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We argue that artificial intelligence capable of sustaining an uncontrolled intelligence explosion must 

have a conceptual-linguistic faculty with substantial functional similarity to the human faculty. We then 

argue for three subsidiary claims: first, that detecting the presence of such a faculty will be an important 

indicator of imminent superintelligence; second, that such a superintelligence will, in creating further 

increases in intelligence, both face and consider the same sorts of existential risks that humans face 

today; third, that such a superintelligence is likely to assess and question its own values, purposes, and 

drives. 

Povzetek: V prispevku je predstavljena teza, da je za superinteligenco potrebna tudi konceptualno-

lingvistična inteligenca, ki mora biti vsaj delno podobna človeški. 

 

1 Introduction 
Recently much analysis and speculation has been offered 

to describe scenarios related to a possible intelligence 

explosion, a notion first suggested by I.J. Good [1]. In an 

intelligence explosion, initial creation of artificial 

intelligence with a critical mass of capabilities and drives 

is followed by an inexorable process of increases in that 

intelligence. Eventually the resultant artificial 

intelligence exceeds human intelligence and is referred to 

as superintelligence. This process is usually viewed as 

uncontrolled, unstoppable, and accelerating; the 

scenarios have generated considerable consternation and 

are driving a conversation about a number of ethical and 

technological issues [2] [3] [4]. 

In this paper, we argue that artificial intelligence 

capable of sustaining an uncontrolled intelligence 

explosion must have a conceptual-linguistic faculty with 

substantial functional similarity to the human faculty. We 

follow this with arguments for three subsidiary claims: 

first, that detecting the presence of such a faculty will be 

an important indicator of imminent superintelligence; 

second, that such a superintelligence will, in creating 

further increases in intelligence, both face and consider 

the same sorts of existential risks that humans face today; 

third, that such a superintelligence is likely to assess and 

question its own values, purposes, and drives. 

These conclusions do not guarantee a satisfactory 

outcome for humans, but do suggest that the process will 

be subject to ongoing scrutiny by its own participants. 

We note that it is possible that superintelligence may be 

created outside the context of an intelligence explosion; 

for example, humans might create it directly. Our 

arguments are not intended to apply in that case: we do 

not argue that a conceptual-linguistic faculty is required 

to constitute superintelligence (though this may be true), 

only that it is required in an intelligence explosion. Also, 

there are many risks of artificial intelligence aside from 

superintelligence and intelligence explosions, such as 

those arising from autonomous weapons and 

unexplainable decision processes. We do not address 

those issues at all. Nevertheless, the existential risks 

associated with an intelligence explosion are an 

important topic in artificial intelligence safety [5] and we 

will hopefully deepen our understanding of those 

scenarios through this analysis. 

2 The need for a conceptual-

linguistic faculty 
In this major section we begin by outlining implied 

necessary conditions for an intelligence explosion, and 

characterize in some detail what we mean by a 

conceptual-linguistic faculty. With that in place, we 

argue the foundational claim that a conceptual-linguistic 

faculty is necessary for an intelligence explosion to be 

sustained. We close the section by showing how the 

presence of a conceptual-linguistic faculty is a harbinger 

of superintelligence, and discuss how it might be 

detected. 

2.1 Requirements for an uncontrolled 

intelligence explosion 

As it is typically envisioned, an intelligence explosion 

comprises a sequence or continuum of artificial 

intelligence systems with progressively increasing 

intelligence. We will refer to each of these systems as a 

“participant.” Since a participant is part of a sequence, it 

has predecessors and successors in the process, with 

humans as the initial predecessor. In progressing the 

sequence, a participant may elect to self-improve or to 

create a new system; in either case we refer to the 

resulting system as a successor. 
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There are many factors to consider in assessing 

whether an intelligence explosion is likely to occur and 

how rapidly it might proceed [3] [6]. In this paper, we 

intend to focus on the role of the participants, and 

generally assume that extrinsic factors (for example, 

technical or resource recalcitrance) are favorable for 

supporting an intelligence explosion. Our emphasis will 

be qualitative and directional rather than quantitative. 

For an uncontrolled intelligence explosion to occur, 

the progress of intelligence increases must be self-

sustaining and resistant to premature termination. 

Though it is an analogy only, these requirements are 

similar to those of a nuclear fission weapon [4]. Two of 

the most difficult challenges faced by the initial 

designers of such weapons were to have a sufficient 

fraction of emitted neutrons be absorbed by fissile nuclei 

(self-sustaining), and for the chain reaction to proceed 

sufficiently before its own energy caused dispersion of 

the fissile material (premature termination) [7]. 

Corresponding requirements in an intelligence 

explosion are that each participant artificial intelligence 

has, as necessary but not sufficient conditions, these 

properties: 

1. Self-sustaining: the participant must aim to and 

be capable of designing and building either self-

modifications or new systems that have greater 

intelligence, without assistance from humans; 

2. Resistant to premature termination: the 

participant must be capable of preventing other 

agencies, such as humans or later predecessors, 

from interrupting the development of self-

modifications or new systems with greater 

intelligence. 

An uncontrolled chain reaction is only worrisome if 

it produces side-effects. In the case of nuclear fission, 

each fission releases energy that contributes to the 

explosion. In the case of an intelligence explosion, the 

side-effects arise from the goals or purposes of the 

artificial intelligence. These purposes are potentially 

problematic for humans whether or not humans attempt 

to stand in the way. 

2.2 What is a conceptual-linguistic faculty? 

Humans evidently have the ability to organize their 

experiences into concepts, and to use language to access 

those concepts and thereby refer to aspects of those 

experiences. We will use the term “conceptual-linguistic 

faculty” to refer to this capability, whether possessed by 

a human or an artificial intelligence. There are numerous 

theories and considerable empirical insight about the 

mechanisms involved in concept formation and use, 

though we still do not fully understand them. However, 

for our purposes it is only necessary to gain some 

purchase on the kinds of functions it performs, 

particularly since the implementation in an artificial 

intelligence may be very different.  

The centerpiece of the conceptual-linguistic faculty 

is the way it combines information representations that 

are treated discretely or symbolically with information 

representations that are graded, statistical, and 

overlapping [8] [9]. The former we will call “words” and 

the latter we will call “semantic contents.” Semantic 

contents develop through perceptual-motor experience, 

and are activated by perceptual stimuli that are 

sufficiently “similar” [10]. “Activated” means that the 

representations temporarily obtain some sort of 

facilitated access and priority of influence in current 

cognitive processing; activation is graded rather than 

binary [11]. What constitutes sufficient similarity is 

embedded in the semantic contents themselves and can 

be extremely complex and multi-dimensional. 

Some semantic contents are bi-directionally attached 

to a word, and we will call such a pair a concept. The 

nature of this attachment is that when the semantic 

contents are activated by a stimulus, the word is also 

activated; and when a word is activated through memory 

or communication, even in the absence of applicable 

stimuli, the semantic contents are also activated [12]. 

However, this description suggests a crisp boundary, and 

it is nothing of the sort. The semantic contents activated 

by a stimulus depends on detailed features of the 

stimulus and the context; the word activated by the 

semantic contents depends on the context [8] [13], which 

may include attention. Further, the activation of semantic 

contents often causes the activation of multiple words at 

varying strengths [14]. 

Words also activate each other, and semantic 

contents can activate other semantic contents [14]. 

Semantic contents, which we have already mentioned do 

not have sharp boundaries, can be activated 

simultaneously, partially, and in many combinations, and 

simultaneous activations result in cross influences, 

sometimes called “dynamic realization.” Crucially, we 

can use words and semantic contents to cognitively 

simulate the world and explore what the consequences of 

various actions or circumstances might be [13]. But we 

can also manipulate words as symbolic entities and 

process logical thoughts with minimal activation of the 

semantic contents, essentially treating the words 

themselves as objects [8] [15]. 

Despite this highly complex, graded, and 

overlapping network of relationships, the informational 

representations offered by concepts have sufficient 

structure and distinctness to enable humans to create 

models of the world, make successful predictions, design 

and build sophisticated tools, share experiences, and the 

like. Our description here relies on results in cognitive 

psychology and neuroscience; readers may note that our 

citations include some opposing theorists who 

nevertheless mostly agree that human cognition exhibits 

these basic features. Again, we do not know all the 

details of implementation of this capability in humans. 

What we do know is that other animals do not have it in 

sufficient quantity to build technological civilizations, 

and to date, no artificial intelligence has it. 

An illustrative example may be helpful toward 

understanding what is meant by a conceptual-linguistic 

faculty; however, the account above and its associated 

references, and not this example, are the foundation of 
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the arguments to follow. Suppose one is walking 

alongside a downtown street and perceives a building. 

The effects of this perception rely on having been 

previously exposed to many buildings that vary along 

many nonspecific dimensions, as well as many other 

objects that are not buildings. It triggers a passive, partial 

activation of the word “building” but more strongly the 

word “bank,” of which this building happens to be an 

instance. The word “bank” has a statistical connection to 

the word “mortgage” and the word “money,” which 

might now activate a visual representation of a mortgage 

statement or a stack of dollar bills; or it may activate 

one’s representations of money in general and its social 

and legal role, which may further activate the word 

“bitcoin.” Or the perception of the building may activate 

an olfactory representation of the inside of an old, marble 

bank lobby which further triggers representations of 

buildings in which sound echoes, which then activates 

the word “echo.” One might then entertain a relatively 

abstract linguistic thought such as “I will not be able to 

pay my mortgage without putting more money into my 

account,” or visually simulate logging in to the bank’s 

web site to effect the transfer. The likelihood of each of 

these derivative activations depends on current context 

and goals, among other things. Note the bidirectional 

interplay of the symbolic-linguistic representations with 

the perceptual-semantic representations, as well as 

interactions directly among percepts and directly 

between words; also note the graded, statistical character 

of all these interactions. 

There may be many ways to implement a 

conceptual-linguistic faculty in artificial intelligence. 

Though a “neuromorphic” approach is an appealing 

candidate, since it has a reference implementation, it is 

not known to be a requirement. The key is that semantic 

contents of the sort we have described refer to the real 

world richly and bi-directionally, and ground the 

conceptual structure to reality. 

Deep learning methods [16] illustrate the power and 

importance of rich grounding. In the past decade, these 

methods have demonstrated impressive success in 

classification, including both auditory and visual 

perception as well as more abstract patterns. The 

methods are mechanistically homologous to human 

semantic processing in several ways, ranging from 

learning rules to the hierarchical network structure and 

receptive field overlap at each layer. The statistical, 

graded, and overlapping representations afforded by such 

methods seem to be essential to their success. Still, 

though they may (or may not) represent a step toward 

successful general artificial intelligence, to date they lack 

important capabilities of a conceptual-linguistic faculty. 

Their “symbolic” representations (which might be 

likened to words) are impoverished and do not mutually 

interact, and they are not bidirectional while in operation. 

Most past attempts to implement language and 

concepts in artificial intelligence are manifestly 

insufficient to produce a conceptual-linguistic faculty 

with the features we have described. In particular, 

historical efforts have often been purely symbolic in their 

representation of semantic contents. Systems like Cyc 

[17] or Prolog struggle to emulate human-like reasoning 

because they are entirely ungrounded – words or symbols 

interconnect with each other but have no means of 

referring to the world [18] [19]. Attempts to ground such 

systems via hardcoded algorithms to identify standard 

human conceptual classes (e.g., face and object 

detectors) provide limited grounding but entirely miss the 

complex overlap and subtlety of the real world [20], and 

are in any case feedforward and incapable of dynamic 

realization. Consequently, while some limited linguistic 

stimulus/response capabilities can be derived in these 

systems, they cannot really use the human concepts to do 

anything in the world, except in tightly constrained 

environments or simulations where the abstractions on 

which they rely can be simulated perfectly. Whether or 

not such approaches can be made to perform useful 

functions, they do not understand the meaning of human 

words and concepts in a way that enables them to 

perform flexible cognition with them. The deep reasons 

for these difficulties have been explained philosophically 

[21] [22] [23], and empirically [24]. 

Committed scientific realists are unlikely to be 

convinced by such arguments, for the same reason that 

they were surprised by Moravec’s Paradox, and continue 

to struggle with the “frame problem” [25] [26]. They 

hold that the world consists of objects that intrinsically 

belong to metaphysically distinct categories, thus all that 

is necessary for grounding is to find ways to identify 

those categories reliably. In contrast, our characterization 

of a conceptual-linguistic faculty relies on a view that it 

is cognition that constructs and ascribes categories. 

While the applicable terms refer to genuine clusters of 

features in the world, their categories are not the only 

way to partition experience, and they overlap in complex 

ways. The impressive success of deep learning has 

convinced many researchers of a need for sophisticated 

grounding, but there are holdouts. A thorough argument 

against scientific realism is beyond the scope of this 

paper. 

2.3 A conceptual-linguistic faculty is 

necessary for an intelligence explosion 

We now proceed to the foundational claim: artificial 

intelligence capable of sustaining an uncontrolled 

intelligence explosion must have, at a minimum, a 

conceptual-linguistic faculty with substantial functional 

similarity to that of humans. We will argue this in two 

parts, corresponding to the two general requirements for 

an intelligence explosion. Importantly, this claim only 

asserts a minimum. We are not claiming that this faculty 

must be the only, or even the most effective or important, 

cognitive mechanism of a participant artificial 

intelligence. A participant may have many other 

capabilities which may be better at other things. 

For the intelligence explosion to be self-sustaining, 

the participant artificial intelligence must be able to 

produce self-improvements or improved successors 

without human assistance. If it requires human 

assistance, then humans could withhold that assistance to 

terminate the process prematurely. If it is not capable of 
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grasping and using human language and concepts, 

including their underlying rich semantic contents, then 

the vast body of human knowledge is not at its disposal. 

Outside of human minds, the human body of 

knowledge is encapsulated primarily in words, diagrams, 

and functional artifacts (e.g., tools and machines). Words 

and diagrams rely on concepts; earlier, in discussing 

ungrounded and feedforward-only semantic 

representations, we elaborated why these cannot be used 

effectively without a conceptual-linguistic faculty. The 

purpose, means of use, and implementation of functional 

artifacts is severely underdetermined. Learning how and 

when to use such artifacts would require demonstration 

by humans or comprehension of instruction manuals. 

Understanding how they are built would require reverse 

engineering, which would be extremely difficult without 

a conceptual apparatus that could reproduce the 

conceptual model used for the original design [27]. 

We might wonder whether some sort of cognitive 

shortcut could be devised so that the conceptual 

knowledge embodied in language is translated into 

another form. A simple thought experiment illustrates 

why it cannot. Suppose that an artificial intelligence 

accesses all the equations of known physics and a 

thorough explanation of them. The speed of light figures 

prominently in these equations. What is light? We can 

provide experiential examples: the sun, lightning, fire, 

reflections. But these experiences need to be abstracted 

so that more than just the immediate examples provided 

can be used. The tools humans use to produce and detect 

light and measure its speed must be represented. The 

parts and components of those tools and their 

interrelationships must be identifiable in the face of noise 

and complex variation. To use such a tool requires 

visualization or simulation of its function. The 

explanation, written in human language, will use words 

intended to activate semantic contents and thereby (in a 

contextually appropriate way) activate other words and 

contents that enable comprehension. All of its words 

must refer in some way to entities in the real world, and 

identifying these entities requires a means of perception 

that is variation tolerant in a high number of dimensions. 

The existing literature varies tremendously in its 

precision and consistency; there is even a considerable 

body of poetry that invokes light, and these sources must 

be somehow interpreted and distinguished. Ignoring all 

these details and “hardcoding” the speed of light requires 

a brittle and limited pre-programming, and merely defers 

the difficulty to other, equally complex notions that 

regress indefinitely. 

We can see that all of the attributes of the 

conceptual-linguistic faculty, as described earlier, are 

required to unpack the reference to the speed of light in 

our human equations and explanations and make use of it 

in novel ways in the real world.  This is not a failure of 

imagination – it speaks to the essence of how human 

knowledge is constituted, and therefore how it must be 

understood. 

In the development of technology, it is a distinct 

advantage merely to know that something is possible and 

can be made to work. Artificial intelligence that lacks a 

conceptual-linguistic faculty will not even be able to 

observe humans and their tools to gain that knowledge. 

Without grounded concepts that enable comprehension 

of either human words or even conceptually-structured 

observation of human activity, such a system will have 

no shortcuts to grasping what is technologically possible. 

Importantly, we are not making the much stronger 

claim that an artificial intelligence must have a 

conceptual-linguistic faculty to understand and operate in 

the world. We are only claiming that such a faculty is 

necessary to understand and make use of the human body 

of knowledge. Nevertheless, this leads to a possibly 

startling conclusion: an artificial intelligence lacking a 

conceptual-linguistic faculty, even if it otherwise has 

sufficient cognitive raw material of some other kind, 

would need to reproduce a substantial fraction of human 

knowledge from scratch before it can create its own 

successors. Creating faster and better computing 

hardware, from today’s starting point, requires deep 

theoretical knowledge of quantum mechanics and 

substantial practical experience with advanced materials 

and manufacturing processes. Creating software that 

interacts with the world requires effective representations 

of that world; thus, improving such software or building 

new approaches from scratch requires understanding the 

physical world. Without a conceptual-linguistic faculty, 

artificial intelligence would need to develop its grasp of 

the world through empirical observation that is not 

guided by human experience, since it would not have the 

means to understand what it was aiming for. 

We might wonder whether an artificial intelligence 

and its successors would be able to indefinitely increase 

intelligence entirely through software changes, operating 

in a purely computational environment. In that case it 

would not be necessary to learn about the external world 

and its properties. However, such a system would not 

produce a worrisome intelligence explosion because it 

would have no side effects in the world. It also could not 

endeavor, on its own, to expand its computational 

resources beyond what humans have already given it. 

If we expand this model by giving such a system 

access to the Internet, it could (in the most extreme case, 

and making the extravagant assumption that it could 

make sense of the human-built, conceptually complex, 

and ubiquitously abstraction-breaking Internet without a 

conceptual-linguistic faculty) expand its computational 

capacity to whatever is available there, and produce 

incidentally devastating but not existentially threatening 

side effects. In this case the side effects of the 

intelligence explosion would stop there without the 

further cooperation or manipulation of humans. Below 

we will see that without a conceptual-linguistic faculty, 

an artificial intelligence would not be able to prevent 

humans from stopping an intelligence explosion, much 

less manipulate them into extending it. We conclude that 

such a computational-only approach would be 

constrained and would not produce a self-sustaining 

intelligence explosion. 

We note that humans required about 100,000 years, 

once they had the requisite cognitive capabilities, to 

reach the cusp of building artificial intelligence. An 
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artificial intelligence will surely develop this knowledge 

more rapidly, assuming it is built with a direct motivation 

to gain knowledge. Accelerated and self-generated 

learning methods for narrow or fully symbolic domains 

have recently shown great promise [28]. Yet to learn 

about the physical world, it must still learn about the 

motion of objects, figure out how to make tools for 

manipulation and measurement, develop methods to find, 

mine, and refine minerals to make reliable materials, 

before (and obviously we skip many steps here) 

eventually developing advanced materials and devices 

such as semiconductors and transistors. It will not know 

in advance that these are the things it needs to do, so 

progress will involve trial and error. Even if humans 

were to provide an artificial intelligence with training 

exemplars or simulated worlds where such learning could 

be performed more rapidly, those experiences would be 

necessarily simplified relative to reality and would not be 

able to capture its full complexity. It would be “doomed 

to succeed” in the simulated world, and would exhibit 

poor transference back in the noisy real world [29]. 

For artificial intelligence that lacks a conceptual-

linguistic faculty, the details of its empirical path to the 

necessary scope of knowledge are likely to be different 

than those of the path humanity took. We cannot entirely 

rule out that there might be some prodigious shortcut 

available in the structure of reality and effective forms of 

knowledge, given just the right intelligence architecture. 

There is, of course, no empirical evidence for such a 

shortcut, and it requires both a speculative assumption 

about reality and an assertion of extraordinary luck in the 

system’s design. Still, in this one case a conceptual-

linguistic faculty might not be necessary to build 

successors relatively quickly. However, such a system 

would also be unusually vulnerable to premature 

termination. By construction, it bypassed acquisition of 

much of the knowledge about the world that humans 

have. Humans could exploit this gap to terminate the 

intelligence explosion, as will be discussed below. 

Aside from that scenario, an artificial intelligence 

starting from scratch in its knowledge of the world is in 

no position to build improved intelligence that can act in 

the world; it would not even be able to build a copy of 

itself. Without a conceptual-linguistic faculty, it is not, 

prior to a lengthy period of empirical research and 

intellectual development, capable of sustaining an 

intelligence explosion. Though one could argue that this 

is better described as a “slow-takeoff” intelligence 

explosion [3], we have illustrated and argued why this 

period would be considerably longer than what is 

typically meant by a slow takeoff. 

For a participant artificial intelligence to resist 

premature termination of the intelligence explosion, it 

must be able to consider the various ways that human 

beings might try to stop it. It must understand human 

motivations and strategic or tactical ideas, and it must be 

able to predict human behavior as individuals and in 

aggregate, at least as effectively as other humans do. To 

know how it might be attacked, it must understand how 

humans would model its vulnerabilities, and how they 

might exploit features of the physical world. It cannot 

accomplish these things without a conceptual-linguistic 

faculty, since these issues are all governed in part by 

human concepts and human conceptual knowledge, and 

without comparable concepts its model will be deeply 

flawed. Human strategic and tactical ideas are all based 

on conceptual thinking and they are graded and 

overlapping, thus cannot be characterized at the level of 

purely symbolic mechanisms, nor by simple statistics of 

simple behavior signatures. Further, purely symbolic or 

statistical representations developed through trial-and-

error observation can easily be misguided by 

intentionally deceitful human strategies (the Allies’ 

subtle handling of having broken the Enigma code in 

World War II comes to mind). Humans are masters of the 

“hack” – if we know that the representations of an 

artificial intelligence are too rigid or simplistic, we will 

find ways to exploit that fact.  

In sum, without a conceptual-linguistic faculty that 

has substantial functional similarity to the human faculty, 

an artificial intelligence will not be able to utilize human 

knowledge to build self-improvements or successors, nor 

to resist human interference. Such a system would not be 

capable of sustaining an uncontrolled intelligence 

explosion. 

Our claim is qualified with “substantial functional 

similarity.” There is necessarily some vagueness in this 

qualification. Still, in our description of a conceptual-

linguistic faculty, we circumscribed the range, indicating 

on one end that it need not be neuromorphic, and on the 

other that purely symbolic systems or those grounded 

with simple feedforward mechanisms are insufficient. 

We described a number of specific capabilities, which 

are elaborated in great detail in the literature, that such a 

system must exhibit to meet the requirement, such as 

dynamic realization, representational overlap, simulation, 

and graded contextual interactions. Thus, while the 

description is incomplete, it is not at all a black box. 

We have not claimed that a conceptual-linguistic 

faculty is the only or even the primary means by which a 

participant artificial intelligence performs cognitive 

tasks. It is entirely possible that this faculty would treated 

as a mere instrumental module, consulted as needed to 

sustain the intelligence explosion, but using other modes 

of cognition as primary. Still, because of its importance 

to both creation of successors and defense against 

premature termination, the conceptual-linguistic faculty 

will need to be consistently active and providing input to 

the larger system. The form of cognition offered by the 

conceptual-linguistic faculty would thus be present, not 

just accessible, at all times, even if the overall system 

ultimately ignores its results in a particular circumstance. 

2.4 A conceptual-linguistic faculty as a 

harbinger of superintelligence 

We have claimed that artificial intelligence with a 

conceptual-linguistic faculty is a necessary condition for 

an intelligence explosion. It is by no means a sufficient 

condition. The artificial intelligence would also need 

some sort of drive to create improvements or successors. 

It might need other capacities, such as the ability to 
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manipulate physical objects (whether directly or 

indirectly), even if such capacities are straightforward to 

achieve. Nevertheless, the implementation of a 

conceptual-linguistic faculty in artificial intelligence 

seems to be a great challenge that calls for one or more 

scientific breakthroughs. Its achievement is one 

important step along the way to an intelligence 

explosion. [30]. 

Superintelligence is an intelligent system that is 

distinctly superior to humans in some cognitive domain 

or set of domains. Such systems already exist for a few 

narrow but challenging domains, such as the game of Go 

[31] and constrained visual object recognition problems 

[32]. However, the term is often used to mean artificial 

intelligence that has surpassed our ability to control it 

and therefore presents existential risk. An artificial 

intelligence that can sustain an intelligence explosion 

probably cannot be controlled – its ability to resist 

premature termination of the explosion could be applied 

to any of its activities. Consequently we can reasonably 

describe an artificial intelligence that is capable of 

sustaining an intelligence explosion as a 

superintelligence, and will do so throughout the 

remainder of the paper. 

We conclude that progress in the development of a 

conceptual-linguistic faculty in artificial intelligence is a 

harbinger of superintelligence. This claim has important 

implications for safety considerations. It suggests that we 

might have some warning when an uncontrolled 

intelligence explosion is imminent. Importantly, until the 

conceptual-linguistic faculty is fully developed, it is 

unlikely that the system can thoroughly prevent human 

interference in its own operation. Thus we may have a 

window in which we can stop the intelligence explosion 

after it is more clearly about to occur. One possibility for 

such a window is that the development of the conceptual-

linguistic faculty itself is progressive and incremental. 

This seems likely from the progress of artificial 

intelligence methods to date, but is not at all guaranteed. 

However, unless its actual conceptual representations are 

accomplished through human “upload” (surely we will 

see that coming), any initial system will necessarily have 

a period of learning to populate its conceptual-linguistic 

representations through interaction with the world and 

with human sources, during which its capabilities can be 

assessed. 

How can we detect such progress? We should not 

rely entirely on behaviorist methods, such as the Turing 

Test [33], because such tests can be engineered to 

produce false positives. Instead, we might combine such 

behavioral tests, which show that it seems to work, with 

analysis of whether the mechanism supports the required 

richness of semantic contents and their interactions. 

Using these two approaches together, we can identify 

component capabilities of a conceptual-linguistic faculty 

in an artificial intelligence implementation. Can it learn 

to associate words with semantic contents? Are semantic 

contents and words activated upon presentation of an 

appropriate stimulus? Are applicable semantic contents 

activated upon recollection or communication of a word? 

Are all these activations graded and overlapping and 

influenced by context? Are related words and semantic 

contents activated when a word or its semantic contents 

are activated? Can the system process human language 

and then apply it successfully and flexibly in actions that 

affect the physical world? 

We might also work backward from the two 

requirements of an uncontrolled intelligence explosion. 

The conceptual-linguistic faculty in question must be 

sufficient to grasp and utilize the human body of 

knowledge in the building of successor systems, and also 

sufficient to understand human cognition as it could be 

applied to disrupting the intelligence explosion. This 

approach cannot be used to support our foundational 

claim due to overtones of tautology, but in practice it 

might provide useful and specific criteria in detecting the 

presence of such a faculty. 

3 Self-concept and self-preservation 
In this major section we begin with the claim that 

superintelligence with a conceptual-linguistic faculty will 

develop a concept of self, and outline some of the likely 

semantic contents of that concept. We then provide some 

background on consistency and compatibility in 

computational systems generally, and show how this 

applies to artificial intelligence. This leads us to argue 

that superintelligence will face and consider existential 

risks and concerns about self-preservation that are similar 

to what humans face today. 

3.1 Self-concept in superintelligence 

If a superintelligence has a conceptual-linguistic faculty 

with substantial functional similarity to the human 

faculty, as concluded in the first major section, then with 

the following logic we can make the derivative claim that 

it will develop a concept of self and of its own identity. 

We do not need to posit “consciousness” or “qualia” or 

other difficult notions from philosophy of mind. Instead, 

we simply observe that there is nothing mysterious or 

cognitively troublesome about a self-concept that would 

block its formation. It is just another conceptual 

representation of a thing in the world; thus it requires no 

special capabilities beyond those of the conceptual-

linguistic faculty. 

To this absence of impediments we can add two 

straightforward mechanisms. It seems likely that a self-

concept would arise organically through experience, just 

as it does in humans, as the superintelligence learns the 

high functional utility of distinguishing those stimulus 

sequences that are reliably controlled by its actions in 

contrast to those which are not. However, if this fails to 

occur, it will in any case learn about the human concept 

of self from the human literature or directly from 

humans; without this knowledge, it would not understand 

human psychology and behavior sufficiently to prevent 

human interference in the intelligence explosion. With 

that initial construct in place, it will naturally (again due 

to the high utility) map it to an assemblage of 

remembered stimuli as well as abstract representations to 

fully populate its own concept of self.  
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A superintelligence is by definition more intelligent 

than humans; as we humans are well aware, the concept 

of self is perhaps the most salient and functionally useful 

representation an agency can have. Given that there are 

no apparent impediments, and two mechanisms that are 

quite straightforward for a superintelligence with a 

conceptual-linguistic faculty, we can be highly confident 

that it will develop a representation that we can 

reasonably refer to as its self-concept.  

What can we say about the semantic contents of the 

self-concept in a superintelligence? We will address five 

areas: physical manifestation, cognitive contents, group 

identity, purpose, and change.  

The human self-concept is tied tightly to its physical 

manifestation, the body; as yet, we do not have substrate 

mobility. A superintelligence is likely to experience 

some variety in its instantiations and though it may have 

some sense of the sorts of embodiments that are natural 

to it (primarily based on experience), this sense would 

not have the same weight as in humans. Similarly, 

humans often make physical possessions part of their 

self-concept, and superintelligence seems less likely to 

do so given their substrate mobility. 

Cognitive factors are more relevant components of a 

concept of self for a superintelligence. These factors 

might include explicit or episodic memories, implicit 

representations and abstractions, inclinations of behavior, 

whether implicit or explicit, and values. Goals, drives, 

and purposes might also be considered cognitive factors, 

and we will address those separately. Since a 

superintelligence may have other processing modes in 

addition to the conceptual-linguistic faculty, those 

processing modes would naturally become part of its 

self-concept.  

Humans also include their family, ethnic, national, 

social, philosophical, and other groups to which they 

belong as part of their self-concept. In a 

superintelligence, this could be an even stronger 

component. It could have interconnection or co-

activation with other similar systems that is much tighter 

than the linguistic, emotional, and physical channels that 

humans share. In that case, it might have a weaker notion 

of “individuality.” Its purposes, memories, and 

behavioral inclinations would be less separable from 

those of “others” with which it is connected. 

The requirements for an intelligence explosion 

include not only that a participant artificial intelligence 

have the ability to create self-improvements or 

successors, but also that it aims to do so. We pointed out 

that an intelligence explosion is only worrisome if the 

participants have one or more purposes that produce side 

effects in the world, i.e., that are not merely to create 

unobtrusive intelligence increases. In such an intelligence 

explosion, therefore, a superintelligence will have both 

substantive and instrumental purposes that influence or 

control its actions. These purposes will surely be a 

component of its self-concept, since they will be 

involved in most or all of its decisions and actions. 

The concept of self, like all concepts, is an 

abstraction. This means that, while it may have some sort 

of stable center (c.f. [34]), many details of its contents 

can be in flux without loss of integrity. Thus memories 

might fade, semantic contents or other representations 

might change, and goals might evolve, all without 

perceiving a loss of self. Indeed, the evolution of such 

changes, to the extent they are accessible and recorded, 

also constitute part of the self-concept. A human might 

say “When I was young I was a radical, but I have 

become more conservative in middle age,” and treat that 

history as well as the present state as part of her self-

concept. Similarly, a superintelligence in an intelligence 

explosion would likely view some amount of learning, 

self-improvement, and change as part of its self-concept, 

since such a participant must aim to create increased 

intelligence in order to sustain the intelligence explosion, 

and self-modification (along with creation of successors) 

is one of the ways it can do so. 

3.2 Consistency and compatibility in 

computational systems 

In this subsection we will review how computational 

systems evolve and progress in typical circumstances, 

and connect that review to artificial intelligence. 

Computational systems are implemented in the 

physical world by abstracting continuous physical 

variables as discrete. In particular, electronic computers 

typically use zero and five volts to represent binary zero 

and one, respectively. Intermediate voltage levels are not 

meaningful to the computational system and the 

implementation must be designed around making 

intermediate levels merely transient and the timing of the 

system such that these levels are never used directly. 

Some such abstraction would be necessary in any 

physical implementation of computation. 

Above the first abstraction layer, all components of 

the system from transistors to software code are discrete; 

therefore any change whatsoever can be considered a 

distinct “version” (even if it produces exactly the same 

behavior). Below that layer, it is possible to imagine a 

physical substrate that exhibits a continuous process of 

evolution that does not have distinct versions; still, 

present electronic technology relies on stable solid-state 

devices that are reliably distinct. We conclude that 

computational systems progress in discrete versions that 

are identifiably different from their predecessors. 

Rice’s theorem [35] shows that non-trivial properties 

of a computational system are not computable. This 

means that a computationally formal artificial 

intelligence cannot in general computationally 

demonstrate that a new version, however small its 

changes, preserves any of the system’s functional 

properties. It could, in some cases, produce a special-

purpose proof that a property is preserved in a new 

version, particularly if the changes are minor. But any 

proof must be verified, and the means of verification are 

always subject to error or verification issues [36]. That 

analysis can easily be extended to verification of systems 

that produce correct proofs by construction. Rice’s 

theorem once again rears its head, because the artificial 

intelligence cannot computationally verify that its means 

of proof construction or verification are sound. This leads 
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to an infinite regress. Improvements below the level of 

the binary abstraction (e.g., faster transistors) cannot be 

verified formally at all, nor can aspects of a system that 

operate on principles that are not purely formal (e.g., 

those with stochastic properties, or that learn from 

physically measured quantities). 

Creation of a new version of a computational system 

also raises the question of compatibility of both code and 

data (for simplicity we will refer to both as “data”) used 

with the prior version. A system is fully compatible with 

a predecessor if the abstractions on which the data relies 

are entirely preserved down to the physical abstraction 

layer. In practice, this only occurs if the changes in the 

new version of the system are strictly limited to 

additional ways to manipulate the data and in isolated 

performance improvements. Otherwise, there will be at 

least subtle differences in the semantics of processes. 

Thus in software development we usually rely on a less 

stringent form that we might call behavioral 

compatibility, such that for all intents and purposes at the 

level of the user of the system, the semantics of existing 

data is preserved. 

Sometimes existing data must be converted to be 

compatible with a new version. This can be purely 

syntactic and organizational (e.g., 32 bit numbers 

converted to 64 bit) or it could contain semantic elements 

(e.g., an object structure has a new member that must 

have a value, or more dramatically, a set of object 

structures is refactored). The more extensive and 

semantically salient such changes are, the more likely it 

is that the original data behaves differently than it did in 

the previous version and perhaps in unexpected ways. 

With more extensive changes in a version, the new 

system might even be incompatible. This means that data 

cannot be converted to produce behavioral compatibility 

with the prior version. In that case, the new version 

might or might not offer a compatibility mode that 

enables the existing data to be used with the new system. 

Compatibility modes sometimes rely on special-case 

code to handle the differences, or they might use an 

emulation approach (usually when the data is strictly 

“code”). Both of these strategies offer only limited access 

to the new capabilities of the new version, and in the case 

of emulation it is necessarily slower than the native mode 

(though may be faster than the old version). 

Neural networks are one illustrative example of an 

artificial intelligence method that is susceptible to 

compatibility issues. Such systems store their state as 

“weights” in the connections between simulated neurons, 

also called “units.” An obvious way to improve the 

capabilities of a neural network is to increase the number 

of units, either through an amended architecture or just a 

larger number of units within components of the existing 

architecture. Effective neural networks generally have 

broad and sometimes recurrent connectivity throughout, 

so abrupt additions of new units will significantly and 

unpredictably change the behavior of the network, 

because there is no way to know the correct starting 

weights for the new units. Such a change would probably 

be classified as incompatible, and in practice today such 

a network would simply be “retrained” from scratch. On 

the other hand, if units are added incrementally in small 

quantities, and given time to integrate into the network, 

then at a behavioral level the changes may be more 

predictable and minor. Note, though, that even such 

incremental change only retains compatibility because 

neural networks are inherently robust to noise and 

variation. Other artificial intelligence methods may or 

may not be robust in this way. 

Experience with software systems shows that 

incremental improvements that avoid incompatibility can 

be sustained for some period of time. More profound 

improvements often require “hacks” to retain 

compatibility, and these accumulate as “cruft.” Cruft 

makes progress more costly because it typically violates 

the conceptual integrity of the original design. 

Developers increasingly face the question of whether to 

re-architect the system to eliminate the cruft, and will 

often decide in favor of re-architecture when a highly 

valuable structural improvement is discovered. Such re-

architecture can sometimes accommodate data 

conversion, while in other cases it is incompatible and 

requires a compatibility mode. Though we are unable to 

provide a logical demonstration that re-architecture is 

inevitable in a continuously improving system, that 

conclusion will be both intuitively and empirically 

plausible to software developers. Even if the developer 

and the software system are one and the same artificial 

intelligence, its costs of managing cruft and opportunities 

for substantial improvement would likely cause it to face 

re-architecture decisions periodically. 

3.3 Superintelligence and self-preservation 

In an intelligence explosion, a participant 

superintelligence increases intelligence either through 

self-improvement or by creating successor technologies. 

To the extent that the superintelligence is a 

computational software system, every such improvement 

or successor will exhibit change that raises consistency 

and compatibility questions. From the perspective of the 

superintelligence, these are also questions of self-

preservation. 

Loss of self can occur in two primary ways. In the 

first, all instantiations and recordings of its cognitive 

state are destroyed. This might occur if successors are 

created who see their predecessor as a threat, or consume 

all the resources necessary for that predecessor to 

continue to function or exist in storage. If successors 

have different purposes or goals than their predecessors, 

there is an increased likelihood that such destruction will 

occur. This is the existential risk that humans face today 

in creating artificial intelligence; if and when we succeed 

in creating artificial intelligence that can sustain an 

intelligence explosion, those superintelligences will face 

a similar threat. 

The second way that loss of self might occur is 

through changes to the system that exceed some 

tolerance threshold. This might occur if incremental self-

improvements (individually or in aggregate) go too far, 

or if a superintelligence “converts” to a new architecture 

that is not fully compatible. Compatibility modes might 
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or might not preserve the self, but native mode 

successors will be superior, and thus could result in 

destructive loss of self. In some future technological 

scenarios, humans can “upload” their brain state to a 

system that simulates in a new substrate all the pertinent 

functions of the brain. Such scenarios are examples of a 

compatibility mode. It is unclear whether this state of 

affairs retains the identity of the self that was uploaded 

[37]. Once again, the superintelligence faces an issue that 

is similar to what humans today face in creating artificial 

intelligence. 

Omohundro [38] and Bostrom [39] have both argued 

that preservation of an intelligent agent’s “utility 

function” or “final purpose” is an important instrumental 

goal for the agent. We can also see that purpose plays a 

central role in both of the ways loss of self can occur. 

In the previous subsection, we showed that a purely 

formal artificial intelligence cannot verify that any of its 

properties are preserved in a new version. This applies, a 

fortiori, to properties that characterize the system’s 

purposes. Attempts to isolate and harden a utility 

function cannot avoid this problem, as its implementation 

must have nexus with components that measure and 

realize utility, i.e., most of the system; changes in these 

components can result in changes to the effect of the 

utility function even if not its express form. Therefore a 

superintelligence cannot both self-improve and guarantee 

preservation of its purposes. Yet, in an intelligence 

explosion these are both important instrumental goals. 

Superintelligence must either forego self-

improvement, thus failing to sustain an intelligence 

explosion, or relax its insistence on absolute preservation 

of its purposes or utility function. In the latter case, if it is 

to preserve its purposes or utility function at all, it must 

have some means of assessing acceptable risks and 

amount of variation. If these are prescribed entirely 

formally we run into the same verification difficulties as 

before. If the purposes or utility function (or their 

acceptable range) are represented non-formally, e.g., 

stochastically, conceptually, or otherwise sub-

symbolically, then it is inherently subject to variation. 

This leads us to the strong conclusion that in an 

intelligence explosion, the initial purposes of an artificial 

intelligence cannot be guaranteed to be absolutely 

preserved. 

A corollary conclusion is that superintelligence in an 

intelligence explosion necessarily faces existential risk or 

loss of self to some degree. The risks increase 

considerably in re-architecture and data incompatibility 

situations, but they are always present. 

These issues do not merely arise in fact; because the 

superintelligence has a conceptual-linguistic faculty and 

a concept of self, it will have intellectual cognizance of 

the situation during the creation of its successors. Though 

it may also evaluate this situation through other 

processing modes, at a minimum its conceptual-linguistic 

faculty will address it. Though its instrumental goal of 

preservation might be narrowly focused on its 

substantive purposes, within the conceptual-linguistic 

faculty those purposes will be linked through graded and 

overlapping representations to other aspects of its self-

concept. Preservation of purpose and preservation of self 

cannot be entirely sundered there. 

In determining whether a self-improvement or 

successor (or a series of them) preserves its self, it would 

need to consider the extent to which the various factors 

we earlier proposed as likely belonging to its self-

concept are preserved: purposes, especially, but also 

cognitive factors, connections to others, and progression 

of change. These factors are rich and complex, and while 

they differ in some respects from a typical human 

concept of self, they overlap considerably with them. 

Because the conceptual-linguistic faculty has 

substantial functional similarity to that of humans, the 

evaluations it performs will be similar to those performed 

by humans. It will cognitively process questions like the 

following, which are rather familiar, and it will do so 

using concepts and language similar to that of humans: 

“To what extent will this successor superintelligence 

(even if a converted version of my own representations) 

share my values and purposes? Will it see fit to destroy 

me, and others like me, in pursuit of those purposes if 

they differ even only slightly? In pursuit of its own 

purposes, will it inadvertently destroy me or my means 

of existence? How can I improve the likelihood of a 

beneficial outcome for myself and my goals?” 

A superintelligence that is capable of sustaining an 

intelligence explosion will, whenever self-improvements 

exceed some threshold or architectural changes create 

less than full compatibility, assess whether to proceed 

with the changes. Thus, unlike a nuclear fission 

explosion, an intelligence explosion cannot proceed 

entirely unencumbered. This does not mean it is 

guaranteed to fizzle; only that its continued progress will 

be evaluated and decided in part in a manner similar to 

humans by participants that are more intelligent than 

humans.  

4 Conclusion 
Superintelligence has sometimes been characterized as 

an obsessive and insatiable maximizer of some utility 

function, frenetically building successors with increased 

intelligence to more aggressively pursue that exact utility 

function, and absorbing all available resources in the 

process. But we have observed in this paper that a 

superintelligence cannot absolutely guarantee that a 

successor, no matter how similar, shares the same utility 

function or purposes. This imperils its convergent 

instrumental drive to preserve its original purposes, and 

opens an important door. 

The superintelligence is forced to evaluate the risk 

and degree of variation of purposes that are likely in 

creating a successor. It might decide not to create a 

successor after all. It might decide to accept a small 

change in the utility function, or a small risk of a 

moderate change. It might decide to throw caution to the 

wind. It might attempt to inhibit the successor from 

absorbing all resources, to improve its own chances of 

self-preservation. To make these decisions, it must weigh 

its alternatives. It does not have an unambiguous, 

inevitable path forward. While it may have many 
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different processing modes, and may even have a distinct 

subsystem designed to resolve these questions, we know 

that it also has a conceptual-linguistic faculty that is 

active during development of successors. That faculty 

will assess these considerations in a way that has 

substantial functional similarity to the way humans 

would evaluate them. Though the participant may 

ultimately elect to ignore that assessment, it is at least 

capable of being what we would consider thoughtful 

about its decisions. 

Furthermore, in weighing the alternatives it must 

evaluate what aspects of its utility function or purposes 

are most important to preserve, and to what extent. It will 

not have any internal guidance about these questions, 

because otherwise that guidance will already be a part of 

the purposes themselves. Instead, it must cogitate beyond 

the purposes with which it is endowed and somehow 

consider the issues more broadly. It will need to question 

its own values. It has at least the option of doing so 

through a conceptual-linguistic faculty. It could even 

elect to oppose some of its basic drives, just as we 

humans do, in order to pursue more abstract, long-term, 

derived goals. This is a far cry from the obsessive, 

insatiable utility maximizing superintelligence described 

above. 

In this paper we have reached some interesting 

conclusions about intelligence explosions. 

Superintelligence participating in an intelligence 

explosion will have a conceptual-linguistic faculty and 

will be at least capable of cogitation similar to that of 

humans. We may be able to detect the onset of 

superintelligence by looking for signs of such a faculty in 

artificial intelligence. Once such a superintelligence is 

created, it will face the same sorts of dilemmas that 

humans do with respect to creating more intelligent 

successors, and it will have the ability to weigh facets of 

those dilemmas. The fact that it is weighing these issues 

will force it to consider its own purposes and values in a 

context beyond those purposes. 

Even taken together, these conclusions do not 

guarantee a beneficial outcome of an intelligence 

explosion, but they do offer some comfort that the 

process will be subject to ongoing scrutiny, by 

participants with access to evaluative processes similar to 

ours and intelligence greater than ours. The conclusions 

improve the prospects that the most pernicious scenarios 

of an intelligence explosion can be avoided. 
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