
https://doi.org/10.31449/inf.v44i1.1890 Informatica 44 (2020) 23–33 23

Design Optimization Average-Based Algorithm

João Barradas Cardoso and Artur Barreiros

Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon

Av Rovisco Pais 1, 1049-001 Lisbon, Portugal

E-mail: barreiros@tecnico.ulisboa.pt, https://tecnico.ulisboa.pt/en/

Keywords: heuristic, randomness, population-based, optimization

Received: October 6, 2017

This article introduces a metaheuristic algorithm to solve engineering design optimization problems.

The algorithm is based on the concept of diversity and independence that is aggregated in the average

design of a population of designs containing information dispersed through a variety of points, and on

the concept of intensification represented by the best design. The algorithm is population-based, where

the population individual designs are randomly generated. The population can be normally or uniformly

generated. The algorithm may start either with points randomly generated or with a designer preferred

trial guess. The algorithm is validated using standard classical unconstrained and constrained

engineering optimum design test problems reported in the literature. The results presented indicate that

the proposed algorithm is a very simple alternative to solve this kind of problems. They compare well

with the analytical solutions and/or the best results achieved so far. Two constrained problem analytical

solutions not found in the literature are presented in annex.

Povzetek: Članek uvaja metahevristični algoritem za reševanje problemov optimizacije. Algoritem

temelji na populaciji, kjer se naključno generirajo posamezni modeli posameznika in končno agregirajo

v primerne rešitve.

1 Introduction
With the advent of fast, cheap and reliable computing

power over the last decades, in addition to the application

of classic optimization to larger and larger size problems,

new alternative algorithms operating in a different

fashion have been developed. The classical optimization

algorithms have shortcomings and are not suitable for all

optimization problems. The new alternative algorithms

allow attacking optimization problems either too costly

or not applicable to classical algorithms.

The purpose of heuristic algorithms applied to

optimization problems is to search a solution to them by

trial-and-error in a satisfying amount of computing time.

The optimum solution is not guaranteed but a near

optimum solution is accepted as a good solution.

Metaheuristics refers to higher-level algorithms

combining lower-level techniques and tactics for

exploration and exploitation of the design space. That is,

these algorithms, on one hand, must be able to generate a

range of points in the whole design space including

potentially optimum ones; on the other hand, they

intensify the search around the neighborhood of an

optimum or near optimum points (Yang, 2008).

Exploration and exploitation are the two important

components of the metaheuristic algorithms. They are

also called diversification and intensification (Glover,

Laguna, 1997). A good balance of these components is

required. Too much weight in diversification risks slow

convergence with the solutions jumping around the

potentially optimum ones; too much weight in

intensification restricts the design space to a local region

and risks the convergence to a local optimum (Blum,

Roli, 2003). The heuristic algorithms start typically either

with guess solutions randomly generated or with a

designer preferred trial solution. The diversification is

gradually reduced as the algorithm proceeds;

simultaneously, the intensification is increased.

One of the roles of injected randomness in stochastic

search is to allow for movements to unexplored areas of

the search space that may contain an unexpectedly good

design. This is especially relevant when the search is

stalled near a local solution. Injected randomness may

also be used for the creation of simple random quantities

that act like their deterministic counterparts, but which

are much easier to obtain and more efficient to compute.

Metaheuristics algorithms are either population-

based or trajectory-based. Examples of the former ones

are the genetic algorithms (Holland, 1975) or the particle

swarm optimization (Cagnina, Esquivel, Coello, 2008;

Kayham, Ceylan, Ayvaz, Gurarslan, 2010) the last ones

include the simulated annealing optimization

(Kirkpatrick, Gelatt, Vecchi, 1983) or the harmonic

search (Geem, Kim, Loganathan, 2001).

If a sufficient numerous and diversified group of

people is asked to decide on subjects of general interest,

the decisions of the group are better than the decisions

that an isolated individual would take (Surowiecki,

2005). Well informed and sophisticated an expert is, his

or her advice and predictions should be pooled with those

of others to get the most out of him or her. Practical

examples, simple and complex, are described in

(Surowiecki, 2005), remarking the principle of group

think, and the concept that the masses are better problem

mailto:barreiros@tecnico.ulisboa.pt

24 Informatica 44 (2020) 23–33 J.B. Cardoso et al.

solvers, forecasters, and decision makers than any one

individual. A classic example of group intelligence is the

jelly-beans-in-the-jar experiment, in which invariably the

group’s average estimate for the number of the jelly

beans in the jar is superior to the vast majority of the

individual guesses.

The theory that groups are remarkably intelligent and

often smarter than the smartest people in them,

demonstrates the significant impact on how businesses

operate, how knowledge is increased, how economies are

structured, and how people live their daily lives

(Williams, 2006). The necessary conditions for a crowd

to be wise include diversity, independence, and a specific

type of decentralization. These conditions are essential to

making good decisions which are the result of

disagreement and contest rather than consensus or

compromise.

Diversity means individuals have some private

information or their own interpretation of known facts.

Diversity helps because it actually adds perspectives that

would otherwise be absent and because it takes away, or

at least weakens, some of the destructive characteristics

of group decision-making. Homogeneous groups are

great at doing what they do well, but they become

progressively less able to investigate alternatives.

Independence means freedom from the influence of

others. It keeps the individual mistakes from becoming

correlated. Diversity is essential to preserving this

independence. In the jelly-beans-in-the-jar experiment,

most group members are not talking to each other or

solving problems together.

Decentralization means people draw on local

knowledge. It encourages individuals to make important

decisions, not just in one location based only on one

specific type of information, but dispersed through a

variety of locations from where local knowledge is

drawn and shared. The information coming out of a

decentralized group must be aggregated throughout the

system, to maintain a balance between local and global

counterparts. Aggregation needs a mechanism that turns

individual judgments into a collective decision. For

instance, in a free market, the aggregating mechanism is

price; in the jelly-beans-in-the-jar experiment, individual

guesses were aggregated and then averaged, i.e., the

aggregating mechanism is the average guess.

The aim of the present article is the proposal of an

algorithm based on the concept just described. The

algorithm considered is stochastic in the sense that it

relies on random numbers and that different results may

be obtained upon running the algorithm repeatedly. The

algorithm is population-based, where the population

individual designs are randomly generated. These

individuals are diversified and independent since their

design variables values are chosen stochastically without

any correlation.

The individual designs are also decentralized since

the design variables are chosen all over the entire design

space. Finally, the different values of the design variables

are aggregated as the plain or weighted average of those

values. However, generating a diverse set of possible

solutions isn’t enough. The designer, as the body of

people, also has to be able to distinguish the good

solutions for the bad. So, at each of the iterations, the

present algorithm selects two designs: the best design,

the one with the best objective so far; and the averaged

design, the one which design variable values are the

mean of those variable values for the iteration.

The best design represents the intensification

component of the algorithm; the averaged design

represents the diversity part. In the current article, the

optimization problem is understood as a minimization

problem, where the function of merit to be assessed is an

extended cost function that takes in account penalization

due to violated constraints. A reference design is

considered as a linear combination of both the best and

the averaged design variables. A simple recurrence

formula, centered on the reference design, is used to

actualize the design for the next randomly generated

population. The population can be normally or uniformly

generated.

In optimization, there is traditionally a concern with

developing a good stopping criterion. Unfortunately, the

quest for an automatic means of stopping an algorithm

with a guaranteed level of accuracy seems doomed to

failure in general stochastic search problems. The

fundamental reason is that in nontrivial problems, there

will always be a significant region within the design

space that will remain unexplored in any finite number of

iterations, and there is always the possibility the optimum

could lie in this unexplored region.

A danger arises in making broad claims about the

performance of an algorithm based on the results of

numerical studies. Performance can vary tremendously

under even small changes in the form of the functions

involved or the coefficient settings within the algorithms

themselves. Outstanding performance on some types of

functions is consistent with poor performance on other

types of functions. This is a manifestation of no free

lunch theorems (Spall, 2003; Wolpert, Macready, 1997).

The present algorithm is applied to several

constrained and unconstrained test functions as well as to

typical engineering design problems.

2 The optimal design problem
The optimal design problem may be formulated in a

generalized fashion as

()

()

0min

. .

0; 1,2,...,

; 1,2,...,

j

il i iu

s t

j m

b b b i n



  =

  =

b
b

b
 (1)

where
0 is the cost or objective function, j are the

constraints in a dimensionless form, ()1 2, ,..., nb b bb is

the design vector,
ilb and

iub are respectively the lower

and upper bounds of the design variable
ib .

In order of applying the present algorithm, the

formulation of the Eq. (1) is replaced by the following

one:

Design Optimization Average-Based Algorithm Informatica 44 (2020) 23–33 25

0 0 0
b

min

. .

; 1, 2,...,il i iu

P

s t

b b b i n

   + 

  =

 (2)

In Eq. (2), P stands for the penalty factor which

value depends on the violation of the constraints as

1

0, for satisfied constraints

, for violated constraints
mP

m





=




= 





 (3)

where 0  and m is the number of violated

constraints. In practical terms, the constraint j can be

considered violated if j   , with  a very small

number. Note that the absolute value of the objective is

considered in the Eq. (2) in order to accommodate

problems with negative objective functions.

3 The average concept algorithm
The present algorithm may be described by the flowchart

of Fig. 1 as well as in the following manner:

1. Start with a preference design guess b and an

imposed standard deviation, estimated as
i iu ils b b= −

()1, 2,...,i n= . Compute the starting values of
0 ,

j ()1, 2,...,j m= and 0 , and establish the

starting reference design
R

b as the preference guess,

i.e.
R b b .

 Start iterates as

2. Launch a normally or uniformly random population

of N designs as

k R k

i i i ib b s r= + (4)

 where 1,2,...,i n= , 1, 2,...,k N= and
k

ir is the k-th

random number (with mean value 0 and standard

deviation 1) related to the design variable ib .

 Do
i ilb b= if

i ilb b and
i iub b= if

i iub b .

3. Evaluate
0 , j ()1, 2,...,j m= and 0 for the

entire population of N designs.

4. Evaluate the best design
B

b corresponding to the

minimum value
min

0 of the extended function.

 Evaluate the averaged design
A

b for the distribution

of designs as

1 1

N N
A k

k k

k k

p p
= =

= b b (5)

 where
k

b is an arbitrary design vector in the

population and
kp is the weight accounted for design

k
b on the average. The weights are selected by the

designer. If a plain average is chosen, then 1kp = for

every design.

 Another choice used in this work is to compare the

Evaluate the Best design and

the Averaged design

Compute starting objective,

Constraints and Extended

objective

END

Optimum design

Optimum objective

Constraint violation?

Objective improvement?

it = it + 1

Starting design

Starting standard deviation

Iteration (it) = 0

Launch a random population

of designs

Compute current objectives,

Constraints and Extended

objectives
Evaluate the Reference design

by linear combination best and

averaged design

N

Y

Figure 1: Flowchart of the algorithm.

θ
Starting Point

(-2.5, -2.5) (-2.5, 2.5) (2.5, -2.5) (2.5, 2.5)

1.00

(0.08986,-0.71283)

-1.0316283

at iteration 38

(0.09140,-0.71266)

-1.0316191

at iteration 39

(-0.09162,0.71276)

-1.0316163

at iteration 36

(0.08887,-0.71247)

-1.0316248

at iteration 31

0.85

(0.08979,-0.71267)

-1.0316285

at iteration 15

(0.08997,-0.71265)

-1.0316285

at iteration 21

(-0.08991,0.71265)

-1.0316285

at iteration 21

(-0.08976,0.71272)

-1.0316285

at iteration 15

0.25

(0.08973,-0.71262)

-1.0316285

at iteration 36

(-0.08992,-0.71259)

-1.0316285

at iteration 29

(0.08974,-0.71262)

-1.0316285

at iteration 26

(-0.08973,0.71262)

-1.0316285

at iteration 37

0.00

(0.09002,-0.71401)

-1.0316136

at iteration 989

(-0.09020,0.71196)

-1.0316237

at iteration 617

(0.09020,-0.71196)

-1.0316237

at iteration 617

(-0.09002,0.71401)

-1.0316136

at iteration 989

Table 1: Optimum points and function values for different θs and starting points.

26 Informatica 44 (2020) 23–33 J.B. Cardoso et al.

values of the extended function 0 and of the best

extended function
min

0 in the previous iteration; and

then assign a weight 2kp = if the first value is

smaller than the second one, and a weight 1kp = if it

is equal or larger.

5. If there are no constraint violations and there are no

improvements of the objective function within a

prescribed number of iterations, go to 7.

6. Evaluate a reference design as the linear combination

 ()1R B A = + −b b b (6)

 with 0 1  and assume the distribution of designs
k

b centered at
R

b with a standard deviation vector

evaluated as 2 A B= −s b b .

 Go to 2.

 End the iterates.

7. Stop.

In order of handling tabular discrete value design

variables, the Eq. (4) is rewritten in these cases as

 int
R k

k i i i

i

b s r
b

 +
=  

 
 (7)

where  is the difference value between two consecutive

design variables.

4 Numerical applications
In this Section one is going to solve unconstrained as

well as constrained optimization problems by applying

the formulation and the algorithm presented on the

previous sections. With respect to the unconstrained

problems, the applications are the minimizations of the

benchmark following test functions: Six-Hump

Camelback function, Rosenbrock and Michalewicz’s

functions.

Concerning to the constrained problems, one solves

three well-known engineering design optimization test

problems: the welded beam design, the pressure vessel

design and the tension-compression spring design. For all

the applications normally distributed populations were

used. A total of 30 independent runs were performed per

problem. In the Sections 4.1 to 4.6 the runs of the

algorithm were performed with a particular initial seed

for different population sizes and different weights on

the calculation of the average and reference designs.

The results are compared with analytical solutions

and/or heuristic and nonlinear programming algorithms.

4.1 Six-Hump Camelback function

This function is one of the typical test functions in

unconstrained global optimization (Dixon, Szego, 1975;

Lee, Geem, 2005). It is mathematically expressed as

 2 4 6 2 4

0 1 1 1 1 2 2 2

1
4 2.1 4 4

3
x x x x x x x = − + + − + (8)

Within the bounded region, this function has six

local minima. Two of them are global minima located at

either ()0.08984,0.71266− or ()0.08984, 0.71266− ,

each with the corresponding function value equal to

0 1.0316285 = − .

For the algorithm presented here, a population of

size 20N = and a plain average in the step 4 were used

within the design space
1 22.5 , 2.5x x−   . For different

values of the θ-factor and two starting points, the Table 1

gives the corresponding achieved solutions and the

number of iterations needed for convergence.

We should note that the best and fastest solutions are

obtained with 0.85 = , i.e., giving respectively at each

iteration, the weights 0.85 and 0.15 to the best and

average points of the prior iteration in the formation of

the current reference design.

With the starting point ()2.5, 2.5 , corresponding to

the cost value
0 161.8489685 = , and with 0.85 = ,

the present algorithm achieves the minimum cost value

0 1.0316285 = − at the point ()0.08976,0.71272− after

15 iterations. However, after 9 iterations, the algorithm

gets the cost value
0 1.0316285 = − at the point

()0.08799,0.71382− , not far off the analytical solution.

We should also note that the worst results exist for

0 = , i.e., only considering the average design as the

design of reference. For 1 = , respecting to the selection

at each iteration of the best design as the reference one,

the solutions are also not so good

For 20N = , 0.85 = , starting point ()2.5, 2.5 and

the weighted average (second) option on step 4 described

in Chapter 3 instead of the plain average, the global

optimum 0 1.0316285 = − is obtained at the point

()0.08988, 0.71266− after 19 iterations.

Better results can be expectedly obtained by

increasing the population size. For 100N = , the best and

fastest solutions are obtained with 0.85 = after 10

iterations at the points ()0.08982, 0.71264− and

()0.08983, 0.71264− respectively starting from the

points ()2.5, 2.5− and ()2.5, 2.5− , corresponding both

to the minimum function value 0 1.0316285 = − . For

N IP Iterate 1x 2x 0

1000
0 4 -0.0897507 0.7126449 -1.0316285

1 5 -0.0898749 0.7127146 -1.0316285

100
0 13 -0.0897433 0.7126887 -1.0316285

1 11 -0.0898545 0.7126102 -1.0316285

20
0 15 -0.0897623 0.7127175 -1.0316285

1 19 -0.0898786 0.7126648 -1.0316285

Table 2: Camelback’s optimal solutions for 0.85 =

and starting at ()2.5, 2.5 .

Design Optimization Average-Based Algorithm Informatica 44 (2020) 23–33 27

1000N = and 0.85 = , and starting from the point

()2.5, 2.5− − , the optimum solution
 =x

()0.08975, 0.71264− , 0 1.0316285 = − has been

achieved after 4 iterations.

Table 2 shows the optimal solutions achieved for

different N population sizes and different average

choices on Eq. (5), 0IP = standing for plain average and
1IP = meaning weighted average as written on step 4 of

the algorithm described on Chapter 3, using 0.85 =

and with the starting point located at
()2.5, 2.5

.

We may note that is the population size 20N = the

one that needs the smallest number of function

evaluations ()20 15 .

4.2 Rosenbrock’s function

Another classical test function in unconstrained

optimization is the Rosenbrock’s function, which two-

dimensional form (Moré, Garbow, Hillstrom, 1981;

Rosenbrock, 1960; Yang, 2008) is

 () ()
22 2

0 1 2 11 100x x x = − + − (9)

This function also referred to as the Valley or

Banana function due to the shape of its contour lines, is a

popular test problem for gradient-based optimization

algorithms. The function turns out to be quite challenging

to find its minimum point by numerical methods.

Its global optimum point is ()1.0, 1.0 =x that gives

the optimum cost of 0 0.0 = . The function is unimodal

and its analytical solution can be obtained

straightforwardly by partial differentiation. The

numerical solution, however, poses a particular

challenge. The solution lies inside a very deep, narrow,

banana shaped valley. The valley causes a lot of

troubling for nonlinear programming search algorithms.

Using a population of 1000 samples within the

design space
1 210.0 , 10.0x x−   , a plain average, the

factor 0.85 = and a starting point ()0.0, 0.0=x

corresponding to
0 1.0000000 = , the present algorithm

achieves the optimum point ()1.00000, 1.00000 =x and

the corresponding 0 0.0000000 = after 18 iterations.

However, the point ()1.00051, 1.00087=x

corresponding to 0 0.0000029 = was obtained after 9

iterations. If 100N = , the same optimum point above is

obtained after 38 iterations. For 20N = , the algorithm

converges towards the same optimum point after 2604

iterations. One may say that is the population of 100

samples that gives the shortest number of function

evaluations ()100 38 .

4.3 Michalewicz’s function

The third unconstrained optimization problem uses the

Michalewicz’s function in its two-dimensional form

 () ()
2 20

2

0

1

sin sini i

i

x i x 
=

  = −
  (10)

with
1 20 ,x x   .

The function is tricky; it has several local minimum

values and several flat areas which make the one global

minimum value hard to find numerically. Its global

minimum is 0 1.8012980 = − at the point

 =x ()2.20319, 1.57049 .

Using a population with size 20N = samples within

the design space
1 20.0 , 4.0x x  , a plain average, the

factor 0.85 = , and a starting point ()2.0, 2.0=x

corresponding to
0 0.3701513 = − , the present

algorithm achieves the optimum point

()2.20281, 1.57079 =x and the corresponding cost

value 0 1.8013037 = − after 24 iterations. However,

after 13 iterations the algorithm achieves the point

()2.20258, 1.56925=x corresponding to the objective

value
0 1.8012055 = − . Changing the population size to

100N = , the global minimum 0 1.8013039 = − is

achieved after 10 iterations at the point

()2.20289, 1.57091 =x . Changing now the population

size to 1000N = , the global minimum

0 1.8013039 = − is achieved after 8 iterations at the

point ()2.20292, 1.57076 =x . The smallest number of

function evaluations ()20 24 is obtained for 20N = .

4.4 Welded beam design

The welded beam design problem is well studied in the

context of single-objective optimization. A beam A needs

to be welded on another beam B and must carry a certain

load P as shown in Fig. 2. The welded beam is designed

for minimum fabrication cost subject to constraints on

t

h

P

b

l

L

A

B

Figure 2: Welded beam structure.

28 Informatica 44 (2020) 23–33 J.B. Cardoso et al.

shear stress τ, bending stress in the beam σ, buckling

load on the bar
cP , end deflection of the beam δ, cost of

the weld and beam A materials, and side constraints

(Ragsdell, Phillips, 1975; Rao, 1996). One wants to find

four design parameters: thickness of the beam b, width of

the beam t, length of the weld l, and thickness of the

weld h.

In order of formulating the problem in a standard

form, let ()1 2 3 4, , ,x x x xx (), , ,h l t b= be the design

vector. Then, our problem may be described as

() ()

()

2

0 1 2 1 2 3 3 4 2

1 max

2 max

3 1 4

2

4 1 1 3 3 4 2

5 max

6

1

4

1 2

min

. .

1 0

1 0

1 0

5 1 0

1 0

1 0

0.125 2

0.1 2

0.1 , 10

c

C C x x C x x L x

s t

x x

C x C x x L x

P P

x

x

x x

 

 

 

  + + +

  − 

  − 

  − 

   + + −  

  − 

  − 

 

 

 

 (11)

where
3

1 0.10471$ / inC = is the cost per unit volume of

the weld material,
3

2 1$ / inC = is the labor cost per unit

weld volume,
3

3 0.04811$ / inC = is the cost per unit

volume of the beam B,
max 13,600 psi = ,

max 30,000 psi = and
max 0.25 in = . The other

parameters are defined as:

2 2

1 1 2 2 2x R    = + + , ()1 1 22P x x = ,

2 M R J = , ()2 2M P L x= + ,

()
22

2 1 30.5R x x x= + + , ()3

3 46PL x x = ,

()3 3

3 44PL E x x = , () ()
22

1 2 2 1 32 6 3J x x x x x = + +
 

,

()() ()2 3

3 4 34.013 6 1 0.5 0.25cP E L x x x L E G = −
 

,

630 10 psiE =  ,
612 10 psiG =  , 6,000 lbP = ,

14 inL =

By using mathematical programming, (Rao, 1996)

presents the optimum cost function 0 2.3810 =

corresponding to the design point
 =x

()0.2444, 6.2177, 8.2915, 0.2444 . A better nonlinear

programming solution has been achieved in (Andrei,

2013) by adding GAMS created nonlinear model:

0 1.72485 = , ()0.206, 3.470, 9.037, 0.206 =x .

The lowest optimal solution known so far by the

N IP Iterate 1x
2x

3x
4x

0

5000

0

16645 0.205729 3.470519 9.036630 0.205730 1.724858

268 0.205468 3.476687 9.038588 0.205723 1.725573

32 0.205436 3.477702 9.034963 0.205964 1.726863

16 0.204191 3.530001 9.042473 0.205769 1.731815

1

11144 0.205726 3.470586 9.036639 0.205730 1.724864

303 0.204957 3.488440 9.035478 0.205797 1.726386

57 0.205409 3.475931 9.042488 0.205808 1.726697

19 0.204431 3.523721 9.041501 0.205707 1.730704

1000

0

9434 0.205727 3.470567 9.036656 0.205730 1.724866

27 0.204332 3.495317 9.051999 0.205779 1.729056

19 0.204359 3.503654 9.084193 0.205596 1.734414

1

10419 0.205730 3.470530 9.036634 0.205730 1.724866

1335 0.205707 3.470647 9.038382 0.205760 1.725373

522 0.205451 3.477778 9.038218 0.205742 1.725777

37 0.205635 3.479632 9.039730 0.205804 1.727052

21 0.206227 3.492924 9.013144 0.206816 1.732874

100

0

15080 0.205727 3.470617 9.036695 0.205729 1.724877

1596 0.205693 3.470650 9.039433 0.205731 1.725315

205 0.205585 3.477111 9.031481 0.206261 1.728674

177 0.206150 3.503281 9.041299 0.206170 1.734152

1

27689 0.205724 3.470646 9.036589 0.205731 1.724869

672 0.204555 3.495600 9.037673 0.205735 1.726630

300 0.205584 3.488843 9.039643 0.205969 1.729467

141 0.202780 3.547630 9.027128 0.206246 1.732925

20

0

11462 0.205731 3.470480 9.036694 0.205735 1.724909

2265 0.205546 3.475157 9.036914 0.205765 1.725515

714 0.207129 3.459350 8.988936 0.208278 1.736547

1

22011 0.205726 3.470606 9.036623 0.205730 1.724868

2788 0.205607 3.474374 9.036784 0.205731 1.725223

115 0.202686 3.587231 9.037897 0.205726 1.736020

Table 3: Welded beam optimization solutions.

Design Optimization Average-Based Algorithm Informatica 44 (2020) 23–33 29

authors is given in (Kayham, Ceylan, Ayvaz, Gurarslan,

2010): ()0.205830, 3.468338, 9.036624, 0.205730 =x

and 0 1.724717 = .

The optimization results achieved with the present

algorithm are shown in Table 3 for different population

sizes N and different average choices on Eq. (5). The first

row for each choice combination of N and IP represents

the optimum at the convergence of the algorithm. The

following rows are the results at intermediary iterations.

For all these design points all the constraints are

satisfied.

The best minimum cost value obtained in the present

article is 0 1.724858 = , corresponding to the point

()0.205729, 3.470519, 9.036630, 0.205730 =x .

One may observe that the algorithm solutions

compare very well with the best solution presented

above, even for earlier iterates of the algorithm. We may

also observe that convergence is faster when the plain

average is used in Eq. (5).

4.5 Pressure vessel design

The pressure vessel design problem has been proposed in

(Kannan, Kramer, 1994). It is one of the most used test

problems for validating optimization algorithms. The

problem is to find the optimal design of a compressed air

storage tank (Fig. 3) with a working pressure of 1000 psi

and a minimum capacity volume of
3

min 1,296,000inV = .

The pressure vessel is composed of a cylindrical

shell capped at both ends by hemispherical heads.

Let the design variables be
1 sx T the thickness of

the shell,
2 hx T the thickness of the heads,

3x R the

inner radius and
4x L the length of the cylindrical

shell. The variables
1x and

2x should be integer

multiples of 0.0625 in. The objective is to minimize the

manufacturing cost (material, welding and forming costs)

of the pressure vessel (Sandgren, 1990), subjected to

constraints on volume capacity and in accordance with

respective ASME codes. The mathematical model of the

problem is:

()

2

0 1 3 4 2 3

2 2

1 4 1 3

1 3 1

2 3 2

3 min

2 3

3 4 3

1 2

3 4

min 0.6224 1.7781

3.1661 19.84

. .

0.0193 1 0

0.00954 1 0

1 0

4 3

0.0625 , 99 0.0625

10 , 200

x x x x x

x x x x

s t

x x

x x

V V

V x x x

x x

x x



  + +

+

  − 

  − 

  − 

= +

  

 

 (12)

The analytical optimum for this problem is

calculated in the Annex A as 0 6059.714335 = at

()* 0.8125, 0.4375, 42.0984456, 176.6365958=x with

the first and third constraints being active.

The optimal results achieved with the present

algorithm are shown in Table 4 for different population

sizes N and different average choices on Eq. (5). For all

these solutions there is no violation of the constraints.

The first constraint is nearly active at the optimal point

for all the different population sizes; it takes values in the

interval
7 5

10.3666 10 0.1215 10−  −−     −  .

The results for the present algorithm compare well

with the analytical solution. Again, the plain average of

the Eq. (5) gives origin to faster convergence.

4.6 Tension/Compression spring design

The tension/compression spring design optimization

problem is described in (Arora, 1989). The goal is to

minimize the weight of a tension/compression spring

(Fig. 4) subject to constraints on minimum deflection,

shear stress, surge frequency, limits on outside diameter

and side constraints. The design variables to be

considered are the wire diameter d, the mean coil

diameter D and the number n of active coils.

Let us set up the vector of design variables as

()1 2 3, ,x x xx (), ,d D n .
 L

R R

Th Ts

Figure 3: Pressure vessel.

N IP Iterate 1x
2x

3x
4x

0

1000
0 4143 0.81250 0.43750 42.09843 176.63712 6059.7231

1 13441 0.81250 0.43750 42.09843 176.63678 6059.7158

500
0 8285 0.81250 0.43750 42.09843 176.63701 6059.7212

1 11909 0.81250 0.43750 42.09844 176.63673 6059.7168

200
0 4173 0.81250 0.43750 42.09838 176.63742 6059.7227

1 5077 0.81250 0.43750 42.09843 176.63704 6059.7222

Table 4: Pressure vessel optimal solutions.

d

D

P P

Figure 4: Tension-compression spring.

30 Informatica 44 (2020) 23–33 J.B. Cardoso et al.

The problem may be formulated as

()

()

() ()

()

()
()

2

0 3 1 2

3 4

1 2 3 1

2 3 4

2 2 1 2 2 1 1

2

1

2

3 1 2 3

4 1 2

1

2

3

min 2

. .

1 71785 0

4 12566

1 5108 1 0

1 140.45 0

1.5 1 0

0.05 2

0.25 1.3

2 15

x x x

s t

x x x

x x x x x x

x

x x x

x x

x

x

x

  +

  − 

   − − +
 

− 

  − 

  + − 

 

 

 

 (13)

The analytical solution for this problem is presented

in the Annex B. The minimum weight of the spring is

achieved as 0 0.012665232 = at the point

()* 0.051690, 0.356740, 11.287642=x . At the optimum,

the constraints
1 and

2 are active, and

3 4.054 = − , 4 0.7277 = − .

The minimum objective function value obtained in

(Arora, 1989) by nonlinear programming is

0 0.012679 = corresponding to the optimum point

()0.051699, 0.35695, 11.289x = . The best result known

so far by the authors is given in (Cagnina, Esquivel,

Coello, 2008) as 0 0.012665 = , with

()* 0.051583, 0.354190, 11.438675=x .

The optimum results achieved with the present

algorithm are shown in Table 5, for 0IP = , different

sizes N of the population and plain average selection on

Eq. (5). For all these solutions there is no violation of the

constraints, being practically active the first two

constraints
1 and

2 . The last two constraints have

values within the intervals 34.08 4.04−    − and

40.734 0.720−    − .

Again, the present algorithm results compare well with

the analytical solution.

5 Concluding remarks
This article presents an average concept algorithm to

solve various optimization problems which include

typical benchmark functions unconstrained problems and

structural engineering test design constrained problems.

To evaluate the performance of the present algorithm,

numerical applications are conducted and the results are

compared to the results obtained analytically and/or to

the best ones achieved by other optimization methods.

The analytical solutions for two of the constrained

problems, namely the pressure vessel design and the

tension-compression spring design problems, are

determined in the present article. The solutions found by

the proposed algorithm compare well with those results.

We may conclude that the algorithm finds the global

solution or a near-global solution in each problem tested.

The Six-Hump Camelback function, for example, has 6

local minimal points; however, the algorithm converges

to the global minima.

Characterizing the principal advantage of the

algorithm one should emphasize the good balance

between the accuracy of the solutions it achieves and its

rare simplicity.

References
[1] Andrei, N. (2013) Nonlinear Optimization

Applications Using the GAMS Technology.

Springer Science & Business Media.

https://doi.org/10.1007/978-1-4614-6797-7

[2] Arora, J. S. (1989) Introduction to Optimum

Design. McGraw-Hill, New York.

https://doi.org/10.1016/C2013-0-15344-5

[3] Blum, C., Roli, A. (2003) Metaheuristics in

Combinatorial Optimization: overview and

conceptual comparison. ACM Computing Surveys.

35, 268-308.

https://dl.acm.org/doi/pdf/10.1145/937503.937505

[4] Cagnina, L.C., Esquivel, S.C., Coello, C.A.C.

(2008) Solving Engineering Optimization Problems

with the Simple Constrained Particle Swarm

Optimizer, Informatica. 32, 319-326.

[5] Dixon, L.C.W., Szego, G.P. (1975) Towards Global

Optimization. North Holland.

[6] Geem, Z.W., Kim, G.H., Loganathan, G.V. (2001)

A New Heuristic Optimization Algorithm:

Harmonic Search. Simulation. 76, 60-68.

https://doi.org/10.1177/003754970107600201

[7] Glover, F., Laguna, M. (1997) Tabu Search. Kluwer

Academic Publishers.

https://doi.org/10.1007/978-1-4613-0303-9_33

[8] Holland, J.H. (1975) Adaptation in Natural and

Artificial Systems. The University of Michigan

Press: Ann Arbor.

[9] Kannan, B.K., Kramer, S.N. (1994) An Augmented

Lagrange Multiplier Based Method for Mixed

Integer Discrete Continuous Optimization and its

Applications to Mechanical Design. Journal of

Mechanical Design. 116, 318-320.

https://doi.org/10.1115/1.2919393

[10] Kayham, A.H., Ceylan, H., Ayvaz, M.T., Gurarslan,

G. (2010) PSOLVER: A New Hybrid Particle

Swarm Optimization Algorithm for Solving

Continuous Optimization Problems. Expert Systems

with Applications. 37, 6798-6808.

https://doi.org/10.1016/j.eswa.2010.03.046

N 1000 500 200 100

0 0.012665 0.012666 0.012668 0.012671

1x 0.051718 0.051775 0.051308 0.052127

2x 0.357409 0.358778 0.347629 0.367321

3x 11.248693 11.169669 11.842695 10.694988

Iterate 10063 11690 24818 13899

Table 5: Tension-compression spring optimal solutions.

https://doi.org/10.1007/978-1-4614-6797-7
https://doi.org/10.1016/C2013-0-15344-5
https://dl.acm.org/doi/pdf/10.1145/937503.937505
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1115/1.2919393
https://doi.org/10.1016/j.eswa.2010.03.046

Design Optimization Average-Based Algorithm Informatica 44 (2020) 23–33 31

[11] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983)

Optimization by Simulated Annealing. Science.

220, 671-680.

https://doi.org/10.1126/science.220.4598.671

[12] Lee, K.S., Geem, Z.W. (2005) A New Meta-

Heuristic Algorithm for Continuous Engineering

Optimization: Harmony Search Theory and

Practice. Computer Methods in Applied Mechanical

Engineering. 194, 3902–3933.

https://doi.org/10.1016/j.cma.2004.09.007

[13] Luenberger, D.G. (1984) Introduction to Linear and

Nonlinear Programming. Addison-Wesley,

Massachusetts.

https://doi.org/10.1007/978-0-387-74503-9

[14] Moré, J.J., Garbow, B.S., Hillstrom, K.E. (1981)

Testing Unconstrained Optimization Software.

ACM Transactions on Mathematical Software. 7,

(1), 17- 41.

https://doi.org/10.1145/355934.355936

[15] Papalambros, P.Y., Wilde, D.J. (1988) Principles of

Optimal Design: modeling and computation.

Cambridge University Press, New York.

https://doi.org/10.1017/9781316451038

[16] Ragsdell, K. M., Phillips, D.T. (1975) Optimal

Design of a Class of Welded Structures Using

Geometric Programming. ASME J. Eng. Ind. Ser.

B. 98 (3), 1021–1025.

https://doi.org/10.1115/1.3438995

[17] Rao, S.S. (1996) Engineering Optimization Theory:

and Practice. John Wiley & Sons.

https://doi.org/10.1002/9780470549124

[18] Rosenbrock, H.H. (1960) An Automatic Method for

Finding the Greatest or Least Value of a Function.

Computer Journal. 3, 175-184.

https://doi.org/10.1093/comjnl/3.3.175

[19] Sandgren, E. (1990) Nonlinear Integer and Discrete

Programming in Mechanical Design Optimization.

Journal of Mechanical Design. 112 (2), 223–229.

https://doi.org/10.1115/1.2912596

[20] Spall, J.C. (2003) Introduction to Stochastic Search

and Optimization: estimation, simulation and

control. John Wiley&Sons.

https://doi.org/10.1002/0471722138

[21] Surowiecki, J. (2005) The Wisdom of Crowds:

Why the Many Are Smarter Than the Few and How

Collective Wisdom Shapes Business, Economies,

Societies and Nations. Anchor Books.

[22] Williams, S. (2006) The Wisdom of Crowds: why

the many are smarter than the few and how

collective wisdom shapes business, economies,

societies, and nations. Business Book Review™. 21

(43).

[23] Wolpert, D.H., Macready, W.G. (1997) No Free

Lunch Theorems for Optimization. IEEE

Transactions on Evolutionary Computation. 1, 67-

82.

https://doi.org/10.1109/4235.585893

[24] Yang, X.S. (2008) Nature-inspired Metaheuristic

Algorithms. Luniver Press.

Annex A: Pressure Vessel Classical

Design Optimization

Let us assume initially the variables 1x
 and 2x

 are

continuous and later on make the convenient correction

to table (multiple of 0.0675) values.

The cost function 0
 decreases monotonically with

1x
 or 2x

 decrease. The constraint 1
 is the only

constraint that increases as 1x
 decreases, and the

constraint 2
 is the only constraint that increases as 2x

decreases. Then, 1
 and 2

 provide respectively lower

bounds for 1x
 and 2x

, and these variables may be

minimized out as

1 3

2 3

0.0193

0.00954

x x

x x

=


=
 (A1)

Substituting these relationships into the original

problem, we have

()

2 3

0 3 4 3

2 3

3 3 4 3

3 4

min 0.01319166 0.024353275

. .

1296000 4 3 0

10 , 200

x x x

s t

x x x

x x

 

  +

  − − 

 

 (A2)

where the upper bars on the cost and constraint symbols

mean we are determining by now the solution for all

variables continuous. The Lagrangian function for this

problem is

() ()

() ()

0 3 3 3 3 3 3

4 4 4 4

10 200

10 200

L x x

x x

  

 

− +

− +

=  +  − − + − −

− + −
(A3)

where
3 , 3

−
, 3

+
, 4

−
, 4

+
 are the Lagrange

multipliers for the constraint 3 and side constraints.

The necessary Karush-Kuhn-Tucker conditions (Arora,

1989) for the problem (A.2) may now be set as

()

()

() ()

2

3 3 4 3

2

3 3 4 3 3 3

2 2

4 3 3 3 4 4

2 3

3 3 3 3 4 3

3 3 3 4 4

2

3 3 4

2 0.01319166 3 0.024353275

2 2 0

0.01319166 0

1296000 4 3 0

10 0, 200 0, 3,4

, , , , 0

1296000 4

k k k k

L x x x x

x x x

L x x x

x x x

x x k

x x

   

   

   

 

    



− +

− +

− +

− + − +

    + 

− + − + =

   − − + =

   − − = 

− = − = =



  − − () 3

3

3 4

3 0

10 , 200

x

x x

 

 

 (A4)

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.cma.2004.09.007
https://doi.org/10.1007/978-0-387-74503-9
https://doi.org/10.1145/355934.355936
https://doi.org/10.1017/9781316451038
https://doi.org/10.1115/1.3438995
https://doi.org/10.1002/9780470549124
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1115/1.2912596
https://doi.org/10.1002/0471722138
https://doi.org/10.1109/4235.585893

32 Informatica 44 (2020) 23–33 J.B. Cardoso et al.

Let us now search the different combinations of

Lagrange multipliers:

1.
3 40, 0 − −  

3 4 310, 1288669.6x x= =  = (violated)

3 40, 0 − +  

3 4 310, 200, 1228979.4x x= =  = (violated)

Then, whatever the value of
3 , must have 3 0 − =

2.
3 0 =

2.1 3 0 − =  3 0 +  (from the 1st condition, then

violating the 5th one)

2.2 4 0 − =  4 0 +  (from the 2nd condition, then

violating the 5th one)

3.
3 0  

3 0 =  () ()2

4 3 31296000 4 3x x x= −

3.1 3 4 4 0  + − += = = 
3 0.01319166 =

(from the 2nd condition) and
3 0x = (after

substituting
4x and

4 into the 1st one)

3.2 3 4 40, 0  + − += =  
4 200x = (from the 4th

condition),

()2 3

3 4 31296000 4 3 0x x x − − = 

3 40.3196187244x =

()

2

3 4 3

3 2

3 4 3

2 0.01319166 +3 0.024353275

2 2

0 004663057579 0

x x x

x x x

.




 
=

+

= 
2 2

4 3 3 30 01319166

2 369851195 0

x . x

.

  + = −

= 

All the optimality necessary conditions are

satisfied, then

1 3

2 3

3

4

0.0193 0.778168646

0.00954 0.384649165

40.3196187244

200

x x

x x

x

x

= =


= =


=
 =

is candidate local optimum point for the

assumed continuous variables.

3.3 3 4 40, 0  + + −= =  
4 10x = (from the 4th

condition),

()2 3

3 4 31296000 4 3 0x x x − − = 

3 65.2252326139x =

()

2

3 4 3

3 2

3 4 3

2 0.01319166 +3 0.024353275

2 2

x x x

x x x




 
=

+

0 005698937505 0.= 

2 2

4 3 3 30 01319166

20 04674872 0

. x x

.

  − = −

= − 

(violates 5th condition)

3.4 4 4 30, 0  − + += =  
3 200x = 

4 256.3534264 0x = − 

3.5 4 3 40, 0, 0  − + +=   
3 4 200x x= = 

3 57347062.87 0 = − 

(contradicts point 3:
3 0 =)

3.6 4 3 40, 0, 0  + + −=   
3 4200, 10x x= =


3 33470958.7 0 = − 

(contradicts point 3:
3 0 =)

Testing now the second-order sufficient conditions

for the only point
1 2 3 4(, , ,)x x x xx , determined in 3.3,

satisfying the necessary conditions, one may use the so-

called bordered Hessian (Luenberger, 1984) calculated at

that point:

()
3 3 3 4

2 2 2

3 3 3 3 3 3 4

2 2 2

3 4 3 4 4

0

,

0 71095.91969 5107.198124

71095.91969 232.2341915 0.117553254

5107.198124 0.117553254 0

x x

x x x L x L x x

x L x x L x

    
 

       
 
        

− − 
 

= − −
 
 − − 

B

As n m− for the problem (A.2) is 2 1 1− = one has

to calculate the last principal minor ()det B . Since its

value is negative, its sign is coincident with

() ()1 1
m

sign sign− = − . Hence, the Hessian of L is

positive-definite and the point x is a minimum point.

Now, rounding up the values of
1x and

2x to the

table values, we have

1

2

0.8125

0.4375

x

x





 =


=

then determine the other two variables as

 3 min 0.8125 0.0193, 0.4375 0.00954

42.0984456

x =

=

From the two first constraints
3 0.8125 0.0193x  ,

3 0.4375 0.00954x  , i.e., the constraint
1 is active at

the optimum, and

4 176.6365958x =

from the condition of
3 0 = 

() ()2

4 3 31296000 4 3x x x= −

Therefore, the analytical optimum point for the

pressure vessel design problem is

()0.8125, 0.4375, 42.0984456, 176.6365958=*
x

Design Optimization Average-Based Algorithm Informatica 44 (2020) 23–33 33

giving the minimum optimum cost 0 6059.714335 = .

At the optimum, the constraints have 1 3 0  =  = and

2 0.082013323 = − .

Annex B: Tension-Compression

Spring Classical Design Optimization
Again, let us firstly to analyze the monotonicity of the

problem (Papalambros, Wilde, 1988). One should

observe the constraint
1 is critical with respect to the

design variable
3x . The cost function

0 increases

monotonically in the variable
3x , and there is exactly one

constraint, the constraint
1 , whose monotonicity with

respect to
3x is opposite from that of the objective. Then,

1 is active and bounds
3x from below:

4 3

3 1 271785x x x= (B1)

Substituting the relationship (B.1) into the objective

function and into the constraint
3 we get

2 6 2

0 1 2 1 2

3

3 2 1

2 71785

1 0.001956536881 0

x x x x

x x

 = +

  − 

 (B2)

Substituting the lower and upper bounds of
2x into

the constraint
3 we have that

10.25 0.078790891x  ,

11.3 0.136503503x  ; then the range of the design

variable
1x can be set up as

10.05 0.136503503x 

If one uses now the upper bounds of
1x and

2x in

the constraint
4 , 0.136503503 1.3 1.5+  , it is obvious

that this constraint is always inactive, not playing any

role into the optimization problem.

Studying now the monotonicity of the objective

expressed in (B.2) with respect to the design variable
2x ,

the minimum of
0 is given as

2 6 5

0 2 1 1 22 2 71785 0x x x x   −  = 

43
2 171785x x=

since
2 2 6 4

0 2 1 26 71785 0x x x      . Thus,
0

decreases monotonically in
2x increase for

43
2 10.25 71785x x  and increases monotonically in

2x increase for 43
1 271785 1.3x x  . For example,

within the range 43
2 10.25 71785x x  , the function

0 decreases in the variable
2x increase, achieving the

minimum at
2 0.765545910x = for a prescribed

1 0.05x = , and increases the value of the minimum point

at
2x as

1x increases. For
1 0.074378786x  the function

0 is a decreasing function all along the feasible

domain of
2x ,

20.25 1.3x  .

The constraint
2 may be expressed as

()2

2 1 2 14 1 0x C x x C x+ − −  ,

2

12.460062647 12566C x= −

This constraint increases monotonically in
2x

increase; then its monotonicity with respect to
2x is

opposite from that of
0 for 43

2 10.25 71785x x  and

the constraint
2 is critical providing an upper bound

for
2x :

()()2

2 1 8 1 14 1x x C C C= − + + +

The reduced problem may now be expressed as

()()

2 6 2

0 1 2 1 2

2

2 1

1 2

min 2 71785

. .

8 1 14 1

0.05 0.136503503, 0.25 1.3

x x x x

s t

x x C C C

x x

  +

= − + + +

   

 (B3)

The optimum point can be determined easily by

using a unidimensional search in 1x
, with the active

constraint 2
 determining 2x

. The variable 3x
 is

calculated by using the relationship (B.1) after solving

the problem (B.3).

The optimum value of the objective function is

obtained as 0 0.012665232 =
 at the point

()0.051690,0.356740328,11.28764160*
x

. At the

optimum, the constraints have the values 1 0 =
,

2 0 =
, 3 4.05383024 = −

, 4 0.727713114 = −
.

34 Informatica 44 (2020) 23–33 J.B. Cardoso et al.

