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Artificial superintelligence (ASI) is artificial intelligence (AI) with capabilities that are significantly 

greater than human capabilities across a wide range of domains. A hallmark of the ASI issue is 

disagreement among experts. This paper demonstrates and discusses methodological options for 

modeling and interpreting expert disagreement about the risk of ASI catastrophe. Using a new model 

called ASI-PATH, the paper models a well-documented recent disagreement between Nick Bostrom and 

Ben Goertzel, two distinguished ASI experts. Three points of disagreement are considered: (1) the 

potential for humans to evaluate the values held by an AI, (2) the potential for humans to create an AI 

with values that humans would consider desirable, and (3) the potential for an AI to create for itself 

values that humans would consider desirable. An initial quantitative analysis shows that accounting for 

variation in expert judgment can have a large effect on estimates of the risk of ASI catastrophe. The risk 

estimates can in turn inform ASI risk management strategies, which the paper demonstrates via an 

analysis of the strategy of AI confinement. The paper find the optimal strength of AI confinement to 

depend on the balance of risk parameters (1) and (2). 

Povzetek: Predstavljena je metoda za modeliranje in interpretiranje razlik v mnenjih ekspertov o 

superinteligenci. 

 

1 Introduction 
Artificial superintelligence (ASI) is artificial intelligence 

(AI) with capabilities that are significantly greater than 

human capabilities across a wide range of domains. If 

developed, ASI could have impacts that are highly 

beneficial or catastrophically harmful, depending on its 

design 

A hallmark of the ASI issue is disagreement among 

experts. Experts disagree on if ASI will be built, when it 

would be built, what designs it would use, and what its 

likely impacts would be.1 The extent of expert 

disagreement speaks to the opacity of the underlying ASI 

issue and the general difficulty of forecasting future 

technologies. This stands in contrast with other major 

global issues, such as climate change, for which there is 

extensive expert agreement on the basic parameters of 

the issue (Oreskes 2004). Expert consensus does not 

guarantee that the issue will be addressed—the ongoing 

struggle to address climate change attests to this—but it 

does offer direction for decision making. 

In the absence of expert agreement, those seeking to 

gain an understanding of the issue must decide what to 

believe given the existence of the disagreement. In some 

cases, it may be possible to look at the nature of the 

                                                           
1 On expert opinion of ASI, see Baum et al. (2011), 

Armstrong and Sotala (2012), Armstrong et al. (2014), 

and Müller and Bostrom (2014). 

disagreement and pick sides; this occurs if other sides 

clearly have flawed arguments that are not worth giving 

any credence to. However, in many cases, multiple sides 

of a disagreement make plausible arguments; in these 

cases, the thoughtful observer may wish to form a belief 

that in some way considers the divergent expert opinions. 

This paper demonstrates and discusses 

methodological options for modeling and interpreting 

expert disagreement about the risk of ASI catastrophe. 

The paper accomplishes this by using a new ASI risk 

model called ASI-PATH (Barrett and Baum 2017a; 

2017b). Expert disagreement can be modeled as differing 

estimates of parameters in the risk model. Given a set of 

differing expert parameter estimates, aggregate risk 

estimates can be made using weighting functions. 

Modeling expert disagreement within the context of a 

risk model is a method that has been used widely across a 

range of other contexts; to our knowledge this paper 

marks the first application of this method to ASI. 

The paper uses a well-documented recent 

disagreement between Nick Bostrom and Ben Goertzel 

as an illustrative example—an example that is also 

worthy of study in its own right. Bostrom and Goertzel 

are both longstanding thought leaders about ASI, with 

lengthy research track records and a shared concern with 

the societal impacts of ASI. However, in recent 

publications, Goertzel (2015; 2016) expresses significant 
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disagreement with core arguments made by Bostrom 

(2014). The Bostrom-Goertzel disagreement is notable 

because both of them are experts whose arguments about 

ASI can be expected to merit significant credence from 

the perspective of an outside observer. Therefore, their 

disagreement offers a simple but important case study for 

demonstrating the methodology of modeling and 

interpreting expert disagreement about ASI. 

The paper begins by summarizing the terms of the 

Bostrom-Goertzel disagreement. The paper then 

introduces the ASI-PATH model and shows how the 

Bostrom-Goertzel disagreement can be expressed in 

terms of ASI-PATH model parameters. The paper then 

presents model parameter estimates based on the 

Bostrom-Goertzel disagreement. The parameter estimates 

are not rigorously justified and instead are intended 

mainly for illustration and discussion purposes. Finally, 

the paper applies the risk modeling to a practical 

problem, that of AI confinement. 

2 The Bostrom-Goertzel 

disagreement 
Goertzel (2015; 2016) presents several disagreements 

with Bostrom (2014). This section focuses on three 

disagreements of direct relevance to ASI risk. 

2.1 Human evaluation of AI values 

One disagreement is on the potential for humans to 

evaluate the values that an AI has. Humans would want 

to diagnose an AI’s values to ensure that they are 

something that humans consider desirable (henceforth 

“human-desirable”). If humans find an AI to have 

human-undesirable values, they can reprogram the AI or 

shut it down. As an AI gains in intelligence and power, it 

will become more capable of realizing its values, thus 

making it more important that its values are human-

desirable. A core point of disagreement concerns the 

prospects for evaluating the values of AI that have 

significant but still subhuman intelligence levels. 

Bostrom indicates relatively low prospects for success at 

this evaluation, whereas Goertzel indicates relatively 

high prospects for success. 

Bostrom (2014, p.116-119) posits that once an AI 

reaches a certain point of intelligence, it might adopt an 

adversarial approach. Bostrom dubs this point the 

“treacherous turn”: 

 

The treacherous turn: While weak, an AI 

behaves cooperatively (increasingly so, as it gets 

smarter). When the AI gets sufficiently strong–

without warning or provocation–it strikes, forms a 

singleton [i.e., takes over the world], and begins 

directly to optimize the world according to the 

criteria implied by its final values. (Bostrom 2014, 

p.119) 

 

Such an AI would not have durable values in the 

sense that it would go from acting in human-desirable 

ways to acting in human-undesirable ways. A key detail 

of the treacherous turn theory is that the AI has values 

that are similar to, but ultimately different from, human-

desirable values. As the AI gains intelligence, it goes 

through a series of stages: 

1. At low levels of intelligence, the AI acts in ways that 

humans consider desirable. At this stage, the 

differences between the AI’s values and human 

values are not important because the AI can only 

complete simple tasks that are human-desirable.  

2. At an intermediate level of intelligence, the AI 

realizes that its values differ from human-desirable 

values and that it if it tried deviating from human-

desirable values, humans would reprogram the AI or 

shut it down. Furthermore, the AI discovers that it 

can successfully pretend to have human-desirable 

values until it is more intelligent. 

3. At a high level of intelligence, the AI takes control 

of the world from humanity so that humans cannot 

reprogram it or shut it down, and then pursues its 

actual, human-undesirable values. 

Goertzel provides a contrasting view, focusing on 

Step 2. He posits that an AI of intermediate intelligence 

is unlikely to successfully pretend to have human-

desirable values because this would be too difficult for 

such an AI. Noting that “maintaining a web of lies 

rapidly gets very complicated” (Goertzel 2016, p.55), 

Goertzel posits that humans, being smarter and in 

control, would be able to see through a sub-human-level 

AI’s “web of lies”. Key to Goertzel’s reasoning is the 

claim that an AI is likely to exhibit human-undesirable 

behavior before it (A) learns that such behavior is 

human-undesirable and (B) learns how to fake human-

desirable behavior. Thus, Step 2 is unlikely to occur—

instead, it is more likely that an AI would either have 

actual human-desirable values or be recognized by 

humans as faulty and then be reprogrammed or shut 

down. 

Goertzel does not name his view, so we will call it 

the sordid stumble: 

The sordid stumble: An AI that lacks human-

desirable values will behave in a way that reveals its 

human-undesirable values to humans before it gains 

the capability to deceive humans into believing that 

it has human-desirable values. 

It should be noted that the distinction between the 

treacherous turn and the sordid stumble is about the AI 

itself, which is only one part of the human evaluation of 

the AI’s values. The other part is the human effort at 

evaluation. An AI that is unskilled at deceiving humans 

could still succeed if humans are not trying hard to notice 

the deception, while a skilled AI could fail if humans are 

trying hard. Thus, this particular Bostrom-Goertzel 

debate covers only one part of the AI risk. However, it is 

still the case that, given a certain amount of human effort 

at evaluating an AI’s values, Bostrom’s treacherous turn 

suggests a lower chance of successful evaluation than 

Goertzel’s sordid stumble. 
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2.2 Human creation of human-desirable 

AI values 

A second disagreement concerns how difficult it would 

be for humans to give an AI human-desirable values. If 

an AI’s values are human-desirable, then it is not crucial 

whether humans can evaluate them, because humans 

would not want to reprogram the AI or shut it down. As 

the AI gains in intelligence and power, it would simply 

take more and more human-desirable actions. Bostrom 

indicates relatively low prospects for success for humans 

to give AIs human-desirable values, whereas Goertzel 

indicates relatively high prospects for success. 

Bostrom (2014) argues that AIs are likely to have 

human-undesirable final goals because these goals are 

more complex: 

There is nothing paradoxical about an AI whose 

sole final goal is to count the grains of sand on 

Borcay, or to calculate the decimal expansion of pi, 

or to maximize the total number of paperclips that 

will exist in its future light cone. In fact, it would be 

easier to create an AI with simple goals like these 

than to build one that had a human-like set of values 

and dispositions (Bostrom 2014, p.107). 

The logic of the above passage is that creating an AI 

with human-desirable values is more difficult and thus 

less likely to occur. Goertzel (2016), citing Sotala (2015), 

refers to this as the difficulty thesis: 

The difficulty thesis: Getting AIs to care about 

human values in the right way is really difficult, so 

even if we take strong precautions and explicitly try 

to engineer sophisticated beneficial goals, we may 

still fail (Goertzel 2016, p.60). 

Goertzel (2016) discusses a Sotala (2015) argument 

against the difficulty thesis, which is that while human 

values are indeed complex and difficult to learn, AIs are 

increasingly capable of learning complex things.Per this 

reasoning, giving an AI human-desirable values is still 

more difficult than, say, programming it to calculate 

digits of pi, but it may nonetheless be a fairly 

straightforward task for common AI algorithms. Thus, 

while it would not be easy for humans to create an AI 

with human-desirable values, it would not be 

extraordinarily difficult either. Goertzel (2016), again 

citing Sotala (2015), refers to this as the weak difficulty 

thesis: 

The weak difficulty thesis. It is harder to 

correctly learn and internalize human values, than it 

is to learn most other concepts. This might cause 

otherwise intelligent AI systems to act in ways that 

went against our values, if those AI systems had 

internalized a different set of values than the ones we 

wanted them to internalize. 

A more important consideration than the absolute 

difficulty of giving an AI human-desirable values is its 

relative difficulty compared to the difficulty of creating 

an AI that could take over the world. A larger relative 

ease of creating an AI with human-desirable values 

implies a higher probability that AI catastrophe will be 

avoided for any given level of effort put to avoiding it. 

There is reason to believe that the easier task is 

giving an AI human-desirable values. For comparison, 

every (or almost every) human being holds human-

desirable values. Granted, some humans have more 

refined values than others, and some engage in violence 

or other antisocial conduct, but it is rare for someone to 

have pathological values like an incessant desire to 

calculate digits of pi. In contrast, none (or almost none) 

of us is capable of taking over the world. Characters like 

Alexander the Great and Genghis Khan are the 

exception, not the rule, and even they could have been 

assassinated by a single suicidal bodyguard. By the same 

reasoning, it may be easier for an AI to gain human-

desirable values than it is for an AI to take over the 

world. This reasoning does not necessarily hold, since AI 

cognition can differ substantially from human cognition, 

but it nonetheless suggests that giving an AI human-

desirable values may be the easier task.  

2.3 AI creation of human-desirable AI 

values 

A third point of discussion concerns the potential for an 

AI to end up with human-desirable values even though 

its human creators did not give it such values. If AIs tend 

to end up with human-desirable values, this reduces the 

pressure on the human creators of AI to get the AI’s 

values right. It also increases the overall prospects for a 

positive AI outcome. To generalize, Bostrom proposes 

that AIs will tend to maintain stable values, whereas 

Goertzel proposes that AIs may tend to evolve values 

that could be more human-desirable. 

Bostrom’s (2014) thinking on the matter centers on a 

concept he calls goal-content integrity: 

Goal-content integrity: If an agent retains its 

present goals into the future, then its present goals 

will be more likely to be achieved by its future self. 

This gives the agent a present instrumental reason to 

prevent alteration of its final goals (Bostrom 2014, 

p.109-110). 

The idea here is that an AI would seek to keep its 

values intact as one means of realizing its values. At any 

given moment, an AI has a certain set of values and 

seeks to act so as to realize these values. One factor it 

may consider is the extent to which its future self would 

also seek to realize these values. Bostrom’s argument is 

that an AI is likely to expect that its future self would 

realize its present values more if the future self retains 

the present self’s values, regardless of whether those 

values are human-desirable. 

Goertzel (2016) proposes an alternative perspective 

that he calls ultimate value convergence: 

Ultimate value convergence: Nearly all 

superintelligent minds will converge to the same 

universal value system (paraphrased from Goertzel 

2016, p.60). 

Goertzel further proposes that the universal value 

system will be “centered around a few key values such as 

Joy, Growth, and Choice” (Goertzel 2016, p.60). 

However, the precise details of the universal value 
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system are less important than the possibility that the 

value system could resemble human-desirable values. 

This creates a mechanism through which an AI that 

begins with any arbitrary human-undesirable value 

system could tend towards human-desirable values. 

Goertzel does not insist that the ultimate values 

would necessarily be human-desirable. To the contrary, 

he states that “if there are convergent ‘universal’ values, 

they are likely sufficiently abstract to encompass many 

specific value systems that would be abhorrent to us 

according to our modern human values” (Goertzel 2016, 

p.60). Thus, ultimate value convergence does not 

guarantee that an AI would end up with human-desirable 

values. Instead, it increases the probability that an AI 

would end up with human-desirable values if the AI 

begins with human-undesirable values. Alternatively, if 

the AI begins with human-desirable values, then the 

ultimate value convergence theory could cause the AI to 

drift to human-undesirable values. Indeed, if the AI 

begins with human-desirable values, then more favorable 

results (from humanity’s perspective) would accrue if the 

AI has goal-content integrity. 

3 The ASI-PATH model 
The ASI-PATH model was developed to model pathways 

to ASI catastrophe (Barrett and Baum 2016). ASI-PATH 

is a fault tree model, which means it is a graphical model 

with nodes that are connected by Boolean logic and point 

to some failure mode. For ASI-PATH, a failure mode is 

any event in which ASI causes global catastrophe. Fault 

tree models like ASI-PATH are used widely in risk 

analysis across a broad range of domains.  

A core virtue of fault trees is that, by breaking 

catastrophe pathways into their constituent parts, they 

enable more detailed study of how failures can occur and 

how likely they are to occur. It is often easier to focus on 

one model node at a time instead of trying to study all 

potential failure modes simultaneously. Furthermore, the 

fault tree’s logic structure creates a means of defining 

and quantifying model parameters and combining them 

into overall probability estimates. Indeed, the three points 

of the Bostrom-Goertzel disagreement (human evaluation 

of AI values, human creation of human-desirable AI 

values, and AI creation of human-desirable AI values) 

each map to one of the ASI-PATH parameters shown in 

Figure 1. 

In Figure 1, the top node is ASI catastrophe. The left 

branch covers events that lead to the ASI gaining 

“decisive strategic advantage”, defined as “a level of 

technological and other advantages sufficient to enable it 

[the AI] to achieve complete world domination” 

(Bostrom, 2014, p. 78). The left branch models scenarios 

in which an initial “seed” AI undergoes recursive self-

improvement and “takes off”, becoming successively 

more and more intelligent until it becomes an ASI. P1 is 

the probability that such an AI is possible in the first 

place. P2 is the probability that a seed AI is created and 

undergoes recursive self-improvement. P3 is the 

probability that the AI is contained from gaining decisive 

strategic advantage; the containment can occur at any 

point in the process from seed AI to ASI. Containment is 

any measure that prevents a seed AI from gaining 

decisive strategic advantage, either by limiting recursive 

self-improvement or by preventing ASI from gaining 

decisive strategic advantage. Containment includes 

confinement, in which the AI’s ability to affect the rest of 

the world is restricted (Section 5), and enforcement, in 

which AI(s) prevent other AI(s) from gaining decisive 

strategic advantage.2 

The left branch of Figure 1 covers events that could 

lead to the ASI taking actions that are “unsafe”, which is 

defined as actions that would result in a major global 

                                                           
2 Barrett and Baum (2017a, p. 400) define confinement 

as “restrictions built into the AI’s hardware or software 

that limit the AI’s ability to affect the rest of the world so 

that it does not gain decisive strategic advantage”. This is 

slightly different than the Yampolskiy (2012) definition 

used in Section 5. This difference does not affect the 

overall argument of the present paper. 

 

Figure 1: ASI catastrophe fault tree. Adapted from Barrett and Baum (2017a). 



Modeling and Interpreting Expert Disagreement ... Informatica 41 (2017) 419–427 423 

catastrophe. P4 is the probability that humans will fail to 

make ASI goals safe. P5 is the probability that the ASI 

will not make its own goals safe. Finally, P6 is the 

probability that the ASI will not be deterred from acting 

unsafely by some other agent, potentially another AI. 

Because all the logic gates in Figure 1 are “AND”, the 

probability of ASI catastrophe, P, is simply the product 

of the six component probabilities: 





6

1n

nPP         (1) 

For convenience, we assume {P1, P2, P6} = 1. These 

parameters are unrelated to the Bostrom-Goertzel 

disagreement as discussed in this paper. Instead, we 

focus on {P3, P4, P5}, for which there is significant 

disagreement. 

P3 relates to the Bostrom-Goertzel disagreement 

about human evaluation of AI values (Section 2.1). In 

general, it should be easier to contain an AI earlier in the 

recursive self-improvement process because at that point 

it has less intelligence with which it could resist 

containment. Therefore, one factor in P3 is the potential 

for human observers to determine early in the process 

that this particular AI should be contained. The easier it 

is for humans to evaluate AI values, the earlier in the 

process they should be able to notice which AIs should 

be contained, and therefore the more probable it is that 

containment will succeed. In other words, easier human 

evaluation of AI values means lower P3. 

P4 relates to the Bostrom-Goertzel disagreement 

about human creation of human-desirable AI values 

(Section 2.2). Human-desirable values are very likely to 

be safe in the sense that they would avoid major global 

catastrophe. While one can imagine the possibility that 

somehow, deep down inside, humans actually prefer 

global catastrophe, and thus that an AI with human-

desirable values would cause catastrophe, we will omit 

this possibility. Instead, we assume that an AI with 

human-desirable values would not cause catastrophe. 

Therefore, the easier it is for humans to create AIs with 

human-desirable values, the more probable it is that 

catastrophe would be avoided. In other words, easier 

human creation of AI with human-desirable values 

means lower P4. 

P5 relates to the Bostrom-Goertzel disagreement 

about AI creation of human-desirable AI values (Section 

2.3). We assume that the more likely it is that an AI 

would create of human-desirable values for itself, the 

more probable it is that catastrophe would be avoided. In 

other words, more likely AI creation of AI with human-

desirable values means lower P5. 

For each of these three variables, we define two 

“expert belief” variables corresponding to Bostrom’s and 

Goertzel’s positions on the corresponding issue: 

 P3B is the value of P3 that follows from 

Bostrom’s position, the treacherous turn. 

 P3G is the value of P3 that follows from 

Goertzel’s position, the sordid stumble. 

 P4B is the value of P4 that follows from 

Bostrom’s position, the difficulty thesis. 

 P4G is the value of P4 that follows from 

Goertzel’s position, the weak difficulty thesis. 

 P5B is the value of P5 that follows from 

Bostrom’s position, goal-content integrity. 

 P5G is the value of P5 that follows from 

Goertzel’s position, ultimate value convergence. 

Given estimates for each of the above “expert belief” 

variables, one can calculate P according to the formula: 

 



6

1n

nGnGnBnB PWPWP  (2) 

In Equation 2, W is a weighting variable 

corresponding to how much weight one places on 

Bostrom’s or Goertzel’s position for a given variable. 

Thus, for example, W3B is how much weight one places 

on Bostrom’s position for P3, i.e. how much one believes 

that an AI would conduct a treacherous turn. For 

simplicity, we assume WnB + WnG = 1 for n = {3, 4, 5}. 

This is to assume that for each of {P3, P4, P5}, either 

Bostrom or Goertzel holds the correct position. This is a 

significant assumption: it could turn out to be the case 

that they are both mistaken. The assumption is made 

largely for analytical and expository convenience. 

This much is easy. The hard part is quantifying each 

of the P and W variables in Equation 2. What follows is 

an attempt to specify how we would quantify these 

variables. We estimate the P variables by relating the 

arguments of Bostrom and Goertzel to the variables and 

taking into account any additional aspects of the 

variables. We aim to be faithful to Bostrom’s and 

Goertzel’s thinking. We estimate the W variables by 

making our own (tentative) judgments about the strength 

of Bostrom’s and Goertzel’s arguments as we currently 

see them. Thus, the P estimations aim to represent 

Bostrom’s and Goertzel’s thinking and the W estimations 

represent our own thinking. Later in the paper we also 

explore the implications of giving both experts’ 

arguments equal weighting (i.e., WnB = WnG = 0.5 for 

each n) and of giving full weighting to exclusively one of 

the two experts. 

We make no claims to having the perfect or final 

estimations of any of these parameters. To the contrary, 

we have low confidence in our current estimations, in the 

sense that we expect we would revise our estimations 

significantly in the face of new evidence and argument. 

But there is value in having some initial estimations to 

stimulate thinking on the matter. We thus present our 

estimations largely for sake of illustration and discussion. 

We invite interested readers to make their own. 

3.1 P3 and W3: containment fails 

The human evaluation of AI values is only one aspect of 

containment. Other aspects include takeoff speed (faster 

takeoff means less opportunity to contain AI during 

recursive self-improvement) and ASI containment 

(measures to prevent an ASI from gaining decisive 

strategic advantage). Therefore, the Bostrom-Goertzel 
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disagreement about human evaluation of AI values 

should only produce a relatively small difference on P3. 

Bostrom and Goertzel may well disagree on other aspects 

of P3, but those are beyond the scope of this paper. 

Bostrom’s position, the treacherous turn, 

corresponds to a higher probability of containment 

failure and thus a higher value of P3 relative to Goertzel’s 

position, the sordid stumble. We propose a 10% 

difference in P3 between Bostrom and Goertzel, i.e. P3B - 

P3G = 0.1. The absolute magnitude of P3B and P3G will 

depend on various case-specific details—for example, a 

seed AI launched on a powerful computer is more likely 

to have a fast takeoff and thus less likely to be contained. 

For simplicity, we will use P3B = 0.6 and P3G = 0.5, while 

noting that other values are also possible. 

Regarding W3B and W3G, our current view is that the 

sordid stumble is significantly more plausible. We find it 

relevant that AIs are already capable of learning complex 

tasks like face recognition, yet such AIs are nowhere 

near capable of outwitting humans with a web of lies. 

Additionally, it strikes us as much more likely that an AI 

would exhibit human-undesirable behavior before it 

becomes able to deceive humans, and indeed long 

enough in advance to give humans plenty of time to 

contain the situation. Therefore, we estimate W3B = 0.1 

and W3G = 0.9. 

3.2 P4 and W4: humans fail to give AI safe 

goals 

The Bostrom-Goertzel disagreement about human 

creation of human-desirable AI values is relevant to the 

challenge of humans giving AI safe goals. Therefore, the 

disagreement can yield large differences in P4. 

Bostrom’s position, the difficulty thesis, corresponds 

to a higher probability of humans failing to give the AI 

safe goals and thus a higher value of P4 relative to 

Goertzel’s position, the weak difficulty thesis. The values 

of P4B and P4G will depend on various case-specific 

details, such as how hard humans try to give the AI safe 

goals. As representative estimates, we propose P4B = 0.9 

and P4G = 0.4. 

Regarding W4B and W4G, our current view is that the 

weak difficulty thesis is significantly more plausible. The 

fact that AIs are already capable of learning complex 

tasks like face recognition suggests that learning human 

values is not a massively intractable task. An AI would 

not please everyone all the time—this is impossible—but 

it could learn to have broadly human-desirable values 

and behave in broadly human-desirable ways. However, 

we still see potential for the complexities of human 

values to pose AI training challenges that go far beyond 

what exists for tasks like face recognition. Therefore, we 

estimate W4B = 0.3 and W4G = 0.7. 

3.3 P5 and W5: AI fails to give itself safe 

goals 

The Bostrom-Goertzel disagreement about AI creation of 

human-desirable AI values is relevant to the challenge of 

the AI giving itself safe goals. Therefore, the 

disagreement can yield large differences in P5. 

Bostrom’s position, goal-content integrity, 

corresponds to a higher probability of the AI failing to 

give itself safe goals and thus a higher value of P5 

relative to Goertzel’s position, ultimate value 

convergence. Indeed, an AI with perfect goal-content 

integrity will never change its goals. For ultimate value 

convergence, the key factor is the relation between 

ultimate values and human-desirable values; a weak 

relation suggests a high probability that the AI will end 

up with human-undesirable values. Taking these 

considerations into account, we propose P5B = 0.95 and 

P5G = 0.5. 

Regarding W5B and W5G, our current view is that 

goal-content integrity is significantly more plausible. 

While it is easy to imagine that an AI would not have 

perfect goal-content integrity, due to a range of real-

world complications, we nonetheless find it compelling 

that this would be a general tendency of AIs. In contrast, 

we see no reason to believe that AIs would all converge 

towards some universal set of values. To the contrary, we 

believe that an agent’s values derive mainly from its 

cognitive architecture and its interaction with its 

environment; different architectures and interactions 

could lead to different values. Therefore, we estimate 

W5B = 0.9 and W5G = 0.1. 

4 The probability of ASI catastrophe 
Table 1 summarizes the various parameter estimates in 

Sections 3.1-3.3. Using these estimates, recalling the 

assumption {P1, P2, P6} = 1, and following Equation 2 

gives P = (0.1*0.6 + 0.9*0.5) * (0.3*0.9 + 0.7*0.4) * 

(0.9*0.95 + 0.1*0.5) ≈ 0.25. In other words, this set of 

parameter estimates implies an approximately 25% 

probability of ASI catastrophe. For comparison, giving 

equal weighting to Bostrom’s and Goertzel’s positions 

(i.e., setting each WB = WG = 0.5) yields P ≈ 0.26; using 

only Bostrom’s arguments (i.e., setting each WB = 1) 

yields P  ≈ 0.51; and using only Goertzel’s arguments 

(i.e., setting each WG = 1) yields P  = 0.1.   

 PB PG WB WG 

3 0.6 0.5 0.1 0.9 

4 0.9 0.4 0.3 0.7 

5 0.95 0.5 0.9 0.1 

Table 1: Summary of parameter estimates in 

Sections 3.1-3.3. 

Catastrophe probabilities of 0.1 and 0.51 may 

diverge by a factor of 5, but they are both still extremely 

high. Even “just” a 0.1 chance of major catastrophe could 

warrant extensive government regulation and/or other 

risk management. Thus, however much Bostrom and 

Goertzel may disagree with each other, they would seem 

to agree that ASI constitutes a major risk. 

However, an abundance of caveats is required. First, 

the assumption {P1, P2, P6} = 1 was made without any 

justification. Any thoughtful estimates of these 

parameters would almost certainly be lower. Our 
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intuition is that ASI from AI takeoff is likely to be 

possible, and ASI deterrence seems unlikely to occur, 

suggesting {P1, P6} ≈ 1, but that the creation of seed AI 

is by no means guaranteed, suggesting P2 << 1. This 

implies P ≈ 0.25 is likely an overestimate. 

Second, the assumption that the correct position was 

either Bostrom’s or Goertzel’s was also made without 

any justification. They could both be wrong, or the 

correct position could be some amalgam of both of their 

positions, or an amalgam of both of their positions plus 

other position(s). Bostrom and Goertzel are both leading 

thinkers about ASI, but there is no reason to believe that 

their range of thought necessarily corresponds to the 

breadth of potential plausible thought. To the contrary, 

the ASI topic remains sufficiently unexplored that it is 

likely that many other plausible positions can be formed. 

Accounting for these other positions could send P to 

virtually any value in [0, 1]. 

Third, the estimates in Table 1 were made with little 

effort, largely for illustration and discussion purposes. 

Many of these estimates could be significantly off, even 

by several orders of magnitude. Given the form of 

Equation 1, a single very low value for Wn*Pn would also 

make P very low. This further implies that P ≈ 0.25 is 

likely an overestimate, potentially by several orders of 

magnitude. 

Fourth, the estimates in Table 1 depend on a range of 

case-specific factors, including what other containment 

measures are used, how much effort humans put into 

giving the AI human-desirable values, and what 

cognitive architecture the AI has. Therefore, different 

seed AIs self-improving under different conditions would 

yield different values of P, potentially including much 

larger and much smaller values. 

5 A practical application: AI 

confinement 
A core motivation for analyzing ASI risk is to inform 

practical decisions aimed at reducing the risk. Risk 

analysis can help identify which actions would reduce 

the risk and by how much. Different assessments of the 

risk—such as from experts’ differing viewpoints—can 

yield different results in terms of which actions would 

best reduce the risk. Given the differences observed in 

the viewpoints of Bostrom and Goertzel about ASI risk, 

it is possible that different practical recommendations 

could follow. 

To illustrate this, we apply the above risk analysis to 

model the effects of decisions on a proposed ASI risk 

reduction measure known as AI confinement: 

AI confinement: The challenge of restricting an 

artificially intelligent entity to a confined 

environment from which it can’t exchange 

information with the outside environment via 

legitimate or covert channels if such information 

exchange was not authorized by the confinement 

authority (Yampolskiy 2012, p.196). 

AI confinement is a type of containment and thus 

relates directly to the P3 (containment fails) variable in 

the ASI-PATH model (Figure 1). Stronger confinement 

makes it less likely that an AI takeoff would result in an 

ASI gaining decisive strategic advantage. Confinement 

might be achieved, for example, by disconnecting the AI 

from the internet and placing it in a Faraday cage. 

Superficially, strong confinement would seem to 

reduce ASI risk by reducing P3. However, strong 

confinement could increase ASI risk in other ways. In 

particular, by limiting interactions between the AI and 

the human populations, strong confinement could limit 

the AI’s capability to learn human-desirable values, 

thereby increasing P4 (failure of human attempts to make 

ASI goals safe). For comparison, AIs currently learn to 

recognize key characteristics of images (e.g., faces) by 

examining large data sets of images, often guided by 

human trainers to help the AI correctly identify image 

features. Similarly, an AI may be able to learn human-

desirable values by observing large data sets of human 

decision-making, human ethical reflection, or other 

phenomena, and may further improve via the guidance of 

human trainers. Strong confinement could limit the 

potential for the AI to learn human-desirable values, thus 

increasing P4. 

Bostrom and Goertzel have expressed divergent 

views on confinement. Bostrom has favored strong 

confinement, even proposing a single international ASI 

project in which “the scientists involved would have to 

be physically isolated and prevented from 

communicating with the rest of the world for the duration 

of the project, except through a single carefully vetted 

communication channel (Bostrom 2014, p. 253)”. 

Goertzel has explicitly criticized this proposal (Goertzel 

2015, p.71-73) and instead argued that an open project 

would be safer, writing that “The more the AGI system is 

engaged with human minds and other AGI systems in the 

course of its self-modification, presumably the less likely 

it is to veer off in an undesired and unpredictable 

direction” (Goertzel and Pitt 2012, p.13). Each expert 

would seem to be emphasizing different factors in ASI 

risk: P3 for Bostrom and P4 for Goertzel. 

The practical question here is how strong to make 

the confinement for an AI. Answering this question 

requires resolving the tradeoff between P3 and P4. This in 

turn requires knowing the size of P3 and P4 as a function 

of confinement strength. Estimating that function is 

beyond the scope of this paper. However, as an 

illustrative consideration, suppose that it is possible to 

have strong confinement while still giving the AI good 

access to human-desirable values. For example, perhaps 

a robust dataset of human decisions, ethical reflections, 

etc. could be included inside the confinement. In this 

case, the effect of strong confinement on P4 may be 

small. Meanwhile, if there is no arrangement that could 

shrink the effect of confinement on P3, such that this 

effect would be large, then perhaps strong confinement 

would be better. This and other practical ASI risk 

management questions could be pursued in future 

research. 
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6 Conclusion 
Estimates of the risk of ASI catastrophe can depend 

heavily on which expert makes the estimate. A neutral 

observer should consider arguments and estimates from 

all available experts and any other sources of 

information. This paper analyzes ASI catastrophe risk 

using arguments from two experts, Nick Bostrom and 

Ben Goertzel. Applying their arguments to an ASI risk 

model, we calculate that their respective ASI risk 

estimates vary by a factor of five: P  ≈ 0.51 for Bostrom 

and P  = 0.1 for Goertzel. Our estimates, combining both 

experts’ arguments, is P ≈ 0.25. Weighting both experts 

equally gave a similar result of P ≈ 0.26. These numbers 

come with many caveats and should be used mainly for 

illustration and discussion purposes. More carefully 

considered estimates could easily be much closer to 

either 0 or 1. 

These numbers are interesting, but they are not the 

only important part, or even the most important part, of 

this analysis. There is greater insight to be obtained from 

the details of the analysis than from the ensuing numbers. 

This is especially case for this analysis of ASI risk 

because the numbers are so tentative and the underlying 

analysis so comparatively rich. 

This paper is just an initial attempt to use expert 

judgment to quantify ASI risk. Future research can and 

should do the following: examine Bostrom’s and 

Goertzel’s arguments in greater detail so as to inform the 

risk model’s parameters; consider arguments and ideas 

from a wider range of experts; conduct formal expert 

surveys to elicit expert judgments of risk model 

parameters; explore different weighting techniques for 

aggregating across expert judgment, as well as 

circumstances in which weighted aggregation is 

inappropriate; conduct sensitivity analysis across spaces 

of possible parameter values, especially in the context of 

the evaluation of ASI risk management decision options; 

and do all of this for a wider range of model parameters, 

including {P1, P2, P6} as well as more detailed 

components of {P3, P4, P5}, such as modeled in Barrett 

and Baum (2017a; 2017b). Future research can also 

explore the effect on overall ASI risk when multiple ASI 

systems are launched: perhaps some would be riskier 

than others, and it may be important to avoid catastrophe 

from all of them. 

One overarching message of this paper is that more 

detailed and rigorous analysis of ASI risk can be 

achieved when the risk is broken into constituent parts 

and modeled, such as in Figure 1. Each component of 

ASI risk raises a whole host of interesting and important 

details that are worthy of scrutiny and debate. Likewise, 

aggregate risk estimates are better informed and 

generally more reliable when they are made from 

detailed models. To be sure, it is possible for models to 

be too detailed, burdening experts and analysts with 

excessive minutiae. However, given the simplicity of the 

risk models at this early stage of ASI risk analysis, we 

believe that, at this time, more detail is better. 

A final point is that the size of ASI risk depends on 

many case-specific factors that in turn depend on many 

human actions. This means that the interested human 

actor has a range of opportunities available for reducing 

the probability of ASI catastrophe. Risk modeling is an 

important step towards identifying which opportunities 

are most effective at reducing the risk. ASI catastrophe is 

by no means a foregone conclusion. The ultimate 

outcome may well be in our hands. 
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