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This paper proposes a new data model, named Key-Value-Links (KVL), to help in-memory store utilizes
RDMA efficiently. The KVL data model is essentially a key-value model with several extensions. This
model organizes data as a network of items in which items are connected to each other through links. Each
link is a pointer to the address of linked item and is embedded into the item establishing this link. Organiz-
ing datasets using the KVL model enables applications making use RDMA-Reads to directly fetch items
at the server at very high speed. Since link chasing bypasses the CPU at the server side, this operation
allows the client to read items at extremely low latency and reduces much workload at data nodes. Further-
more, our model well fits many real-life applications ranging from graph exploration and map matching
to dynamic web page creation. We also developed an in-memory store utilizing the KVL model named
KELI. The results of experiments on real-life workload indicate that KELI, without being applied much
optimization, easily outperform Memcached, a popular in-memory key-value store, in many cases.

Povzetek: Predlagan je nov podatkovni model, imenovan Key-Value-Links (povezave ključnih vrednosti).

1 Introduction

In-memory stores have flourished in recent years owing to
the urgent needs of fast processing and decreasing DRAM
prices. Many system designers have either used main mem-
ory as a primary data store [17] or as a cache to reduce the
latency of accessing hot or latency-sensitive items [2]. Be-
ing moved to main memory enables data to be accessed at
very low latency because it removes the overhead of disk
and flash. But it does not mean I/O overhead is absolutely
eliminated. Because of DRAM’s low capacity, in-memory
stores often deploys across multiple data nodes making net-
work I/O become a potential source of overhead. Indeed,
the traditional TCP/IP networks have shown many disad-
vantages in supporting fast data transmission. For exam-
ple, MemC3, a state-of-the-art in-memory store, runs seven
times better on a single machine than in a client-server
setup using TCP/IP [9, 8].

To solve this problem, several data centers started look-
ing for alternative solutions. Among those, Remote Di-
rect Memory Access (RDMA) is appeared to be the most
promising candidate. RDMA allows applications to di-
rectly read from and write to remote memory without in-
volving the Operating System at any host. This ability
helps RDMA achieve low latency and high throughput data
transmission because it bypasses the overhead of complex
protocol stacks, avoids buffer copying, and reduces CPU
overhead. Despite attractive features, RDMA has not been
widely used in data centers due to the high prices of its

supporting NICs. In recent years, however, the prices of
RDMA-enabled NICs have dramatically dropped and be-
come compatible with that of traditional Ethernet NICs.
For examples, A 40 Gbps InfiniBand RDMA-capable NIC
costs around $500, while the prices of a 10GB Ethernet
NICs may be up to $800 [15]. New standards such as
iWARP and RoCE also support RDMA allowing data cen-
ters to utilize RDMA with reasonable cost.

Within this trend, there are many studies have started to
leverage RDMA technology to build ultra-low latency in-
memory store. Those works indicate that much of effort
have to be spent in order to maximize the benefits of using
this technology for in-memory systems. Works to be done
including reduce NIC’s cache miss rate [8], minimizing the
number of RDMA operations per requests [15, 8], and op-
timizing hash table organization [8, 15, 12], etc. In spite of
implementation differences, most of existing RDMA-based
in-memory stores are constructed according to key-value
model since this model is very simple and well fit large and
unstructured datasets.

The key-value model, however, has its own drawbacks.
The most noticeable one is performance. Traditionally, ev-
ery put and get operation involves to hash table lookup to
identify the existence of items. This makes the hash table
become the hotspot of data access and it is not surprising
that most of the key-value stores spend much of effort tun-
ing their hashing mechanism [15, 8, 9]. Real-life workloads
indicate that key-value items are typically small [3] so em-
ploying key-value model could be easily suffered from low
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network utilization. Furthermore, using key-value model
often has applications to divide its requests into multiple
small item lookups. Those lookups often have to be exe-
cuted sequentially due to data dependency. This causes the
hash table lookup overhead and low bandwidth utilization
of multiple lookups to accumulate and reasonably prolong
the latency of the original request. According to [17], Face-
book creates about 130 internal requests in average for gen-
erating the HTML for a page. Similarly, Amazon requires
about 100-200 requests to create HTML part for each page
[7]. With those workloads, in-memory stores have to react
very quickly to each request to guarantee desired perfor-
mance. In the future, as the amount of data and workload
keeps increasing rapidly, it is difficult for the in-memory
stores to maintain its performance without changing re-
quest processing mechanisms.

In this paper, we introduce a novel data model named
Key-Value-Links (KVL) to enable in-memory stores to ex-
ploit RDMA efficiently to deliver ultra-low latency data
services. Essentially, the KVL model is a variant of the
Key-Value model that maintains links between items to ex-
ploit the data dependency between them to accelerate data
retrieval. A link contains the information about the (phys-
ical) location and the size of referred item so applications
could utilize RDMA Reads to directly fetch the item with-
out invoking expensive item lookups. This design bypasses
the hash table and efficiently utilizes the network as we
need only one RDMA Read for reading an item. As a re-
sult, getting desired items by chasing their links reduces
the cumulative latency of processing multiple item requests
significantly. We also introduce KELI (KEy-value-with-
Links In-memory), an in-memory cache that employing
KVL data model, and compare it with an in-memory key-
value cache (Memcached) to reveal the performance ben-
efits of utilizing the KVL model over RDMA-capable net-
works.

The following section briefly introduces RDMA tech-
nologies and recent works in developing in-memory stores
using RDMA. Section 3 discusses the KVL model in de-
tail. Several classes of applications which could utilize the
model efficiently are listed in Section 4. The section 5 dis-
cusses the design of KELI. We conduct several experiments
on real-life data to evaluate the efficiency of using KELI
and report their results in Section 6. Finally, we conclude
the paper in Section 7.

2 Background and related work

2.1 Remote direct memory access
Remote Direct Memory Access (RDMA) allows remote
computers to directly read memory regions on local mem-
ory without interfering its CPU. This allows zero-copy
data transfers and saving computing resource. Further-
more, RDMA-enabled NICs provide kernel bypass for
all communications and reliable delivery to applications.
These make the typical latency of interconnects support-

ing RDMA such as InfiniBand, RoCE and iWARP about
10x faster than traditional Ethernet [12]. RDMA-enabled
NICs is originally designed for High-performance Comput-
ing centers but due to decreasing in hardware prices, their
presence in data centers is increasing [15]. The introduc-
tion of RoCE and iWARP, which lets RDMA to be per-
formed over traditional network architecture, even makes
RDMA more popular.

Applications utilize RDMA-enabled NICs through Verb
API. There are several types of verbs but the most com-
mon are RDMA Read, RDMA Write, Send and Receive.
These verbs could be grouped into two types of seman-
tics: channel semantics and memory semantics. Send and
Receive have channel semantics: to send a message, the
sender posts a Send description to put the message content
to a remote memory location specified by a pre-posted Re-
ceive description at the receiver side. Send and Receive are
two-sided verbs as the communication involves the CPU
of both end points. RDMA Read and RDMA Write have
memory semantics: they operate directly upon the remote
memory regions. Both of them are one-sided as the remote
CPU does not aware those operations. This reduces not
only the overhead of RDMA operations but also the load of
remote CPU. Therefore, utilizing one-sided RDMA verbs
could achieve very low latency and high throughput.

2.2 In-Memory stores using RDMA

Attractive features of RDMA verbs have exposed many
studies of utilizing RDMA technology to build high-
performance in-memory stores. As communication is the
major source of overhead, previous work tries to replace
traditional data transfer techniques by RDMA operations to
effectively reduce the overall latency. For examples, Jithin
Jose et al. [11] improves Memcached performance by the
factor of four by just making it RDMA capable. In the
later work [10], the research group uses a hybrid approach
that utilizes both Reliable Connection (RC) and Unreliable
Connection (UC) transport and transparently switches be-
tween them to further improve the performance by the fac-
tor of 12.

Apart from communication, recent studies have started
to apply multiple optimization techniques on other parts
of the system to reach even better performance. HERD
[12, 13], makes heavy changes ranging from reducing net-
work round trips and reorganizing data distribution to op-
timizing PICe transactions. It even sacrifices the reliabil-
ity to maximize the performance. RDMA is also com-
bined with other technologies to develop complicated in-
memory stores. DrTM [23] and DrTM+R [6] are two fast
in-memory transaction systems utilizing both RDMA and
hardware transactional memory (HTM).

Different from traditional designs, Pilaf [15], FaRM
[8] and HydraDB [22] let applications process request by
themselves through RDMA Reads. In these systems, the
server makes data visible to clients so the client could use
RDMA Reads to access hash table and items at the re-
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mote server as if they are on its own local memory. This
approach bypasses many sources of overhead and reduces
load at data servers but there are shortcomings preventing
those systems from maximizing the potential of RDMA
Read. For examples, Pilaf clients have to carry out multiple
RDMA Reads per request. FaRM often performs RDMA
Reads to get memory blocks which are much larger than
the actual size of needed item. Also, bypassing remote
CPU makes it unaware about application behaviors which
are useful for tracking popular items.

Despite differences in implementation, all studies men-
tioned above employ the key-value model. Although this
model is quite simple and easy to implement, the lack of
the ability to represent complex data force applications us-
ing this model to generate a lot of item lookups for each
data request. This disadvantage makes the key-value model
sensitive to latency. This is the motivation for us to develop
Key-Value-Links model to solve this issue.

3 Key-Value-Link data model

3.1 Example
Before describing the Key-Value-Links (KVL) model in
detail, let us first show how it “looks and feels” through an
example of using this model to represent a real-life dataset
and handle data requests. Suppose we have a database stor-
ing the information about students, professors, and depart-
ments in a university. Figure 1 illustrates how the KVL
is used to organize this database. In this representation,
each entity (i.e. student, professor, and department) is a
key-value item. The key is unique and is used to iden-
tify the item. The database has five entities: two students
“stu001" and “stu002" under supervision of two profes-
sors “prof001" and “prof002" working in the department
‘‘dpcs". The value of each of those items contains multi-
ple attributes representing information associated with the
item. The item “stu002", for instance, has three attributes
in its value. The first one (e.g. “name : DEF") shows
the student’s name while the other are links indicating his
supervisor and mentor. Those links do not provide infor-
mation about those people but instead point to items stor-
ing information about them. In implementation, those links
could be represented as pointers which let applications di-
rectly access linked item without sending a request to the
data server.

Storing links to other items inside the item’s value makes
it easier to reason useful information which requires us to
combine the data from multiple sources. In the university
database, for example, suppose that user wants to know
whether two students "stu001" and "stu002" are under the
supervision of professors working in the same department.
To answer this question, we must first get access to the two
student items using their keys. After that, we travel across
the supervisor link of those items to obtain the informa-
tion about the supervisors. We then use department links
to go to their departments. Finally, we check if those de-

supervisor

stu001

name: ABY

tel: 123456789

website: www.cs.ac.co

depcs

name: XYZ

supervisor

stu002

name: DEF

mentor

department

prof001

name: UVT

department

prof002

name: IJK

Figure 1: An example of representing a dataset from a uni-
versity using the KVL data model. The key of each item is
shown in bold text, the links are shown in shadow frames,
and the arrows used to represent the link from one item to
another.

partments are the same to provide the final answer to the
question.

If this database is represented by the relational model,
answering this question requires us to perform multiple
cumbersome joins. Because such operation consumes a lot
of time and resource, using a relational database in such
case does not guarantee an acceptable performance. If we
use traditional key-value model, the applications must de-
compose the request into multiple item lookups. Since
most of the lookups depend on the results of the previ-
ous ones, applications have to perform them sequentially.
If the number of lookups is large, the cumulative latency,
which is calculated by adding up the latency of each item
lookups, will become very high and reasonably hurts the
overall latency of the original request. Most of the item
lookups could be replaced by one link chasing if we use
KVL model. As we will show in the next subsection, the
former operation is much more expensive than the latter so
using key-value model also takes more time to process the
request than applying the KVL model.

3.2 Data model
Generally, KVL is an enhanced version of the traditional
key-value model. In this model, each item is a key-value
pair connected to each other through links. Inside an item,
the key is its identifier while the value describes its charac-
teristics. There is no restriction on the size of either key or
value. Different from some implementations of key-value
model used in RAMCloud [17] or Memcached [2], KVL
model cares about the structure of value. Particularly, the
value is a set of attributes in < K,V > format where K is
the name of the attributes and V is its value. The value V
could be either a block of bytes representing some kind of
information defined by the user or a link to another item.

The concept of links is similar to that of pointers. Both
of them let applications know the location of the resource
but do not provide the information about its content and as-
sociated data. There are several benefits of this approach.
Embedded an item into another one enlarges data size sig-
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Figure 2: An example implementation of KVL model
based on the organization of existing key-value stores.

nificantly which would reduce memory utilization as well
as slow down data transmission. This also allows an item to
have multiple copies which could be a nightmare for main-
taining consistency. Furthermore, with the support from
RDMA Reads, pointing to referred item through its address
lets applications directly fetch the item without interfering
the data server. Utilizing RDMA Reads helps fetching item
at ultra-low latency as it bypasses many sources of over-
head such as notifying remote CPU and hash table lookup.
It also allows the system scale easily as the remote machine
could save many CPU cycles for other tasks.

Figure 2 illustrates the organization of an in-memory
store implementing the KVL model based on the funda-
mental structure of existing in-memory key-value stores.
Basically, KVL model is also a key-value model so meth-
ods it uses to handle data are similar to those of key-value.
In particular, the store constructs a hash table to keep track
of items stored in the system. Putting a new item to and get-
ting an existing one from the store requires the key of this
item to be hashed to the hash table first to determine the
proper action. Clearly, operations in a key-value store are
all related to the hash table making it become the hotspot
of the system.

The introduction of links leads to a new way to get data
from in-memory stores called link chasing to reduce the
load on the hash table. In this method, applications use
links attached to items it has fetched previously to invoke
RDMA Reads to directly retrieve the linked items from
the in-memory stores without explicitly sending a get re-
quest. For examples, in the Figure 2, the application has
performed two lookups to load the item B and item C from
the server. It has two options to load item A. It could gen-
erate a get request containing the key of item A and send
it to the server to have it search for this item. The another
choice is to use RDMA Read to chase the link to item A
which is integrated to the item C to read this item directly
without asking for the server.

Figure 3 compares the latency of link chasing using
RDMA Read with that of item lookup on different item
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Figure 3: The latency of getting items with different sizes
using RDMA Read and HERD.

sizes. The implementation of item lookup is based on the
method used in HERD [12], which is one of the fastest in-
memory key-value stores in the literature. It is clear that
even though being heavily optimized by many techniques,
item lookup still runs much slower than RDMA Read. This
means if we could organize items needed by applications in
a way such that from one item we could reach to other ones
by just chasing links, the latency could be reduced up to
50%. Therefore, using KVL data model with good data
schema design could significantly boost the system perfor-
mance without spending much effort on optimizing the in-
memory store implementation.

4 Applications
Apart from the simple university example in the previous
section, we found that the KVL is also applicable to a wide
range of applications. The followings are a few of them.

4.1 Graph exploration

Graph exploration is required by many data-intensive ap-
plications [16]. Graph traversal algorithms such as breadth-
first search (BFS) and depth-first search (DFS) are used as
basic components in various complicated algorithms which
are used to solve problems in many fields including biol-
ogy, communication, social network, etc. In the Big Data
area, a graph could contain up to trillions of nodes and
edges. Hence, traverse such large-scale graphs efficiently
is critical.

A graph contains only nodes and edges but in real-world
applications, both nodes and edges are associated with a
lot of information. This makes representing the topology
of the graph in the computer a nontrivial task especially
in the case of large graphs which could expand over mul-
tiple data nodes. Modeling graphs using relational model
or XML does not scale well. Plus, those tools do not ease
graph traversals. Many state-of-the-art in-memory graph
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databases are constructed upon key-value model [4, 21]
due to its simplicity. However, deploying graph traversal
algorithms using this model would lead to high cumulative
latency.

The KVL model, on the other hand, is very similar to
the concept of Graph database since this model itself is
a network of items. In fact, it could be considered as a
“lightweight” graph in which items are vertices and links
are edges. We use the term “lightweight” because there
are some limitations that prevent KVL from naturally rep-
resenting complicated graphs. For examples, information
cannot embed into links and a link must point to a physical
address rather than abstract objects. Due to those short-
comings, using links to represent edges in complex graphs
could increase the management costs reasonably. In spite
of those, KVL is appeared to be well fit to graph traversal
algorithms. With link chasing, applications could avoid a
lot of overhead during visiting vertices.

4.2 Dynamic web content creation

The rapid increment of the amount of data and the need of
improving user experiments make the number of dynamic
web pages increase at a high pace. One well-known so-
lution for efficiently delivering dynamic content is to de-
compose the pages into small fragments and cache those in
main memory. Additionally, an object dependence graph
(ODG) is constructed to keep track changes and maintain
consistency [5, 19]. When a new web page is requested,
the ODG is checked to reload fragments whose content
has been changed and directly fetch those whose content
remains unchanged from the cache. During this process,
fragments are issued sequentially since the latter fragment
depends on the earlier one. With such kind of access pat-
tern, using the key-value model implemented in popular
in-memory caches to store the fragments and ODG could
lead to high cumulative overhead when creating a page.

The KVL model is well fit for caching such kind of
dataset since it is also a graph in nature. By representing
items as fragments and use links to formulate the depen-
dency between fragments, applications could construct the
web page by simply chasing links between pages’ compo-
nents. Since link chasing is much faster than item lookup,
applying this model would reduce the cumulative latency
significantly.

4.3 Intelligent transportation systems

Intelligent Transportation Systems (ITS) act important
roles in solving critical issues in urban areas such as con-
gestion, air pollution, and safety of transit. The major
problem of ITS system is that they have to manage a huge
amount of data which is pushed to the system continuously
from many sources like GPS, video stream, etc., in order
to produce meaningful information in real-time. To do so,
the digital map must be well organized since most of the
critical operations such as map matching, routing, and con-

gestion detection relies on it. As the map could be consid-
ered as a network of points (e.g. intersections) and lines
(e.g. streets), KVL model is a promising candidate for rep-
resenting its content in ITS systems.

5 KELI: A KVL In-memory Store
We have implemented an in-memory store utilizing the
KVL model named KELI (stands for KEy-value-with-Link
In-memory Store). Originally, we developed KELI while
constructing a traffic condition monitoring system for Ho
Chi Minh City (available at traffic.hcmut.edu.vn). The main
role of KELI is to manage the metadata of the city map so
that applications could quickly process GPS signals gener-
ated by vehicles to produce meaningful information about
the current traffic condition of the city [14]. Although
KELI is originally designed for an ITS system, we feel its
architecture is general enough for working with other ap-
plications. So we extended its implementation to make it
applicable to a wide range of applications.

5.1 System architecture
Our objective when designing KELI is to provide a light-
weight in-memory store for hardly-changed datasets stored
in complicated (disk-based) databases. Particularly, KELI
copies items stored in the database to memory and lets ap-
plications to access them through its interface instead of
sending requests directly to the database. The design of
KELI also assumes that update occurs very rarely and a few
changes do not cause serious impact on application perfor-
mance and correctness.

Figure 2 illustrates the overall architecture of KELI. Data
is originally stored permanently on disk to ensure durability
and availability. KELI is deployed entirely in memory. Af-
ter starting up, KELI accesses data on disk and loads them
into memory. During this process, items are transformed
from their original format on disk to KVL format. After
KELI finishes loading data from disk, data access could be
redirected to KELI and the database now acts as a backup
module.

KELI does not support update operations (i.e. mod-
ify, write, and delete) so if application want to change the
content of data, it still has to send those requests to the
database. Updates occurring at disk do not take effect im-
mediately to the in-memory store. KELI, however, reloads
the content of data on disk after predefined and fixed inter-
vals.

5.2 Data layout
Since DRAM capacity is much smaller than that of sec-
ondary storage, utilizing memory space efficiently is a cru-
cial requirement. To do so, avoiding/reducing fragmenta-
tion is necessary as this is the primary source of low mem-
ory utilization. S. M. Rumble et al. [20] showed that cur-
rent standard dynamic memory allocators such as “malloc"
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in C do not handle this problem well. Therefore, to avoid
fragmentation, we do not utilize dynamic memory alloca-
tors to create rooms for data. Free space is instead reserved
in advance in form of contiguous memory slots. KELI dra-
matically fills them up with the content of new items.

KELI updates its content periodically in batch-style. Ev-
ery time the update process is triggered, KELI first allo-
cates new memory regions for new items then fills them up
with the content of data stored in the disk-based database.
After that, it deallocates the memory regions of old data
and uses items in the new memory regions for answering
upcoming requests from applications. As the clients by-
passes the server when chasing links, KELI must ensure
applications do not access old items after the update took
place by halting all active connections from the clients and
have the clients reestablish those connections to the server
to obtain the new content.

Similar to key-value stores, KELI employs a hash table
for tracking items by their key. We use the Cuckoo hash-
ing [18] to implement the hash table since this technique
ensures constant complexity in the worst case, guarantees
stable performance with large datasets. The hash table does
not hold the content of hashed items but it instead stores the
pointer to the actual data. So for each new item, KELI first
finds a slot in allocated memory regions for it and write its
content to this slot. After that, item’s key and the pointer to
the slot are added to the hash table.
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Figure 5: Modeling Twitter datasets by the KVL model.
Black boxes represent a list of links and each link refers to
one item in the dataset. Gray boxes represent a single link.

Some stores such as HBase [1] keep items in memory
in form of memory objects to simplify data management.
This approach, however, often requires the server and client
to serialize/deserialize those objects from/to an array of
bytes before transferring them over the network. Serial-
ization adds significant overhead to request processing es-
pecially in small ones like item lookups. Furthermore, if
items contain pointers to different resources, chasing links
would generate multiple RDMA Reads making the opera-
tor inefficient. Therefore, KELI servers store items in form
of arrays of bytes and let the client perform serialization.

5.3 Request processing
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(a) Fragments represented by KVL model.
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Figure 6: Modeling a dynamic web page by the KVL
model. Black boxes represent a list of links and each link
refers to one item in the dataset. Gray boxes represent a
single link.
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In this subsection, we will show how KELI handle re-
quests from clients. The whole process is shown in Figure
4. KELI communication modules are built upon IB verb
programming model. Given a key, the client asks for its
value by issuing a “get" request via “ib_send". The re-
quest is received at the server side by a listener which has
responsibility for receiving any incoming requests. In order
to maximize KELI performance, the listener continuously
asks input queue for new requests instead of passively wait-
ing for the queue to inform it about the new message like
traditional techniques. Although this approach wastes a lot
of CPU cycle for polling input queue, it makes KELI re-
spond to the new request very quickly.

When the listener discovers a new request in the in-
put queue, it then pops the request out and forwards it to
a worker thread in the thread pool. Threads are chosen
randomly to ensure load-balancing. After receiving a re-
quest from the listener, chosen thread then searches for the
needed item in the hash table. If the item is not found,
it generates a response with empty payload and sends it
back to the client using “ib_recv” operation. Otherwise,
the hash table would return a pointer to the location of the
item. Thread just simply follows the pointer, generates
a non-empty response message, copies the content of the
item to the payload of this message and sends the response
back to the client (also using “ib_recv”).

The client has responsibility for interpreting the mean-
ing of the payload of the response message. If the item
contains links to other items and application wants to re-
trieve them, the client does not make another “get” request
but using RDMA Read to directly read the content of the
linked items from the server. Doing so significantly re-
duces item loading latency since executing RDMA Reads
is much cheaper than explicitly invoking an item lookup
request (e.g. “get”).

6 Experiments

6.1 Experiment setup

In this section, we will illustrate the benefits of employ-
ing the KVL model for RDMA-based in-memory stores
by comparing the performance of KELI with another in-
memory key-value store. We choose Memcached for this
task due to its popularity. In fact, to make the compari-
son fair, instead of using the original version, we make use
of an extended version of Memcached, which uses RDMA
verbs for data transmission, for all experiments. [11, 10]

The two stores are compared based on practical applica-
tions. Particularly, we use the KVL model to represent sev-
eral real-life datasets and let KELI manage them. We do
the same task with Memcached except that links in items
are replaced by the key of referred items. We then develop
some applications implementing popular algorithms work-
ing over those datasets. The data such applications need for
computation is fetched from either KELI or Memcached.

We measure the computation cost and use it to compare the
two stores.

6.2 Data modeling

We conduct experiments on three different real-life
datasets, each associated with one problem listed in Sec-
tion 4. In the text bellow, we will illustrate those datasets
and describe how to use the KVL model to model them.
For the key-value version, we just replace links by the key
of item it pointing to.

Social Network Graph traversal is very popular on the
social network. For examples, given a user, find a per-
son with a given name (e.g. “John”) among his friends,
his friends’ friends, and so on is a typical problem mak-
ing use of graph exploration. In the experiment, we will
perform the Breadth-First-Search (BFS) over a real-life so-
cial network dataset provided by Twitter. The dataset con-
tains about one million nodes represent users and more than
22 million edges represent the followership between users.
Figure 5 shows how the dataset is modeled by the KVL
model. Clearly, this representation is similar to adjacent
list data structure except for that edge (e.g. follower) lists
are broken into multiple chunks since one user may have
a lot of friends. If we integrate all of them into one item,
this could enlarge the size of this item reasonable leading
to performance degradation. In following experiments, we
let each list contain at most 100 followers.

Web Page Generation We construct a web page dis-
playing information about the reviews of products sold
by Amazon using the dataset provided by Amazon itself.
The content of the page is dynamic as product information
change frequently and users continuously update their re-
views to products. We have to break the HTML file into
multiple parts and change their content right after the up-
date takes effect. Figure 6a shows the relationship between
users, products, and reviews of users for some products and
Figure 6a shows how the HTML file of the page lock and
feel.

Map Matching We choose map matching problems as
a representative application for ITS systems. Given a GPS
signal, we have to determine if this signal belongs to any
street and if so, identify which place on the street it falling
into. This problem is very popular in ITS system involving
to real-time traffic monitoring, congesting detection, rout-
ing, etc.

In this experiment, we use a digital map provided by
OpenStreetMap (OSM) to construct the datasets about
streets in Ho Chi Minh City. Figure 7 illustrates an ex-
ample of modeling the map by the KVL model. Partic-
ularly, according to OSM’s format, a street is a polyline
which is constructed by connecting multiple nodes (points).
Since the street is a polyline and typically long, we do
not map GPS signals with streets but with lines which
are constructed by connecting two consecutive nodes on
a street called segment. An item represents a segment will
link to items containing the information about its endpoints
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segments
cellABC

segments

streetDEF

name: DEF

street

segXYZ

Endpoint0

cell

longitude

nodeIJK

latitude

latitude

nodeUVT

longitude

Endpoint1

street

segLMN

Endpoint0

cell
Endpoint1

latitude

nodePQO

longitude

(b) Objects in KVL model.

Figure 7: Modeling objects on digital map by the KVL model. Black boxes represent a list of links and each link refers
to one item in the dataset. Gray boxes represent a single link.
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Figure 8: The latency of link chasing and item lookup in
experiments.

(node). There are also links from streets to segments con-
structed from their nodes. We group segments into disjoint
areas called cells based on their geographical location. The
map matching algorithm is quite simple: given a GPS sig-
nal, the application first determines its spatial information
(e.g. latitude and longitude) and uses them to identify the
corresponding cell. It then issues the in-memory stores for
this cell and then retrieves segments belonging to this cell
to find out which segment this signal belongs based on their
geographical locations.

6.3 Performance evaluation
We conduct all experiment on two computers equipped
with Intel Xeon E5-2670 and 32GB main memory. They
are connected through an Infiniband connection using
Mellanox’s ConnectX-3 40 Gbps NIC. The RDMA-
Memcached in all experiments is based on Memcached
version 1.4.24 and applications use libMemcached version
1.0.18 to communicate with the store. In order to fully un-
derstand the effect of using KVL model, let us first com-
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Figure 9: Map matching latency

pare the read performance of KELI’s item lookup and link
chasing with RDMA-Memcached’s get operation. Figure
8 shows the experiment results. Clearly, the naive imple-
mentation of lookup using Send/Recv verbs performs very
poorly. It takes about three to four times slower than the
optimized version used by RDMA-Memcached. However,
item lookup still executes two times longer than link chas-
ing. Therefore, if applications make good use of link ,
KELI could perform better than RDMA-Memcached.

Although KELI has to deserialize item content and check
for consistency when chasing links, link chasing latency is
just slightly slower to that of pure RDMA Read reported
in Figure 3. This is because the time spent on communica-
tion is the dominant cost of RDMA operators. So although
KELI has to check for consistency and deserialize every
item it reads, its latency is still lower than that of HERD.
Also note that HERD’s lockup latency could be higher in
practical as it sacrifices reliability and let applications take
care of integrity checks to boost the lookup performance as
much as possible.

In the map matching experiment, we preload both KELI
and RDMA-Memcached with about six million key-value
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Figure 10: Web page construction latency
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Figure 11: Graph exploration

pairs represent the geographical information of Ho Chi
Minh City. Similarly, we prepare about 200 thousand re-
views for more than 12 thousand products for web creation
application and a graph with one million nodes and about
22 million edges for BFS traversal. Figure 9, 10, and 11
show the execution time of map matching, web page con-
struction, and BFS algorithms, respectively, using KELI
and RDMA-Memcached.

Apparently, KELI outperforms RDMA-Memcached in
all cases. In the case of map matching, KELI outperforms
RDMA-Memcached by the factor of two in average. In
the case of tail latency (95-th percentile), KELI still runs
about 2.5 times faster than RDMA-Memcache. KELI also
helps applications construct web pages 50% faster than
RDMA does. Similarly, the implementation of BFS algo-
rithm using KELI runs 75% faster than that using RDMA-
Memcached.

The reason behind this is that according to the data lay-
outs we described in the previous section, applications uti-
lizing KELI mostly uses link chasing for fetching new
items. For example, in the case of graph traversal, the

application only has to invoke item lookup for the first
time when it has to retrieve the first vertex. After that,
based on the “list” and “next” links integrated into each
accessed vertex and edge lists, the applications could al-
ways invoke link chasing to get information about vertex
to be accessed. On the other hand, applications supported
by RDMA-Memcached have no choice but item lookup to
retrieve data. Since this operation is about two times lower
than link chasing, KELI performs two times better than
RDMA-Memcached.

7 Conclusion
In this paper, we present KVL, an enhanced version of
the key-value model for in-memory stores working over
RDMA-capable networks. In this model, each data set is
a network of key-value pairs linking to each other. Each
link is a pointer to the address of the referred item and
is integrated directly into the item. With this organiza-
tion, the KVL model introduces a new operation named
link chasing to allow applications to utilize RDMA Read
to directly read items through links without interfering the
data server. Our experiments have shown that this model is
well fit many real-life applications. Also, by utilizing this
model, KELI, an average in-memory store without much
optimization could easily outperform an state-of-the-art in-
memory store.

.
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