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This article introduces a metaheuristic algorithm to solve engineering design optimization problems. 

The algorithm is based on the concept of diversity and independence that is aggregated in the average 

design of a population of designs containing information dispersed through a variety of points, and on 

the concept of intensification represented by the best design. The algorithm is population-based, where 

the population individual designs are randomly generated. The population can be normally or uniformly 

generated. The algorithm may start either with points randomly generated or with a designer preferred 

trial guess. The algorithm is validated using standard classical unconstrained and constrained 

engineering optimum design test problems reported in the literature. The results presented indicate that 

the proposed algorithm is a very simple alternative to solve this kind of problems. They compare well 

with the analytical solutions and/or the best results achieved so far. Two constrained problem analytical 

solutions not found in the literature are presented in annex. 

Povzetek: Članek uvaja metahevristični algoritem za reševanje problemov optimizacije. Algoritem 

temelji na populaciji, kjer se naključno generirajo posamezni modeli posameznika in končno agregirajo 

v primerne rešitve. 

1 Introduction 
With the advent of fast, cheap and reliable computing 

power over the last decades, in addition to the application 

of classic optimization to larger and larger size problems, 

new alternative algorithms operating in a different 

fashion have been developed. The classical optimization 

algorithms have shortcomings and are not suitable for all 

optimization problems. The new alternative algorithms 

allow attacking optimization problems either too costly 

or not applicable to classical algorithms. 

The purpose of heuristic algorithms applied to 

optimization problems is to search a solution to them by 

trial-and-error in a satisfying amount of computing time. 

The optimum solution is not guaranteed but a near 

optimum solution is accepted as a good solution. 

Metaheuristics refers to higher-level algorithms 

combining lower-level techniques and tactics for 

exploration and exploitation of the design space. That is, 

these algorithms, on one hand, must be able to generate a 

range of points in the whole design space including 

potentially optimum ones; on the other hand, they 

intensify the search around the neighborhood of an 

optimum or near optimum points (Yang, 2008). 

Exploration and exploitation are the two important 

components of the metaheuristic algorithms. They are 

also called diversification and intensification (Glover, 

Laguna, 1997). A good balance of these components is 

required. Too much weight in diversification risks slow 

convergence with the solutions jumping around the 

potentially optimum ones; too much weight in 

intensification restricts the design space to a local region 

and risks the convergence to a local optimum (Blum, 

Roli, 2003). The heuristic algorithms start typically either 

with guess solutions randomly generated or with a 

designer preferred trial solution. The diversification is 

gradually reduced as the algorithm proceeds; 

simultaneously, the intensification is increased. 

One of the roles of injected randomness in stochastic 

search is to allow for movements to unexplored areas of 

the search space that may contain an unexpectedly good 

design. This is especially relevant when the search is 

stalled near a local solution. Injected randomness may 

also be used for the creation of simple random quantities 

that act like their deterministic counterparts, but which 

are much easier to obtain and more efficient to compute. 

Metaheuristics algorithms are either population-

based or trajectory-based. Examples of the former ones 

are the genetic algorithms (Holland, 1975) or the particle 

swarm optimization (Cagnina, Esquivel, Coello, 2008; 

Kayham, Ceylan, Ayvaz, Gurarslan, 2010) the last ones 

include the simulated annealing optimization 

(Kirkpatrick, Gelatt, Vecchi, 1983) or the harmonic 

search (Geem, Kim, Loganathan, 2001). 

If a sufficient numerous and diversified group of 

people is asked to decide on subjects of general interest, 

the decisions of the group are better than the decisions 

that an isolated individual would take (Surowiecki, 

2005). Well informed and sophisticated an expert is, his 

or her advice and predictions should be pooled with those 

of others to get the most out of him or her. Practical 

examples, simple and complex, are described in 

(Surowiecki, 2005), remarking the principle of group 

think, and the concept that the masses are better problem 
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solvers, forecasters, and decision makers than any one 

individual. A classic example of group intelligence is the 

jelly-beans-in-the-jar experiment, in which invariably the 

group’s average estimate for the number of the jelly 

beans in the jar is superior to the vast majority of the 

individual guesses. 

The theory that groups are remarkably intelligent and 

often smarter than the smartest people in them, 

demonstrates the significant impact on how businesses 

operate, how knowledge is increased, how economies are 

structured, and how people live their daily lives 

(Williams, 2006). The necessary conditions for a crowd 

to be wise include diversity, independence, and a specific 

type of decentralization. These conditions are essential to 

making good decisions which are the result of 

disagreement and contest rather than consensus or 

compromise. 

Diversity means individuals have some private 

information or their own interpretation of known facts. 

Diversity helps because it actually adds perspectives that 

would otherwise be absent and because it takes away, or 

at least weakens, some of the destructive characteristics 

of group decision-making. Homogeneous groups are 

great at doing what they do well, but they become 

progressively less able to investigate alternatives. 

Independence means freedom from the influence of 

others. It keeps the individual mistakes from becoming 

correlated. Diversity is essential to preserving this 

independence. In the jelly-beans-in-the-jar experiment, 

most group members are not talking to each other or 

solving problems together. 

Decentralization means people draw on local 

knowledge. It encourages individuals to make important 

decisions, not just in one location based only on one 

specific type of information, but dispersed through a 

variety of locations from where local knowledge is 

drawn and shared. The information coming out of a 

decentralized group must be aggregated throughout the 

system, to maintain a balance between local and global 

counterparts. Aggregation needs a mechanism that turns 

individual judgments into a collective decision. For 

instance, in a free market, the aggregating mechanism is 

price; in the jelly-beans-in-the-jar experiment, individual 

guesses were aggregated and then averaged, i.e., the 

aggregating mechanism is the average guess. 

The aim of the present article is the proposal of an 

algorithm based on the concept just described. The 

algorithm considered is stochastic in the sense that it 

relies on random numbers and that different results may 

be obtained upon running the algorithm repeatedly. The 

algorithm is population-based, where the population 

individual designs are randomly generated. These 

individuals are diversified and independent since their 

design variables values are chosen stochastically without 

any correlation. 

The individual designs are also decentralized since 

the design variables are chosen all over the entire design 

space. Finally, the different values of the design variables 

are aggregated as the plain or weighted average of those 

values. However, generating a diverse set of possible 

solutions isn’t enough. The designer, as the body of 

people, also has to be able to distinguish the good 

solutions for the bad. So, at each of the iterations, the 

present algorithm selects two designs: the best design, 

the one with the best objective so far; and the averaged 

design, the one which design variable values are the 

mean of those variable values for the iteration. 

The best design represents the intensification 

component of the algorithm; the averaged design 

represents the diversity part. In the current article, the 

optimization problem is understood as a minimization 

problem, where the function of merit to be assessed is an 

extended cost function that takes in account penalization 

due to violated constraints. A reference design is 

considered as a linear combination of both the best and 

the averaged design variables. A simple recurrence 

formula, centered on the reference design, is used to 

actualize the design for the next randomly generated 

population. The population can be normally or uniformly 

generated. 

In optimization, there is traditionally a concern with 

developing a good stopping criterion. Unfortunately, the 

quest for an automatic means of stopping an algorithm 

with a guaranteed level of accuracy seems doomed to 

failure in general stochastic search problems. The 

fundamental reason is that in nontrivial problems, there 

will always be a significant region within the design 

space that will remain unexplored in any finite number of 

iterations, and there is always the possibility the optimum 

could lie in this unexplored region. 

A danger arises in making broad claims about the 

performance of an algorithm based on the results of 

numerical studies. Performance can vary tremendously 

under even small changes in the form of the functions 

involved or the coefficient settings within the algorithms 

themselves. Outstanding performance on some types of 

functions is consistent with poor performance on other 

types of functions. This is a manifestation of no free 

lunch theorems (Spall, 2003; Wolpert, Macready, 1997). 

The present algorithm is applied to several 

constrained and unconstrained test functions as well as to 

typical engineering design problems. 

2 The optimal design problem 
The optimal design problem may be formulated in a 

generalized fashion as 

 

( )

( )

0min

. .

0; 1,2,...,

; 1,2,...,

j

il i iu

s t

j m

b b b i n



  =

  =

b
b

b
 (1) 

where 
0 is the cost or objective function, j  are the 

constraints in a dimensionless form, ( )1 2, ,..., nb b bb  is 

the design vector, 
ilb  and 

iub  are respectively the lower 

and upper bounds of the design variable 
ib . 

In order of applying the present algorithm, the 

formulation of the Eq. (1) is replaced by the following 

one: 
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In Eq. (2), P stands for the penalty factor which 

value depends on the violation of the constraints as 

 

1

0, for satisfied constraints

, for violated constraints
mP
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

=
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= 
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where 0   and m  is the number of violated 

constraints. In practical terms, the constraint j  can be 

considered violated if j   , with   a very small 

number. Note that the absolute value of the objective is 

considered in the Eq. (2) in order to accommodate 

problems with negative objective functions. 

3 The average concept algorithm 
The present algorithm may be described by the flowchart 

of Fig. 1 as well as in the following manner: 

1. Start with a preference design guess b and an 

imposed standard deviation, estimated as 
i iu ils b b= −  

( )1, 2,...,i n= . Compute the starting values of 
0 , 

j  ( )1, 2,...,j m=  and 0 , and establish the 

starting reference design 
R

b  as the preference guess, 

i.e. 
R b b . 

 Start iterates as 

2. Launch a normally or uniformly random population 

of N designs as 

 
k R k

i i i ib b s r= +  (4) 

 where 1,2,...,i n= , 1, 2,...,k N=  and 
k

ir  is the k-th 

random number (with mean value 0 and standard 

deviation 1) related to the design variable ib . 

 Do 
i ilb b=  if 

i ilb b  and 
i iub b=  if 

i iub b . 

3. Evaluate 
0 , j  ( )1, 2,...,j m=  and 0  for the 

entire population of N designs. 

4. Evaluate the best design 
B

b  corresponding to the 

minimum value 
min

0  of the extended function. 

 Evaluate the averaged design 
A

b  for the distribution 

of designs as 

 
1 1

N N
A k

k k

k k

p p
= =

= b b  (5) 

 where 
k

b  is an arbitrary design vector in the 

population and 
kp  is the weight accounted for design 

k
b  on the average. The weights are selected by the 

designer. If a plain average is chosen, then 1kp =  for 

every design. 

 Another choice used in this work is to compare the 
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Figure 1: Flowchart of the algorithm. 

θ 
Starting Point 

(-2.5, -2.5) (-2.5, 2.5) (2.5, -2.5) (2.5, 2.5) 

1.00 

(0.08986,-0.71283) 

-1.0316283 

at iteration 38 

(0.09140,-0.71266) 

-1.0316191 

at iteration 39 

(-0.09162,0.71276) 

-1.0316163 

at iteration 36 

(0.08887,-0.71247) 

-1.0316248 

at iteration 31 

0.85 

(0.08979,-0.71267) 

-1.0316285 

at iteration 15 

(0.08997,-0.71265) 

-1.0316285 

at iteration 21 

(-0.08991,0.71265) 

-1.0316285 

at iteration 21 

(-0.08976,0.71272) 

-1.0316285 

at iteration 15 

0.25 

(0.08973,-0.71262) 

-1.0316285 

at iteration 36 

(-0.08992,-0.71259) 

-1.0316285 

at iteration 29 

(0.08974,-0.71262) 

-1.0316285 

at iteration 26 

(-0.08973,0.71262) 

-1.0316285 

at iteration 37 

0.00 

(0.09002,-0.71401) 

-1.0316136 

at iteration 989 

(-0.09020,0.71196) 

-1.0316237 

at iteration 617 

(0.09020,-0.71196) 

-1.0316237 

at iteration 617 

(-0.09002,0.71401) 

-1.0316136 

at iteration 989 

Table 1: Optimum points and function values for different θs and starting points. 
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values of the extended function 0  and of the best 

extended function 
min

0  in the previous iteration; and 

then assign a weight  2kp =  if the first value is 

smaller than the second one, and a weight 1kp =  if it 

is equal or larger. 

5. If there are no constraint violations and there are no 

improvements of the objective function within a 

prescribed number of iterations, go to 7. 

6. Evaluate a reference design as the linear combination 

 ( )1R B A = + −b b b  (6) 

 with 0 1   and assume the distribution of designs 
k

b  centered at 
R

b  with a standard deviation vector 

evaluated as 2 A B= −s b b . 

 Go to 2. 

 End the iterates. 

7. Stop. 

In order of handling tabular discrete value design 

variables, the Eq. (4) is rewritten in these cases as 

 int
R k

k i i i

i

b s r
b

 +
=  

 
 (7) 

where   is the difference value between two consecutive 

design variables. 

4 Numerical applications 
In this Section one is going to solve unconstrained as 

well as constrained optimization problems by applying 

the formulation and the algorithm presented on the 

previous sections. With respect to the unconstrained 

problems, the applications are the minimizations of the 

benchmark following test functions: Six-Hump 

Camelback function, Rosenbrock and Michalewicz’s 

functions. 

Concerning to the constrained problems, one solves 

three well-known engineering design optimization test 

problems: the welded beam design, the pressure vessel 

design and the tension-compression spring design. For all 

the applications normally distributed populations were 

used. A total of 30 independent runs were performed per 

problem. In the Sections 4.1 to 4.6 the runs of the 

algorithm were performed with a particular initial seed 

for different population sizes and different weights on 

the calculation of the average and reference designs. 

The results are compared with analytical solutions 

and/or heuristic and nonlinear programming algorithms. 

4.1 Six-Hump Camelback function 

This function is one of the typical test functions in 

unconstrained global optimization (Dixon, Szego, 1975; 

Lee, Geem, 2005). It is mathematically expressed as 

 2 4 6 2 4

0 1 1 1 1 2 2 2

1
4 2.1 4 4

3
x x x x x x x = − + + − +  (8) 

Within the bounded region, this function has six 

local minima. Two of them are global minima located at 

either ( )0.08984,0.71266−  or ( )0.08984, 0.71266− , 

each with the corresponding function value equal to 

0 1.0316285 = − . 

For the algorithm presented here, a population of 

size 20N =  and a plain average in the step 4 were used 

within the design space 
1 22.5 , 2.5x x−   . For different 

values of the θ-factor and two starting points, the Table 1 

gives the corresponding achieved solutions and the 

number of iterations needed for convergence. 

We should note that the best and fastest solutions are 

obtained with 0.85 = , i.e., giving respectively at each 

iteration, the weights 0.85 and 0.15 to the best and 

average points of the prior iteration in the formation of 

the current reference design. 

With the starting point ( )2.5, 2.5 , corresponding to 

the cost value 
0 161.8489685 = , and with 0.85 = , 

the present algorithm achieves the minimum cost value 

0 1.0316285 = −  at the point ( )0.08976,0.71272−  after 

15 iterations. However, after 9 iterations, the algorithm 

gets the cost value 
0 1.0316285 = −  at the point 

( )0.08799,0.71382− , not far off the analytical solution. 

We should also note that the worst results exist for 

0 = , i.e., only considering the average design as the 

design of reference. For 1 = , respecting to the selection 

at each iteration of the best design as the reference one, 

the solutions are also not so good 

For 20N = , 0.85 = , starting point ( )2.5, 2.5  and 

the weighted average (second) option on step 4 described 

in Chapter 3 instead of the plain average, the global 

optimum 0 1.0316285 = −  is obtained at the point 

( )0.08988, 0.71266−  after 19 iterations. 

Better results can be expectedly obtained by 

increasing the population size. For 100N = , the best and 

fastest solutions are obtained with 0.85 =  after 10 

iterations at the points ( )0.08982, 0.71264−  and 

( )0.08983, 0.71264−  respectively starting from the 

points ( )2.5, 2.5−  and ( )2.5, 2.5− , corresponding both 

to the minimum function value 0 1.0316285 = − . For 

N IP Iterate 1x  2x  0  

1000 
0 4 -0.0897507 0.7126449 -1.0316285 

1 5 -0.0898749 0.7127146 -1.0316285 

100 
0 13 -0.0897433 0.7126887 -1.0316285 

1 11 -0.0898545 0.7126102 -1.0316285 

20 
0 15 -0.0897623 0.7127175 -1.0316285 

1 19 -0.0898786 0.7126648 -1.0316285 

Table 2: Camelback’s optimal solutions for 0.85 =   

and starting at ( )2.5, 2.5 . 
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1000N =  and 0.85 = , and starting from the point 

( )2.5, 2.5− − , the optimum solution 
 =x  

( )0.08975, 0.71264− , 0 1.0316285 = −  has been 

achieved after 4 iterations. 

Table 2 shows the optimal solutions achieved for 

different N population sizes and different average 

choices on Eq. (5), 0IP =  standing for plain average and 
1IP =  meaning weighted average as written on step 4 of 

the algorithm described on Chapter 3, using 0.85 =  

and with the starting point located at 
( )2.5, 2.5

. 

We may note that is the population size 20N =  the 

one that needs the smallest number of function 

evaluations ( )20 15 . 

4.2 Rosenbrock’s function 

Another classical test function in unconstrained 

optimization is the Rosenbrock’s function, which two-

dimensional form (Moré, Garbow, Hillstrom, 1981; 

Rosenbrock, 1960; Yang, 2008) is 

 ( ) ( )
22 2

0 1 2 11 100x x x = − + −  (9) 

This function also referred to as the Valley or 

Banana function due to the shape of its contour lines, is a 

popular test problem for gradient-based optimization 

algorithms. The function turns out to be quite challenging 

to find its minimum point by numerical methods. 

Its global optimum point is ( )1.0, 1.0 =x  that gives 

the optimum cost of 0 0.0 = . The function is unimodal 

and its analytical solution can be obtained 

straightforwardly by partial differentiation. The 

numerical solution, however, poses a particular 

challenge. The solution lies inside a very deep, narrow, 

banana shaped valley. The valley causes a lot of 

troubling for nonlinear programming search algorithms. 

Using a population of 1000 samples within the 

design space 
1 210.0 , 10.0x x−   , a plain average, the 

factor 0.85 =  and a starting point ( )0.0, 0.0=x  

corresponding to 
0 1.0000000 = , the present algorithm 

achieves the optimum point ( )1.00000, 1.00000 =x  and 

the corresponding 0 0.0000000 =  after 18 iterations. 

However, the point ( )1.00051, 1.00087=x  

corresponding to 0 0.0000029 =  was obtained after 9 

iterations. If 100N = , the same optimum point above is 

obtained after 38 iterations. For 20N = , the algorithm 

converges towards the same optimum point after 2604 

iterations. One may say that is the population of 100 

samples that gives the shortest number of function 

evaluations ( )100 38 . 

4.3 Michalewicz’s function 

The third unconstrained optimization problem uses the 

Michalewicz’s function in its two-dimensional form 

 ( ) ( )
2 20

2

0

1

sin sini i

i

x i x 
=

  = −
   (10) 

with 
1 20 ,x x   . 

The function is tricky; it has several local minimum 

values and several flat areas which make the one global 

minimum value hard to find numerically. Its global 

minimum is 0 1.8012980 = −  at the point 

 =x ( )2.20319, 1.57049 . 

Using a population with size 20N =  samples within 

the design space 
1 20.0 , 4.0x x  , a plain average, the 

factor 0.85 = , and a starting point ( )2.0, 2.0=x  

corresponding to 
0 0.3701513 = − , the present 

algorithm achieves the optimum point 

( )2.20281, 1.57079 =x  and the corresponding cost 

value 0 1.8013037 = −  after 24 iterations. However, 

after 13 iterations the algorithm achieves the point 

( )2.20258, 1.56925=x  corresponding to the objective 

value 
0 1.8012055 = − . Changing the population size to 

100N = , the global minimum 0 1.8013039 = −  is 

achieved after 10 iterations at the point 

( )2.20289, 1.57091 =x . Changing now the population 

size to 1000N = , the global minimum 

0 1.8013039 = −  is achieved after 8 iterations at the 

point ( )2.20292, 1.57076 =x . The smallest number of 

function evaluations ( )20 24  is obtained for 20N = . 

4.4 Welded beam design 

The welded beam design problem is well studied in the 

context of single-objective optimization. A beam A needs 

to be welded on another beam B and must carry a certain 

load P as shown in Fig. 2. The welded beam is designed 

for minimum fabrication cost subject to constraints on 

 

t 

h 

P 

b 

l 

L 

A 

B 

 
Figure 2: Welded beam structure. 
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shear stress τ, bending stress in the beam σ, buckling 

load on the bar 
cP , end deflection of the beam δ, cost of 

the weld and beam A materials, and side constraints 

(Ragsdell, Phillips, 1975; Rao, 1996). One wants to find 

four design parameters: thickness of the beam b, width of 

the beam t, length of the weld l, and thickness of the 

weld h. 

In order of formulating the problem in a standard 

form, let ( )1 2 3 4, , ,x x x xx ( ), , ,h l t b=  be the design 

vector. Then, our problem may be described as 

 

( ) ( )

( )

2

0 1 2 1 2 3 3 4 2

1 max

2 max

3 1 4

2

4 1 1 3 3 4 2

5 max

6

1

4

1 2

min

. .

1 0

1 0

1 0

5 1 0

1 0

1 0

0.125 2

0.1 2

0.1 , 10

c

C C x x C x x L x

s t

x x

C x C x x L x

P P

x

x

x x

 

 

 

  + + +

  − 

  − 

  − 

   + + −  

  − 

  − 

 

 

 

 (11) 

where 
3

1 0.10471$ / inC =  is the cost per unit volume of 

the weld material, 
3

2 1$ / inC =  is the labor cost per unit 

weld volume, 
3

3 0.04811$ / inC =  is the cost per unit 

volume of the beam B, 
max 13,600 psi = , 

max 30,000 psi =  and 
max 0.25 in = . The other 

parameters are defined as: 

2 2

1 1 2 2 2x R    = + + , ( )1 1 22P x x = , 

2 M R J = , ( )2 2M P L x= + , 

( )
22

2 1 30.5R x x x= + + , ( )3

3 46PL x x = , 

( )3 3

3 44PL E x x = , ( ) ( )
22

1 2 2 1 32 6 3J x x x x x = + +
 

, 

( )( ) ( )2 3

3 4 34.013 6 1 0.5 0.25cP E L x x x L E G = −
 

, 

630 10 psiE =  , 
612 10 psiG =  , 6,000 lbP = , 

14 inL =  

By using mathematical programming, (Rao, 1996) 

presents the optimum cost function 0 2.3810 =  

corresponding to the design point 
 =x  

( )0.2444, 6.2177, 8.2915, 0.2444 . A better nonlinear 

programming solution has been achieved in (Andrei, 

2013) by adding GAMS created nonlinear model: 

0 1.72485 = , ( )0.206, 3.470, 9.037, 0.206 =x . 

The lowest optimal solution known so far by the 

N IP Iterate 1x  
2x  

3x  
4x  

0  

5000 

0 

16645 0.205729 3.470519 9.036630 0.205730 1.724858 

268 0.205468 3.476687 9.038588 0.205723 1.725573 

32 0.205436 3.477702 9.034963 0.205964 1.726863 

16 0.204191 3.530001 9.042473 0.205769 1.731815 

1 

11144 0.205726 3.470586 9.036639 0.205730 1.724864 

303 0.204957 3.488440 9.035478 0.205797 1.726386 

57 0.205409 3.475931 9.042488 0.205808 1.726697 

19 0.204431 3.523721 9.041501 0.205707 1.730704 

1000 

0 

9434 0.205727 3.470567 9.036656 0.205730 1.724866 

27 0.204332 3.495317 9.051999 0.205779 1.729056 

19 0.204359 3.503654 9.084193 0.205596 1.734414 

1 

10419 0.205730 3.470530 9.036634 0.205730 1.724866 

1335 0.205707 3.470647 9.038382 0.205760 1.725373 

522 0.205451 3.477778 9.038218 0.205742 1.725777 

37 0.205635 3.479632 9.039730 0.205804 1.727052 

21 0.206227 3.492924 9.013144 0.206816 1.732874 

100 

0 

15080 0.205727 3.470617 9.036695 0.205729 1.724877 

1596 0.205693 3.470650 9.039433 0.205731 1.725315 

205 0.205585 3.477111 9.031481 0.206261 1.728674 

177 0.206150 3.503281 9.041299 0.206170 1.734152 

1 

27689 0.205724 3.470646 9.036589 0.205731 1.724869 

672 0.204555 3.495600 9.037673 0.205735 1.726630 

300 0.205584 3.488843 9.039643 0.205969 1.729467 

141 0.202780 3.547630 9.027128 0.206246 1.732925 

20 

0 

11462 0.205731 3.470480 9.036694 0.205735 1.724909 

2265 0.205546 3.475157 9.036914 0.205765 1.725515 

714 0.207129 3.459350 8.988936 0.208278 1.736547 

1 

22011 0.205726 3.470606 9.036623 0.205730 1.724868 

2788 0.205607 3.474374 9.036784 0.205731 1.725223 

115 0.202686 3.587231 9.037897 0.205726 1.736020 

Table 3: Welded beam optimization solutions. 
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authors is given in (Kayham, Ceylan, Ayvaz, Gurarslan, 

2010): ( )0.205830, 3.468338, 9.036624, 0.205730 =x  

and 0 1.724717 = . 

The optimization results achieved with the present 

algorithm are shown in Table 3 for different population 

sizes N and different average choices on Eq. (5). The first 

row for each choice combination of N and IP represents 

the optimum at the convergence of the algorithm. The 

following rows are the results at intermediary iterations. 

For all these design points all the constraints are 

satisfied. 

The best minimum cost value obtained in the present 

article is 0 1.724858 = , corresponding to the point 

( )0.205729, 3.470519, 9.036630, 0.205730 =x . 

One may observe that the algorithm solutions 

compare very well with the best solution presented 

above, even for earlier iterates of the algorithm. We may 

also observe that convergence is faster when the plain 

average is used in Eq. (5). 

4.5 Pressure vessel design 

The pressure vessel design problem has been proposed in 

(Kannan, Kramer, 1994). It is one of the most used test 

problems for validating optimization algorithms. The 

problem is to find the optimal design of a compressed air 

storage tank (Fig. 3) with a working pressure of 1000 psi 

and a minimum capacity volume of 
3

min 1,296,000inV = . 

The pressure vessel is composed of a cylindrical 

shell capped at both ends by hemispherical heads. 

Let the design variables be 
1 sx T  the thickness of 

the shell, 
2 hx T  the thickness of the heads, 

3x R  the 

inner radius and 
4x L  the length of the cylindrical 

shell. The variables 
1x  and 

2x  should be integer 

multiples of 0.0625 in. The objective is to minimize the 

manufacturing cost (material, welding and forming costs) 

of the pressure vessel (Sandgren, 1990), subjected to 

constraints on volume capacity and in accordance with 

respective ASME codes. The mathematical model of the 

problem is: 

 

( )

2

0 1 3 4 2 3

2 2

1 4 1 3

1 3 1

2 3 2

3 min

2 3

3 4 3

1 2

3 4

min 0.6224 1.7781

3.1661 19.84

. .

0.0193 1 0

0.00954 1 0

1 0

4 3

0.0625 , 99 0.0625

10 , 200

x x x x x

x x x x

s t

x x

x x

V V

V x x x

x x

x x



  + +

+

  − 

  − 

  − 

= +

  

 

 (12) 

The analytical optimum for this problem is 

calculated in the Annex A as 0 6059.714335 =  at 

( )* 0.8125, 0.4375, 42.0984456, 176.6365958=x  with 

the first and third constraints being active. 

The optimal results achieved with the present 

algorithm are shown in Table 4 for different population 

sizes N and different average choices on Eq. (5). For all 

these solutions there is no violation of the constraints. 

The first constraint is nearly active at the optimal point 

for all the different population sizes; it takes values in the 

interval 
7 5

10.3666 10 0.1215 10−  −−     −  . 

The results for the present algorithm compare well 

with the analytical solution. Again, the plain average of 

the Eq. (5) gives origin to faster convergence. 

4.6 Tension/Compression spring design 

The tension/compression spring design optimization 

problem is described in (Arora, 1989). The goal is to 

minimize the weight of a tension/compression spring 

(Fig. 4) subject to constraints on minimum deflection, 

shear stress, surge frequency, limits on outside diameter 

and side constraints. The design variables to be 

considered are the wire diameter d, the mean coil 

diameter D and the number n of active coils. 

Let us set up the vector of design variables as 

( )1 2 3, ,x x xx ( ), ,d D n . 
 L 

R R 

Th Ts 

 

Figure 3: Pressure vessel. 

N IP Iterate 1x  
2x  

3x  
4x  

0  

1000 
0 4143 0.81250 0.43750 42.09843 176.63712 6059.7231 

1 13441 0.81250 0.43750 42.09843 176.63678 6059.7158 

500 
0 8285 0.81250 0.43750 42.09843 176.63701 6059.7212 

1 11909 0.81250 0.43750 42.09844 176.63673 6059.7168 

200 
0 4173 0.81250 0.43750 42.09838 176.63742 6059.7227 

1 5077 0.81250 0.43750 42.09843 176.63704 6059.7222 

Table 4: Pressure vessel optimal solutions. 

 

d 

D 

P P 

 

Figure 4: Tension-compression spring. 
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The problem may be formulated as 

 

( )

( )

( ) ( )

( )

( )
( )

2

0 3 1 2

3 4

1 2 3 1

2 3 4

2 2 1 2 2 1 1

2

1

2

3 1 2 3

4 1 2

1

2

3

min 2

. .

1 71785 0

4 12566

1 5108 1 0

1 140.45 0

1.5 1 0

0.05 2

0.25 1.3

2 15

x x x

s t

x x x

x x x x x x

x

x x x

x x

x

x

x

  +

  − 

   − − +
 

− 

  − 

  + − 

 

 

 

 (13) 

The analytical solution for this problem is presented 

in the Annex B. The minimum weight of the spring is 

achieved as 0 0.012665232 =  at the point 

( )* 0.051690, 0.356740, 11.287642=x . At the optimum, 

the constraints 
1  and 

2  are active, and 

3 4.054 = − , 4 0.7277 = − . 

The minimum objective function value obtained in 

(Arora, 1989) by nonlinear programming is 

0 0.012679 =  corresponding to the optimum point 

( )0.051699, 0.35695, 11.289x = . The best result known 

so far by the authors is given in (Cagnina, Esquivel, 

Coello, 2008) as 0 0.012665 = , with 

( )* 0.051583, 0.354190, 11.438675=x . 

The optimum results achieved with the present 

algorithm are shown in Table 5, for 0IP = , different 

sizes N of the population and plain average selection on 

Eq. (5). For all these solutions there is no violation of the 

constraints, being practically active the first two 

constraints 
1  and 

2 . The last two constraints have 

values within the intervals 34.08 4.04−    −  and 

40.734 0.720−    − . 

Again, the present algorithm results compare well with 

the analytical solution. 

5 Concluding remarks 
This article presents an average concept algorithm to 

solve various optimization problems which include 

typical benchmark functions unconstrained problems and 

structural engineering test design constrained problems. 

To evaluate the performance of the present algorithm, 

numerical applications are conducted and the results are 

compared to the results obtained analytically and/or to 

the best ones achieved by other optimization methods. 

The analytical solutions for two of the constrained 

problems, namely the pressure vessel design and the 

tension-compression spring design problems, are 

determined in the present article. The solutions found by 

the proposed algorithm compare well with those results. 

We may conclude that the algorithm finds the global 

solution or a near-global solution in each problem tested. 

The Six-Hump Camelback function, for example, has 6 

local minimal points; however, the algorithm converges 

to the global minima. 

Characterizing the principal advantage of the 

algorithm one should emphasize the good balance 

between the accuracy of the solutions it achieves and its 

rare simplicity. 
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Annex A: Pressure Vessel Classical 

Design Optimization 

Let us assume initially the variables 1x
 and 2x

 are 

continuous and later on make the convenient correction 

to table (multiple of 0.0675) values. 

The cost function 0
 decreases monotonically with 

1x
 or 2x

 decrease. The constraint 1
 is the only 

constraint that increases as 1x
 decreases, and the 

constraint 2
 is the only constraint that increases as 2x

 

decreases. Then, 1
 and 2

 provide respectively lower 

bounds for 1x
 and 2x

, and these variables may be 

minimized out as 

 
1 3

2 3

0.0193

0.00954

x x

x x

=


=
 (A1) 

Substituting these relationships into the original 

problem, we have 

 
( )

2 3

0 3 4 3

2 3

3 3 4 3

3 4

min 0.01319166 0.024353275

. .

1296000 4 3 0

10 , 200

x x x

s t

x x x

x x

 

  +

  − − 

 

 (A2) 

where the upper bars on the cost and constraint symbols 

mean we are determining by now the solution for all 

variables continuous. The Lagrangian function for this 

problem is 

 
( ) ( )

( ) ( )

0 3 3 3 3 3 3

4 4 4 4

10 200

10 200

L x x

x x

  

 

− +

− +

=  +  − − + − −

− + −
(A3) 

where 
3 , 3

−
, 3

+
, 4

−
, 4

+
 are the Lagrange 

multipliers for the constraint 3  and side constraints. 

The necessary Karush-Kuhn-Tucker conditions (Arora, 

1989) for the problem (A.2) may now be set as 

( )

( )

( ) ( )

2

3 3 4 3

2

3 3 4 3 3 3

2 2
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3 3 3 3 4 3

3 3 3 4 4

2

3 3 4
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Let us now search the different combinations of 

Lagrange multipliers: 

1. 
3 40, 0 − −    

3 4 310, 1288669.6x x= =  =  (violated) 

3 40, 0 − +    

3 4 310, 200, 1228979.4x x= =  =  (violated) 

Then, whatever the value of 
3 , must have 3 0 − =  

2. 
3 0 =  

2.1 3 0 − =   3 0 +   (from the 1st condition, then 

violating the 5th one) 

2.2 4 0 − =   4 0 +   (from the 2nd condition, then 

violating the 5th one) 

3. 
3 0    

3 0 =   ( ) ( )2

4 3 31296000 4 3x x x= −  

3.1 3 4 4 0  + − += = =   
3 0.01319166 =  

(from the 2nd condition) and 
3 0x =  (after 

substituting 
4x  and

4  into the 1st one) 

3.2 3 4 40, 0  + − += =    
4 200x =  (from the 4th 

condition), 

( )2 3

3 4 31296000 4 3 0x x x − − =   

3 40.3196187244x =  

( )

2

3 4 3

3 2

3 4 3

2 0.01319166 +3 0.024353275

2 2

0 004663057579 0

x x x

x x x

.




 
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+

= 
2 2

4 3 3 30 01319166

2 369851195 0

x . x

.

  + = −

= 
 

All the optimality necessary conditions are 

satisfied, then 

1 3

2 3

3

4

0.0193 0.778168646

0.00954 0.384649165

40.3196187244

200

x x

x x

x

x

= =
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= =


=
 =

 

is candidate local optimum point for the 

assumed continuous variables. 

3.3 3 4 40, 0  + + −= =    
4 10x =  (from the 4th 

condition), 

( )2 3

3 4 31296000 4 3 0x x x − − =   

3 65.2252326139x =  

( )

2

3 4 3

3 2

3 4 3

2 0.01319166 +3 0.024353275
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x x x

x x x
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4 3 3 30 01319166

20 04674872 0

. x x
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(violates 5th condition) 

3.4 4 4 30, 0  − + += =   
3 200x =   

4 256.3534264 0x = −   

3.5 4 3 40, 0, 0  − + +=     
3 4 200x x= =   

3 57347062.87 0 = −   

(contradicts point 3: 
3 0 = ) 

3.6 4 3 40, 0, 0  + + −=    
3 4200, 10x x= =  

 
3 33470958.7 0 = −   

(contradicts point 3: 
3 0 = ) 

Testing now the second-order sufficient conditions 

for the only point 
1 2 3 4( , , , )x x x xx , determined in 3.3, 

satisfying the necessary conditions, one may use the so-

called bordered Hessian (Luenberger, 1984) calculated at 

that point: 

( )
3 3 3 4

2 2 2

3 3 3 3 3 3 4

2 2 2

3 4 3 4 4

0

,

0 71095.91969 5107.198124

71095.91969 232.2341915 0.117553254
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B

 

As n m−  for the problem (A.2) is 2 1 1− =  one has 

to calculate the last principal minor ( )det B . Since its 

value is negative, its sign is coincident with 

( ) ( )1 1
m

sign sign− = − . Hence, the Hessian of L is 

positive-definite and the point x  is a minimum point. 

Now, rounding up the values of 
1x  and 

2x  to the 

table values, we have 

1

2

0.8125

0.4375

x

x





 =


=
 

then determine the other two variables as 

 3 min 0.8125 0.0193, 0.4375 0.00954

42.0984456

x =

=
 

From the two first constraints 
3 0.8125 0.0193x  , 

3 0.4375 0.00954x  , i.e., the constraint 
1  is active at 

the optimum, and 

4 176.6365958x =  

from the condition of 
3 0 =   

( ) ( )2

4 3 31296000 4 3x x x= −  

Therefore, the analytical optimum point for the 

pressure vessel design problem is 

( )0.8125, 0.4375, 42.0984456, 176.6365958=*
x  
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giving the minimum optimum cost 0 6059.714335 = . 

At the optimum, the constraints have 1 3 0  =  =  and 

2 0.082013323 = − . 

Annex B: Tension-Compression 

Spring Classical Design Optimization 
Again, let us firstly to analyze the monotonicity of the 

problem (Papalambros, Wilde, 1988). One should 

observe the constraint 
1  is critical with respect to the 

design variable 
3x . The cost function 

0  increases 

monotonically in the variable 
3x , and there is exactly one 

constraint, the constraint 
1 , whose monotonicity with 

respect to 
3x  is opposite from that of the objective. Then, 

1  is active and bounds 
3x  from below: 

 
4 3

3 1 271785x x x=  (B1) 

Substituting the relationship (B.1) into the objective 

function and into the constraint 
3  we get 

 

2 6 2

0 1 2 1 2

3

3 2 1

2 71785

1 0.001956536881 0

x x x x

x x

 = +

  − 

 (B2) 

Substituting the lower and upper bounds of 
2x  into 

the constraint 
3  we have that 

10.25 0.078790891x  , 

11.3 0.136503503x  ; then the range of the design 

variable 
1x  can be set up as 

10.05 0.136503503x   

If one uses now the upper bounds of 
1x  and 

2x  in 

the constraint 
4 , 0.136503503 1.3 1.5+  , it is obvious 

that this constraint is always inactive, not playing any 

role into the optimization problem. 

Studying now the monotonicity of the objective 

expressed in (B.2) with respect to the design variable 
2x , 

the minimum of 
0  is given as 

2 6 5

0 2 1 1 22 2 71785 0x x x x   −  =   

43
2 171785x x=  

since 
2 2 6 4

0 2 1 26 71785 0x x x      . Thus, 
0  

decreases monotonically in 
2x  increase for 

43
2 10.25 71785x x   and increases monotonically in 

2x  increase for 43
1 271785 1.3x x  . For example, 

within the range 43
2 10.25 71785x x  , the function 

0  decreases in the variable 
2x  increase, achieving the 

minimum at 
2 0.765545910x =  for a prescribed 

1 0.05x = , and increases the value of the minimum point 

at 
2x  as 

1x  increases. For 
1 0.074378786x   the function 

0  is a decreasing function all along the feasible 

domain of 
2x , 

20.25 1.3x  . 

The constraint 
2  may be expressed as 

( )2

2 1 2 14 1 0x C x x C x+ − −  , 

2

12.460062647 12566C x= −  

This constraint increases monotonically in 
2x  

increase; then its monotonicity with respect to 
2x  is 

opposite from that of 
0  for 43

2 10.25 71785x x   and 

the constraint 
2  is critical providing an upper bound 

for 
2x : 

( )( )2

2 1 8 1 14 1x x C C C= − + + +  

The reduced problem may now be expressed as 

 
( )( )

2 6 2

0 1 2 1 2

2

2 1

1 2

min 2 71785

. .

8 1 14 1

0.05 0.136503503, 0.25 1.3

x x x x

s t

x x C C C

x x

  +

= − + + +

   

 (B3) 

The optimum point can be determined easily by 

using a unidimensional search in 1x
, with the active 

constraint 2
 determining 2x

. The variable 3x
 is 

calculated by using the relationship (B.1) after solving 

the problem (B.3). 

The optimum value of the objective function is 

obtained as 0 0.012665232 =
 at the point 

( )0.051690,0.356740328,11.28764160*
x

. At the 

optimum, the constraints have the values 1 0 =
, 

2 0 =
, 3 4.05383024 = −

, 4 0.727713114 = −
. 
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