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Classification is an important research area in cancer diagnosis.  Fuzzy C-means (FCM) is one of the 
most widely used fuzzy clustering algorithms in real world applications.  However there are two major 
limitations that exist in this method.  The first is that a predefined number of clusters must be given in 
advance.  The second is that the FCM technique can get stuck in sub-optimal solutions.  In order to 
overcome these two limitations, Bandyopadhyay proposed a Variable String Length Simulated 
Annealing (VFC-SA) algorithm.  Nevertheless, when this algorithm was implemented, it was found that 
sub-optimal solutions were still obtained in certain circumstances.  In this paper, we propose an 
alternative fuzzy clustering algorithm, Simulated Annealing Fuzzy Clustering (SAFC), that improves and 
extends the ideas present in VFC-SA.  The data from seven oral cancer patients tissue samples, obtained 
through Fourier Transform Infrared Spectroscopy (FTIR), were clustered using FCM, VFC-SA and the 
proposed SAFC algorithm.  Experimental results are provided and comparisons are made to illustrate 
that the SAFC algorithm is able to find better clusters than the other two methods. 
Povzetek: Opisana je nova variacija algoritma FMC za klasifikacijo s pomočjo mehkega grupiranja. 

1 Introduction
Cancer has become one of the major causes of 

mortality around the world and research into its 
diagnosis and treatment has become an important issue 
for the scientific community.  In Britain, more than 
one in three people will be diagnosed with cancer 
during their lifetime and one in four will die from 
cancer.  Accurate diagnostic techniques could enable 
various cancers to be detected in their infancy and, 
consequently, the corresponding treatments could be 
undertaken earlier.  In recent years, FTIR has been 
increasingly applied to the study of biomedical 
conditions and could become a very powerful tool for 
determination and monitoring of chemical 
composition within biological systems [1].  It has also 
been used as a diagnostic tool for various human 
cancers and other diseases [2-5].  This technology 
works by measuring the wavelengths at which 
different functional groups of chemical samples 
absorb infrared radiation (IR) and the intensities of 
these absorptions.  The quantity of absorption depends 
on the chemical bonds and the structure of the 
molecule and, hence, small changes in molecular 
structure can significantly affect the absorption 
intensity.  Since chemical functional groups absorb 
light at specific wavelengths, the resultant FTIR 
spectrum can be likened to a molecular “fingerprint”.  
If the characteristic spectrum of an abnormal and 
normal tissue component is known (in a “fingerprint 

library”), it may be possible to compare each obtained 
spectrum to these reference spectra and, hence, 
accurate diagnosis may be achieved.  An instance of 
FTIR spectra from a non-biochemical application in 
which example spectra for standard and unknown 
paint samples are compared is shown in Figure 1 [6].  
In the context of cancer diagnosis, the FTIR technique 
detects molecular differences within the cell rather 
than morphological changes of the cell and hence may 
lead to earlier detection of cell abnormalities. 
 
 

  
Figure 1. FTIR spectra for paint analysis. 
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Some advantages of FTIR analysis compared to 
conventional cytological clinical analysis might be: 
1) It has the potential for fully automatic 

measurement and analysis. 
2) It is very sensitive; very small samples are 

adequate. 
3) It is potentially much quicker and so cheaper for 

large scale screening procedures. 
4) It has the potential to detect changes in cellular 

composition prior to such changes being 
detectable by other means. 

 
In previous clinical work [7], Chalmers et al. 

reported on the analysis of sets of FTIR spectra taken 
from oral cancer tissue samples.  In general, the 
experiments analyzed the tissue samples in two 
parallel processes.  In the first process, the samples 
were scanned by FTIR spectroscopy, various pre-
processing techniques (such as mean-centering, 
variance scaling and first derivative) were performed 
on the FTIR spectral data empirically.  The data was 
then classified by hierarchical cluster analysis after 
principal component analysis.  In the second process, 
the samples were stained with a chemical solution and 
then examined through conventional cytology to group 
the samples into different functional groups.  The 
results from these two processes were then compared.  
The clustering results showed that accurate clustering 
could only be achieved by manually applying pre-
processing techniques that varied according to the 
particular sample characteristics and clustering 
algorithms.  However, the pre-processing procedures 
needed extra time, software tools and significant 
human expertise.  If a clustering technique could be 
developed which could obtain clustering results as 
good or even better than conventional clinical analysis 
without the necessity for pre-processing procedures, it 
would make the diagnosis more efficient and enable 
automation.  

In previous research work, hierarchical clustering 
analysis (HCA) and the fuzzy c-means (FCM) 
algorithm have been used to classify non pre-
processed FTIR oral cancer data [8]. The results 
showed that the FCM method performed significantly 
better than HCA.  However, there are two major 
limitations of FCM which may affect the use of the 
technique as a practical diagnostic tool.  Firstly, before 
performing the algorithm, an assumption of the 
number of clusters has to be made in advance.  In real 
medical diagnosis, of course this number would not be 
known.  Secondly, it is a non-convex method [9] so 
may often lead to local minima solutions, and hence 
misdiagnosis could occur.  In order to avoid these 
limitations, a simulated annealing based FCM 
algorithm (SAFC) was introduced by the authors in 
[10].  It was developed by modifying and extending 
Bandyopadhyay’s Variable String Length Simulated 
Annealing (VFC-SA) algorithm which was used for 

the classification of remote sensing satellite images 
[11]. 

In this paper, we describe the SAFC algorithm in 
further detail and give additional analysis on the 
experimental results.  In Section 2, the background 
techniques and some related work are introduced.  The 
original VFC-SA and our extended SAFC algorithm 
are described in Section 3.  In Section 4, we provide 
the results of our experimentation in which the FCM, 
VFC-SA and SAFC algorithms were applied to seven 
sets of oral cancer FTIR data.  The classification 
results are discussed in Section 5 and conclusions are 
drawn.  

2 Background 

2.1 FCM algorithm 
The FCM algorithm, also known as Fuzzy 

ISODATA, is one of the most frequently used 
methods in pattern recognition. It is based on 
minimisation of the objective function (1) to achieve 
good classifications.  
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J(U,V) is a squared error clustering criterion, and 

solutions of minimisation of (1) are least-squared error 
stationary points of J(U,V).  The expression, 

},...,{ 21 nxxxX =  is a collection of data, where n is 

the number of data points.   is a set of 
corresponding cluster centres in the data set X, where 
c is the number of clusters.  

},...,{ 21 cvvvV =

ijµ is the membership 

degree of data to the cluster centre .  Meanwhile, ix jv

ijµ  has to satisfy the following conditions: 
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Where cnijU *)(µ=  is a fuzzy partition matrix, 

|||| ji vx −  represents the Euclidean distance between 

and , parameter m is the “fuzziness index” and is 

used to control the fuzziness of membership of each 
datum in the range 

ix jv

],1[ ∞∈m .  In this experimentation 
the value of 0.2=m  was chosen.  Although there is no 
theoretical basis for the optimal selection of m, this 
has been chosen because the value has been 
commonly applied within the literature.  The FCM 
algorithm is described in, for example, [12] and can be 
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performed by the following steps: 
  
1) Initialize the cluster centres , or 

initialize the membership matrix 

},...,{ 21 cvvvV =

ijµ  with random 
value and make sure it satisfies conditions (2) and (3) 
and then calculate the centres.   
 
2) Calculate the fuzzy membership ijµ  using 
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  3) Compute the fuzzy centres using  jv
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4) Repeat steps 2) and 3) until the minimum J value is 
achieved. 
 

5) Finally, defuzzification is necessary to assign each 
data point to a specific cluster (i.e. by setting a data 
point to a cluster for which the degree of the 
membership is maximal).  

 

2.2 Simulated Annealing algorithm and 
related works 

The first simulated annealing algorithm was 
proposed by Metropolis et al. in 1953 [13].  It was 
motivated by simulating the physical process of 
annealing solids.  The process can be described as 
follows.  Firstly, a solid is heated from a high 
temperature and then cooled slowly so that the system 
at any time is approximately in thermodynamic 
equilibrium.  At equilibrium, there may be many 
configurations with each one corresponding to a 
specific energy level. The chance of accepting a  
change from the current configuration to a new 
configuration is related to the difference in energy 
between the two states.  Kirkpatrick et al. were the 
first to introduce simulated annealing to optimisation 
problems in 1982 [14].  Since then, simulated 
annealing has been widely used in combinatorial 
optimisation problems and has achieved good results 
on a variety of problem instances. 

We use  and  represent the new energy and 

current energy respectively.  is always accepted if 
it satisfies , but if  the new energy 
level is only accepted with a probability as specified 

by 

nE cE

nE

cn EE < cn EE ≥

)/)(exp( TEE cn −− , where T  is the current 
temperature.  Hence, worse solutions are accepted 
based on the change in solution quality which allows 
the search to avoid becoming trapped at local minima.  
The temperature is then decreased gradually and the 
annealing process is repeated until no more 
improvement is reached or any termination criteria 
have been met.  

Al-Sultan [15,16] and Kein and Dubes [17] have 
developed algorithms based on simulated annealing to 
find the global minimum solution using Fuzzy C-
Means and other crisp (non-fuzzy) clustering methods.  
These were applied, for example, to determine the best 
clustering criterion for the multi-sensor fusion 
problem.  However, the number of clusters has to be 
declared in advance for both of these techniques.  

Although simulated annealing is used in the 
experimentation described here, other search 
algorithms have been used by other authors.  Tseng 
and Yang proposed a genetic algorithm based 
clustering algorithm, in which the genetic algorithm 
was used to group the small clusters into successively 
larger clusters.  A heuristic strategy [18] is then used 
to find a ‘good’ clustering (see below).  Maulik and 
Bandyopadhyay developed a fuzzy clustering method 
which combined a genetic algorithm and FCM 
clustering to automatically segment satellite images 
obtained by remote sensing [19].  

2.3 Xie-Beni validity index 
Clustering validity is a concept that is used to 

evaluate the quality of clustering results.  If the 
number of clusters is not known prior to commencing 
an algorithm, the clustering validity index may be used 
to find the optimal number of clusters [20].  This can 
be achieved by evaluating all of the possible clusters 
with the validity index and then the optimal number of 
clusters can be determined by selecting the minimum 
value of the index.   

Many clusters validation indices have been 
developed in the past.  In the context of fuzzy 
methods, some of them only use the membership 
values of a fuzzy cluster of the data, such as the 
partition coefficient [21] and partition entropy [22].  
The advantage of this type of index is that it is easy to 
compute but it is only useful for the small number of 
well-separated clusters.  Furthermore, it also lacks 
direct connection to the geometrical properties of the 
data.  In order to overcome this problem Xie and Beni 
defined a validity index which measures the 
compactness and separation of clusters [23].  In this 
paper, the Xie-Beni index has been chosen as the 
cluster validity measure because it has been shown to 
be able to detect the correct number of clusters in 
several experiments [24].  Xie-Beni validity is the 
combination of two functions.  The first calculates the 
compactness of data in the same cluster and the second 
computes the separateness of data in different clusters.   
Let  represent the overall validity index, S π  be the 
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compactness and s  be the separation of the fuzzy c-
partition of the data set.  The Xie-Beni validity can 
now be expressed as: 
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mind  is the minimum distance between cluster 
centres, given by  . ||||minmin jiij vvd −=
 

Smaller values of π indicate that the clusters are 
more compact and larger values of s indicate the 
clusters are well separated.  Thus a smaller reflects 
that the clusters have greater separation from each 
other and are more compact.  

S

3 VFC-SA and SAFC  
Recently, Bandyopadhyay proposed a Variable 

String Length Simulated Annealing (VFC-SA) 
algorithm [11].  It has the advantage that, by using 
simulated annealing, the algorithm can escape local 
optima and, therefore, may be able to find globally 
optimal solutions.  The Xie-Beni index was used as 
the cluster validity index to evaluate the quality of the 
solutions.  Hence this VFC-SA algorithm can 
generally avoid the limitations which exist in the 
standard FCM algorithm.  However when we 
implemented this proposed algorithm, it was found 
that sub-optimal solutions could be obtained in certain 
circumstances.  In order to overcome this limitation, 
we extended the original VFC-SA algorithm to 
produce the Simulated Annealing Fuzzy Clustering 
(SAFC) algorithm.  In this section, we will describe 
the original VFC-SA and the extended SAFC 
algorithm in detail.  

3.1 VFC-SA algorithm 
In this algorithm, all of the cluster centres were 

encoded using a variable length string to which 
simulated annealing was applied.  At a given 
temperature, the new state (string encoding) was 
accepted with a probability: 

 
))/)(exp(1/(1 TEE cn −−+  

 
The Xie-Beni index was used to compute the 
evaluation of a cluster.  The initial state of the VFC-
SA was generated by randomly choosing c  points 
from the data sets where  is a integer within the 
range .  The values 

c
],[ maxmin cc 2min =c  and 

nc =max  (where is the number of data points) 
was used following the suggestion proposed by 
Bezkek in [25].  The initial temperature 

n

T was set to a 
high temperature , a neighbour of the solution 
was produced by randomly flipping one bit within the 
string (describing the cluster centres) and then the 
energy of the new solution was calculated.  The new 
solution was kept if it satisfied the simulated annealing 
acceptance requirement.  This process was repeated 
for a certain number of iterations, , at the given 
temperature.  A cooling rate, 

maxT

k
r , where 10 << r , 

decreased the current temperature T  and was 
repeated until the T reached the termination criteria 
temperature , at which point the current solution 
was returned.  The whole VFC-SA algorithm process 
is summarised in the following steps: 

rT=

minT

 

Set parametersT . rkcT ,,,, minmax
 

Initialised the string by randomly choosing  data 
points from the data set to be cluster centres. 

c
 

Compute the corresponding membership values using 
equation (4) 

 

Calculate the initial energy  using XB index from 
equation (6). 

cE

 

Set the current temperature . maxTT =
while  minTT ≥

 

     For 1=i to  k
 

Perturb a current centre in the string. 
 

Compute the corresponding membership 
values using equation (4). 
 

Compute the corresponding centres with 
the equation (5). 
 

Calculate the new energy from the new 
string. 

nE

 

If cn EE <  or  with accept 
probability > a random number between 
[0, 1], accept the new string and set it as 
current string.   

cn EE >

 

Else, reject it. 
 

           End for 
 

    rTT = . 
 

End while. 
 

Return the current string as the final solution.  
  

The process of perturbing a current cluster centre 
comprised three functions.  They are: perturbing an 
existing centre (Perturb Centre), splitting an existing 
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centre (Split Centre) and deleting an existing centre 
(Delete Centre).  At each iteration, one of the three 
functions was randomly chosen.  When splitting or 
deleting a centre, the cluster sizes were used to select a 
centre.    The size, , of a cluster, , can be 
expressed by (where is the number of clusters): 

jC j
c

 

∑
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The three functions are described below. 
 
a) Perturb Centre 
 

A random centre in the string is selected.  This 
centre position is then modified through addition of 
the change rate ][][ dvprrdcr ⋅⋅= , where v  is the 
current chosen centre and , where N is 
the number of dimensions. 

Nd ,...,1=
r is a random number 

between [-1, 1] and pr is the perturbation rate which 
was set through initial experimentation as 0.007 as this 
gave the best trade-off between the quality of the 
solutions produced and time taken to achieve them. 
Let  and  represent the current and 
new centre respectively, and Perturb Centre can then 
be expressed as: 

][dvcurrent ][dvnew

               . ][][][ dcrdvdv currentnew +=
 
b) Split Centre 
 

The centre of the biggest cluster is chosen by using 
equation (7).  This centre is then replaced by two new 
centres which are created by the following procedure.   
A reference point with a membership value less than 
but closest 0.5 to the selected centre is identified. Then 
the distance between this reference point and the 
current chosen centre is calculated using: 
 

|  ][][|][ dwdvddist referencecurrent −=
 
Finally, the two new centres are then obtained by: 
 

][][][ ddistdvdv currentnew ±=  
 
c) Delete Centre 
 
As opposed to Split Centre, the smallest cluster is 
identified and its centre deleted from the string 
encoding.  

3.2 SAFC algorithm 
When the original VFC-SA algorithm was 

implemented by the authors on a wider set of test 
cases than originally used by Bandyopadhyay [11], it 
was found to suffer from several difficulties.  In order 
to overcome these difficulties, four extensions to the 

algorithm were developed.  In addition, some details 
were not explicit in the original algorithm.  In this 
Section, the focus is placed on the extensions to VFC-
SA in order to describe the proposed SAFC algorithm. 

The first extension is in the initialisation of the 
string. Instead of the original initialisation in which 
random data points were chosen as initial cluster 
centres, the FCM clustering algorithm was applied 
using the random integer  as the 
number of clusters. The cluster centres obtained from 
the FCM clustering are then utilised as the initial 
cluster centres for SAFC. This is because re-
initialization is a source of computational inefficiency.  
Using the clustering results from previous results leads 
to a better initialization.  

],[ maxmin ccc∈

The second extension is in Perturb Centre.  The 
method of choosing a centre in the VFC-SA algorithm 
is to randomly select a centre from the current string.  
However, this means that even a ‘good’ centre can be 
altered.  In contrast, if the weakest (smallest) centre is 
chosen, the situation in which an already good (large) 
centre is destabilized is avoided.  Ultimately, this can 
lead to a quicker and more productive search as the 
poorer regions of a solution can be concentrated upon. 

The third extension is in Split Centre. If the 
boundary between the biggest cluster and the other 
clusters is not obvious (not very marked), then a 
suitable approach is to choose a reference point with a 
membership degree that is less than but closest to 0.5.  
That is to say there are some data points whose 
membership degree to the chosen centre is close to 
0.5.  There is another situation that can also occur in 
the process of splitting centre; the biggest cluster is 
separate and distinct from the other clusters.  For 
example, let there be two clusters in a set of data 
points which are separated, with a clear boundary 
between them. v1 and v2 are the corresponding cluster 
centres at a specific time in the search as shown in 
Figure 2 (shown in two-dimensions).  The biggest 
cluster is chosen, say v1.  Then a data point whose 
membership degree is closest to but less than 0.5 can 
only be chosen from the data points that belong to v2 
(where the data points have membership degrees less 
than 0.5 to v1).  So, for example, the data point w1 
(which is closest to v1) is chosen as the reference data 
point.  The new centres will then move to vnew1 and 
vnew2. Obviously these centres are far from the ideal 
solution.  Although the new centres would be changed 
by the Perturb Centre function afterwards, it will 
inevitably take a longer time to ‘repair’ the solutions.  
In the modified approach, two new centres are created 
within the biggest cluster.  The same dataset as in 
Figure 2 is used to illustrate this process.  A data point 
is chosen, w1, that is closest the mean value of the 
membership degree above 0.5.   Then two new centres 
vnew1 and vnew2 are created according the distance 
between v1 and w1.  This is shown in Figure 3. 
Obviously the new centres are better than the ones in 
Figure 2 and therefore better solutions are likely to be 
found in same time (number of iterations). 
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Figure 2. An illustration of Split Centre from the 
original algorithm with distinct clusters (where  
and 
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µ 1 to the 
centres v1 and v2 respectively) 
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Figure 3. The new Split Centre applied to the same 
data set as Figure 2, above, (where w1 is now the data 
point that is closest to the mean value of the 
membership degree above 0.5) 

 
 

The fourth extension is in the final step of the 
algorithm (return the current solution as the final 
solution).  In the SAFC algorithm, the best centre 
positions (with the best XB index value) that have 
been encountered are stored throughout the search.  At 
the end of the search, rather than returning the current 
solution, the best solution seen throughout the whole 
duration of the search is returned.  

Aside from these four extensions, we also ensure 
that the number of clusters never violates the criteria 
whereby the number of clusters C  should be within 
the range of [ .  Therefore when splitting a 

centre, if the number of clusters has reached  
then the operation is disallowed. Dually, when 
deleting a centre, the operation is not allowed if the 
number of clusters in the current solution is c . 

], maxmin cc

maxc

min

4 Experiments and Results 
In this section, the clinical data used are firstly 

introduced and then the FCM, VFC-SA and SAFC 
algorithms are applied to seven sets of oral cancer 
FTIR data in order to compare the results. 

4.1 Clinical data background 
In these experiments, all the algorithms are applied 

to FTIR spectral data sets obtained from oral cancer 
patients.  These data have been provided by Leeds 

Royal Infirmary, U.K. and Derby Royal Infirmary, 
U.K. and Derby City General Hospital, UK.  All of the 
FTIR spectra data have been produced by a Nicolet 
730 FTIR spectrometer (Nicolet Instruments, Inc., 
Madison, USA), which is interfaced to a NicPlan IR-
microscope fitted with a liquid-nitrogen cooled 
narrow-band mercury-cadmium-telluride (MCT) 
detector.  Transmission spectra were recorded either 
4cm-1 or 8cm-1 spectral resolution, typically co-adding 
512 or 1024 scans per spectrum.  The FTIR 
microscope was operated using an objective lens.  
Background single-beam spectra were recorded 
through a blank BaF2 window.  A Nicolet Nexus 
FTIR spectrometer interfaced to a Continuum IR 
microscope fitted with a narrow-band MCT detector, 
sited at the University of Nottingham, was used to 
record the conventional Globar-sourced spectra. 

×32

Multivariate data analysis on pre-processed spectra 
was undertaken using Infometrix Pirouette, version 3, 
multivariate analysis software (Infometrix, Inc., 
Woodinville, WA, USA).  In this study, the data 
analysis was limited to those that lie within the 
spectral range 900-1800 cm-1

The tissue samples, with nominal thickness mµ5 , 
were mounted on 0  thickness BaFmm5. 2 windows for 
FTIR investigations.  Parallel sections were stained 
conventionally to facilitate identifying regions for 
particular interest.  Some of the sections used for 
infrared examinations were also stained after they had 
been studied spectroscopically.  

 
In this study, the FCM, VFC-SA and SAFC 

algorithms were implemented in MATLAB (version 
6.5.0, release 13.0.1). 

All the FTIR spectra were taken from three oral 
cancer patients, which contain a mixture of tumour 
(neoplasm), stroma (connective tissue), ‘early 
keratinisation’ and ‘necrotic’.  The seven data sets 
have been taken from three different patients.  The 
number of data points within each of these data sets is: 
15, 18, 11, 31, 30, 15 and 42.  Figure 4 (a) shows a 
×4  magnification visual image from one of the 

hematoxylin and Eosin stained oral tissue sections, 
which has been taken from the first patient.  There are 
two types of cells (stroma and tumour) in this section 
with their regions clearly identifiable by their light and 
dark coloured stains respectively.  Figure 4(b) shows a 

×32  magnified visual image from a portion of a 
parallel, unstained section; the superimposed dashed 
white line separates the visually different 
morphologies.  Five single point spectra were recorded 
from each of the three distinct regions using an 
aperture of mm µµ 1010 × .  The locations of these are 
marked by ‘+’ on Figure 4.(b) and numbered as 1-5 for 
the upper tumour region, 6-10 for the central stroma 
layer, and 11-15 for the lower tumour region.  The 
fifteen FTIR transmission spectra from these positions 
are recorded as data set 1, and corresponding FTIR 
spectra are shown in Figure 5.  
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Figure 4. Tissue samples from data set 1 (a) stained 
(b) unstained  

 

 
 
Figure 5. FTIR spectra from data set 1 

 
 

4.2 Evaluation of FCM, VFC-SA and 
SAFC  
 

In these experiments, the number of different types 
of cells in each tissue section from clinical analysis 
was considered as the number of clusters to be 
referenced.  They were also used as the parameter for 
FCM.  The Xie-Beni index value has been utilised 
throughout to evaluate the quality of the classification 
for these three algorithms.  The parameters for VFC-
SA and SAFC are: 51min −= eT , , 40=k 9.0=r . 

was set as 3 in all cases.  That is because the 
maximum temperature has a direct impact on how 
much worse the XB index value of a solution can be 
accepted at the beginning.  If the value is set too 
high, this may result in the earlier stages of the search 
being less productive because simulated annealing will 
accept almost all of the solutions and, therefore, will 
behave like random search.  It was empirically 
determined that when the initial temperature was 3, the 
percentage of worse solutions that were accepted was 
around 60%.  In 1996, Rayward-Smith et al discussed 
starting temperatures for simulated annealing search 
procedures and concluded that a starting temperature 
that results in 60% of worse solutions being accepted 

yields a good balance between the usefulness of the 
initial search and overall search time (i.e. high enough 
to allow some worse solutions, but low enough to 
avoid conducting a random walk through the search 
space and wasting search time) [26].  Therefore, the 
initial temperature was chosen based on this 
observation. 

maxT

maxT

Solutions for the seven FTIR data sets were 
generated by using the FCM, VFC-SA and SAFC 
algorithms.  Each data set was allowed 10 runs on 
each method.  As mentioned at the beginning of this 
Section, the number of clusters was predetermined for 
FCM through clinical analysis.  The outputs of FCM 
(centres and membership degrees) were then used to 
compute the corresponding XB index value.  VFC-SA 
and SAFC automatically found the number of clusters 
by choosing the solution with the smallest XB index 
value.  Table 1 shows the average XB index values 
obtained after 10 runs of each algorithm (best average 
is shown in bold).  

 
Average XB Index Value Dataset 

FCM VFC-SA SAFC 
1 0.048036 0.047837 0.047729 
2 0.078896 0.078880 0.078076 
3 0.291699 0.282852 0.077935 
4 0.416011 0.046125 0.046108 
5 0.295937 0.251705 0.212153 
6 0.071460 0.070533 0.070512 
7 0.140328 0.149508 0.135858 

 
 

Table 1. Average of the XB index values obtained 
when using the FCM, VFC-SA and SAFC algorithms. 
 
 
In Table 1, it can be seen that in all of these seven data 
sets, the average XB values of the solutions found by 
SAFC are smaller than both VFC-SA and FCM.  This 
means that the clusters obtained by SAFC have, on 
average, better XB index values than the other two 
approaches.  Put another way, it may also indicate that 
SAFC is able to escape sub-optimal solutions better 
than the other two methods. 

In the data sets 1, 2, 4 and 6, the average of XB 
index values in SAFC is only slightly smaller than that 
obtained using VFC-SA. Nevertheless, when the 
Mann-Whitney test (with p<0.01) [27] was conducted 
on the results of these two algorithms, the XB index 
for SAFC was found to be statistically significantly 
lower than that for VFC-SA for all data sets 

The number of clusters obtained by VFC-SA and 
SAFC for each dataset is presented in Table 2.  The 
brackets indicate the number of runs for which that 
particular cluster number was returned.  For example 
on dataset 5, the VFC-SA algorithm found 2 clusters 
in 5 runs and 3 clusters in the other 5 runs.  The 
number of clusters identified by clinical analysis is 
also shown for comparative purposes. 
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Clinical VFC-SA SAFC
1 2 2(10) 2(10)
2 2 2(10) 2(10)
3 2 2(10) 3(10)
4 3 2(10) 2(10)
5 2 2(5), 3(5) 3(10)
6 2 2(10) 2(10)
7 3 3(9), 4(1) 3(10)

Dataset Number of Clusters in Solution

 
Table 2. Comparison of the number of clusters 

achieved by clinical analysis, VFC-SA and the SAFC 
methods. 

 
In Table 2, it can be observed that in data sets 3, 4, 

5 and 7, either one or both of the VFC-SA and SAFC 
obtain solutions with a differing number of clusters 
than provided by clinical analysis.  In fact, with data 
sets 5 and 7, VFC-SA even produced a variable 
number of clusters within the 10 runs.  Returning to 
the XB validity index values of Table 1, it was shown 
that all the average XB index values obtained by 
SAFC are better. 

It can be observed that the corresponding XB 
average index values for SAFC for data sets 3, 4 and 5 
produced much smaller values than FCM.  These three 
data sets are also the data sets which SAFC obtained a 
different number of clusters to clinical analysis. In 
data set 3, the average XB index value in SAFC is 
much smaller than in VFC-SA. This is because the 
number of clusters obtained from these two algorithms 
is different (see Table 2). Obviously a different 
number of clusters lead to a different cluster structure, 
and so there can be a big difference in the validity 
index. In data sets 5 and 7, the differences of XB index 
values are noticeable, though not as big as data set 3.  
This is because in these two data sets, some runs of 
VFC-SA obtained the same number of clusters as 
SAFC. 

In order to examine the results further, the data has 
been plotted using the first and second principal 
components in two dimensions.  These have been 
extracted using the principal component analysis 
(PCA) technique [28, 29].  The data has been plotted 
in this way because, although the FTIR spectra are 
limited to within , there are still 901 
absorbance values corresponding to each wavenumber 
for each datum.  The first and second principal 
components are the components that have the most 
variance in the original data.  Therefore, although the 
data is multidimensional, the principal components 
can be plotted to give an approximate visualization of 
the solutions that have been achieved.  Figures 6, 7, 8 
and 9 show the results for data sets 3, 4, 5 and 7 
respectively using SAFC (the data in each cluster is 
depicted using different markers and each cluster 
centre is presented by a star). The first and second 
principal components in data sets 3, 4, 5 and   7 

contain 89.76, 93.57, 79.28 and 82.64 percent of the 
variances in the original data, respectively.  

11 1800900 −− − cmcm

 
 

 
 
 

Figure 6. SAFC Cluster result in PCA for data set 3. 
 
 

 
 
 

Figure 7. SAFC Cluster result in PCA for data set 4. 
 
 

 
 
 

Figure 8.  SAFC Cluster result in PCA for data set 5. 
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Figure 9. SAFC Cluster result in PCA for data set 7. 

 
There are three possible explanations for this 

phenomenon.  Firstly, the clinical analysis may not be 
correct – this could potentially be caused by the 
different types of cells in the tissue sample not being 
noticed by the clinical observers or the cells within 
each sample could have been mixed with others.  
Secondly, it could be that although a smaller XB 
validity index value was obtained, indicating a ‘better’ 
solution in technical terms, the Xie Beni validity index 
is not accurately capturing the real validity of the 
clusters.  Put another way, although the SAFC finds 
the better solution in terms of Xie-Beni validity index, 
this is not actually the best set of clusters in practice.  
A third possibility is that the FTIR spectroscopic data 
has not extracted the required information necessary in 
order to permit a correct determination of cluster 
numbers – i.e. there is a methodological problem with 
the technique itself.  None of these explanations of the 
difference between SAFC and VFC-SA algorithms 
detracts from the fact that the SAFC produces better 
solutions in that it consistently finds better 
(statistically lower) values of the objective function 
(Xie-Beni validity index). 

 

5 Conclusion 
In this paper, a new SAFC method has been 

proposed which has been extended from the original 
VFC-SA algorithm in four ways.  The newly proposed 
algorithm’s performance has been evaluated on seven 
oral cancer FTIR data and compared to clinical 
analysis, FCM and VFC-SA.  The XB validity index 
was used as the evaluation method to measure the 
quality of the clusters produced.  The experimental 
results have shown that the SAFC algorithm can 
escape the sub-optimal solutions obtained in the other 
two approaches and hence produce better clusters.  On 
the other hand, the number of clusters obtained by 
SAFC in some data sets are not in agreement with 
those provided through clinical analysis.  This can be 
explained in three ways.  Firstly, the number of cluster 
from clinical analysis may not correct; secondly, the 
XB validity index may not suitable to apply on these 

clinical data; and thirdly, the FTIR technique has not 
(for these data sets) captured sufficient information to 
permit correct classification.  However, more results 
and information are needed before any definitive 
conclusion can be made in this case.  Nevertheless, 
this SAFC algorithm is a further step towards the 
automatic classification of data for real medical 
applications.  The further development of this 
algorithm is ongoing research area. 

In the future, we are also trying to obtain a wider 
source of sample data for which the number of 
classifications is known from a number of clinical 
domains such as cervical cancer smear test screening 
and lymphnodes disease.  Establishing the techniques 
necessary to develop clinically useful automated 
diagnosis tools across a range of medical domains is 
the ultimate goal of this research.  
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