
Informatica 32 (2008) 1–25 1

Intermediate Representations of Mobile Code

Wolfram Amme and Thomas S. Heinze
Friedrich-Schiller-Universität Jena, Germany
E-mail: {amme,theinze}@informatik.uni-jena.de

Jeffery von Ronne
The University of Texas at San Antonio, USA
E-mail: vonronne@cs.utsa.edu

Overview paper

Keywords: mobile code, intermediate representation

Received: April 3, 2007

Over the past decade, since Java was first introduced and integrated into the Netscape web browser, several
intermediate representations have been developed that might be potentially used for mobile code applica-
tions. This paper examines the requirements for a mobile code representation, presents several examples of
stack-based, tree-oriented, and proof-annotating mobile code representations, and evaluates each of these
representations according to the requirements.

Povzetek: Članek podaja pregled mobilnih kod.

1 Introduction

In this era of the Internet, we increasingly come across mo-
bile code applications (i.e., programs that can be sent in
a single form to a heterogeneous collection of processors
and will then be executed on each of them with the same
semantics [1]). Such mobile code is usually intended to be
loaded across a network and executed by an interpreter or
after dynamic compilation on the target machine.

Unlike traditional monolithic, statically-compiled appli-
cations, many modern applications are designed to be dy-
namically composed from or extended with new compo-
nents at runtime. An example of this is the Eclipse software
development platform [17] that allows new plugins written
in Java to be integrated into the environment. This dynamic
extensibility is enhanced when the plugins can be described
by executable code deployed in a mobile code representa-
tion that has a greater compactness, portability, and safety
than native binaries.

The Java Virtual Machine’s bytecode format (“Java
Bytecode”) has become the de facto standard for trans-
porting mobile code across the Internet. However, in the
last decades several intermediate representations of mobile
code have been developed, each of which could be used as
an alternative to Java Bytecode. In the paper we give an
overview of common intermediate representations, discuss
the strengths and weaknesses of each, and finally compare
its attributes with that of the other representations.

The intermediate representations designed for mobile
code are complex and usually combine multiple features
and mechanisms. Therefore, a clear classification of mo-

bile code representations is awkward. In contrast to other
surveys, in which mobile code is examined from a pro-
gramming language perspective [69] and for their verifica-
tion time [45], respectively, our categorization emphasizes
the structure of the intermediate representation. In partic-
ular the overview in [69] focuses on several programming
languages (Java, Objective Caml, Telescript, etc.) and their
suitability in mobile code environments. These languages
are not classified by a taxonomy, but are introduced sequen-
tially and evaluated according to some of the requirements
imposed by the mobile code setting. In contrast, the ar-
ticle [45] centers on compiling safe mobile code, stress-
ing the importance of safety in the mobile code setting.
It discusses the safety issues present in several intermedi-
ate representations and compilation techniques, and classi-
fies intermediate representations of mobile code according
to their safety checking mechanisms, differentiating static,
dynamic and hybrid mechanisms. The static mechanisms
check critical safety properties at compile time (e.g., by
static program analysis), while dynamic mechanisms rely
on runtime safety checks (e.g., by inserting runtime checks
into the code). Hybrid mechanisms apply a combination of
static and runtime safety checks. In contrast, our classifi-
cation does not focus on a single aspect (like safety) but
highlights the general design of intermediate representa-
tions used for mobile code and classifies them as stack-
based, tree-oriented, or proof-annotated.

The paper is structured as follows: In Section 2, we
introduce a general framework for program transport by
means of mobile code, and specify requirements this im-
poses on intermediate representations of mobile code. Sec-

2 Informatica 32 (2008) 1–25 W. Amme et al.

tion 3 presents our taxonomy and lists the primary repre-
sentatives of each category. An evaluation and comparison
of these intermediate representations is given in Section 4,
and Section 5 concludes with a summary and a discussion
about future directions in the area of mobile code represen-
tations.

2 Mobile code and its requirements

A system for transporting programs as mobile code can be
partitioned into a producer side and a consumer side (see
Figure 1). These two components communicate through
files containing the mobile code in some intermediate rep-
resentation (IR). The first step on the producer side is to
analyze the input program syntactically and semantically
and to transform it into an abstract syntax tree (AST). In
the next stage, platform-independent optimizations can be
performed, and annotations supporting consumer-side pro-
gram analysis and optimization may be added to the ab-
stract syntax tree in order to speed up dynamic code gener-
ation. Finally, the program is transformed into the chosen
intermediate representation, and after being encoded as a—
possibly compressed—binary, they are stored into files.

These files containing mobile code are then transferred
to the consumer side where they are decoded. Next, the
transmitted program has to be examined to determine if it
adheres to the security requirements of the mobile code for-
mat. This verification process can use a variety of mech-
anisms ranging from simple type checks to validation of
digital signatures or even the verification of proofs about
program properties. If no violations are found, the pro-
gram is executed on the target machine. The execution
environment can execute the program by interpreting it or
using a just-in-time (JIT) compiler to generate native ma-
chine code that runs directly on the target machine. In or-
der to improve performance, JIT compilers often perform
machine-dependent optimizations on the program code;
this consumer-side optimization is sometimes enhanced by
producer-side program annotations. To fulfill the require-
ments of a mobile code framework, special attention needs
to be paid to the choice of intermediate representation. A
candidate intermediate representation of mobile code can
be evaluated on its ability to satisfy several desirable prop-
erties [25]:

Portability: An important property of an intermedi-
ate representation of mobile code is high portability.
The mobile code needs to be able to execute on dif-
ferent target platforms, so the intermediate represen-
tation must be independent from any specific target
machine’s architecture.

Compactness An intermediate representation should
also be dense. Originally, this requirement was due
to restricted memory on some of the target code con-
sumers, but today it is more important for reducing

transmission times. This property is still critical, espe-
cially with respect to dynamically loaded mobile pro-
grams.

Flexibility: If an intermediate representation is not
bounded to a specific input programming language, it
can be used for a wide range of languages. This im-
plies the advantage, as stated in [35], of implementing
only n code-producers and m code-consumers instead
of implementing n*m compilers. To attain high flex-
ibility, the intermediate representation must support a
versatile instruction set and an abstract type model.

Safety: In a mobile code system, the partitioning into
code-producer and code-consumer leads to situations,
in which the mobile code is not delivered directly by a
trusted code-producer. Therefore, the question comes
up as to how the code-consumer can ensure that the
execution of the mobile code does not maliciously or
accidentally affect the local machine in an unautho-
rized manner. Hence, an appropriate intermediate rep-
resentation must support verification techniques to as-
certain safety properties as type and memory safety.

Efficiency: Finally, although efficiency ultimately de-
pends on the quality of the mobile code system imple-
mentation, the intermediate representation of a mobile
code system should facilitate, or at least not hinder,
the efficient execution of mobile code applications.
This property is affected by the way the mobile code
is executed: interpreted or compiled just in time. An
interpreter-based implementation usually yields lower
memory and other resource usage, and is often the
most appropriate implementation for embedded sys-
tems. An implementation based on just-in-time com-
pilation, however, usually results in faster execution
of frequently executed mobile code and also supports
machine-dependent program optimizations. Features
that make a program representation easier to inter-
pret may make it more difficult to optimize during JIT
compilation or vice versa.

An optimal intermediate representation for mobile code
should satisfy all of these properties, however in practice,
the representation’s designer may have to make design de-
cisions that prioritize one over the other. As an example,
increases in the safety guarantees often incur a loss of effi-
ciency due to the increased costs of the verification process.
Therefore, even though a representation cannot maximize
all of these properties simultaneously, a mobile code rep-
resentation can be evaluated on the basis of how well it
satisfies these requirements.

3 Verifiable mobile code
representations

Since mobile code is often received through untrusted
channels, it is critically important to preserve the mo-

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 3

Interpreter

...

...

Code ConsumerCode Producer

File 1

File n

Machine Code

Encoder Decoder

Source Program

AST

AST

 Optimization /

IR

Syntax and
Semantic Analysis

Annotation

Optimizing Code
Generation

IR

Verifier

IR

Transformer

Figure 1: A general system for program transport by means of mobile code.

bile code consuming host system’s security in the pres-
ence of malicious code. There are three main strategies
that have been used—sometimes in isolation, sometimes in
combination—to address this risk: cryptographic authenti-
cation, sand-boxing, and verification.

The first strategy is to use cryptographic signatures to
authenticate the mobile code’s producer and to prevent the
mobile code from being tampered with during transit from
the code producer. The code consuming system can then
make decisions about the execution of the mobile code
based on the trustworthiness of the code producer. In the
simplest form (e.g., Microsoft’s ActiveX Controls [53]),
this may simply be used to run or not to run the mobile
code. In more complex situations, this is used in combi-
nation with a security policy and “sand-boxing” to prevent
mobile code from performing unauthorized actions.

A second strategy is to create a “sandbox” around the ex-
ecuting mobile code and mediate all access to parts of the
code consuming system outside of the sandbox. This al-
lows the sandbox to prohibit those interactions that violate
the code consuming system’s security policies. This sand-
boxing can be implemented using operating-system level
(e.g., VMWare, Xen, User Mode Linux) or process-level
isolation (e.g., BSD jail, SELinux), but these techniques
are too heavy-weight and too loosely integrated for use in
many mobile code applications (e.g., a Java applet running
on a cell phone). These problems can be addressed by using
light-weight, fine-grain isolation integrated into the execu-
tion environment.

A third strategy, often used to implement fine-grain iso-
lation, is to analyze the mobile code and reject code that
violates certain safety properties. Most commonly, this
“verification” checks that the code is syntactically correct,
has legal control flow, and that it is correctly typed. If
the mobile code representation itself is type safe, this will
guarantee the possible behavior (especially, with respect to
memory accesses) of the mobile code to be constrained by
the underlying mobile code representation’s type system.
This in turn will allow the execution environment (e.g.,
the Java Virtual Machine) to sandbox mobile code com-
ponents without necessitating the runtime overhead of op-
erating system or process level techniques.

Successful implementation of this third strategy requires
that the program representation is designed with verifi-
cation in mind. The verifiable mobile code representa-
tions that have been used in mobile code frameworks can
be classified as being stack-based, tree-oriented, or proof-
annotated representations.

3.1 Stack-based types
Most mobile code systems are based upon virtual ma-
chines. In such mobile code systems, programs are trans-
lated not into machine code for a specific target machine
but rather into a platform independent intermediate repre-
sentation. This intermediate representation consists of in-
structions for an idealized “virtual” machine.

Code consumers simulate the virtual machine by inter-
preting the transmitted intermediate representation or by

4 Informatica 32 (2008) 1–25 W. Amme et al.

JVM*.class

*.class

..

 (*.java)

Java Compiler

Source Program

Compile−Time Run−Time

Interpreter JIT Compiler

Machine code

and Verifier
Classloader

Figure 2: Java language infrastructure.

compiling it into equivalent machine code. Most often the
virtual machine utilizes a stack-based architecture. In these
virtual machines, most instructions implicitly take most of
their operands from a stack and store most of their results
back onto the same stack. One advantage of this archi-
tecture is the compact encoding of instructions; since most
operands are implicit, many instructions can be represented
by a single opcode without any operands. These represen-
tations are often designed so that each instruction can be
encoded using a single byte, and for this reason the instruc-
tion sets of stack-based virtual machines are often called
bytecode.

Virtual machines have long been used in compiler con-
struction. Starting in the 1970’s, compilers have used
this concept to organize machine-dependent and machine-
independent phases into front end and back end of a com-
piler. A representative example is P-Code [60], a stack-
based intermediate representation used in some Pascal
compilers. In the 1990’s, Sun MicroSystems revived inter-
est in stack-based virtual machines with the Java program-
ming language and its portable intermediate representation,
Java Bytecode [34, 33]. Microsoft’s .NET Framework [63]
also uses a stack-based intermediate representation called
the Common Intermediate Language.

3.1.1 Java bytecode

Java Bytecode is a stack-based intermediate representation
that was developed as type-safe program representation for
Java programs. The instruction set and data types of Java’s
Virtual Machine (JVM)1 are designed specifically for the
Java programming language. In principle, Java Bytecode
can also be used for other programming languages, but
field reports show that a use of Java Bytecode for languages
other than Java often can cause problems [23].

1A detailed description of JVM is given in [49].

The architecture for the typical deployment of Java as a
mobile code system is given in Figure 2. On the producer-
side of this system, a compiler translates a source program
into portable Java Bytecode representing each Java method;
all the methods in each class (with associated symbolic in-
formation) are stored together in a Java “class file.” Af-
ter successful transmission, the consumer-side JVM veri-
fies the code to determine if it is safe to execute the mobile
program. If the verification succeeds, the Java Bytecode is
interpreted or executed directly after JIT compilation into
machine code from the Java Bytecode.

The JVM’s most important components are a runtime
stack, a program counter, and heap storage, which store
objects, code segments, and symbolic information. If a
method is invoked, a new method frame is created and
placed by the JVM onto the top of the runtime stack. This
method frame contains the values of parameters and local
variables as well as information about the caller. In ad-
dition, each frame contains an operand stack which is ac-
cessed as Java Bytecode instructions need input operands
and produce output results. Each slot of the operand stack
can hold a 32-bit word, and two slots are needed for long
or double values.

Figure 3(b) depicts the Java Bytecode program generated
for a simple source code. In the program, the contents of
local variables a and b are added and its result afterwards
is stored in local variable c. JVM assigns indices2 to all
parameters and local variables within a method. These in-
dices are used instead of their symbolic names to reference
local variables and parameters. The density of Java Byte-
code is increased by the inclusion of instructions which im-
plicitly encode the indices of the first variables defined in a
method.

In the sample program, the instructions iload_1 and

2The index 0 is reserved for the object reference in case of virtual
methods.

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 5

(a)
i n t a , b , c ;

c = a + b ;

(b)

i l o a d _ 1 ; push l o c a l v a r i a b l e a on to s t a c k
i l o a d _ 2 ; push l o c a l v a r i a b l e b on to s t a c k
i a d d ; add topmos t s t a c k e l e m e n t s
i s t o r e _ 3 ; s t o r e topmos t s t a c k e l e m e n t i n t o l o c a l v a r i a b l e c

(c)

l d l o c . 1 ; push l o c a l v a r i a b l e a on to s t a c k
l d l o c . 2 ; push l o c a l v a r i a b l e b on to s t a c k
add ; add topmos t s t a c k e l e m e n t s
s t l o c . 3 ; s t o r e topmos t s t a c k e l e m e n t i n t o l o c a l v a r i a b l e c

Figure 3: Java Bytecode (b) and CIL Bytecode (c) for a simple program (a).

iload_2 are used to push the values of a and b onto the
operand stack. In contrast, the instruction istore_3 takes
the topmost element from the operand stack and stores its
value in variable c. Most of the bytecode instructions are
typed (i.e., only accept operands of a specific type). The
operations that start with i generally indicate that they only
accept values of type int as operands. Thus, in the example
program, instruction iadd takes the two top-most int values
from the operand stack, adds them, and stores the result
back on the top of the operand stack.

The primary design consideration during the develop-
ment of the JVM was its usefulness as a runtime environ-
ment for Java. Therefore, the JVM’s instruction set is spe-
cialized for the representation of Java programs. Java Byte-
code supports four different method invocation instruc-
tions implementing the virtual, super, static, and interface
method calls of the Java programming language. For each
method call, parameters are passed by value only, reference
parameters are not supported directly. The JVM’s flex-
ibility with respect to running programs written in other
languages is also limited by the JVM’s provision of only
single-inheritance for classes and multiple-inheritance for
interfaces, respectively. Another disadvantage is the ab-
sence of arithmetic exceptions beside the division-by-zero
exception for integers.

Java Bytecode’s verification process includes static and
dynamic checks and basically operates in four separate
passes:

– Examination of general class file format

– Examination of additional structural properties of the
class file

– Verification of the bytecode for each method

– Verification of inter-class dependencies during the ex-
ecution of particular bytecode instructions

The examination of the transmitted Java Bytecode
method (3rd pass) is performed by a data flow analysis,

which verifies that certain behaviors, which might violate
the virtual machine’s type discipline (e.g., operand stack
over- and underflows, unequal sizes of the operand stack
on different control paths, usage of uninitialized local vari-
ables, operands of incorrect types for the operation) cannot
occur. Overall, the data flow analysis is quite complex and
requires, in the worst case, quadratic time in the number of
verified instructions[66].

In contrast to the first three passes (which are performed
during loading and linking process), the last verification
pass, which checks properties about external classes re-
ferred to by bytecode instructions, occurs at runtime. In
principle, all of the properties that are checked during this
pass (e.g., that the classes referred to by an instruction
exists) could be performed also during pass 3. But the
JVM specification allows these checks to be deferred un-
til run time, so that the loading of additional classes can
be deferred until the instructions that refer to these addi-
tional classes need to be executed. If one of these dynamic
check fails, the execution of the instruction being checked
is aborted and an exception is thrown.

3.1.2 Common intermediate language

Microsoft Corporation’s Common Language Infrastructure
Platform (CLI) is a runtime environment that has been de-
veloped for running applications written in several differ-
ent programming languages, including C#. CLI includes a
stack-based virtual machine, called the Common Language
Runtime (CLR), which can be used for execution of byte-
code programs written in Common Intermediate Language
(CIL). In contrast to JVM, the CLR standard does not an-
ticipate execution with interpreter, but rather assumes all
applications will be executed using JIT or ahead-of-time
compilation.3

The .NET-Framework is Microsoft’s proprietary imple-
mentation and extension of the CLI. In its current version,

3Mono, the CLR (ECMA-335) implementation from Novell, however,
does include an interpreter [16].

6 Informatica 32 (2008) 1–25 W. Amme et al.

C# Compiler

 *.dll

 ...

 (*.cs)

 (*.vb)

 (*.hs)

Source Programm

Source Programm

Source Programm

Haskell Compiler

VB Compiler

 *.exe

 JIT Compiler

CLR

Machine Code

Classloader
and Verifier

Code Producer Code Consumer

Figure 4: .NET framework.

.NET uses two JIT compilers: A standard JIT compiler
and Econo. .NET’s standard JIT compiler is an optimiz-
ing compiler that supports several optimizations (e.g., con-
stant propagation, method-inlining, common subexpres-
sion elimination). In contrast, Econo is a non-optimizing
JIT compiler that requires few system resources and, there-
fore, is especially suited for deployment on mobile plat-
forms with limited resources. In addition, in the .NET-
Framework, programs (or parts of programs) may be com-
piled in advance by the Pre-JIT compiler. Programs, that
have been compiled with this compiler, are stored on the
file system permanently, so that they can be executed di-
rectly when needed in the future without needing to be re-
compiled at runtime by the JIT compilation.

For each method invocation the CLR creates a new acti-
vation record. An activation record consists of fields con-
taining method information, an instruction pointer, arrays
for local variable and parameter definitions, and an eval-
uation stack. The stack-architecture of the Common Lan-
guage Runtime is realized by the evaluation stack, which
is used like the operand stack of the JVM to store the
operands and the results of CIL instructions. In contrast
to the JVM operand stack, the CLR evaluation stack is ca-
pable of storing elements of variable size.

Figure 3 (c) shows the CIL bytecode generated for the
sample program from (a). Similar to local variable access
in Java Bytecode, local variable and parameter accesses in
CIL occur through indices assigned to variables and param-
eters in the order of their declaration. In the example pro-
gram, instruction ldloc is used to push the value of a vari-
able onto the evaluation stack. In contrast, instruction stloc
takes the topmost element of the evaluation stack and stores

it in a variable. For each variable, there is a correspond-
ing load instruction and a corresponding store instruction
to access that variable. These instructions are named by
adding the variable number as a suffix (e.g. .1, .2, and .3,)
to the operation name. In the example program, instruc-
tion stloc.2 stores the topmost stack element in the local
variable b (i.e., the local variable with associated index 2.)
Unlike Java Bytecode, CIL offers the developer typed and
untyped instructions. In the example program, the generic
add-operation is used. Uses of this generic add-instruction
require the CLR to infer the type of add-instructions during
JIT compilation from its actual operand types.

In contrast to JVM, the CLI was developed with the in-
tent of supporting many different programming languages.
Therefore, the instruction set of CLR is designed around a
general type system that is called Common Type System
(CTS). Beside the standard primitive and reference types
found in Java, the CTS also includes value types. A value
type is essentially a restricted class, that is similar to a
structure or enumeration type. Like the Java Virtual Ma-
chine, the CTS offers only single-inheritance of classes but
multiple-inheritance of interfaces. The flexibility of this
type model is further enhanced by the instruction set of
the CLR, which includes several instructions to make the
execution of programming languages other than C# more
efficient. For example, a .tail suffix can be appended to
a method call instruction, causing it to discard the stack
frame of the calling method; this is particularly important
for the efficient implementation of functional languages,
which make heavy use of recursive calls that would oth-
erwise overflow the runtime stack.

For method invocations there are two call instructions

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 7

(callvirt and call) that can be used for virtual, non-virtual
and static method calls. For parameter passing CLI of-
fers call-by-reference and call-by-value mechanisms. In
addition, parameters can be characterized as result parame-
ters. Standard exception handling for operations on primi-
tive data types are supported only for integer null-division.
However, in contrast to JVM, in CLI add-, sub- and mult-
instructions can be extended with special postfix operands
to handle overflow exceptions.

When the producer side of the mobile code system trans-
lates source programs into CIL, it packages them into “as-
semblies.” An assembly contains a set of modules bundled
together along with meta-data describing the classes and
types defined in and used by those modules [50]. In con-
trast to Java Bytecode’s class files, which contain only a
single Java class, a CIL assembly is able to contain sev-
eral classes. This facilitates the composition of applica-
tion programs out of multi-module components and al-
lows the producer-side compiler greater scope for inter-
class and inter-procedural optimizations. The code within
the modules provides sequences of Common Intermediate
Language instructions defining the behavior of the methods
declared in the assembly.

The CLR uses a verification process, similar to that of
the JVM, to determine if it is safe to execute CIL programs.
Unlike the JVM, the CLR can be configured to allow cer-
tain programs to use “unmanaged” instructions, which can
break the type safety of the runtime environment. These
are provided in order to support a wide range of program-
ming languages, including languages with unsafe features
like pointer arithmetic. Normally, these unsafe instructions
would be disabled when running mobile code.

The verification process is performed in two passes: val-
idation and verification. In the validation pass, the general
assembly format and the proper use of the meta-data for-
mat is ensured. Therefore, the validation pass corresponds
to the first two passes of the Java Bytecode verification.
In addition, a successful validation is a prerequisite for the
verification pass, which is used to verify the control flow
and then type-check the CIL module. This verification pass
mirrors the last two passes of the Java Bytecode Verifica-
tion and uses similar mechanisms.

3.2 Tree-oriented representations

Many compilers translate source programs into intermedi-
ate representations based on abstract syntax trees. Tree-
oriented mobile code representations are derived from
these internal data structures, linearized into a stream of
binary data so that they can be transmitted in files or across
the network. Due to their close relationship to internal
compiler structures, tree-oriented intermediate representa-
tions are especially well-adapted to execution through JIT
compilation, but they can also be interpreted.

A typical tree-oriented mobile code representations com-
pilation unit consists of a source module’s abstract syn-
tax tree and symbol table of a program (which would typ-

ically be generated during the compilation of the source
program even if native machine code were to be targeted)
[12, 29, 39, 28]. Since abstract syntax trees are typically
machine-independent, tree-oriented intermediate represen-
tations are often very portable. In addition, the semantic
gap between source language and mobile code represen-
tation is minimized compared to a translation into stack-
oriented bytecode [66]. The advantages of this approach in-
clude the retention of high-level program information (e.g.,
types and control structures), that can be useful for program
optimizations, and a verification process that more closely
resembles the type-checking of the source language. The
primary disadvantage of this approach is that because it is
closely tied to a single source language, it tends not to be
very flexible with respect to supporting other source lan-
guages.

Though not a true mobile code representation (since
it does not address network transportation or ver-
ifiability), the Architecture Neutral Distribution For-
mat (ANDF) demonstrates the portability benefits of
platform-independent tree-oriented program representa-
tions. The compact tree-oriented representation, Slim Bi-
naries, demonstrated the viability of transporting mobile
code applets over networks using a tree oriented rather
than a stack-oriented representation (like Java Bytecode).
The SafeTSA representation is a hybrid representation that
combines tree-oriented control structures with blocks of in-
structions in static single assignment form, which is com-
monly used as an intermediate representation of the back
end of optimizing compilers.

3.2.1 ANDF

The Open Software Foundation’s Architecture Neutral Dis-
tribution Format (ANDF) [61] was a subset of the Ten15
Distribution Format (TDF)4 developed by the Defense Re-
search Agency in the UK (DRA). TDF [13] is a tree struc-
tured language, that is defined as a multi-sorted abstract
algebra. It was originally designed for the compilation of
sequential languages such as C and Lisp.

The intended usage was that programs would be dis-
tributed in the ANDF, and then compiled into native code at
installation time. As such, ANDF was designed solely as a
distribution format with a tree-oriented program represen-
tation that supports several source programming languages.

Inside of the ANDF infrastructure (see Figure 5), the
producer-side translates a program to distribute into ANDF,
expressing platform specific information by standard appli-
cation programming interfaces (API’s) [8]. Thereafter, the
generated ANDF program is encoded into files and trans-
mitted to the consumer-side, called installer. To install the
transferred program, the ANDF files are compiled into tar-
get platform’s machine code, and the installer replaces calls
to an API with implementations provided by the target plat-
form. Although originally developed for the C language,

4later renamed to the TenDRA Distribution Format.

8 Informatica 32 (2008) 1–25 W. Amme et al.

 (*.ada)

..

*.j

*.j

 (*.c)

API−
C Compiler

Source Program

Source Program

Machine Code

Installer

ANDF InstallerANDF Producer

Ada95 Compiler

API Abstraction

 Implementation

Figure 5: ANDF Scenario.

(a) i n t i , j ;

i = i + 1 ;
j = j + 1 ;
i f (i <= j)

i = i + 1 ;
e l s e

i = i − 1 ;
j = j + 1 ;

(b) s e q u e n c e (
a s s i g n (

o b t a i n _ t a g (~ t a g _ 1) ,
p l u s (c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 1)) ,

make_ in t (~ s i g n e d _ i n t ∗ , 1))) ,
a s s i g n (

o b t a i n _ t a g (~ t a g _ 2) ,
p l u s (c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 2)) ,

make_ in t (~ s i g n e d _ i n t ∗ , 1))) ,
c o n d i t i o n a l (

~ l a b e l _ 0 ,
s e q u e n c e (

i n t e g e r _ t e s t (
l e s s _ t h a n _ o r _ e q u a l ,
~ l a b e l _ 0 ,
c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 1)) ,
c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 2))) ,

a s s i g n (
o b t a i n _ t a g (~ t a g _ 1) ,
p l u s (c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 1)) ,

make_ in t (~ s i g n e d _ i n t ∗ , 1))) ,
a s s i g n (

o b t a i n _ t a g (~ t a g _ 1) ,
minus (c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 1)) ,

make_ in t (~ s i g n e d _ i n t ∗ , 1))))) ,
a s s i g n (

o b t a i n _ t a g (~ t a g _ 2) ,
p l u s (c o n t e n t s (i n t e g e r (~ s i g n e d _ i n t ∗) , o b t a i n _ t a g (~ t a g _ 2)) ,

make_ in t (~ s i g n e d _ i n t ∗ , 1))))

Figure 6: A sample program (a) and its ANDF output (b).

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 9

ANDF producers and installers are available for other pro-
gramming languages and several machine architectures [9].

In TDF, the original program structure is maintained
within the intermediate representation. The base element
of the TDF is the sort constructor. Instances of this con-
structor represent abstractions of expressions, descriptors,
and data types. The shape constructor is used to describe
data types within the TDF, including procedures, pointers,
and recursive data types beside the primitive data types.
Generic types can be defined in order to support platform
specific data types, like the native integer type. Other sort
constructors can be used to define specific memory layouts
for data structures, exception handlers, and runtime stacks.

TDF includes various operations, which can be separated
into arithmetic, memory, pointer, and control flow oper-
ations. Each operation is described using the expression
constructor. Figure 6 (b) shows some simplified ANDF
output for the example program given in (a). Descriptors
(e.g., variables) in TDF are defined by the tag construc-
tor. In this ANDF sequence, a unique integer is assigned
to each tag constructor, in which tag_1 stands for variable
i and tag_2 describes variable j.

Platform independence is achieved in TDF through the
provision of two constructs: the token constructor and the
conditional constructor. The token constructor is essen-
tially a parameterized placeholder, which can be replaced
with an arbitrary sort constructor. Therefore, the token con-
structor is used within TDF to hide platform specific pro-
gram information by substituting calls to an API. In addi-
tion, the conditional variant of several constructors allows
one to specify platform specific installation tasks. A con-
ditional constructor includes two constructors and a condi-
tion: the installer evaluates the condition and maintains one
of the constructors, corresponding to the result.

In general, the installation process of ANDF programs
is separated into two steps. In the first step, calls to API’s,
denoted by token constructors, are replaced with its corre-
sponding implementation. In the second step, conditional
constructors of the program are evaluated. As a result, the
platform independent ANDF program is transformed on
the consumer-side into a platform dependent ANDF pro-
gram, which then is compiled into the machine code of the
target platform and installed.

For the transport of ANDF programs, the algebraic TDF
is linearized and stored in a capsule file. A capsule file
consists of a byte array structured into sections. The first
section includes the definitions of visibility rules for the en-
coded ANDF program and acts as an interface. All of the
token constructors used in the capsule are specified in the
next section with the definitions of token constructors fol-
lowing their declarations in order to simplify the encoding
and decoding process. After all the token constructors have
been specified, the program is stored in the following sec-
tions using a linearized version of its TDF representation.
A capsule file normally contains a single program, but it is
possible to merge several capsule files into a single capsule
library.

Verification of capsule files by the installer on the
consumer-side is not integrated into the ANDF scenario,
due to its development as a program distribution format.
Instead, ANDF producers and installers are validated with
respect to their conformity to the ANDF specification dur-
ing a certification process [8]. For certification, ANDF
producers and installers are validated separately. Valida-
tion of an installer is based on a number of hand-written
programs (i.e., the ANDF Validation Suite [40]), which
must be executed accurately by an ANDF installer. Valida-
tion of a producer is more difficult, because the produced
ANDF code must execute correctly in any runtime envi-
ronment for which there is an ANDF installer. Therefore,
an architecture-independent high-level interpreter is used
to evaluate the correctness of ANDF code generated by an
ANDF producer for the ANDF Validation Suite.

3.2.2 Slim binaries

The Slim Binary format [30, 21, 22] was originally de-
veloped as an extension of the modular Oberon system,
in which this format was used to provide architecture-
independent distribution of Oberon modules. The name
Slim Binaries was chosen to contrast with that of Fat Bina-
ries [46], a name used for commercial distribution formats
from Apple and Next, which stored binaries for multiple
program architectures in a single file. Since Fat Binaries
store one version of the entire program executable for each
machine architecture, Fat Binaries tend to be large and re-
quire a complex build process [28].

Slim Binaries avoid these disadvantages by using a
portable and high-level intermediate representation, that is
based on the encoded abstract syntax tree and symbol table
of a program. In the extended Oberon system (see Figure
7), the producer-side translates Oberon modules into Slim
Binary files and distributes them to several consumers. Af-
ter successful transmission, a code-consumer can restore
the syntax tree and symbol table from the r Slim Binaries
and then verify its correctness. If this verification succeeds
the syntax tree and symbol table are then used to generate
the machine code of the target platform. In the actual im-
plementation, a single code generating loader decodes Slim
Binary files and generates code in an unified process.

The program representation contained in Slim Binary
files consists of a compact description of the symbol table
and a syntax-oriented encoding of the abstract syntax tree
that is based on a technique called Semantic Dictionary En-
coding (SDE).5 In SDE the encoding is performed using a
dynamically generated semantic dictionary table, in which
each entry stands for a special type of node used in the ab-
stract syntax tree. As a consequence, the abstract syntax
tree of a program in Slim Binary format is not described
through nodes directly, but through a sequence of indices,
where each index stands for an entry in the dictionary table.
The resulting sequence of indices is stored, conjoined with

5In principle, SDE is a clever application of the well-known LZW
compression algorithm [71] on expressions.

10 Informatica 32 (2008) 1–25 W. Amme et al.

Parser

Transformer

Slim
Binaries

Source Program

Encoder

Code Producer

Decoder
 Verifying

Code Consumer

Maschine

Code Genrating Loader

Code

Figure 7: A Slim Binary Scenario.

the symbol table, in a file, which then can be transmitted to
the code-consumer.

In SDE the dictionary table is generated in the exact
same manner during encoding and decoding processes,
therefore it is not necessary to store the dictionary table it-
self into a Slim Binary file. Instead, the dictionary table of a
program is rebuild automatically during decoding of the ab-
stract syntax tree on the consumer-side. Construction of the
dictionary table is always performed in three steps. First,
the dictionary table is filled up with entries that describe
the control structures and operators (e.g., if, while, for, +,
–, *, and /) of the used programming language. Second, the
dictionary is augmented with entries from the symbol table
for the variables and constants defined in the program. Fi-
nally, the dictionary can be enhanced with special entries,
which we will describe in detail later.

Figure 8 (a) contains the abstract syntax tree and the cor-
responding symbol table for the same sample source pro-
gram that was shown in Figure 6 (a), and Figure 8 (b) shows
the sequence of indices resulting from applying the SDE.
To simplify matters, the dictionary table shows only those
entries which appear in the abstract syntax tree. In actual-
ity, in order to describe all control structures and operators
significantly more entries must be placed into the table. In
SDE, a ‘.’ stands for operands that have not yet been pro-
cessed, e.g. if the entry ‘.=.’ is selected, the left and right
operands will need to be read. There are also dictionary
entries (8 to 10 in our example) for each of the entries in
the symbol table.

The dictionary table generated for our sample program
can then be used for encoding the abstract syntax tree. For
that purpose, the nodes of the abstract syntax tree are tra-
versed in pre-order, and as each node is processed, the in-
dex of its corresponding node class is written out. For
example, the expression i=i+1 can be encoded as the se-
quence of indices, 4-9-5-9-8, corresponding to this expres-
sion in prefix notation: =i+i1. Encoding of expressions in

prefix notation allows the abstract syntax tree of a program
to be rebuilt directly as the Slim Binary file is processed.

Application of this simple SDE encodes each assignment
of the sample program using at most 6 indices. On closer
inspection, it is apparent that certain sequences reappear
multiple times within the Slim Binary file (e.g., the encod-
ing of the first and third assignment are identical). The
Slim Binary format allows for the compression of recur-
rences of similar patterns, by adding additional entries to
the SDE during the encoding process that express patterns
of nodes that have already been seen. As an example, after
processing the assignment i=i+1, entries for the subexpres-
sions i=., i+., .+1, i+1,.=i+1 and i=i+1 are inserted into
the dictionary table. Figure 8 (c) shows excerpts of the dic-
tionary table extension that would be adaptively built up
during the encoding of our sample program. As can be
seen, this SDE dynamic extension mechanism reduces the
number of indices required for the sample program from 32
to 24 indices.

The insertion of additional entries for the description of
these subexpressions increases the size of the dictionary ta-
ble and with it the number of bits that are required for ta-
ble index representation. However, in an optimized SDE,
not all above discussed dictionary entries must be inserted
into the dictionary table. Ref. [22] contains a detailed
description of insertion strategies that can be used for ef-
fective construction of dictionary tables for the Slim Bi-
nary format. During decoding of an abstract syntax tree
that has been encoded by a dynamic SDE, the same adap-
tive construction of the dictionary table must be performed.
As a consequence, after the recovery of the expression,
i=i+1, entries for subexpressions i=., i+., .+1, i+1,.=i+1
and i=i+1 must be inserted into the dictionary table in the
same order on the consumer side as they were on the pro-
ducer side, since otherwise the abstract syntax tree cannot
be regenerated correctly.

The effectiveness of Slim Binaries as intermediate rep-

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 11

<=

i j =

i −

i 1

else

=

j +

j 1

=

i +

i 1 =

i +

i 1

if

(a)

if−begin

end−if

=

j +

j 1

1 const

j int

i int

... ...

(c)

...

else

int i,j;

(b)

...

else

int i,j;

if (i <= j) 0 7 9 10

if (i <= j) 0 7 9 10

i = i + 1; 4 9 5 9 8

 i = i + 1; 1 4 9 5 9 8

i = i + 1; 4 9 5 9 8

j = j + 1; 4 10 5 10 8

j = j + 1; 4 10 13 10

 i = i − 1; 2 11 6 9 8

 i = i − 1; 2 4 9 6 9 8

 i = i + 1; 1 16

j = j + 1; 21

j = j + 1; 4 10 5 10 8
end if; 3

end if; 3

Index Meaning

0 if−begin
1 if
2 else
3 end−if
4 .=.
5 .+.
6 .−.
7 .<=.
... ...
8 1
9 i
10 j

11 i=.
12 i+.
13 .+1
14 i+1
15 .=i+1
16 i=i+1
17 j=.
18 j+.
19 j+1
20 .=j+1
21 j=j+1
22 i<=.
23 .<=j
24 i<=j

 25 i−.
26 .−1
27 i−1

 28 .=i−1
29 i=i−1

Figure 8: A Slim Binary Example.

resentation for mobile code was demonstrated by the Juice
browser plug-in [27], which allowed Oberon applets (com-
piled into Slim Binaries) to be executed locally inside the
web browser (via Juice’s code generator) just like Java ap-
plets. Since the Slim Binary format results in smaller file
sizes than corresponding Java Bytecode files, transmission
times of Juice applets are shorter than for equivalent Java
applets [47]. Furthermore, many optimizations can be per-
formed on Juice applets due to the retention of high-level
program information.

Program optimizations that are performed on the

consumer-side impose additional runtime costs. Therefore,
instead of enforcing optimizations during load time, they
can be performed as background process while the mobile
code is already executed. The Slim Binary format is well
suited for this kind of runtime optimization [48].

Within an environment that supports runtime optimiza-
tions, Slim Binaries are first transformed into the ma-
chine code of the target platform during load time with-
out applying any program optimizations. Subsequently,
while the machine code executes, additional transforma-
tions and program optimizations can be performed in a sep-

12 Informatica 32 (2008) 1–25 W. Amme et al.

arate thread. With each transformation, the quality of the
generated machine code is enhanced, until a certain level
of optimization is achieved.

Runtime optimizations are also able to support com-
plex transformations (e.g., inter-modular and approxima-
tive program optimizations). Extended variants (see, for
example, [7, 62]) use adaptive analysis to identify fre-
quently executed parts of the mobile code. Using this in-
formation, the optimizations can be performed more effi-
ciently.

A variant of Slim Binaries for the Java language is imple-
mented by the ASTCode format [66]. The main objective
of this approach was to produce a more compact interme-
diate representation than Java Bytecode and to simplify the
verification process on the consumer-side. In ASTCode the
class file format has been changed slightly. In particular,
the constant pool of the class files is used as a symbol table,
and instead of Java Bytecode sequences, in ASTCode class
files contain sequences of indices of the Semantic Dictio-
nary Encoding. In order to simplify the verification pro-
cess, the decoding process of a class file in ASTCode is
extended by a type-checking procedure. As a result, the
complexity of the verification process, which is quadratic
for Java Bytecode, is reduced to a linear function of code
length.

3.2.3 SafeTSA

We also classify SafeTSA (which stands for Safe Typed
Static Single Assignment Form) as a tree-oriented inter-
mediate representation for mobile code, even though it is
actually a hybrid format that combines high-level control
structures in a AST-like form (called the Control Structure
Tree) with individual instructions in static single assign-
ment form [3, 70]. The format was designed as a drop-in
replacement for Java Bytecode6 providing for more effi-
cient just-in-time compilation and an innovative approach
to safety based on an inherently safe encoding.

SafeTSA’s control structure tree provides for all of the
non-linear intra-procedural control flow in SafeTSA. The
instructions (which only perform computations, manipu-
late data on the heap, and call methods) are embedded
as leaves of the control structure tree with their execution
being controlled by their parents in the tree. The high-
level control structures provided by SafeTSA (which mir-
ror those provided by the Java programming language), re-
strict SafeTSA programs to reducible intra-procedural con-
trol flow. They also make it possible to do a syntax directed
derivation of the control flow graph and dominator tree,
and also allow for the possibility of high-speed single-pass
syntax-directed JIT compilation of SafeTSA code.

The primary driver of enhanced efficiency for just-in-
time compilation of SafeTSA, however, results from the

6And, in fact, the prototype implementation of SafeTSA based on the
Jikes Research Virtual Machine supports intermixing classes loaded from
both SafeTSA and JVML class files within a single executing virtual ma-
chine [4].

use of Static Single Assignment Form (SSA). Static Single
Assignment Form guarantees that each instruction’s result
variable is unique (i.e., assigned to at only that static loca-
tion in the program) [14]; this discipline (which is facili-
tated by special φ-functions that merge alternative values
that reach a program point on different control flow paths)
enables a variety of optimizations that are now standard in
state-of-the-art optimizing compilers. In SafeTSA, the use
of SSA facilitates producer-side machine-independent op-
timization and speeds up several consumer-side optimiza-
tions. As reported in [4], the net result is that JIT compilers
for SafeTSA can deliver the same quality code in less time
than a JIT compiler for JVML.

Static single assignment form also plays a key part in
SafeTSA’s inherently safe encoding. The binary on-the-
wire SafeTSA is designed such that it only uses the num-
ber of bits required to represent possible program symbols
that might result in a syntactically valid and correctly typed
program [70]. In this way, the program is more dense, be-
cause it is not wasting bits that do not differentiate between
correctly typed programs.

In addition, a separate verification phase is unnecessary,
because the decoding process only ever produces syntac-
tically valid and correctly typed programs. There are a
couple of mechanisms that enable this. Perhaps the most
important mechanism is the implicit naming and enumer-
ation of variables according to dominator scoping and the
type separation. The implicit naming is based on the prop-
erty that, in static single assignment form, each variable is
only ever assigned at a single location, so by enumerating
the locations where variables are created, one can create
names for the variables. In static single assignment form, a
variable is live at a program point, if and only if, its defin-
ing instruction dominates that program point. Therefore,
SafeTSA limits the scope of all SSA variables to the pro-
gram region dominated by its definitions, and the implicit
enumeration takes advantage of this so that variables are
enumerated consecutively along the path of the dominator
tree to the point the variable is being accessed.

In addition SafeTSA’s variable enumeration is type sep-
arated. That is, there are no implicit coercions, so the vari-
ables of each type can be enumerated independently. These
mechanisms enable all symbols representing operands to
be selected from a list of candidate operands that would
be legal in that program location. Simpler mechanisms are
used for symbols and other kinds of program elements, and
a binary prefix code is generated for each position in the
program based on an implicit enumeration of the possible
alternative symbols for that position.

All of these mechanisms can be seen in Figure 9. The
section of the control structure tree shown in Figure 9(b)
contains a node for the IF statement, a node naming the
boolean value that should be “used” to control the IF state-
ment, and several blockgroups, which contain instructions,
and some of which are subordinate to the IF statement in
particular ways (e.g., the THEN-statement). In order to
make the code easier to read, the variables are named with a

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 13

i n t i , j ;

i = i + 1 ;
j = j + 1 ;
i f (i <= j)

i = i + 1 ;
e l s e

i = i − 1 ;
j = j + 1 ;

(a) in Java

CONSTANTS: Z0=0, Z1=1

blockgroup
Z7 ← add-int Z4 Z1

Z8 ← add-int Z5 Z1

IF

expr/blockgroup
B3 ← lte-int Z7 Z8

USE: B3

then/blockgroup
Z9 ← add-int Z7 Z1

else/blockgroup
Z9 ← sub-int Z7 Z1

join
Z9 ← φ(Z9,Z9)

blockgroup
Z10 ← add-int Z9 Z1

(b) in abstract SafeTSA

Symbol Index/Choices Encoding

statement blockgroup 1/12 001
apply 19/20 11111

add-int 89/185 10100000
Z4 4/7 101
Z1 1/7 010

add-int 89/185 10100000
Z5 5/8 101
Z1 1/8 001

end blockgroup 0/20 0000
IF 3/12 011

expression blockgroup 1/3 10
apply 19/20 11111

lte-int 104/185 10101111
Z7 7/9 1110
Z8 8/9 1111

end blockgroup 0/20 0000
use: — —
B3 3/4 11

then: — —
apply 19/20 11111

add-int 89/185 10100000
Z7 7/9 1110
Z1 1/9 0001

end blockgroup 0/20 0000
else: — —

apply 19/20 11111
sub-int 111/185 10110110
Z7 7/9 1110
Z1 1/9 0001

end blockgroup 0/20 0000
join: — —

φ 0/2 0
Z9 9/10 1111
Z9 9/10 1111

end join 1/2 1
statement blockgroup 1/12 001

apply 19/20 11111
add-int 89/185 10100000
Z8 8/11 1101
Z1 1/11 001

(c) in SafeTSA’s Binary Encoding

Figure 9: The Example Program Fragment in SafeTSA

14 Informatica 32 (2008) 1–25 W. Amme et al.

symbol representing the type (Z for integer, B for boolean)
and a subscript indicating the variables position in 0-based
implicit enumerations. The integer constants, 0 and 1, are
declared to be represented by Z0 and Z1, respectively. The
initial values of i and j are assumed to be Z4 and Z5, and it
is assumed that there are 7 integers and 2 booleans defined
before the first instruction shown. With these assumptions,
the first instruction in the first blockgroup adds 1 to Z4 (i.e.,
the old i) and puts the result in Z7 (i.e., the new i). Note
that there are several definitions of Z9, which appears to be
a violation of the single assignment property, but none of
these definitions dominates any of the others so their scopes
do not overlap and they are distinct variables. In fact, this
mechanism effectively prohibits accessing non-dominating
variables, since their names get re-used by those that do
dominate a particular access. Due to the peculiarities of
φ-functions in SSA, the definition of the third Z9 actually
refers to the first Z9 and the second operand refers to the
second Z9, but according to SafeTSA’s rules [70], only the
correct Z9 is in scope at each of those positions. The ren-
dering of the tree representation into a sequence of sym-
bols, and the binary encoding of those symbols is shown in
Figure 9(c).

3.3 Proof-annotated representations
In the past decade, there have been several research projects
aiming at the development of certifying compilers. Cer-
tifying compilers differ from traditional compilers in that
in addition to producing executable code, they also pro-
duce an additional annotation (i.e., a certificate) contain-
ing a proof that the executable code respects certain safety
properties (usually type and memory safety). The proof-
annotated code format is designed so that all proofs can be
automatically checked in a bounded amount of time. In a
mobile code context, such a proof-annotated format can be
used to only allow the execution of mobile code for which it
is determined that the proofs are correct and that the proofs
are sufficient to guarantee that the annotated code satisfies
the safety properties required by the mobile code system.

Proof-Carrying Code [55] and Typed Assembly Lan-
guage [51] are the two primary representatives of proof-
annotated mobile code formats. As introduced by George
Necula in 1996, proof-carrying code utilizes certificates
written in a formalism based on first-order logic. This
proof can be generated by the code producer and shipped
along with the program code. The code consumer then
validates the proof to ascertain the safety of the transmit-
ted mobile code. Due to its foundation in first-order logic,
proof-carrying code is quite flexible in terms of the types of
safety properties that can be checked using first-order logic;
the limiting factors on flexibility are the kinds of proper-
ties for which proofs can be generated automatically. The
Touchstone compiler7 is the front-end of a prototype proof-
carrying code system that compiles from a safe subset of

7A variant of Touchstone, called SpecialJ, has been developed for the
Java programming language [10, 11].

the C programming language into machine code and cer-
tifies that the resulting machine code is type and memory
safe [55, 58].

Typed Assembly Language extends traditional untyped
assembly languages with typing annotations, memory man-
agement primitives, and a sound set of typing rules. These
typing rules guarantee the memory safety, control flow
safety, and type safety of the transmitted program.

3.3.1 Proof-carrying code

Proof-Carrying Code (PCC) was originally developed as
a mechanism for safe operating system kernel extensions,
but was later adapted to the area of mobile code [54, 56].
Founded on formal program verification theory, PCC al-
lows the code consumer to check the safety of programs by
checking machine-readable proofs that are generated by the
code producer and shipped along with the program code.
After checking the validity of the proofs, code consumers
are then assured that the program execution will not vio-
late the verified properties. The desired safety properties
depend on the code consumers safety policy, which acts as
a contract between the code producer and code consumer,
and defines which conditions must be satisfied by safe mo-
bile programs.

In a proof-carrying code system, the role of the code
producer is fulfilled by a certifying compiler, consisting
of an annotating compiler and a proof-generator. While
the certifying compiler translates the program that is to
be transmitted into machine code of the target platform or
any other executable code representation, it also annotates
the program with additional information (e.g., types) that
would otherwise be lost. After this, a theorem (possibly-
specialized) prover is used to generate a proof that the gen-
erated code complies with the mobile code system’s safety
policy, and this proof is transmitted along with the code to
the code consumer in a PCC binary. The code consumer
validates the safety proof based on the actual machine code
and the conditions defined in the safety policy. The valida-
tion algorithm and the safety policy are the only parts of the
system which have to be trusted, minimizing the size of the
trusted code base (TCB)8. If proof validation is successful,
the safety of the transferred mobile program is guaranteed
and the machine code can be executed as shown in Figure
10.

Safety conditions, which have to be satisfied by the
transferred mobile code are defined within the safety pol-
icy and are shared between code producer and code con-
sumer. This safety policy is based on first-order logic and
consists of three parts: a verification condition generator
(VCG) [19], a set of axioms, and pre- and post-conditions.

The verification condition generator is used to derive a
safety predicate (i.e., a verification condition), from the an-
notated program code. The safety predicate is derived such
that it will only evaluate to true if every condition specified

8The paper [5] describes an even further reduced trusted code base
which incorporates the safety policy into the proof.

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 15

CPU

Safety
Proof

Code
Native Validation

Safety Policy

Code Producer Code Consumer

Source Program

Proof−Generator
Compiler

Annotating

Proof

Figure 10: Proof-Carrying Code Architecture.

in the safety policy is satisfied. The pre- and post-condition
included in the safety predicate, express constraints on the
machine state that must hold, respectively, before and after
program execution. The safety predicates, which are de-
fined in first-order logic, are derived from a set of axioms
and derivation rules that model the state transitions of the
target machine associated with each instruction.

Both, code producer and code consumer, derive the
safety predicate from the annotated program code. The
code producer generates a proof of the safety predicate,
indicating the safe execution of the program code, and
the code consumer derives the safety predicate in order
to check the matching of program code and safety proof.
Thus, the verification condition generator traverses the pro-
gram code and creates predicates for each critical instruc-
tion (e.g., memory access) using a symbolic interpreter,
such that a proof of these predicates ensures that execut-
ing the corresponding instruction does not invalidate the
conditions defined in the safety policy.

To support complex program structures like method calls
and loops, the verification condition generator uses invari-
ants annotated in the program code. These annotations are
frequently required to mark loop invariants, which cannot
normally be automatically derived by the verification con-
dition generator. The invariants are included among the
predicates which must be verified. Thus, the code con-
sumer does not need to trust the program annotations, and
the invariants are only used as hints supporting the gener-
ation, and the validation of the safety proof. These predi-
cates must be proved to hold for every control path between
two distinct invariants, starting with the pre-condition and
finishing with the post-condition. As a consequence, the
safety predicate of the whole program is the conjunction of
all predicates derived from the invariants and the individual
instructions.

After the safety predicate has been derived by the ver-
ification condition generator, the code producer creates a
proof, which shows the correctness of the generated safety
predicate. This safety proof is represented using the Edin-

burgh Logical Framework or LF notation [42, 68]. The Ed-
inburgh Logical Framework efficiently validates the proofs
by reducing validation to a simple type-checking procedure
[55, 57]. (In other words, in the Edinburgh Logical Frame-
work, only correct proofs are correctly typed.) Thus, the
code consumer of a PCC system can be guaranteed that a
mobile code program satisfies its safety policy prior to its
execution.

As a concrete example of a PCC system, let us exam-
ine the output of the Touchstone certifying compiler. The
Touchstone certifying compiler might translate the source
program, shown in Figure 11 (a), into the slightly opti-
mized DEC ALPHA assembly code as shown in Figure
11 (b). Note that a pre- and post-condition are annotated,
both stating that registers v0 and t0, which represent vari-
ables i, j of the source program respectively, contain integer
values. In order to verify the safety of the machine code,
the Touchstone certifying compiler generates a verification
condition and a safety proof, indicating the validity of the
verification condition. The verification condition, shown
in Figure 11 (c), states type and memory safety of the ma-
chine code. Therefore, the verification condition denotes
the implication that: assuming the registers v0 and t0 hold
integer values initially, their values after manipulation will
still be of type integer after the machine code has been ex-
ecuted. Thus, the post-condition can be derived from the
pre-condition, and the validity of the verification condition
is proven. The safety proof shown in Figure 11 (d) states
the validity of the verification condition and therefore guar-
antees type and memory safety of the machine code.

One drawback of PCC is the size of the generated safety
proofs, especially since the proofs have to be transmitted
along with the code to the code consumer. The transfer of
the safety proof conjoined with the program code is per-
formed using a PCC binary, which consists of three parts.
First, the program to be transferred is included using an in-
termediate representation or the machine code of the target
platform. In the latter case, the program can be directly
loaded and executed after the mobile code has been suc-

16 Informatica 32 (2008) 1–25 W. Amme et al.

(a) s o u r c e program

i n t i , j ;
i = i + 1 ;
j = j + 1 ;
i f (i <= j)

i = i + 1 ;
e l s e

i = i − 1 ;
j = j + 1 ;

(b) a n n o t a t e d machine code

ANN_PRE(example , LF_
(/ \ (o f t 0 i n t)

(o f v0 i n t)) _LF)

s u b l t0 , v0 , t 1
b l t t1 , L2
l d a v0 , 2 (v0)

L2 :
l d a t0 , 2 (t 0)

ANN_POST(example , LF_
(/ \ (o f t 0 i n t)

(o f v0 i n t)) _LF)

(c) v e r i f i c a t i o n c o n d i t i o n

p f (a l l ([X0 : exp]
(a l l ([X1 : exp]

(= > (/ \ (o f X1 i n t) (o f X0 i n t))
(/ \ (= > (>= (− X1 X0) 0)

(/ \ (o f (+ X1 2) i n t)
(o f (+ X0 2) i n t)))

(= > (< (− X1 X0) 0)
(/ \ (o f (+ X1 2) i n t)

(o f X0 i n t)))))))))

(d) p r o o f

(a l l i [X0 : exp]
(a l l i [X1 : exp]

(impi [A1 : p f (/ \ (o f X1 i n t) (o f X0 i n t))]
(a n d i (impi [A2 : p f (>= (− X1 X0) 0)]

(a n d i (o f I n t A n y (+ X1 2))
(o f I n t A n y (+ X0 2))))

(impi [A3 : p f (< (− X1 X0) 0)]
(a n d i (o f I n t A n y (+ X1 2))

(a n d e r A1)))))))

Figure 11: A sample program (a) and its PCC output (b), (c) and (d).

cessfully verified. The second part of the Proof-Carrying
Code binary contains a symbol-table, which is used to re-
construct the LF representation of the safety proof on the
consumer side. The last part includes the safety proof in a
binary encoding.

3.3.2 Typed assembly language

The use of a Typed Assembly Language as intermediate
representation benefits a mobile code system in several
ways. First of all, a number of program optimizations are
enhanced by having type information available in the as-
sembly code. In addition, the type annotations facilitate

the verification of the mobile code’s type safety. In order
to gain these benefits, a type abstraction of assembly lan-
guages is required, which guarantees type safety of well-
formed assembly programs and hence enables the transfor-
mation of well-formed input programs into safe assembly
code [38]. Since the type annotations and type checking,
serves to prove that a program in a Typed Assembly Lan-
guage is type safe, it can be considered as a kind of proof-
annotated representation, even though the proof is not that
of a direct assertion of safety in a general logic as it is in
proof-carrying code [52].

The feasibility of Typed Assembly Language was
demonstrated by the reference implementation, TALx86

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 17

 (*.scm)

 (*.pop)

Scheme Compiler

Popcorn Compiler

 *.tal

 ...

 *.tal

Source Program

Source Program

 Assembler

Machine Code

Code ConsumerCode Producer

 Type Checker

Figure 12: Talx86 system.

[36]. TALx86 incorporates support of the programming
languages Scheme and Popcorn (a type-safe subset of the
C language from which unsafe constructs such as pointer
arithmetic and address operator have been removed). On
the producer side of the prototype TALx86 system (see
Figure 12), programs of the Scheme or Popcorn program-
ming language are transformed into assembly code for the
target platform, and the generated assembly code is anno-
tated with type information resulting in Typed Assembly
Language. After receiving a program, the code consumer
uses the annotated type information to type-check the trans-
ferred assembly program. If the mobile code is success-
fully verified, an assembler transforms the assembly code
into machine code for the target platform, which is then
executed.

The TALx86 implementation is based on Microsoft’s
Macro Assembler Language, and therefore, TALx86 pro-
grams, after being type-checked, can be efficiently assem-
bled with common commercial assemblers. Within the
TALx86 system, the register-based Microsoft Macro As-
sembler Language is extended with annotations, which are
mainly used as pre-conditions of code labels, assigning
type information to registers.

Our sample program (now written in Popcorn) in Figure
13 (a) and its translation into TALx86 are shown in Figure
13 (b). The TALx86 sequence consists of two sections: the
assembly language instructions and its corresponding type
annotations. The assembler program starts by calculating
increments of values contained in registers EBP and EDI,
which represent the variables i and j, respectively. Sub-
sequently, the values are compared, and if the value con-
tained in EBP exceeds the value in EDI, execution contin-

ues at the code label ifFalse$49, which represents the else
branch of the program. Otherwise, the then branch of the
if statement is executed, and the value contained in EBP is
incremented. After that, program execution proceeds to the
label ifMerge$50, which marks the end of the if statement,
and the value in register EDI is incremented again.

Both labels are annotated with the types of values con-
tained in the registers at that point. As an example, an-
notation EDI:B4 denotes type B4 in register EDI, indi-
cating a 4-byte integer value inside. On the consumer
side, the annotation is then used by the type-checker, so
that it only has to check that the register EDI contains a
value of type B4 before control is given to label ifFalse$49
or ifMerge$50 (rather than propagating types around the
control-flow graph until a fixed pointer is reached or a type
error is detected).

Polymorphic types, required for describing high-order
structures like stacks, are realized using placeholders,
which are replaced by corresponding types before control
is transferred to the associated code label. Type annota-
tions are also used to define new types with type construc-
tor declarations. This flexibility of the type system allows
one to support a wide range of programming languages.
TALx86 allows the code consumer to provide routines of
instructions (i.e., macros) for manipulating complex data
structures that can be typed and treated as atomic opera-
tions during verification. Programs may explicitly allocate
such complex data structures using the macro malloc but
are not allowed to explicitly de-allocate the structures; this
is done implicitly, through garbage collection.

Stacks in TALx86 programs are modeled by abstractions
that are based on lists. The expression t :: s denotes a stack,

18 Informatica 32 (2008) 1–25 W. Amme et al.

(a) i n t i , j ;
i = i + 1 ;
j = j + 1 ;
i f (i <= j)

i = i + 1 ;
e l s e

i = i − 1 ;
j = j + 1 ;

(b) MOV EDX, EBP
ADD EDX, 1
MOV EBP ,EDX
MOV ESI , EDI
ADD ESI , 1
MOV EDI , ESI
CMP EDX, ESI
JG t a p p (i f F a l s e $ 4 9 , < r$9 >)
ADD EBP , 1
JMP t a p p (i fMerge$50 , < r$9 >)

i f F a l s e $ 4 9 :
LABELTYPE < A l l [r$9 : Ts] . { EDI : B4 , EBP : B4 , ESP : s p t r {ESP : s p t r r$9 } : : r$9 }>

MOV ESI , EBP
SUB ESI , 1
MOV EBP , ESI
FALLTHRU <r$9 >

i fMerge$50 :
LABELTYPE < A l l [r$9 : Ts] . { EDI : B4 , EBP : B4 , ESP : s p t r {ESP : s p t r r$9 } : : r$9 }>

ADD EDI , 1

Figure 13: Sample program in Popcorn (a) and corresponding TALx86 program (b).

consisting of a top-most element of type t and the rest of the
stack described by s. Placeholders are applied in order to
enable the polymorphic representation of stacks. A place-
holder is of a general form All[s:Ts] where Ts denotes the
abstract type, which is substituted by a corresponding in-
stance s.

As a consequence, function calls are represented by the
help of a runtime stack s, which is referenced by stack
pointer sptr s contained in register ESP. This can bee seen at
labels ifFalse$49 and ifMerge$50 of Figure 13 (b), where
register ESP references the runtime stack, which contains
another stack pointer representing the caller frame, and the
rest of the stack denoted by the polymorphic type r$9.

Polymorphic types in combination with runtime stacks
are also used to implement visibility rules, which make the
actual representation of abstract types associated to local
variables only resolvable by the authorized function. Fur-
thermore, this mechanism supports exception handling by
restricting register access. A dedicated register contains a
stack pointer which indicates where to unwind the runtime
stack to. This stack pointer is typed so that it is abstract and
therefore unmodifiable by everything except for the excep-
tion code.

The time-critical processes in the TAL system include
the code consumer’s type-checking and the transfer of the
mobile program to the code consumer. Thus, a compact en-
coding of Typed Assembly Language is needed for optimal
performance. Since the annotations (e.g., pre-conditions
of code-labels) increase the code size, various compression
techniques can be applied to increase the density of the an-

notation format, so that it is more suitable for mobile code
[37]. These techniques include, among other, the sharing of
common sub-terms within annotations, the use of generic
type abbreviations, and the elimination of unnecessary an-
notations.

4 Review and comparison
In the following sections, the mobile code representations
that were presented earlier will be evaluated according to
the requirements introduced in Section 2. Table 1 sum-
marizes this evaluation and can be used as a guide to the
discussion that follows.

4.1 Source language flexibility
Although the JVM was designed to support Java semantics,
it can also be used as a target for other languages. Indeed,
several compilers for C, C++, and Ada95, target the JVM.
However, these language’s intrinsic insecurities, and their
semantic mismatch with Java, require the programmer to
adhere to restrictive feature subsets [32]. In order to avoid
such disadvantages, .NET and its intermediate representa-
tion CIL were designed to efficiently support a variety of
object-oriented, functional, and procedural programming
languages, including C#, C++, Java, Fortran, Cobol, Eif-
fel, Haskell, ML. Furthermore, the .NET platform’s Com-
mon Type System serves as a common denominator that
aids cross-language interoperability, so that .NET compo-
nents can interact with each other even if they are written

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 19

Stack-based Tree-oriented Proof-Annotated

JVML CIL ANDF Slim Binary SafeTSA PCC TAL

Flexibility
Input-Languages X + X X X ++ +
General type system − ++ − − − − ++

Portability
Target-Architectures ++ ++ + + + − −

Compactness
Encoding Density X X + ++ + − −

Efficiency
Interpreter ++ ++ X X X − −
JIT compiler X X + + ++ X X

Producer Optimizations X X + + + ++ ++
Producer Annotations X X X X ++ ++ ++
Consumer Optimizations + + + + + X X
JIT Cost X X + + ++ X X

Safety
Safety ++ ++ − ++ ++ ++ ++
Automated ++ ++ − ++ ++ − ++
Runtime Complexity X X N/A + + + +

Legend: −poor/no, Xadequate, +good/yes, ++excellent.

Table 1: Intermediate representations in comparison.

in different CTS-supporting languages.
Tree-oriented intermediate representations tend to be

more limited in their linguistic flexibility. The current
ANDF-System supports Ada95 and C; Slim Binaries’ and
SafeTSA’s prototype systems are built to support the source
language Oberon and Java, respectively. Although, it
seems that tree-oriented techniques are limited to programs
written in predetermined languages, representatives of this
kind of intermediate representation also can be extended
for addressing a multiplicity of source languages. Basi-
cally, such an extension might be based on the construction
of an unified abstract syntax tree and a more general type
system.

In principle, the greatest source-language flexibility can
be achieved with proof-annotating intermediate representa-
tions, since for most programming languages, a front end,
which translates a source program into native code, can be
easily constructed. Furthermore, a principle objective of
the TAL project was the development of a statically typed,
low-level intermediate representation, that could be used
for multiple source languages and on which multiple pro-
gram optimizations could be performed [64]. For the de-
scription of type systems of different source languages, the
TAL system transforms a program internally into an inter-
mediate representation that is based on a high-order λ cal-
culus, from which eventually after several type-conserving
restructurings the TAL program is derived.

4.2 Portability

A code consumer can execute mobile code applications us-
ing an interpreter, a JIT compiler or both. On most current

desktop and server computer systems adaptive JIT compi-
lation techniques provide the best performance. However,
as small resource constrained devices (e.g., cell phones,
PDA’s, Java cards) become more and more ubiquitous, in-
terpreters in mobile code systems have become more im-
portant, since compared to compilation, interpretation usu-
ally uses less resources.

Stack-oriented intermediate representations provide an
excellent foundation for the development of fast and effi-
cient interpreters. In contrast, interpretative program exe-
cution is supported from none of the tree-oriented proto-
type systems, as these mobile code formats mainly focus
on JIT compilation. Nevertheless, tree-oriented systems
can include interpreters (see e.g. [41, 31]), which may be
slower than for stack-based counterparts, but could be used
for program execution on platforms for which JIT compil-
ers are not yet available.

JIT compilers that transform JVML and CIL programs,
respectively, into machine code have been developed for
the most common computer systems. Although all of the
presented tree-oriented systems are developed for a re-
stricted number of architectures, in principle, these inter-
mediate representations can be considered just as portable.
That is, since targeting other architectures needs only more
engineering resources to implement new back-ends trans-
lating tree-based program representations into their corre-
sponding machine code.

Although PCC and TAL, in their original incarnations,
are based on the target machine assembly language, and
thus are not portable. In principle, they could also be used
as input for JIT compilation, in which case, the assembly
language could be replaced with a more general register-

20 Informatica 32 (2008) 1–25 W. Amme et al.

based language. A candidate for such an all-purpose low-
level language could be the intermediate representation
used by the VCODE system (which is the machine code
of an idealized RISC-Architecture) [18]. This would serve
as a common target language for programs written in differ-
ent programming languages and as input for an on-the-fly
machine code generation of different architectures.

4.3 Compactness

Compactness of mobile code applications plays a major
role, especially as many today’s network connections are
wireless and have a limited bandwidth. In such networks,
raw throughput rather than network latency is the main bot-
tleneck. Moreover, increasing use of mobile code on con-
strained devices, also puts attention on the size of program
representation due to limited memory resources.

The use of tree-oriented intermediate representations
usually leads to better file sizes than stack-based tech-
niques. In particular, according to measurements described
in [24], Slim Binaries are more dense than compressed
JVML class files by a factor of 1.72. And for uncompressed
JVML the ratio in file sizes in average even can increase up
to 2.42. SafeTSA, which has a hybrid tree/SSA structure, is
not quite as dense, but as reported in [70], has a binary on-
the-wire file size similar to compressed JVML class files.

Stack-based intermediate representations, in turn, are of-
ten more compact than the corresponding machine code
[24]. Proof-annotating intermediate representations are
still larger, because in addition to be based on less compact
machine code or assembly language, the file sizes of proof-
annotating intermediate representations are also increased
by their proof or type annotations. Unfortunately, there ex-
ists no measurements about file sizes of proof-annotated
code compared to JVML programs. However, measure-
ments in a prototype PCC system resulted in an average
ratio of proof size to code size of 2.5 [58]. Comparable
experiments performed in the TAL system led to a ratio
of up to 0.67 [37]. These results indicate a significant in-
crease in file sizes when applying proof-annotating tech-
niques, and consequently a need of sophisticated compres-
sion techniques.9

4.4 Efficiency

We call the property of an intermediate representation to
support a fast and resource-efficient program execution, the
representation’s efficiency. Although it is a matter of com-
mon knowledge, that fast program execution is primarily
achieved through the use of JIT compilation techniques, the
efficiency with which a mobile code format can be inter-
preted is also important, especially as resource-constrained
devices become more ubiquitous.

Stack-oriented intermediate representations are excellent
candidates for interpretation. The main advantage of this

9as described for TAL in [37] and PCC in [59]

architecture as input for an interpreter, is the compact in-
struction encoding (due to most operands being taken off
the stack). Although, tree-oriented mobile code formats
can also be interpreted, tree-based interpreters are not such
efficient than its bytecode counterparts, because of a higher
storage consumption and slower execution times, which are
direct consequences of its internal representation as pointer
structures. Register-based interpreters are also possible
[65, 15], but have not been employed in industrial strength
mobile code systems.

In recent years a lot of powerful JIT compilers for stack-
based mobile code formats have been developed; especially
notable are Sun’s HotSpot compiler [62, 6] and IBM’s
Jikes RVM [7, 44], respectively. However, the popular-
ity of existing stack-based JIT compilers belies the limita-
tions of stack-based intermediate representation when used
as input for a JIT compiler. Certainly, simple machine code
for stack-based programs can be generated quickly, but for
aggressive JIT compilation (i.e., with several complex op-
timizations) stack-based representations have some disad-
vantages.

The main disadvantage for aggressive JIT compila-
tion of stack-based code is the use of the stack model.
This approach requires the compiler to generate optimized
register-based machine code for a program that is expressed
in terms of the manipulation of a virtual stack machine.
Most existing stack-based JIT compilers solve this prob-
lem by expending compilation effort to transform their in-
put programs into an internal three-address code represen-
tation (often in SSA form) on which the optimizations are
performed.

A further disadvantage is the low-level character of
stack-based program code, which often prevents recon-
struction of high-level language information, which is es-
sential for certain optimizations. In addition, perform-
ing machine independent optimization on the producer
side of a stack-based system is difficult. For example,
while a compiler generating stack-based JVML code could,
in principle, perform common subexpression elimination
and store the resulting expressions in additional, compiler-
created local variables, this approach introduces additional
instructions and temporary variables that may negate any
improvements created by the common subexpression elim-
ination.

In contrast, due to its high-level entities, tree-oriented
code formats are excellent candidates for JIT compilation.
In principle, JIT compilers based on these intermediate rep-
resentations can be just as effective as static compilers.
The main advantage of a tree-oriented JIT compilation is
the preservation of high-level information that aides the
quick generation of fast code (e.g., explicitly marked loops,
loop invariant codes, exclusion of irreducible control flow
graphs).

SafeTSA successfully augments a tree-oriented interme-
diate representation with instructions in SSA form, which
is already used internally in several static and JIT compilers
and that is considered the state-of-the-art intermediate rep-

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 21

resentation for intra-procedural scalar optimizations. Sev-
eral efficient optimization techniques have been developed
for SSA programs in the last decade. Experiments, de-
scribed in [4], confirm that JIT compilers using SafeTSA
run faster than those using JVML code, reducing the cost
for dynamic optimization of some programs by up to 90%.
As mentioned above, the machine-independent optimiza-
tion of stack-based mobile code formats is often awkward,
but for tree-oriented and proof-annotated formats, such op-
timizations cause no further difficulties.

In recent years program annotations have been suggested
as a way to improve the code generation of JIT compilers.
The term program annotation is used as a synonym for code
information added to the mobile code during its generation.
This information can be used by the consumer side of a mo-
bile system to speed-up optimizations of a given program.
In principle, all types of intermediate representations sup-
port the transport of program annotations. The main chal-
lenge after transferring mobile code to the runtime envi-
ronment is the verification of the transmitted annotations.
Conceptually, verifiable program annotations can be con-
structed for PCC and TAL programs through proof and type
extensions, respectively. In SafeTSA programs the concept
of type separation can be applied in a tamper-proof manner
for the safe transport of program annotations [43].

4.5 Safety

Safety is an important criterion in a mobile code system
due to the inherent separation of code consumers and code
producers. In general, mobile code can be created by an
untrusted code producer and transferred through insecure
communication channels to the code consumer, so the code
consumer needs to verify that the transmitted mobile code
will not perform any unsafe actions when executed.

In addition to other mechanisms such as cryptographic
signatures, intermediate representations of mobile code ad-
dress the safety issue using several distinct approaches,
ranging from implicitly legal program encodings to formal
methods like program verification using first-order logic as
applied by Proof-Carrying Code. Common to all of them
is the focus on guaranteeing type and memory safety as
well as a legal control flow of the verified mobile program
in order to provide fine grain isolation of code within the
execution environment.

Stack-based intermediate representations for mobile
code utilize a data-flow analysis in the verification pro-
cess. This data-flow analysis is required due to the seman-
tic gap between high-level source language and low-level
intermediate representation [66]. Hence, as in the case of
Java Bytecode, well-formed Java Bytecode sequences do
not necessary represent legal Java programs. Adherence to
certain safety concepts of the high-level source language
is therefore verified using the data-flow analysis, which is
performed on the consumer side of the mobile code system
and targeted at type and memory safety as well as a legal
control flow of inspected bytecode.

In addition to some semantic errors in original specifi-
cations and implementations of data-flow analysis for Java
Bytecode verification [67], this approach also suffers from
its immense costs, requiring quadratic time regarding the
number of verified instructions in the worst case [66]. Be-
cause all of the verification work has to be done by the code
consumer, this factor introduces another point of attack.
Furthermore, since Java Bytecode verification assumes the
type system and other safety concepts of the Java program-
ming language, extending the underlying data-flow analy-
sis to other programming languages and safety concepts is
complicated. Due to its support for a wide range of pro-
gramming languages, the Common Intermediate Language
is more flexible on this point.

Two of the tree-oriented intermediate representations for
mobile code, Slim Binaries and SafeTSA, represent one ap-
proach to avoid the semantic gap between source language
and intermediate representation, and consequently facili-
tate the verification process. ANDF, the third tree-oriented
intermediate representation, does not integrate a verifica-
tion mechanism and so will not be discussed further in this
respect.

The Slim Binaries format, as well as SafeTSA, imple-
ments a program encoding which is based on the abstract
syntax tree and hence close to the high-level source lan-
guage. Furthermore, both formats restrict their expressive-
ness to legal programs, (i.e., code violating safety criteria
of the source language like type or memory safety can not
be encoded by a well-formed Slim Binaries or SafeTSA
program [25]. Thus, verification of mobile code is essen-
tially done by checking the adherence to the general format
of the corresponding intermediate representation.

As a consequence, complexity of the verification process
can be reduced to linear time with regard to code length, as
in the case of ASTCode [66]. The Slim Binaries format and
its variant ASTCode have been designed for the Oberon
and Java programming languages, respectively, hence ad-
dressing other languages with differing safety properties is
a non-trivial task. This drawback also relates to SafeTSA,
though it provides a mechanism for safe program annota-
tions, which may be utilized in a broadened verification
process incorporating extended safety criteria [43].

Proof-Carrying Code is based on the concept of certify-
ing compilers (i.e., that produce a machine-readable safety
certificate to accompany the mobile code and guarantee its
safe execution). Due to the formal representation of the
certificate using first-order logic and the small trusted code
base [58, 5], Proof-Carrying Code can be seen as an intrin-
sically safe intermediate representation for mobile code.

Furthermore, the genericity of the underlying approach
allows the incorporation of extended safety criteria by
adapting the logic of the safety policy and the proof gen-
erator. Current applications of Proof-Carrying Code, how-
ever, are typically limited to type and memory safety. The
main drawback of Proof-Carrying Code also relates to its
foundation on formal program verification theory: loop in-
variants must be annotated as part of the safety proof gen-

22 Informatica 32 (2008) 1–25 W. Amme et al.

eration, but these invariants cannot always be automatically
inferred from the program, so manual annotations may be
necessary if the properties to be proved are more complex
than type safety in a tractable type system.

Because creating the safety certificate is expensive,
proof generation has been shifted to the producer side of
the corresponding mobile code system. The code con-
sumer needs only to verify the shipped proof using a type-
checking procedure, requiring linear time with regard to the
code length [10], and its consistency with the accompanied
program.

Typed Assembly Language, as a variant of Proof-
Annotating Code, restricts its safety guarantees to type and
memory safety as well as the legal control flow of assembly
programs, and stresses the translation of type-correct pro-
grams of the source language to type-correct assembly code
[52]. The restricted scope of the verification process allows
to automatically generate the safety certificate, in the form
of type annotations, on the producer side of the correspond-
ing mobile code system. Furthermore, the generation of a
safety proof, as required by Proof-Carrying Code, is omit-
ted, since verification on the consumer side is done by a
type-checker which utilizes the annotated type information
of the transmitted assembly code.

It should be noted, that the three presented safety con-
cepts (i.e., verification based on data-flow analysis, implic-
itly legal program encodings, and certifying compilers) are
orthogonal and may be combined in several ways. All of
these concepts rely on representing only programs trans-
lated from a safe source language, and—with the excep-
tion of the Common Intermediate Language’s unmanaged
extensions for unverified programs—unsafe features like
pointer arithmetic are not supported by any of the presented
intermediate representations of mobile code.

5 Conclusion

In the paper, we have provided an overview of common
intermediate representations of mobile code, discuss the
strengths and weaknesses of each, and compare its prop-
erties with that of the other representations.

The comparison of different intermediate representa-
tions (see Table 1) leads us to the conclusion that there is
no unqualified ‘best’ mobile code format. One reason for
this may be that due to a tendency to focus on one single
aspect of the mobile code framework. For example, the
developers of PCC were mostly concerned with providing
increased security but did not address portability. On the
other hand, developers of ANDF provided a very portable
distribution format but did not address advanced safety re-
quirements.

Instead, it is obvious that for each intermediate represen-
tation, there are disadvantages, which cause it to fail to live
up to the ideal. As a consequence, except for Microsoft’s
CIL representation, none of the suggested mobile code for-
mats can be seen as a serious commercial challenger for

Java’s Bytecode format. This is also supported by the ob-
servation that, except for Java Bytecode and CIL, for none
of the other intermediate representations a mobile code sys-
tem other then of prototype status has been developed.

Because of the wide acceptance of Java Bytecode and
because none of the alternative intermediate representa-
tions is the ne plus ultra, most current mobile code projects
have shied away from the developing of novel intermedi-
ate representations. Instead, recent research projects in that
area attempt to improve the JVM [20] or integrate features
of some of the representations into Java Bytecode. In par-
ticular, representatives of this trend are projects that adapt
the concepts of Proof-Carrying Code and type-separation
to Java Bytecode [2, 26, 72].

Acknowledgment
This investigation has been supported in part by the
Deutsche Forschungsgemeinschaft (DFG) under grants
AM-150/1-1 and AM-150/1-3.

References
[1] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and

R. Wahbe. Efficient and language-independent mo-
bile programs. In Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI’1996), volume 31 of ACM SIGPLAN Notices,
pages 127–136, New York, May 1996. ACM Press.

[2] P. Adler and W. Amme. Improving the java virtual
machine using type-separated bytecode. In Proceed-
ings of the Workshop on Compilers for Parallel Com-
puters (CPC’2006), pages 256–263, Jan. 2006.

[3] W. Amme, N. Dalton, M. Franz, and J. von
Ronne. SafeTSA: A type safe and referentially secure
mobile-code representation based on static single as-
signment form. In Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI’2001), volume 36 of ACM SIGPLAN Notices,
pages 137–147, Snowbird, Utah, USA, June 2001.
ACM Press.

[4] W. Amme, J. von Ronne, and M. Franz. Ssa-based
mobile code: Implementation and empirical evalua-
tion. Technical Report CS-TR-2006-005, Computer
Science, The University of Texas at San Antonio,
2006.

[5] A. W. Appel. Foundational proof-carrying code. In
Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science (LICS’01), pages 247–
256, Boston, MA, USA, June 2001. IEEE Computer
Society Press.

[6] E. Armstrong. Cover story: HotSpot: A new breed of
virtual machine. JavaWorld: IDG’s magazine for the
Java community, 3(3), Mar. 1998.

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 23

[7] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive optimization in the Jalapeño
JVM. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plication (OOPSLA’2000), volume 35 of ACM SIG-
PLAN Notices, pages 47–65, New York, Oct. 2000.
ACM Press.

[8] F. Broustaut, C. Fabre, F. de Ferrière, É. Ivanov, and
M. Fiorentini. Verification of ANDF components.
ACM SIGPLAN Notices, 30(3):103–110, Mar. 1995.

[9] J. Bundgaard. An andf based ada 95 compiler system.
In TRI-Ada ’95: Proceedings of the conference on
TRI-Ada ’95, pages 436–445, New York, NY, USA,
1995. ACM Press.

[10] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko,
and K. Cline. A certifying compiler for Java. In
Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI’2000), vol-
ume 35 of ACM SIGPLAN Notices, pages 95–107,
New York, June 2000. ACM Press.

[11] C. Colby, G. C. Necula, and P. Lee. A proof-carrying
code architecture for Java. In Proceedings of the In-
ternational Conference on Computer Aided Verifica-
tion (CAV’2000), June 2000.

[12] R. Crelier. OP2: A Portable Oberon Compiler. Tech-
nical Report 1990TR-125, Swiss Federal Institute of
Technology, Zürich, Feb. 1990.

[13] I. F. Currie. TDF Specification, Issue 4.0. Defence
Research Agency, England, June 1995.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451–490, Oct. 1991.

[15] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Wal-
dron. The case for virtual register machines. In
IVME ’03: Proceedings of the 2003 workshop on In-
terpreters, virtual machines and emulators, pages 41–
49, New York, NY, USA, 2003. ACM Press.

[16] M. de Icaza and B. Jepson. Mono and the .Net
framework. Dr. Dobb’s Journal of Software Tools,
27(1):21–24, 26, Jan. 2002.

[17] J. des Rivières and J. Wiegand. Eclipse: A platform
for integrating development tools. IBM Systems Jour-
nal, 43(2):371–383, 2004.

[18] D. R. Engler. VCODE : A retargetable, extensible,
very fast dynamic code generation system. In Pro-
ceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI’1996), vol-
ume 31 of ACM SIGPLAN Notices, pages 160–170,
New York, May 1996. ACM Press.

[19] R. W. Floyd. Assigning meanings to programs. In
J. T. Schwartz, editor, Mathematical Aspects of Com-
puter Science, volume 19 of Proceedings of Symposia
in Applied Mathematics, pages 19–32, Providence,
Rhode Island, Apr. 1967. American Mathematical So-
ciety.

[20] B. Folliot, I. Piumarta, L. Seinturier, C. Baillarguet,
C. Khoury, A. Leger, and F. Ogel. Beyond flexibility
and reflection: The virtual virtual machine approach.
In D. Grigoras, A. Nicolau, B. Toursel, and B. Fol-
liot, editors, IWCC, volume 2326 of Lecture Notes in
Computer Science, pages 16–25. Springer, 2001.

[21] M. Franz. Emulating an operating system on top
of another. Software – Practice and Experience,
23(6):677–692, June 1993.

[22] M. Franz. Code-Generation On-the-Fly: A Key for
Portable Software. PhD thesis, Institute for Computer
Systems, ETH Zürich, 1994.

[23] M. Franz. The Java Virtual Machine: A passing fad?
IEEE Software, 15(6):26–29, Nov. / Dec. 1998.

[24] M. Franz. Open standards beyond java: On the future
of mobile code for the internet. J. UCS, 4(5):522–533,
1998.

[25] M. Franz, W. Amme, M. Beers, N. Dalton, P. H.
Frohlich, V. Haldar, A. Hartmann, P. S. Housel,
F. Reig, J. von Ronne, C. H. Stork, and S. Zhenochin.
Making mobile code both safe and efficient. In Foun-
dations of Intrusion Tolerant Systems, pages 337–
356. IEEE Computer Society Press, 2003.

[26] M. Franz, D. Chandra, A. Gal, V. Haldar, C. W.
Probst, F. Reig, and N. Wang. A portable virtual
machine target for proof-carrying code. Journal of
Science of Computer Programming, 57(3):275–294,
Sept. 2005.

[27] M. Franz and T. Kistler. Introducing juice. Published
in Internet, 1996.

[28] M. Franz and T. Kistler. Slim Binaries. Communica-
tions of the ACM, 40(12):87–94, Dec. 1997.

[29] M. Franz, C. Krintz, V. Haldar, and C. H. Stork. Tam-
per proof annotations. Technical Report 02-10, De-
partment of Information and Computer Science, Uni-
versity of California, Irvine, Mar. 2002.

[30] M. Franz and S. Ludwig. Portability redefined. In
Proceedings of the 2nd International Modula-2 Con-
ference, Loughborough, England, Sept. 1991.

[31] A. Gampe. An interpreter for safetsa. Master’s thesis,
2006. Masters thesis, Friedrich-Schiller-University,
Jena, Germany.

24 Informatica 32 (2008) 1–25 W. Amme et al.

[32] F. Gasperoni and G. Dismukes. Multilanguage pro-
gramming on the JVM: The Ada 95 benefits. ACM
SIGADA Ada Letters, 20(4):3–28, Dec. 2000. Special
Issue: Presentations from SIGAda 2000.

[33] J. Gosling. Java intermediate bytecodes. In Pro-
ceedings of the Workshop on Intermediate Represen-
tations (IR’1995), volume 30 of ACM SIGPLAN No-
tices, pages 111–118, San Francisco, CA, Jan. 1995.
ACM Press.

[34] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The
Java Language Specification Second Edition. The
Java Series. Addison-Wesley, Reading, MA, USA,
second edition, 2000.

[35] K. J. Gough. Stacking them up: a comparison of vir-
tual machines. In Proceedings of the 6th Australasian
conference on Computer systems architecture, pages
55–61. IEEE Computer Society Press, Feb. 2001.

[36] D. Grossman and G. Morrisett. Scalable certifica-
tion of native code: Experience from compiling to
TALx86. Technical Report TR2000-1783, Cornell
University, Computer Science, Feb. 2000.

[37] D. Grossman and J. G. Morrisett. Scalable certifica-
tion for typed assembly language. In R. Harper, edi-
tor, TIC, volume 2071 of Lecture Notes in Computer
Science, pages 117–146. Springer, 2000.

[38] D. Grossman, J. G. Morrisett, and S. Zdancewic. Syn-
tactic type abstraction. ACM Trans. Program. Lang.
Syst, 22(6):1037–1080, 2000.

[39] V. Haldar, C. H. Stork, and M. Franz. The source
is the proof. In The 2002 New Security Paradigms
Workshop, pages 69–74, Virginia Beach, VA, USA,
Sept. 2002. ACM SIGSAC, ACM Press.

[40] B. S. Hansen and J. U. Toft. The formal specifica-
tion of ANDF, an application of action semantics. In
Proceedings of the 1st International Workshop on Ac-
tion Semantics, Edinburgh, 1994, number NS-94-1 in
BRICS Notes Series, pages 34–42. BRICS, Dept. of
Computer Science, Univ. of Aarhus, 1994. BRICSre-
portNS941.

[41] K. Hansson. Java: Trees versus bytes. Master’s thesis,
a BComp Honours thesis, 2004.

[42] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. Journal of the ACM, 40(1):143–
184, Jan. 1993.

[43] A. Hartmann, W. Amme, J. von Ronne, and M. Franz.
Code annotation for safe and efficient dynamic object
resolution. In J. Knoop and W. Zimmermann, editors,
Proceedings of Compiler Optimization Meets Com-
piler Verification (COCV’2003), pages 18–32, War-
saw, Poland, Apr. 2003.

[44] IBM Research. Jikes RVM User’s Manual, v2.0.3 edi-
tion, Mar. 2002.

[45] R. Keskar and R. Venugopal. Compiling safe mobile
code. In Compiler Design Handbook: Optimzations
and machine code generation, pages 763–800. CRC
Press, 2003.

[46] T. Kistler and M. Franz. Slim binaries. techreport
96-24, Department of Information and Computer Sci-
ence, University of California, Irvine, June 1996.

[47] T. Kistler and M. Franz. A Tree-Based alternative
to Java byte-codes. International Journal of Parallel
Programming, 27(1):21–34, Feb. 1999.

[48] T. P. Kistler. Continuous program optimization. PhD
Dissertation, University of California, Irvine, 1999.

[49] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison-Wesley, sec-
ond edition, 1999.

[50] E. Meijer, R. Wa, and J. Gough. Technical overview
of the common language runtime. Microsoft, Oct.
2000.

[51] G. Morrisett, K. Crary, N. Glew, D. Grossman,
R. Samuels, F. Smith, D. Walker, S. Weirich, and
S. Zdancewic. Talx86: a realistic typed assembly lan-
guage. In 2nd ACM SIGPLAN Workshop on Compiler
Support for System Software (WCSSS’99), pages 25–
35, Atlanta, GA, USA, May 1999.

[52] G. Morrisett, D. Walker, K. Crary, and N. Glew.
From System F to typed assembly language. ACM
Transactions on Programming Languages and Sys-
tems, 21(3):527–568, May 1999.

[53] R. Nagy. Menu in activeX controls, Jan. 08 2004.

[54] G. C. Necula. Proof-carrying code. In Proceed-
ings of the Symposium on Principles of Programming
Languages (POPL’1997), ACM SIGPLAN Notices,
pages 106–119, New York, NY, USA, Jan. 1997.
ACM Press.

[55] G. C. Necula. Compiling with Proofs. PhD thesis,
Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, Sept. 1998. Technical report CMU-CS-98-154.

[56] G. C. Necula and P. Lee. Research on proof-carrying
code for untrusted-code security. In Proceedings of
the Conference on Security and Privacy (S&P’1997),
pages 204–204, Los Alamitos, May 1997. IEEE
Computer Society Press.

[57] G. C. Necula and P. Lee. Efficient representation
and validation of logical proofs. In Proceedings of
the Annual Symposium on Logic in Computer Sci-
ence (LICS’1998), pages 93–104, Indianapolis, Indi-
ana, June 1998. IEEE Computer Society Press.

INTERMEDIATE REPRESENTATIONS OF MOBILE CODE Informatica 32 (2008) 1–25 25

[58] G. C. Necula and P. Lee. The design and imple-
mentation of a certifying compiler. SIGPLAN Not.,
39(4):612–625, 2004.

[59] G. C. Necula and S. P. Rahul. Oracle-based check-
ing of untrusted software. In POPL ’01: Proceed-
ings of the 28th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 142–
154, New York, NY, USA, 2001. ACM Press.

[60] K. V. Nori, U. Ammann, K. Jensen, N. Nageli, and
C. Jacobi. Pascal-P implementation notes. In D. W.
Barron, editor, Pascal – The Language and its Imple-
mentation, pages 125–170. John Wiley & Sons, Ltd.,
1981.

[61] OpenGroup. Architecture Neutral Distribution For-
mat (XANDF) Specification. Open Group Specifica-
tion P527, page 206, Jan. 1996.

[62] M. Paleczny, C. A. Vick, and C. Click. The
java hotspotTM server compiler. In JavaTM Vir-
tual Machine Research and Technology Symposium.
USENIX, 2001.

[63] E. Schanzer. Performance considerations for run-time
technologies in the .net framework. Microsoft techni-
cal report, Microsoft Corporation, Aug. 2001.

[64] Z. Shao. An overview of the FLINT/ML compiler.
In Proceeding of the Workshop on Types in Compi-
lation (TIC’1997), ACM SIGPLAN Notices, Amster-
dam, The Netherlands, June 1997. ACM Press.

[65] Y. Shi, D. Gregg, A. Beatty, and M. A. Ertl. Vir-
tual machine showdown: stack versus registers. In
VEE ’05: Proceedings of the 1st ACM/USENIX in-
ternational conference on Virtual execution environ-
ments, pages 153–163, New York, NY, USA, 2005.
ACM Press.

[66] K. Sohr. Die Sicherheitsaspekte von mobilem Code.
PhD thesis, Universität Marburg, 2001.

[67] R. F. Stärk, J. Schmid, and E. Börger. Java and the
Java Virtual Machine: Definition, Verification and
Validation. Springer, 2001.

[68] A. Stump and D. L. Dill. Faster proof checking in the
Edinburgh Logical Framework. In Automated Deduc-
tion – CADE-18, volume 2392 of Lecture Notes in
Computer Science, pages 392–407. Springer-Verlag,
July 2002.

[69] T. Thorn. Programming languages for mobile code.
ACM Computing Surveys, 29(3):213–239, Sept. 1997.

[70] J. von Ronne, W. Amme, and M. Franz. Safetsa:
An inherently type-safe ssa-based code format. Tech-
nical Report CS-TR-2006-004, Department of Com-
puter Science, The University of Texas at San Anto-
nio, 2006.

[71] T. A. Welch. A technique for high performance data
compression. IEEE Computer Magazine, 17(6):8–19,
June 1984.

[72] M. Wildmoser, A. Chaieb, and T. Nipkow. Byte-
code analysis for proof carrying code. In Proceedings
of the Workshop on Bytecode Semantics, Verification,
Analysis and Transformation (Bytecode’2005), pages
16–30, 2005.

26 Informatica 32 (2008) 1–25 W. Amme et al.

