an advice to be activated at appropriate join
points during run-time. Thus, a source code is modified by
inserting aspect-specific statements at join points.

3.2 AspectJ: an aspect-oriented
programming language

Several different Aspect-oriented programming systems
have been built, including AML (Aspect Markup Lan-
guage), an environment for sparse matrix computation [20],
RG (Reverse Graphics), an environment for creating image
processing systems [5] etc. The most popular AOP lan-
guage is AspectJ. An AspectJ program is divided into two
parts: base code or non-aspect code and aspect code. The
base code includes classes, interfaces and other standard
Java constructs. The aspect code implements the cross-
cutting concerns in the program. Other aspect-oriented
frameworks include COOL (COOrdination Language) for
expressing synchronization concerns [13], RIDL (Remote
Invocation Data transfer Language) for expressing distribu-
tion concerns [13], JBOSS, Spring AOP, AspectWerkz [10,
15] etc.

AspectJ was created by Chris Maeda [16] at Xerox Palo
Alto Research Center (PARC). This is an aspect-oriented
extension to Java programming language. In other words,
we can say that AspectJ is compatible with current Java
platform [14]. There are four types of compatibility:

– Upward compatibility- all legal Java programs must
be legal AspectJ programs.

– Platform compatibility- all legal AspectJ programs
must run on standard Java virtual machines.

– Tool compatibility- it must be possible to extend ex-
isting tools to support AspectJ in a natural way; this
includes IDEs, documentation tools, and design tools.

– Programmer compatibility- Programming with As-
pectJ must feel like a natural extension of program-
ming with Java.

3.3 Features of AspectJ
AspectJ adds some new features to Java. These features
include join points, pointcut, advice, aspect, introduction
or inter-type declaration. We explain these features below.

– Join Points- These are well-defined points in the ex-
ecution of a program, such as, method call (a point
where method is called), method execution (a point
where method is invoked) and method reception join
points (a point where a method received a call, but this
method is not executed yet).

– Pointcut- This is a means of referring to collections
of join points and certain values at those join points.
AspectJ defines several primitive pointcut designators
that can identify all types of join points. For example,
in Figure 2, the pointcut factorialOperation at state-
ment 13 picks out join points i.e. the pointcut facto-
rialOperation picks out each call to the method facto-
rial() of an instance of the class TestFactorial, where
an int is being passed as an argument and it makes the
value of that argument to be available to the enclosing
advice or pointcut.

– Advice- It is a method-like construct which is used
to define cross-cutting behavior at join points. This
is used to define some code that is executed when a
pointcut is reached. Advice brings together a pointcut
(to pick out join points) and a body of code (to run
at each of those join points). There are three types of
advice in AspectJ: after, before, around.

(i) After- After advice on a particular join point runs
after the program proceeds with that join point.
For example, after advice on a method call join
point runs after the method body has run, just be-
fore control is returned to the caller. For exam-
ple, in Figure 2, the after advice at statement 16
runs just after each join point picked out by the
pointcut factorialOperation and before the con-
trol is returned to the calling method.

(ii) Before- Before advice runs as a join point is
reached, before the program proceeds with the
join point. For example, before advice on a
method call join point runs before the actual
method starts running, just after the arguments
to the method call are evaluated. For example,
in Figure 2, the before advice at statement 14
runs just before the join points picked out by the
pointcut factorialOperation.
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(iii) Around- Around advice on a join point runs as
the join point is reached, and has explicit control
over whether the program proceeds with the join
point.

Additionally, there are two special cases of after ad-
vice: after returning and after throwing, correspond-
ing to the two ways a sub-computation can return
through a join point.

(i) After returning- After returning advice runs just
after each join point picked out by the pointcut,
but only if it returns normally. The return value
can be accessed. After the advice runs, the re-
turn value is returned. For example, in Figure 2,
the after returning advice at statement 16 runs
just after each join point picked out by the point-
cut factorialOperation, but only if it returns nor-
mally. The return value can be accessed and it is
named result in Figure 2 at statement 16. After
the advice runs, the return value is returned.

(ii) After throwing- After throwing advice runs just
after each join point picked out by the pointcut,
but only when it throws an exception. The ad-
vice re-raises the exception after it is done.

– Aspect- These are units of modular cross-cutting im-
plementations composed of pointcuts, advices, and or-
dinary JAVA member declarations. An aspect is a
cross-cutting type, defined by the aspect declaration.
Aspects are defined by aspect declarations, which
have a similar form of class declarations. For exam-
ple, in Figure 2, there is one aspect named Optimize-
FactorialAspect at statement 12.

– Introduction or Inter-Type Declaration- It allows an
aspect to add methods, fields or interfaces to existing
classes. It can be public or private. An introduction
declared as private can be referred or accessed only by
the code in the aspect that declared it. An introduction
declared as public can be accessed by any code.

– Pointcut Designator- It is a formula that specifies
the set of join points to which a piece of advice
is applicable. A pointcut designator identifies all
types of join points. A pointcut designator simply
matches certain join points at runtime. For example,
in Figure 2, the pointcut designator

call (long TestFactorial.factorial(int))

at statement 13 matches all method calls to fac-
torial from an instance of the class TestFactorial.

Pointcuts can be combined using logical operators
and (&&), or (‖) and not (!). For example, in
Figure 2, the compound pointcut designator

call (long TestFactorial.factorial(int)) && args(n)

at statement 13 refers to all method calls to fac-
torial() of an instance of TestFactorial, where
the argument of type int is passed to the method
factorial().

User-defined pointcut designators are defined with
pointcut declaration. For example, in Figure 2, the
declaration

public pointcut factorialOperation(int n):
call (long TestFactorial.factorial(int)) && args(n)

at statement 13 defines a new pointcut designa-
tor, factorialOperation, that specifies a call to the
method factorial() of an instance of TestFactorial and
the argument passed to the method to be of type int.

For example, Figure 2 shows an AspectJ program for
finding the factorial of a number. The program is divided
into two parts: the base code or non-aspect code contains
the class TestFactorial and the aspect code OptimizeFacto-
rialAspect contains the advices and pointcuts. Any AspectJ
implementation ensures that both the codes i.e., aspect code
and base code run together in a properly coordinated fash-
ion. Such type of process is called aspect weaving. The key
component for this process is aspect-weaver which makes
the applicable advices to run at the appropriate join points.

4 Dynamic slicing of aspect-oriented
programs

In this section, we present the basic concepts and the
definitions which will be used in our algorithm.

Definition 1 (Digraph): A digraph is an ordered
pair (V, A), where V is a finite set of elements called
vertices and A is a finite set of elements called edges and
A ⊆ V × V .

Definition 2 (Arc-classified digraph): An arc-classified
digraph is an n-tuple (V, A1, A2, . . . , An−1) such
that every (V, Ai), (i = 1, 2, . . . , n − 1) is a digraph and
Ai∩Aj = ∅ for i = 1, 2, . . . , n−1 and j = 1, 2, . . . , n−1
and i 6= j.
Definition 3 (Path): A path from vertex u to vertex v in a
digraph (V, A) is a sequence of vertices u, i1, i2, . . . , ik, v
in V such that (u, i1), (i1, i2), . . . , (ik, v) are edges in A.
Definition 4 (Flow graph): The flow graph of an aspect-
oriented program is a quadruple (V, A, Start, Stop)
where (V, A) is a digraph, Start ∈ V is a distinguished
node of in-degree 0 called the start node, Stop ∈ V is a
distinguished node of out-degree 0 called the stop node,
there is a path from Start to every other node in the graph,
and there is a path from every other node in the graph to
Stop.
Definition 5 (Control flow graph(CFG)): Let the set
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Non−aspect Code (Base Code)                                                         Aspect Code

        }

        }

17:       System.out.println("Getting the factorial for  "+n);

16:    after(int n) returning (long result): factorialOperation(n){

}

15:        System.out.println("Seeking factorial for  "+n);

14:     before(int n): factorialOperation(n){

           call(long TestFactorial.factorial(int)) && args(n);

13:    public pointcut factorialOperation(int n): 

12:   public aspect OptimizeFactorialAspect{

import java.util.*;

       }

       }

11:   return p;

10:        p=1;       

}
        else

         }

9:            n−−;

8:            p=p*n;

7:        while(n>0){

6:        p=1;

5:     if(n>0){ 

       long p;

4:     public static long factorial(int n){

       } 

3:      System.out.println("Result:  "+factorial(n)+"\n");

2:      n=Integer.parseInt(args[0]);

1:      public static void main(String[] args){ 

        private static int n;

public class TestFactorial{

import java.util.*;

Figure 2: An example AspectJ program

2 {

3    int x, y, prod;

9         ++ x; }

12    cout<< prod;

13  }

4     cin>> x;

7     while(x < 5) {

6     prod = 1;

5     cin>> y;

8        prod=prod*y;

11    prod = y;

1 main()

10    cout<< prod;

Figure 3: An example program

V represent the set of statements of a program P . The
control flow graph of the program P is the flow graph G
= (V1, A, Start, Stop) where V1 = V ∪ {Start, Stop}.
An edge (m,n) ∈ A indicates the possible flow of control
from the node m to the node n. Note that the existence of
an edge (x, y) in the control flow graph means that control
must transfer from x to y during program execution.
Figure 4 represents the CFG of the example program given
in Figure 3.

Definition 6 (Dominance): If x and y are two nodes
in a flow graph G then x dominates y iff every path from
Start to y passes through x. y post-dominates x iff every
path from x to Stop passes through y.

Let x and y be nodes in a flow graph G. Node x is said
to be immediate post-dominator of node y iff x is a post-
dominator of y, x 6= y and each post-dominator z 6= x of y

12 11

10
9 8

76541

Stop

Start

Figure 4: The CFG of the example program given in Fig-
ure 3

post-dominates x. The post-dominator tree of a flow graph
G is the tree that consists of the nodes of G, has the root
Stop, and has an edge (x, y) iff x is the immediate post-
dominator of y.

Consider the flow graph of the example program of Fig-
ure 3, which is given in Figure 4. In the flow graph, each
of the nodes 4, 5 and 6 dominates 7. Node 8 does not dom-
inate node 10. Node 10 post dominates each of the nodes
4, 5, 6, 7, 8 and 9. Node 9 post dominates node 8. Node 9
post dominates none of the nodes 4, 5, 6, 7, 10, 11 and 12.
Node 6 is the immediate post dominator of node 5. Node
10 is the immediate post dominator of node 7.
Definition 7 (Execution trace): An execution trace is a
path that has actually been executed for some input data.

For example, for the input data argv[0] = 4, the order
of execution of the statements of the program given in Fig-
ure 2 is 1, 2, 3, 13, 14, 15, 4, 5, 6, 7, 8, 9, 7, 8, 9, 7, 8, 9, 7,
8, 9, 7, 16, 17, 11. This execution trace is given in Figure 5.
Definition 8 (Def(var)): Let var be a variable in a class in
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the program P . A vertex u of the DADG of P is said to be
a Def(var) vertex if u represents a definition (assignment)
statement that defines the variable var.

In the DADG given in Figure 6, vertices 6 and 8 are the
Def(p) vertices.
Definition 9 (DefSet(var)): The set DefSet(var) denotes
the set of all Def(var) vertices.

In the DADG given in Figure 6, DefSet(p)={6, 8}.
Definition 10 (Use(var)): Let var be a variable in a class
in the program P . A vertex u of the DADG of P is said
to be a Use(var) vertex if u represents a statement that uses
the variable var.

In the DADG given in Figure 6, vertices 8 and 11 are the
Use(p) vertices.
Definition 11 (UseSet(var)): The set UseSet(var) denotes
the set of all Use(var) vertices.

In the DADG given in Figure 6, UseSet(p)={8, 11}.

5 The dynamic aspect-oriented
dependence graph (DADG)

In this section, we describe the definition and construc-
tion of the dynamic aspect-oriented dependence graph
(DADG).

The DADG is an arc-classified digraph (V,A), where
V is the set of vertices that correspond to the statements
and predicates of the aspect-oriented programs, and A is
the set of arcs between vertices in V representing dynamic
dependence relationships that exist between statements. In
the DADG of an aspect-oriented program, following types
of dependence arcs may exist.

– control dependence arc

– data dependence arc

– weaving arc

Control dependences represent the control flow relation-
ships of a program i.e., the predicates on which a statement
or an expression depends during execution.
Data dependences represent the relevant data flow rela-
tionships of a program i.e., the flow of data between state-
ments and expressions.
For example, in the DADG given in Figure 6, there is a
data dependency between vertex 6 and 8, because vertex 6
is Def(p) vertex and vertex 8 is Use(p) vertex.
Weaving arcs reflect the joining of aspect code and non-
aspect code at appropriate join points.
For example, in Figure 6 there is an weaving arc from ver-
tex 13 to vertex 3 to connect vertex 13 to vertex 3 at the
corresponding join point because, there is a function call
at statement 3 and the corresponding pointcut at statement
13 captures that function call. Statement 14 represents a
before advice. This means that the advice is executed be-
fore control flows to the corresponding function i.e., to the
function factorial(). So, we add a weaving arc from ver-
tex 4 to vertex 15. Similarly, statement 16 represents an

after advice. This means that the advice is executed after
the function factorial() has been executed and before con-
trol flows to the calling function i.e., the function main().
That’s why we add a weaving arc from vertex 16 to vertex
7. After the execution of after advice at statement 17, con-
trol transfers to statement 11 where it returns a value i.e.,
the value of p to the calling function main(). So, a weaving
arc is added from vertex 11 to vertex 17.

Our construction of dynamic aspect-oriented depen-
dence graph of an aspect-oriented program is based on dy-
namic analysis of control flow and data flow of the pro-
gram. The DADG of the program in Figure 2 correspond-
ing to the execution trace in Figure 5 is given in Figure 6.
In this figure, circles represent program statements, dotted
lines represent data dependence arcs, solid lines represent
control dependence arcs and dark dashed lines represent
weaving arcs.

6 Computation of dynamic slices of
aspect-oriented programs

Dynamic slicing of aspect-oriented programs is similar to
that of object-oriented programs. However, due to the pres-
ence of pointcuts and advices, the tracing of dependences
becomes much more complex.

Here, we formally define some notions of dynamic slic-
ing of aspect-oriented programs. Let P be an aspect-
oriented program and G = (V,A) be the DADG of P . We
compute the dynamic slice of an aspect-oriented program
with respect to a slicing criterion.

– A slicing criterion for an aspect-oriented program is
of the form < p, q, e, n >, where p is a statement, q is
a variable used at p and e is an execution trace of the
program with input n.

– A dynamic slice of an aspect-oriented program for a
given slicing criterion < p, q, e, n > consists of all
the statements that have actually affected the value of
the variable q at statement p.

Let DSG be the dynamic slice of G on a given slicing
criterion < p, q, e, n >. Then, DSG is a subset of ver-
tices of G i.e., DSG(p, q, e, n) ⊆ V , such that for any
p′ ∈ V , p′ ∈ DSG(p, q, e, n) if and only if there exists
a path from p′ to p in G. Since we have used a trace file to
store the execution history of the aspect-oriented program,
we have named our algorithm Trace file Based Dynamic
Slicing (TBDS) algorithm for AOPs.

In this section, we present the TBDS algorithm in
pseudo-code form to compute the dynamic slice of an
aspect-oriented program.

Algorithm: TBDS algorithm

1. Creation of execution trace file: To create an execu-
tion trace file, do the following:
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           public class TestFactorial
           private static int n;

13(1):     public pointcut factorialOperation(int n): call(long TestFactorial.factorial(int)) && args(n);
14(1):     before(int n): factorialOperation(n)
15(1):     System.out.println("Seeking factorial for  "+n);
4(1):      public static long factorial(int n)

11(1):     return p;
17(1):     System.out.println("Getting the factorial for  "+n);
16(1):     after(int n) returning(long result): factorialOperation(n) 
7(5):      while(n>0)

8(4):      p=p*n;
9(4):      n−−;

7(4):      while(n>0)
9(3):      n−−;
8(3):      p=p*n;
7(3):      while(n>0)
9(2):      n−−;
8(2):      p=p*n;
7(2):      while(n>0)
9(1):      n−−;
8(1):      p=p*n;
7(1):      while(n>0)
6(1):      p=1;
5(1):      if(n>0)

3(1):      System.out.println("Result:  "+factorial(n)+"\n");
2(1):      n=Integer.parseInt(args[0]);
1(1):      public static void main(String[ ] args)

Figure 5: Execution trace of the program given in Figure 2 for argv[0] = 4
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Figure 6: Dynamic aspect-oriented dependence graph for the execution trace given in Figure 5
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(a) For a given input, execute the program and
store each statement s in the order of exe-
cution in a file after it has been executed.

(b) If the program contains loops, then store
each statement s inside the loop in the trace
file after each time it has been executed.

2. Construction of DADG: To Construct the DADG of
the aspect-oriented program P with respect to
the trace file, do the following:

(a) For each statement s in the trace file, create
a vertex in the DADG.

(b) For each occurrence of a statement s in the
trace file, create a separate vertex.

(c) Add all control dependence edges, data
dependence edges and weaving edges to
these vertices.

3. Computation of dynamic slice: To compute the dy-
namic slice over the DADG, do the following:

(a) Perform the breadth-first or depth-first graph
traversal over the DADG taking any vertex
corresponding to the statement of interest
as the starting point of traversal.

4. Mapping of the slice: To obtain the dynamic slice of
the aspect-oriented program P , do the following:

(a) Define a mapping function f :
DSG(p, q, e, n) → P .

(b) Map the resulting slice obtained in Step 3(a)
over the DADG to the source code P using
f since the slice may contain multiple occur-
rences of the same vertex.

Working of the algorithm: We illustrate the working of
the TBDS algorithm with the help of an example. Consider
the example AspectJ program given in Figure 2. Now, for
the input data argv[0] = 4, the program will execute the
statements 1, 2, 3, 13, 14, 15, 4, 5, 6, 7, 8, 9, 7, 8, 9, 7, 8, 9,
7, 8, 9, 7, 16, 17, 11 in order. These statements are stored
in a trace file. Figure 5 shows the corresponding execution
trace file. Then, the Dynamic Aspect-Oriented Dependence
Graph (DADG) is constructed with respect to this trace file
in accordance with the step 2 of the TBDS algorithm. Fig-
ure 6 shows the DADG of the example program given in
Figure 2 with respect to the trace file given in Figure 5.
Since, for the input data argv[0] = 4, the statements 8 and
9 are executed four times and statement 7 is executed five
times, separate vertices are created for each occurrence of
these statements.

Now, let us suppose that we have to compute the dy-
namic slice for the slicing criterion < 11, p >. Starting
from the vertex 11, we can perform either the breadth-
first search algorithm or depth-first search algorithm on the
DADG. The breadth-first search algorithm yields the ver-
tices 11, 17, 8, 16, 7, 8, 9, 7, 13, 5, 9, 7, 8, 9, 9, 3, 2, 4, 7, 8,

9, 1, 15, 7, 6, 14 and the depth-first search algorithm yields
the vertices 11, 8, 9, 9, 9, 4, 15, 14, 2, 1, 7, 5, 7, 7, 8, 8, 8,
6, 7, 17, 16, 13, 3, 7, 9. The traversed vertices are shown as
shaded vertices in Figure 6. Using the mapping function f ,
we can find the statements corresponding to these vertices.
This gives us the required dynamic slice which is shown in
rectangular boxes in Figure 7.

6.1 Complexity analysis
In the following, we discuss the space and time complexity
of our DADG algorithm.

Space complexity: Let P be an aspect-oriented pro-
gram and S be the length of execution of P . Each executed
statement will be represented by a single vertex in the
DADG. Thus, it can be stated that there are S number of
vertices in the DADG corresponding to all executed state-
ments of program P . Also, S numbers of statements are
stored in the execution trace file. So, the space complexity
of the trace file based algorithm is O(S).

Time complexity: Let P be an aspect-oriented pro-
gram and S be the length of execution of P . The total time
complexity is due to four components:

1. time required to store each executed statement in a
trace file which is O(S).

2. time required to construct the DADG with respect to
the execution trace file which is O(S).

3. time required to traverse the DADG and to reach at the
specified vertex which is O(S2).

4. time required to map the traversed vertices to source
program P which is O(S).

So, the time complexity of the trace file based algorithm is
O(S2).

7 Implementation
In this section, we briefly describe the implementation of
our algorithm. We have named our dynamic slicing tool dy-
namic dependence slicing tool (DDST) for aspect-oriented
programs. First, we present an overview of our slicing tool
and then, we discuss briefly the implementation of the slic-
ing tool. Next we present some experimental results and
then we compare our work with existing work.

7.1 Overview of DDST
The working of the slicing tool is schematically shown
in Figure 8. The arrows in the figure show the data-flow
among the different blocks of the tool. The blocks shown
in rectangular boxes represent executable components and
the blocks shown in ellipses represent passive components
of the slicing tool.
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Non−aspect Code (Base Code)                                                         Aspect Code

        }

        }

17:       System.out.println("Getting the factorial for  "+n);

16:    after(int n) returning (long result): factorialOperation(n){

}

15:        System.out.println("Seeking factorial for  "+n);

14:     before(int n): factorialOperation(n){

           call(long TestFactorial.factorial(int)) && args(n);

13:    public pointcut factorialOperation(int n): 

12:   public aspect OptimizeFactorialAspect{

import java.util.*;

       }

       }

11:   return p;

10:        p=1;       

}
        else

         }

9:            n−−;

8:            p=p*n;

7:        while(n>0){

6:        p=1;

5:     if(n>0){ 

       long p;

4:     public static long factorial(int n){

       } 

3:      System.out.println("Result:  "+factorial(n)+"\n");

2:      n=Integer.parseInt(args[0]);

1:      public static void main(String[] args){ 

        private static int n;

public class TestFactorial{

import java.util.*;

Figure 7: The dynamic slice of the program given in Figure 2 for the slicing criterion (11,p)
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Figure 8: Schematic diagram of the slicing tool
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A program written in AspectJ is given as input to DDST.
The overall control for the slicer is done through a coor-
dinator with the help of a graphical user interface (GUI).
The coordinator takes user input from the GUI, interacts
with other relevant components to extract the desired re-
sults and returns the output back to the GUI.

The execution trace component creates an execution
trace file for a particular execution of the program. This
component takes the user input from the coordinator, stores
each executed statement for that input in a file and outputs
that file back to the coordinator. This file is called execution
trace file.

The lexical analyzer component reads the execution
trace file and breaks it into tokens for the grammar ex-
pressed in the parser. When the lexical analyzer compo-
nent encounters a useful token in the program, it returns
the token to the parser describing the type of encountered
token.

The parser and semantic analyzer component functions
as a state machine. The parser takes the token given by
the lexical analyzer and examines it using the grammatical
rules laid for the input programs. The semantic analyzer
component captures the following important information of
the program.

– For each vertex u of the program

– the lexical successor and predecessor vertices of u,

– the sets of variables defined and used at vertex u,

– the type of the vertex: assignment or test or method
call or return etc.

The lexical component, parser and semantic analyzer
component provide the necessary program analysis infor-
mation to the DADG constructor component. The DADG
constructor component first constructs the CFG and the
post-dominator tree of the program using the basic infor-
mation provided by the lexical and semantic analyzer com-
ponents. The inter-statement control dependences are cap-
tured using the CFG and the post-dominator tree. Then,
it constructs the DADG of the program with respect to the
trace file along with all the required information to compute
slices and stores it in appropriate data structures.

The slicer component traverses the DADG. It takes the
user input from the coordinator and outputs the computed
information back to the coordinator. The graphical user
interface (GUI) functions as a front end to the slicing tool.

7.2 Implementation of the slicing tool
We have implemented our algorithm in Java. We have used
the compiler writing tool ANTLR (Another Tool for Lan-
guage Recognition) [1, 32] for Lexical Analyzer, Parser
and Semantic Analyzer components of our slicer. ANTLR
is a tool that lets one define language grammars in EBNF
(Extended Backus-Naur Form) like notations. ANTLR is
more than just a grammar definition language. However,
the tools provided allow one to implement the ANTLR

Table 1: Encoding used for different types of edges of
DADG

Code Edge Type
0 No Edge
1 Control Dependence Edge

(True Case)
2 Control Dependence Edge

(False Case)
3 Data Dependence Edge

(Loop Independent Case)
4 Data Dependence Edge

(Loop Carried Case)
5 Weaving Edge

defined grammar by automatically generating lexers and
parsers in Java or other supported languages. ANTLR is
a language tool that provides a framework for construct-
ing recognizers, compilers, and translators from grammat-
ical descriptions containing programming languages such
as C++, Java, AspectJ etc. ANTLR is a LL(k) based recog-
nition tool.

The sample AspectJ program is executed for a given in-
put. The executed statements are stored in a trace file.
This trace file is given as input to the ANTLR program.
The lexer part of the ANTLR extracts program tokens and
stores the data in a data structure called statement_info.
The DADG of the AspectJ program is automatically con-
structed by taking input from the parser and semantic an-
alyzer component. For constructing the DADG, we have
used many flags such as if_flag to check whether the state-
ment is an if statement or not, while_flag to check whether
the statement is a while statement or not etc.

We have used an adjacency matrix dadg[][] to store the
DADG of the given AspectJ program P . This matrix is of
the following type:

typedef struct edge {
int exist, type;
} edge;

– The attribute exist has value 0 or 1.
dadg[i][j].exist is 1 if there is an edge
between node number i and j, otherwise 0.

– The data member type specifies the type of the edge.
The codes used for this are given in Table 1.

We store the following additional information along with
the DADG:

– The set Def(var) for each variable var in the aspect-
oriented program P .

– The set Use(var) for each variable var in the aspect-
oriented program P .

The sets Def(var) and Use(var) are stored using arrays.
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7.3 Experimental results
With different slicing criteria, the algorithm has been tested
on many programs for 40-50 runs. The sample programs
contain loops and conditional statements. Table 2 sum-
marizes the average run-time requirements of the trace file
based algorithm for several programs. Since we have com-
puted the dynamic slices at different statements of a pro-
gram, we have calculated the average run-time require-
ments of our trace file based algorithm. The program sizes
are small since right now the tool accepts only a subset of
AspectJ constructs. However, the results indicate the over-
all trend of the performance of the trace file based algo-
rithm.

Table 2: Average runtime

Sl No. Prg. Size Trace file Based
(# stmts) Algorithm (in Sec.)

1 17 0.48
2 43 0.71
3 69 0.92
4 97 1.14
5 123 1.36
6 245 2.46
7 387 3.96
8 562 5.52

The results in Table 2 indicate that the run-time require-
ment for the trace file based algorithm increases gradu-
ally. This is due to the fact that separate vertices are cre-
ated in the DADG during run-time for different executions
of the same statement. This is followed by a depth-first
or breadth-first graph traversal on DADG to compute the
dynamic slice. Thus, average run-time requirement be-
comes high since considerable time is required to perform
the traversal on DADG. Furthermore, the algorithm uses a
trace file to store the execution history. The time required to
read the data from a trace file is significant and is added to
the average run-time while computing dynamic slice. All
these result in the increase of average run-time requirement
gradually.

7.4 Comparison with existing work
Very few work has been done on slicing of aspect-oriented
programs [22, 23]. Zhao [22] has proposed an intermediate
representation called Aspect-Oriented System Dependence
Graph (ASDG). The ASDG for the example program of
Figure 2 as proposed by Zhao [22] is shown in Figure 9.
In this ASDG, the pointcuts are not represented. But, our
DADG correctly represents the pointcuts.

Zhao and Rinard [23] developed an algorithm to con-
struct the SDG for aspect-oriented programs. Figure 10
shows the SDG of the program given in Figure 2 as pro-
posed by Zhao and Rinard [23]. But, the drawback of this
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Figure 9: ASDG of the program given in Figure 2 as pro-
posed by Zhao [22]

SDG is that the weaving process is not represented cor-
rectly. For example, there should be a weaving edge be-
tween vertices 15 and 4, beacause, after the execution of
before advice at statement 14, the actual execution of the
method factorial() at statement 4 will be started. The use
of this SDG to compute dynamic slice results in missing
of some statements. So, we cannot use this approach to
compute dynamic slice of an aspect-oriented program cor-
rectly. Also, they [23] have not considered the dynamic
slicing aspects. But in our approach, we have considered
the weaving process by adding weaving edges at the ap-
propriate join points in the DADG. Again our algorithm
computes precise dynamic slices.

8 Conclusion

We proposed an algorithm for dynamic slicing of aspect-
oriented programs. First, we have constructed a
dependence-based intermediate representation for aspect-
oriented programs. We named this representation Dynamic
Aspect-Oriented Dependence Graph (DADG). Then, we
have developed an algorithm to compute dynamic slices
of AOPs using the DADG. We have used a trace file to
store the execution history. So, we have named our algo-
rithm Trace file Based Dynamic Slicing (TBDS) algorithm
for AOPs. The resulting dynamic slice in our approach is
precise since we create a node in the DADG for each oc-
currence of a statement in the execution trace. We have de-
veloped a tool called Dynamic Depenedence Slicing Tool
(DDST) to implement our algorithm.

Our algorithm can be extended to compute dynamic
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Figure 10: SDG of the program given in Figure 2 as pro-
posed by Zhao and Rinard [23]

slices of concurrent AOPs and distributed AOPs running
on different machines connected through a network. The
algorithm can also be extended to compute conditioned
slices with respect to a given condition. Although we have
presented the approach for AspectJ, this approach can be
easily extended to other aspect-oriented languages such as
AspectWerkz, AML, RIDL etc. Our tool can be used to
develop efficient debuggers and test drivers for large scale
aspect-oriented programs.
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