
https://doi.org/10.31449/inf.v43i2.1823 Informatica 43 (2019) 243–252 243

Physical Match

Aaron E. Naiman, Eliav Farber and Yossi Stein
Department of Applied Mathematics, Jerusalem College of Technology-Machon Lev, Jerusalem, Israel
E-mail: naiman@jct.ac.il

Keywords: physical match, curve matching, pattern recognition, edge pixels, image processing, curve fitting, cyclic,
longest common subsequence

Received: September 13, 2017

We present an approach to solving the problem of “physical match,” i.e., reconnecting back together broken
or ripped pieces of material. Our method involves correlating the jagged edges of the pieces, using a
modified version of the longest common subsequence algorithm.

Povzetek: Predstavljena je izvirna metoda sestavljanja razbitih fizičnih predmetov.

1 Introduction

The problem of “physical match” spans many different ap-
plications, from whimsical (jigsaw) puzzle solving [9, 19,
20], to 3-D archeology [17, 14, 7, 6] (sometimes utilizing
a priori shape knowledge, or rotational symmetry), to the
forensic sciences [15, 16]. In the present paper we restrict
ourselves to the 2-D problem, and the particular aspects of
one-dimensional border which one can take advantage of,
for this flat case, but not resorting to the rich information of
3-D surface-to-surface matching. Therefore, given a single
piece of material, be it paper, clothing, glass, etc., once it is
ripped or broken into many pieces, the challenge is to piece
back together the parts, to the original shape.

Sometimes one can take advantage of text [18], color
[9], orientation (e.g., lined paper), images [20, 10, 4], spe-
cific shapes (e.g., machine-shredded paper [18], or the jig-
saw puzzle problem [19]) and/or texture. A survey of such
methods can be found in [8]. We are making none of these
assumptions, and therefore matching via shape alone.

Some approach this problem with gross polygon approx-
imations of the pieces [1], whereas others solve with a mul-
tiscale of resolutions [3]. Our method is based on cor-
relating the changes of direction along the edges of the
pieces. In [21], the same information is used, however,
whereas they build histograms of these changes of direc-
tion, we compare them directly, retaining their order, as
described below. Finally, [16] present statistical findings
(for the plausibility of the Daubert ruling in the court of
law) for three different types of material. Our analysis is
for generic materials, and we concentrate more on the al-
gorithms involved.

2 Background and problem

We have chosen to, at least initially, model the pieces on
the computer, rather than work with actually torn material.
The reason for this is in order to steer away from possi-

ble parameter fixing based on a few physical cases, and
instead deriving statistics and parameter values, based on
thousands of computer-modeled Monte-Carlo simulations.

In order to accurately match along the edges of the
pieces, we start by scanning in the pieces to determine
the location of all of the edges. This has to be done with
enough resolution to pick up the unique characteristics of
each segment of the edge, and minimize the effects of the
jagged nature of digitization of the edge pixel positions. On
the other hand, the resolution cannot be too high, lest the
computations be inordinately expensive.

Once the edges have been located, the edge slopes have
to be calculated in such a fashion so that they can be com-
pared to each other. The slope calculations require an or-
dering of the pixels, which is accomplished together with
the previous step of locating the edge pixels. This is done
for all of the edges of all of the pieces. Since the pieces
have been translated and rotated with respect to each other,
we actually stored away in arrays, one for each piece, the
invariant changes in direction along the edge. This we are
able to accomplish, as we “travel” along the edges (ex-
plained below), recording the rotations.

After the edges have been characterized, the core of our
system is to find where the turns of the edges of separate
pieces correctly match up. We use a modified version of
the longest common subsequence (LCS) algorithm [5], ad-
justed to be appropriate for problems where the starting
points of the sequences are not known.

Finally, the last step is to calculate from the matching
turns, where exactly to “sew” the pieces back together. This
stage requires further filtering of the matching algorithm, to
dispose of spurious matches along the edges.

To summarize, the following algorithms are needed for
us to model and verify our physical match system:

1) modeling original, non-trivial pieces of material, and
breaking them further into pieces,

2) accurately scanning in the (edges of) the pieces, at the



244 Informatica 43 (2019) 243–252 A.E. Naiman et al.

required resolution, to locate and order the edge pix-
els,

3) calculating the edge slopes,

4) correlating the edge slope deviations to find the cor-
rect matches and

5) sewing the pieces back together.

3 Modeling random-shaped pieces
and breaking them

For simplicity’s sake, we start with pieces which are basi-
cally circular in shape, but we perturb the edge to obtain a
polygon. Beginning with a center, we randomly choose
a sequence of angles, as well as radii, ranging between
two given extrema. These points are then connected with
straight lines to obtain the polygon. See an example of this
in Figure 1. A less-simple shape would be to connect the
same points with splines, as seen in Figure 2. The ramifi-

Figure 1: Polygonal edge

Figure 2: Spline edge

cations of such a shape on the subsequent algorithms, will
be the subject of future analysis.

Given polygon, we must now simulate “breaking” it into
smaller pieces. Starting at an interior point, we proceed in
a straight line, randomizing both the direction and length
of the step. This is repeated until a step exits the polygon,
as seen in Figure 3. Continuing in the opposite direction,
we can create the entire crack, defining our two sub-pieces,
as in Figure 4.

Figure 3: Break exiting polygon

Figure 4: Two pieces

Treating each sub-piece separately, we can now recurse,
breaking each piece further and further. Examples of 3
pieces and 100 pieces are shown in Figures 5 and 6.

When determining the values of the extrema, both for
the random direction and the random length of the step we
take, it is important to generate a break with similar “turn”
characteristics to the original polygon edge.

The reason for this is the following. While it is true
that, e.g., for a simply-shaped piece of material, the break
may actually generate a different kind of edge, we are look-
ing for a worst-case scenario, where we cannot easily tell
where the ripped part is, and where the original polygonal
edge is. Two counterexamples can be seen in Figures 7 and
8.

We note that calculating when the break “leaves” the
piece, in not trivial. We cannot simply check whether the
final end of the current “step” segment falls out of the poly-



Physical Match Informatica 43 (2019) 243–252 245

Figure 5: Three pieces

Figure 6: One hundred pieces

gon, as is the case on the left hand side of Figure 9. This
is because the segment may actually leave the polygon, but
subsequently return back into it, as in the right hand side of
the same figure.

We therefore check at each step of the break, whether
the new step segment intersects any part of the edge of the
polygon. If it does, we set the end of the break at the inter-
section point.

Finally, future analysis will study possibilities where the
break is also generated with splines.

With the pieces now “virtually” created, we are ready to
start our analysis. We will now discuss the rasterization of
the images, in order to simulate their being scanned “back”
into the computer, for running our physical match system.

4 Image scanning and edge pixel
ordering

In real life, the entire process starts here, from scanning the
pieces into the computer. At this point, a mesh of pixels
representing each piece is available, with each pixel signi-
fies where the piece is, or is not. For our analysis, this is
a best-case segmentation of the material (not always eas-

Figure 7: Complex break

Figure 8: Simpler break

Figure 9: Breaking out of piece

ily obtainable), into foreground (where the material is) and
background (where it is not). The next step is to discover
which the edge pixels are, and to determine an ordering of
them, for subsequent edge slope calculations.

In the model we built in the previous section, the situa-
tion is slightly different. There we already have a polygon
defined, and we need to determine which of the pixels are
edge pixels, as well as a proper ordering for them. To best
simulate real life, we first rotate and translate each piece, as
well as randomly choose whether or not to flip each piece
over.

A standard method for detecting the edge, is found in
[2]. The authors report in [13] a new, quick method for
determining the edge (and interior) pixels of a polygon, for
a large number of pixels. This is important for our problem,
since with a high enough resolution of scanning (clearly
effected by the smoothness of the curves, and in order to



246 Informatica 43 (2019) 243–252 A.E. Naiman et al.

avoid the need for smoothing and resampling), the number
of pixels to check easily enters the tens of millions.

They present two methods for determining which pix-
els are interior, exterior or on the edge of a polygon.
Both methods approach the problem by performing tests
along the shape perimeter, differing in memory intensity
and generalizability. Along with the complexity analysis,
they show that a combination of the two methods, with a
crossover from the first algorithm to the second, based on
the number of pixels at each step (along a specific edge),
works the best.

In addition, their method provides an ordering of the
edge pixels, facilitating our subsequent necessary edge
slope calculations. In this paper we take advantage of the
edge pixel discovery and ordering.

5 Edge slope calculations
Given an ordering of edge pixels, we now need to calculate
the edge slope at each pixel. This will subsequently be
used for calculating the edge slope differences, needed for
matching between pieces.

While an accurate edge slope calculation would be suffi-
cient, it is not necessary. We need an approximation of the
edge slope which will be both reproducible, and invariant
(to a given degree of tolerance) under rotation and transla-
tion. With this characterization, we will be able to match
the (changes of) slope of two different pieces, regardless of
translation and rotation.

The authors demonstrate in [12] that the method of a
linear least squares (LLS) fit to a parabola, accurately
calculates this reproducable, rotation- and translation-
independent characterization of the edge slope. (LLS fits
to other orders of polynomials, were shown to be inferior.)
Note that care needs to be taken so that the initial scanning
supplies a high enough resolution. This will enable enough
points to be supplied to the LLS fit so that no more than
one “turn” will be present in each set of points. (The de-
gree to which a “turn” is rendered significant, as well as
the number of points per turn, are empirically derived in
that paper.)

As they describe, the problem is not trivial, due to the el-
ement of rotation-invariance, where in the local neighbor-
hood, a very different set of pixels represents the same edge
segment. Nonetheless, after implementing their method,
we have for each piece an array of edge slope values, one
value for each edge pixel.

6 Matching edges
The matching between pieces is done on a one-to-one basis.
That is, each of the pieces is compared with every other
piece, in order to determine the best match.

Since the pieces are rotated vis-à-vis each other, there is
no reason to find matches between edge slope values. How-
ever, the changes in edge slope are invariant to rotation. As

described above, we have therefore stored away arrays of
adjacent differences in edge slope values.

The basic method used for matching any two arrays
which we have generated, is the longest common subse-
quence (LCS) algorithm. Since we are comparing real-
valued numbers, we are not looking for exact matches, but
numbers with are close enough. (In Section 8.2 we dis-
cuss values to quantify this closeness.) However, prior to
applying the algorithm, we need to state a few geometric
considerations.

6.1 Filtering out straight lines
Long stretches of edges might be straight lines (as in our
case) or nearly straight lines. Therefore, the edge slope
values for many adjacent edge pixels may be nearly equal,
and their differences will be zero or close to it.

While these straight edge segments can represent impor-
tant information, our current algorithm matches based on
changes in edge slope directions. Therefore, with all of
these zeros left in the arrays, too much “straight-edge” in-
formation will match, not uncovering the underlying turn-
information.

Deleting all such zeros removes too much information,
and therefore our current algorithm replaces multiple adja-
cent zeros with a single zero, as a place marker stating that
there was a straight stretch of edge here.

Whereas one might think that quantitative information is
lost here, since no length of the straight edges is retained,
nonetheless cases of unequal length will properly be fil-
tered out later on, when the pieces are attempted to be sewn
together (Section 7).

6.2 Relative orientation
If the edge values of one piece are ordered in the exact op-
posite direction with respect to the other piece, then the
changes in edge slope values of one piece are the negative
values of the other piece, in addition to being in the oppo-
site order.

For example, the edge on the left hand side of Figure 10
shows moving from one edge pixel to the next one is a 90◦

Figure 10: Pixels in reverse direction

turn to the left, followed by a 30◦ turn to the right—or a
−30◦ turn. If the matching piece (on the right hand side of
the figure) is ordered in reverse, this comes to a 30◦ turn,
and then −90◦ one.



Physical Match Informatica 43 (2019) 243–252 247

Similarly, if one piece is flipped over as compared to the
other piece, then the values will be either in the opposite
order (−30◦, 90◦), as in Figure 11, or with reversed signs

Figure 11: Flipped piece with opposite order

(90◦, −30◦), as seen in Figure 12.

Figure 12: Flipped piece with reversed signs

Therefore, we need to compare the two array in four dif-
ferent fashions:

1) as is,

2) with one of the arrays reversed,

3) with one of the arrays with opposite signs and

4) with one of the arrays reversed and with opposite
signs.

6.3 Cyclic correlation

Recall that each array represents the changes of edge slope
values for the perimeter of a given piece. Since we ran-
domly choose where along an edge to start the array, we do
not know where a matching segment is for any two pieces.
It could be that the match is in the middle of array A, but
for array B, it is at the end of the array, and finishes subse-
quently back around at the beginning of the array.

The authors in [11] deal with this issue at length and
demonstrate that initially four LCS algorithm invocations
are necessary:

1) as is,

2) with one array rotated by 50%,

3) with the other array rotated by 50% and

4) with both arrays rotated by 50%.

(Rotating the array amounts to choosing a different start-
ing point along the piece’s edge.) Padding the array with
the same content was avoided, in order to avoid possible
spurious artifacts.

Note that these four possibilities are in addition to the
four permutations mentioned previously in Section 6.2,
with reversed arrays and negative values. Therefore, the
composite set of possibilities includes a total of 16 pos-
sibilities. The best LCS (of the 16) is found, and then if
deemed necessary, one or both arrays are reversed, sign-
changed and 50% rotated.

In the same paper, the authors show that once the best
LCS (so far) is found, and after performing a centering
technique they devised, an additional invocation of the LCS
algorithm is necessary to extract the LCS. They establish
that for cases where the LCS in the two sequences are
known to be clustered within the sequences, this final cen-
tering and subsequent LCS algorithm step provide optimal
LCS results.

Our problem indeed exhibits this clustering behavior, as
two pieces generally match along the adjacent side, and not
all the way around. (A degenerate case is when one piece
sits totally within another.)

With the two LCSs lined up and centered within their
sequences, we are ready to proceed with the final stage of
“reconnecting” the two pieces back together.

7 Sewing edges
As was noted in the previous section, a final invocation of
the LCS algorithm was used in order to extract an LCS
as long as possible. However, even with optimal results
of obtaining the entire, appropriate LCS, we still need to
concern ourselves with spurious, random matches which
may enter the LCS.

7.1 Filtering random matches
Consider Figure 13. We see that although we have a good

Figure 13: With spurious matches - both sides

match overall, if we are to consider the extra, spurious cir-
cled matches which are outside of our match, this might se-
riously degrade our subsequent calculations for reconnect-
ing the pieces.

Note that random matches can occur within the LCS
spans as well, although they would less effect the “sewing”
process (described below), since in general they are geo-
metrically closer to each other.



248 Informatica 43 (2019) 243–252 A.E. Naiman et al.

To dispose of the circled mis-matches, we return to the
centering process mentioned in the previous section, re-
garding the final LCS algorithm invocation. We reuse
this center to throw our support behind the 20–30% of the
matches which are closest to the center, and discard the re-
maining matches.

Note as well, that the LCS algorithm only “rewards” for
matches, and does not penalize for mismatches. These
mismatches are possibly due to missing material along a
matching edge, leading to intervening unmatching pairs.
If the type of the material and/or situation are such that
worn or missing pieces are unlikely, then penalties for mis-
matches can be considered as well.

7.2 Moving and rotating
We must first move the two pieces next to each other, in
order to enable the final stitching. For simplicity’s sake,
we assume one piece to be stationary, and the other will
be matched up to it. Since this second piece is both trans-
lated away, and rotated from the first piece, the following
maneuver will return its coordinates [x y]

T to their correct
locations:(

cosα sinα
− sinα cosα

)(
x
y

)
+

(
∆x
∆y

)
The challenge, therefore, is to find the optimal values of α,
∆x and ∆y, to juxtapose the two pieces.

Even though we have already established our matching
positions within the arrays, along with their (x, y) coor-
dinates, we acknowledge sources of initial measurement
errors in the scanning, as well as possible internal mis-
matches, mentioned above. We therefore use a nonlinear
least squares (LSQ) solver (in MATLAB: lsqnonlin)
to find the triad of values which minimizes the sum of
the square distances between our remaining LCS matches.
Note: as many nonlinear solvers require, we initially seed
the solver with a seat-of-the-pants approximation given the
geometry and any three matching pairs. Also, it was cru-
cial to adjust the maximum number of iterations allowed
(in MATLAB: MaxIter) and the termination tolerance on
x (MATLAB: TolX) in order to converge properly to the
desired results.

7.3 Micro-stitching
With our two pieces lined up next to each other, we have
the situation shown in Figure 14. We need to find the en-
tire “seam” in order to properly stitch the two pieces to-
gether. A proper stitching is crucial for the success of fur-
ther matching to more pieces. Note that now we would like
to find the most number of pixels which can be considered
part of the seam, with the remaining pixels comprising the
edge of the combined piece. Therefore, matching between
pixels of the two pieces:

1) entails geometric proximity, instead of matching
slopes as before, and

Figure 14: Pre-stitch

2) is done for all of the candidate pixels along the seam,
and not only the LCS matches.

Starting from the LCS center, the algorithm proceeds in
both directions along the seam, by adding the closest pixels
(to each other) from the two pieces, as long as their distance
is 0.4 of the average mean distance (calculated earlier in
the nonlinear least squares procedure). We allow skipping
pixels, as long as subsequent ones are part of the seam.
When we hit three consecutive pairs which are too far apart,
we consider the seam ended (in that direction). Note that
the 0.4 value and the count of three consecutive pairs, were
empirically derived.

7.4 Goodness of fit
Due to the digitized nature of the problem, we need metrics
to measure the quality of the matches. The minimized sum
squared error calculated to translate and rotate the pieces
gives us one measure, but that was prior to the stitching.

We therefore measure the overlap between the two
pieces, as well as gaps which may have been uncovered.
See, e.g., in Figure 15, where the dark gray area near the

Figure 15: Overlap and gap

top shows us the overlap, and the thin light gray strip to-
wards the bottom—where neither piece covers.

One way to quantify these values is to rescan the entire
stitched area of the union of the two pieces. However, this
process takes quite a bit of computation time, and is not
necessary. Instead, we take a much quicker approach by
analyzing the seam only. Starting at one end, we travel
along the two edges, calculating where there are crossovers
between the two pieces. At these points, we go from over-
laps to gaps, or vice versa; we sum each of these separately.

There is one case where an entire scan of the union of the
two pieces is helpful—and necessary. On the left hand side



Physical Match Informatica 43 (2019) 243–252 249

of Figure 16 we see that although our eyes solve the prob-

Figure 16: Reconfigurable pieces

lem easily, moving the two pieces together, another pos-
sibility can be seen as well, on the right hand side of the
figure. Note that the latter possibility suffers no overlaps or
gaps, along the seam.

Clearly this is not the desired result. We therefore run a
quick, low-resolution scan of the union of the two pieces,
discarding this possibility by comparing the total area be-
fore and after stitching. Note that one cannot decide on
a consistent ordering of the edge pixels based on concav-
ity/convexity of the pieces, as even along matching edges,
part of the shared edge might be concave, and part convex.

One final measure of fit, is the length of the seam. This
is needed, as, e.g., if two pieces meet at just one point,
then the sum squared error will be zero, there will be no
overlap nor gap areas, and the area of the union will be
exactly equal to the sum of the individual areas. However,
the seam length will be zero too, indicating that no match
at all occurred.

The gross overlap demonstrated in Figure 16, and the
extremely short length of the seam, are not used statistically
with the first two metrics, i.e., the lengths of overlaps and
gaps. These last two measures of fit used in a binary fashion
to throw away possible matches.

8 Results
We present here some sample cases, together with
empirically-drawn heuristics regarding system parameter
values.

8.1 More than two pieces
When we start with more than two pieces, we compare ev-
ery piece to every other one. We take the “greedy” ap-
proach of choosing the candidate pairs which maximize
the number of possible “sewings,” for this round of the
physical match. Others [10, 4] approach this by building
graphs of matches, subsequently redivided into subgraphs
by spectral clustering.) E.g., if the following pairs have
been discovered: (1,2), (2,3) and (3,4), we will ignore the
(2,3) match, first working with the other two pairs. Once
that is finished, we iterate until all possible matches have
been found. See Figures 17–21.

8.2 System parameter values
Our entire approach is subject to a number of interdepen-
dent, system-level parameters which need to be set to the

Figure 17: 8 pieces

Figure 18: 8 pieces stitched

correct values. We demonstrate below what can happen
with the wrong set of values.

The parameters of interest are:

Resolution This is the scanning resolution of the various
pieces into the computer, in MATLAB pixels. As men-
tioned in Section 5, care needs to be taken so that
the resolution is high enough to capture the twists and
turns of the edge, but not too high, as to make the com-
putation inordinately long. Sample values (in MAT-
LAB coordinates): 100, 200.

Edge characterization points Again, as discussed in the
same section, this needs to be large enough to supply
the linear least squares fit to a parabola algorithm with
enough information to characterize the edge slope, but
not too large, so that no more than one turn is present
in the set of points. Sample values: 23–29 (resolution
of 100), 31–37 (resolution of 200).

Straight corner maximum This determines the maxi-
mum value of change of direction at a pixel, such that
we still consider there to be no change, as if a straight
line was passing through. We addressed this in Sec-
tion 6.1 to filter out straight lines. Sample values: 0.2–
0.8.



250 Informatica 43 (2019) 243–252 A.E. Naiman et al.

Figure 19: 4 pieces

Figure 20: 4 pieces stitched

Figure 21: 2 pieces

LCS maximum match In the LCS matching algorithm,
we stated in Section 6 that when comparing changes
of slope, we are willing to have these numbers be dif-
ferent, up to this maximum value. Sample values:
0.1–0.4.

LSQ confidence in matches This value is used in Sec-
tion 7.2 to supply the nonlinear least squares fit with
matches, to translate and rotate the pieces together. It
is a fraction of the matches in each direction, starting
from the center of the LCS. Sample values: 0.10–0.25.

In addition to the conclusions we derive below, we found:

1) Overall it makes sense to scan at a resolution of 200, in
order to obtain better fit statistics (preventing overlaps
and gaps), which in turn provides better conditions for
subsequent matches to other pieces.

2) The LSQ confidence in matches parameter was less
important.

3) Of the three remaining parameter: edge characteriza-
tion points, straight corner maximum and LCS max-

imum match, as long as at least two of them were
within the nominal bounds prescribed below, then
matching was successful approximately 80% of the
time. If only one of them was within the nominal
bounds (particularly, one of the first two parameters),
then successful matching was achieved in about 50%
of the cases.

4) The two parameters: straight corner maximum and
LCS maximum match, were not particularly depen-
dent on the resolution, as long as they were within the
nominal bounds prescribed below.

8.3 Optimal values
In general, the values in Table 1 worked optimally for a

resolution of 100
edge characterization points 27, 29

straight corner maximum 0.4–0.8
LCS maximum match 0.2–0.4

LSQ confidence in matches 0.10–0.25

Table 1: Resolution of 100 — optimal values

scanning resolution value of 100. We show in Table 2 the

resolution of 200
edge characterization points 35, 37

straight corner maximum 0.4–0.8
LCS maximum match 0.2–0.4

LSQ confidence in matches 0.10–0.25

Table 2: Resolution of 200 — optimal values

optimal valus for a scanning resolution value of 200.
We present here a specific case, in order to illustrate what

happens when the system parameters stray too far from the
nominal values. In Table 3 are the system parameter val-

resolution of 100
edge characterization points 25

straight corner maximum 0.8
LCS maximum match 0.2

LSQ confidence in matches 0.20

Table 3: Nominal values

ues for this specific case. The subsequent matches are dis-
played in Figure 22, showing a good match up between the
two pieces.

If, however, the edge characterization points parameter
is set too low, to 17, then the edge slope values are not
properly calculated, and just low values of changes in the
slope direction are matched. This can be seen in Figure 23,
where we see that the matches are also not only along the



Physical Match Informatica 43 (2019) 243–252 251

Figure 22: Nominal values

Figure 23: Edge characterization points too low

correct seam, but all around the edges.
Another problematic case is if the straight corner maxi-

mum is set too low. In Figure 24, with the value set to 0.3,
we see that only very straight corners are considered to be
modeling straight lines, and therefore we have a huge num-
ber of matches. The information at the corners of interest
is lost in the noise.

Finally, we demonstrate what happens if the LCS max-
imum match system parameter is set too low. A value of
0.01 is too stringent to allow edge slope changes of the two
pieces to match up with each other. This is seen in Fig-
ure 25, where very few matches have been established.

Figure 24: Straight corner maximum too low

Figure 25: LCS maximum match too low

9 Future research
We list here a number of future directions for this research.

1) As mentioned in Section 3, we would like to build the
initial piece, as well as generate the breaks, using the
more general splines, instead of straight lines.

2) Clearly we would like to run the analysis for actual
pieces of broken/torn material, in order to verify the
optimal system parameter values.

3) “Holes” in the material might be due to missing
pieces. How do the holes effect this process? Can
the stitching algorithm of Section 7.3 easily be modi-
fied so as to be able to “jump” over such holes? Note
that previous work of automating jigsaw puzzle recon-
struction rarely addressed this.

4) In addition, we would like to understand how various
types of material (glass, pottery, plastic, rubber, etc.)
effect the system parameter values of choice.

5) Specifically, paper has more characteristics, due to the
fibers jutting out along the torn edge. Can we take
advantage of these? Are they “in the way?” Can we
remove them, without effecting the success of the sub-
sequent matching?

6) On the issue of paper, how does the fact that it is usu-
ally multi-ply, effect the analysis? Can we analyze
each ply, and match on the composite picture?

7) This also brings us to the exciting extension to 3-D
physical match, with applications to archeology and
exploded object reconstruction.

8) Finally, there is the area of forensics. In order to
claim: “This piece came from this object.” and have
this be admissable in court, we have to answer ques-
tions regarding confidence levels of the fit, as well as
statistical probability that no other piece could likely
fit there.

10 Summary
We have presented a method for solving the problem of
physical match. The algorithm involves finding the edge
pixels, ordering them, and using their positions to char-
acterize the edge slope. The turns along the edges are
then matched to each other using a modified version of the
longest common subsequence algorithm.

Finally, the various pieces are translated, rotated and
flipped (if necessary), and then stitched together for further
matching to other pieces.

We discussed future directions for the research, particu-
larly in the arena of extending the analysis to 3-D shapes
and breaks.

References
[1] F. BORTOLOZZI, Document reconstruction based on

feature matching, in 18th Brazilian Symposium on
Computer Graphics and Image Processing, Oct. 2005,
pp. 163–170.



252 Informatica 43 (2019) 243–252 A.E. Naiman et al.

[2] J. CANNY, A computational approach to edge de-
tection, Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 8 (1986), pp. 679–698.

[3] H. C. DA GAMA LEITAO AND J. STOLFI, A multi-
scale method for the reassembly of two-dimensional
fragmented objects, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24 (2002),
pp. 1239–1251.

[4] A. C. GALLAGHER, Jigsaw puzzles with pieces of
unknown orientation, in Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on,
IEEE, 2012, pp. 382–389.

[5] M. R. GAREY AND D. S. JOHNSON, Computers
and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

[6] Q.-X. HUANG, S. FLÖRY, N. GELFAND,
M. HOFER, AND H. POTTMANN, Reassembling
fractured objects by geometric matching, in ACM
Transactions on Graphics (TOG), vol. 25, ACM,
2006, pp. 569–578.

[7] M. KAMPEL AND R. SABLATNIG, 3d puzzling of
archeological fragments, in Proc. of 9th Computer
Vision Winter Workshop, vol. 2, Slovenian Pattern
Recognition Society, 2004, pp. 31–40.

[8] F. KLEBER AND R. SABLATNIG, A survey of tech-
niques for document and archaeology artefact recon-
struction, in Document Analysis and Recognition,
2009. ICDAR’09. 10th International Conference on,
IEEE, 2009, pp. 1061–1065.

[9] D. A. KOSIBA, P. M. D. AND. S. BALASUBRAMA-
NIAN, T. L. GANDHI, AND K. KASTURI, An auto-
matic jigsaw puzzle solver, in Proceedings of the 12th
IAPR International Conference on Pattern Recogni-
tion - Conference A: Computer Vision & Image Pro-
cessing, vol. 1, 1994, pp. 616–618.

[10] H. LIU, S. CAO, AND S. YAN, Automated assembly
of shredded pieces from multiple photos, Multimedia,
IEEE Transactions on, 13 (2011), pp. 1154–1162.

[11] A. E. NAIMAN, E. FARBER, AND Y. STEIN, CLCS—
cyclic longest common subsequence, 2018. submit-
ted.

[12] , Edge characterization of digitized images,
Oct. 2018. submitted.

[13] , EdgeTrek—interior and boundary pixels for
large regions, Oct. 2018. submitted.

[14] G. PAPAIOANNOU AND E.-A. KARABASSI, On
the automatic assemblage of arbitrary broken solid
artefacts, Image and Vision Computing, 21 (2003),
pp. 401–412.

[15] SCIENTIFIC WORKING GROUP FOR MATERIALS
ANALYSIS, Glass fractures, Forensic Science Com-
munications, 7 (2005).

[16] Y. SHOR, Y. YEKUTIELI, S. WIESNER, AND
T. TSACH, Physical Match, Elsevier, Academic
Press, 2 ed., 2013, pp. 54–59. Encyclopedia of Foren-
sic Sciences, ed.: Jay A. Siegel, Pekka J. Saukko,
Max M. Houck.

[17] G. ÜÇOLUK AND I. HAKKI TOROSLU, Automatic
reconstruction of broken 3-d surface objects, Com-
puters & Graphics, 23 (1999), pp. 573–582.

[18] A. UKOVICH, G. RAMPONI, H. DOULAVERAKIS,
Y. KOMPATSIARIS, AND M. G. STRINTZIS, Shred-
ded document reconstruction using MPEG-7 stan-
dard descriptors, in Proceedings of the Fourth IEEE
International Symposium on Signal Processing and
Information Technology, Dec. 2004, pp. 334–337.

[19] H. WOLFSON, E. SCHONBERG, A. KALVIN1, AND
Y. LAMDAN, Solving jigsaw puzzles by computer,
Annals of Operations Research, 12 (1988), pp. 51–
64.

[20] F.-H. YAO AND G.-F. SHAO, A shape and image
merging technique to solve jigsaw puzzles, Pattern
Recognition Letters, 24 (2003), pp. 1819–1835.

[21] L. ZHU, Z. ZHOU, J. ZHANG, AND D. HU, A par-
tial curve matching method for automatic reassembly
of 2d fragments, in Intelligent Computing in Signal
Processing and Pattern Recognition, Springer, 2006,
pp. 645–650.


