
https://doi.org/10.31449/inf.v43i1.1626 Informatica 43 (2019) 53–64 53

Towards a UML Profile for the Simulation Domain

Maouche Mourad and Bettaz Mohamed

Faculty of Information Technology-Philadelphia University, Jordan

E-mail: mmaouch@philadelphia.edu.jo, mbettaz@philadelphia.edu.jo

http:\\www. philadelphia.edu.jo

Keywords: simulation engineering, simulation platforms, model driven approaches, MDA, UML profile.

Received: May 12, 2017

Model driven approaches have recently been exploited to implement simulation systems. Most of the

reported contributions have adopted the Model Driven Architecture (MDA), a model driven approach

widely used in software engineering. Simulation Platform Description Models (SPDM), which are first

citizens MDA models intended for the description of simulation platforms supporting the execution of

simulation experiments, are not explicitly considered in the previous works. The purpose of this work is

to define a UML profile intended for the modelling of both simulation core concepts and simulation

platforms. The contribution of this work is threefold: First we review and synthesize recent contributions

in modelling and simulation approaches, practices and platforms; second we propose a resource-

oriented approach for the modelling of simulation platform elements; third we consider both

component- and workflow-based simulation platforms.

Povzetek: Predlagana je nova plaltforma za simulacije na osnovi virov.

1 Introduction
Recent research works recommended the practice of the

Model Driven Engineering (MDE) in the field of the

simulation [2, 3, 4]. The works in [5, 6, 7, 11] adopted

approaches based on three steps: A conceptual modelling

step where scientists or engineers build models, called

Computational Independent Models (CIM) capturing

the phenomena under study, a design step where

simulation engineers build models called Platform

Independent Simulation Model (PISM), and an

implementation step where software engineers develop

models called Platform Specific Simulation Model

(PSSM). A series of model transformations allow to

derive PISM models from CIM models, and PSSM

models from PISM models. Furthermore the Model

Driven Architecture (MDA), a variant of the MDE

approach standardized by the Object Management Group

(OMG) and targeting the software engineering

community, emphasizes also another kind of model

called Platform Description Model (PDM) [1]. This kind

of model is used for the description of platforms that host

the developed software applications.

The MDA approach has been adopted, for instance,

in the field of the real-time and embedded systems. UML

profiles, like UML-MARTE [8], or Domain Specific

Languages like AADL [27] have been defined to support

the MDA practice in this field. Both provide mechanisms

to describe PDM models, and, seem to be good

candidates for the modelling of (software) simulation

platforms. In a previous work [22], we proposed a

software engineering methodology for the development

of multiscale modelling and simulation framework based

on the UML-MARTE profile where an attempt to model

the multiscale platform MUSCLE using the ingredients

of the SRM (Software Resource Model) sub-profile of

UML-MARTE have been conducted. The SRM sub-

profile is dedicated for the modelling of real time

operating systems and middleware. Although it offers a

wide range of (software) modelling elements and

capabilities, most of them target the specific needs of the

real time and embedded systems platforms, and with

regard to our previous attempt [22], do not meet specific

simulation engineering needs. According to our opinion,

it is more natural and comfortable for the simulation

engineering community to treat and manipulate their

specific native entities and concepts as first class

modelling elements.

To the best of our knowledge, none of the current

works on the MDE practices in the simulation field,

addresses the issue of the Simulation Platform

Description Model (SPDM), i.e., the description of

simulation platforms that support the execution of

simulation experiments. The sole work targeting the

modelling of simulation platforms is reported in [9].

Discovering the commonalities and variations among a

sample of open source multi-physics simulation

platforms has been the main motivation of its authors.

Although the work in [9] may serve as a reference

architecture for simulation platforms developers, it does

not offer, in our opinion, explicit mechanisms to develop

models describing simulation platforms in the spirit of

the MDA approach.

The objective of this work is to define a UML profile

for the simulation field intended to support the MDA

practices in this field. The proposed profile particularly

provides a set of appropriate modelling mechanisms for

the description of simulation platforms.

The contribution of this work is threefold: First we

review and synthesize recent contributions in modelling

mailto:mbettaz@philadelphia.edu.jo

54 Informatica 43 (2019) 53–64 M. Mourad et al.

and simulation approaches, practices and platforms;

second we adopt a resource-oriented approach for the

modelling of simulation platform elements; third we

consider both component- and workflow-based

simulation platforms. These contributions are illustrated

by a set of UML stereotype classes capturing core

simulation concepts and platforms elements.

The rest of this paper is organized as follows.

Section 2 is devoted to the recent developments in

modelling and simulation field. Section 3 presents the

simulation field from the workflow perspective. Related

works are discussed in Section 4. Our contribution is

detailed in Section 5. Section 6 outlines a simple

example. Finally conclusions and future works are given

in Section 7.

2 Recent developments in simulation

engineering
Simulation engineering, an emerging discipline that

applies the principles of both simulation science and

engineering fields, has been widely used to address

various complex real-world problems. It mainly involves

two complementary activities: 1) a modelling activity

where simulation models of physics phenomena or

engineering artefacts- are built, 2) a simulation activity

where experiments are performed on these simulation

models to achieve specific objectives such as

understanding of phenomena, predictions, and

performance study. The simulation engineering

community developed a lot of specific software tools

allowing not only to build such models but also to

conduct experiments on them. The literature reports

various terminology to designate such tools, like

simulation frameworks or simulation platforms;

simulation platform is the designation that will be used

along this paper to designate such simulation tools. A

multitude of academic and commercial simulation

platforms are available [10]: Some of them are domain

dependent while others are generic. MUSCLE [6] and

Mapper [12] simulation frameworks proposed generic

simulation platforms. Domains where simulation is

widely used are numerous: Physics, biology, medicine,

and others. Integrated Plasma Simulator (IPS) platform

[13], and Virtual Imaging Platform (VPM) [25] are

respectively simulation platforms dedicated to the plasma

physics and medical imaging domains.

Due to the profusion of concepts, methods,

frameworks and tools related to the modelling and

simulation field, we present in the following a synthesis

addressing advanced issues relevant to this field.

2.1 Modelling and simulation core

concepts

A model is an abstract representation of reality. One of

the practical uses of models is generating the dynamic of

systems from their models. Simulation consists in

moving a model over time, given some inputs. Models

can be either in a mathematical form, i.e., a system of

equations for example, or in an algorithmic form: In the

first case the simulation takes the form of a kind of

software, named simulator, that implements a solver for

this system of equations; in this case models, often

specified thanks to domain specific modelling languages,

and simulators are separated. Solvers may be

categorized according to different criteria such as their

application domain and their solving methods. They may

be either legacy code or newly developed codes. In the

second case, models are specified in terms of algorithmic

components; models are embedded in the simulation

code. In our work we deal with both cases.

Simulation codes accept well defined scripts as

inputs. These scripts specify the set-up and the protocol

of the targeted experiments. Simulation engines interpret

the input scripts and run the simulation of individual

models. Simulation scripts are usually written thanks to

specific scripting languages like Python, and Ruby, or in

the form of standardized data representation languages

like XML.

2.2 Modelling and simulation approaches

Modern modelling and simulation approaches distinguish

between the monolithic approach and the partitioned one.

In the first approach a single large scale model capturing

the whole phenomena under study is built and then its

associated simulation code is executed, while in the

second one, a complex model is partitioned into a set of

single models and then their associated individual

simulation codes are coupled and then executed together.

2.2.1 Partitioned methods

A categorization of partitioned methods is given in[26]:

(i) Multiphysics Partitioning

This method is used when the model of the

phenomena under study captures multiple physical

processes, each of these physical processes belongs

to a specific physics such as temperature and

viscosity. In this case the model is decomposed into

a set of sub-models; each of these sub-models

concerns a specific physical process, and all sub-

models of the model operate on the same time and

space scales.

(ii) Multiscale Partitioning

This method is used when the model of the

phenomena under study captures only one physical

process; this model, because of its complexity, is

decomposed into a set of sub-models that operate

on different time and space scales.

(iii) Multiphysics Multiscale Partitioning

Here multi-scale and multi-physics methods are

both used. This method is used when the model of

the phenomena captures multiple physical processes

that don’t operate on the same scales.

Partitioned simulations encompass not only the

performance of a set of single simulation experiments but

also the interactions between these single simulation

experiments. It presupposes the availability of specific

mechanisms, called coupling mechanisms, having the

Towards a UML Profile for the Simulation Domain Informatica 43 (2019) 53–64 55

mission to drive these interactions. Two issues need to be

addressed when coupling single experiments:

(i) The format of the data exchanged between coupled

simulation experiments,

(ii) The interaction pattern governing the interaction

between coupled simulation patterns.

The same approach, based on a usual programming

technique called wrapping, is generally used on almost

all simulation platforms that deal with the experiments

coupling issues. The wrappers are pieces of code that

embodies the simulation code of single experiments.

For instance the layered architecture of the Integrated

Plasma simulation platform described in [13]

distinguishes between data wrappers and coupling

wrappers:

The data wrapper takes in charge the data conversion

from the internal data format used by single experiments

into a common exchange data format. The European

Fusion research community suggested a generic data

structure, named Consistent Physical Objects (CPO), as a

common format for the data to be exchanged between

single experiments. Data wrappers are not simulation

platforms dependent.

The coupling wrapper takes in charge the data

motion as well as the pattern of the interaction between

coupled single experiments during their data exchanges.

Coupling wrappers, contrarily to data wrappers, are

simulation platform dependents.

2.2.2 Coupling issue

In [14] the authors laid the foundations of multi-scale

computing. Their formalization of the multi-scale

coupling reveals two complementary features related to

this concept:

(i) Coupling template: Specifying the information flow

that may occur between any pair of coupled (single)

experiments. Unidirectional as well as a

bidirectional data flows are admitted.

(ii) Coupling topology: A graph representing the

couplings (edges) between pair of single sub-

models (nodes) belonging to a partitioned model.

The graph edges are labelled by coupling templates.

Two kinds of coupling topology are identified:

a. Acyclic topology: It is characterized by an

absence of cycles in the coupling topology. In

this case coupled simulation codes can be

ordered and executed sequentially; this kind of

coupling is also named loose coupling.

b. Cyclic topology: It is characterized by the

presence of cycles in the coupling topology. In

this case the order of the execution of individual

simulation codes is not predefined; this kind of

coupling is also called tight coupling.

Figure 1.a and Figure 1.b [14] depict respectively the

loose and the tight coupling of three sub-models

belonging to a partitioned model. The arrows show the

direction of their interactions.

Figure 1.a: Loose Coupling of Sub-Models.

Figure 1.b: Tight Coupling of Sub-Models.

2.3 Orchestration of coupled simulations

Three ways to coordinate and orchestrate a set of coupled

single experiments are commonly used:

(i) Centralized mode: A dedicated engine orchestrates

and coordinates the enacting of single experiments

according to predetermined patterns.

(ii) Master/Slave mode: One of the single experiments

plays the role of a master. First, the master

experiment is enacted and then the master

experiment orchestrates the enactment of the other

single experiments, called slave experiments, in a

sequential way.

(iii) Component based mode: The coordination is

distributed over all the participating single

experiments.

3 Simulation from the scientific

workflow perspective
The workflow technology, mainly used by the business

community, seems to be one of the promising approaches

adopted by the scientific community; the concept of

scientific workflows emerged as an alternative to the

conventional concept of business workflow. There are

similarities as well as differences between the two kinds

of workflows. For example, business workflows are

control-flow oriented, while scientific workflow are

mainly data-flow oriented. The readers interested in

more details may refer to [15].

56 Informatica 43 (2019) 53–64 M. Mourad et al.

3.1 Scientific workflows

A workflow is a pre-defined set of work steps with a

partial order on these steps [17]. Work steps represent

tasks to be carried out when they are enacted by

workflow engines.

Scientific workflows Management Systems have

been developed during the last two decades. They are

intended to manage, enact and monitor scientific

workflows which are a composition of a series of

computation and/or data manipulation [13]. Scientific

workflows are enacted and orchestrated by specific

engines, called workflow engines, forming the core

components of scientific workflows Management

Systems. Some examples of known scientific workflows

management systems are Taverna, Kepler, and Vistrails

[16].

Generally, workflows describe control flows and/or

data flows. Scientific workflows are usually classified

into two categories: Abstract and concrete workflows

[19]. Quoting the authors of [18]: “An abstract scientific

workflow is a definition of a scientific process with

emphasis on the analytical operations or function to be

performed rather than the mechanisms for performing

these operations”. In opposite, concrete scientific

workflows bind the work steps to resources that execute

the corresponding tasks.

3.2 Simulation workflows

Simulations of scientific or engineering models are seen

as kinds of scientific workflows. Simulations of models

are often described by scientific workflows. These

workflows follow specific patterns/motifs and include

various kinds of steps: Data processing steps,

solving/simulation step, visualization step, and data

exchanges step. In [24] the authors elaborated catalogues

of common motifs for both scientific workflows and data

operations that may be performed when conducting

scientific experiments.

The iterative pattern is one of the most used control

patterns to describe the workflow of individual

experiments. For instance structured loops are a kind of

iterative pattern.

In the case of a multi-experiment the workflows of

the participating individual experiments are coupled.

Their coupling is performed thanks to a set of data

exchanges constrained by specific interaction patterns.

The authors of [20] suggest the concept of

“choreography”, borrowed to the business management

community, to couple the workflows of single

experiments. Every single experiment is realized as an

orchestration of scientific services and the whole multi-

experiment is described by choreographies without a

centralized control.

4 Related works
The literature reports two different directions regarding

the development of simulation frameworks:

(i) Component based approaches inspired from the

software component-based design and

programming methods,

(ii) Workflow based approaches inspired from the

workflow based business systems. Recent works

with respect to each of these two research directions

emphasize the MDA practices.

In [7] the authors proposed a simulation framework

based on the hierarchical component-based approach.

Their framework is supported by well-defined meta-

models capturing Conceptual Simulation Models (CSM)

as well as Platform Independent Simulation Models

(PISM). However they did not define meta-models that

capture Platform Specific Simulation Models (PSSM); in

fact these are considered as implementations of PISM

models. PISM and PSSM terminology used in the

simulation field corresponds respectively to the PIM and

PSM terminology used in the software engineering field.

It is worthwhile to note that the work in [7] does not

consider the simulation platform description models as

primary models.

The authors in [21] adopted a workflow based

approach for the simulation framework they developed.

Their approach, based on an MDA approach too, relies

on three distinct levels: A conceptual level at which the

modellers describe the models that capture the

phenomena under study; an abstract level at which PSSM

models, independent form the computing infrastructures

are conceived; a concrete level at which models are

strongly dependent from the computing infrastructure

intended to host the simulation experiments; these last

models, called Platform Description Models (PDM) refer

to the hardware infrastructure rather than to the

simulation workflow framework. Conceptual models are

first transformed into specific intermediate

representations which are themselves converted to

abstract workflows to be enacted by a targeted scientific

workflow framework.

Both research works does not consider the modelling

of simulation platforms. To the best of our knowledge,

the sole research work that investigated the issue of

simulation platform modelling is described in [9]. Its

authors aimed at discovering commonalities and

variations among a sample of open source multi-physics

simulation platforms, and proposing a feature model

capturing the discovered commonalities and variations

using the feature-oriented modelling approach.

According to the authors, one of the possible uses of their

produced feature model is to serve as a reference for

simulation platforms developers.

Our research work, contrarily to [9], targets the

modelling of simulation platforms in the context of the

MDA approach for the simulation domain, i.e., providing

a UML profile intended to build Simulation Platform

Description Models (SPDM) for simulation experiments;

in opposite to [21], PDM models here refer to simulation

platform models rather than to computing infrastructure

models.

The present work considers scientific workflows for

the description of scientific experiment behaviors, and

Towards a UML Profile for the Simulation Domain Informatica 43 (2019) 53–64 57

relies on the concept of generic resources as defined in

[8] to model elements of simulation platforms.

5 The proposed UML profile
In this section we develop our UML profile intended for

the simulation field. A set of UML stereotypes intended

to capture core concepts of the simulation domain are

exposed.

5.1 Linking PISM and SPDM models

The proposed profile focuses on the SPDM modelling.

Figure 2 depicts the well-known relationship between the

PISM, and PSSM models. Elements of PISM models are

mapped to elements of SPDM leading to PSSM models.

Figure 2: Linking PISM and PSSM.

Our approach relies on two first class UML model

elements to describe simulations:

-Experiment: intended to describe the simulation of either

a monolithic model or the simulation of a single model

(member of a partitioned model).

-Simulation: intended to describe the architecture of the

simulation of a whole model (either monolithic or

partitioned model) according to a desired simulation

approach (monolithic/partitioned) and design

(component-based/ workflow-based).

5.2 PISM model elements

In this section we identify and define a set of UML

stereotypes that constitutes the main PISM model

elements of our profile.

5.2.1 Simulation stereotype

The simulation and experiment concepts, as defined

above, are modelled as stereotypes. Both extend the

UML BehavioredClassifier metaclass which is a UML

classifier that owns behaviors.

A. The class diagram depicted in Figure 3.a describes the

Simulation stereotype and the hierarchy of its refined

stereotypes covering various kinds of simulation

approaches.

Comments:

(i). Simulation Stereotype includes at least two

properties.

IdentifierElts reports a set of required elements that may

identify and characterize conducted simulations such

their identification number, their date, the target domain,

the version number.

SimulParam is used to report some parameters related to

the simulation itself; for instance the duration of the

simulation, the space dimension of the simulated model

and others.

(ii). PartitionedSimulation and MonolithicSimulation are

refinements of the Simulation Stereotype. Expnumber

property defined in PartitionedSimulation records the

number of single experiments participating to a

partitioned simulation instance.

(iii).MultiscaleSimulation is a refinement of the

PartitionedSimulation stereotype. Its scales property

records the kinds of scale dimension (time, space, time

and space) characterizes a simulation instance.

Dimension is an enumeration type intended to carry

various kinds of scales.

 Dimension == time | space | time&space |…..

A.The class diagram shown in Figure 3.b presents a

hierarchy of various multiscale simulation design

approaches according to the way coordination and

orchestration of coupled single experiments are done.

 Comments:

(i). CompBasedMsc stereotype represents multiscale

simulations designed according to the component based

approach. Conf property records the configuration of

multiscale simulations i.e., its topology (refer to section

2.2.2). We introduce the stereotype Coupling as an

extension of the UML Association metaclass to model

the simulation configuration. The details of this

stereotype are shown in Figure 3.d.

(ii). WrkFlowBasedMsc stereotype represents multiscale

simulations designed according to the workflow based

approach. It is mainly characterized by two properties.

Wbeh property specifies the abstract workflow associated

with the workflow based multiscale simulation. The

WorkFlowBeh stereotype is defined in the part A of

section 5.2.3

Figure 3.a: Simulation Stereotype and its Refined
Stereotypes. Remark: UML TypedElement refers to a
pair (named element, its associated type). TypedElement
[0..*] means zero or more.

58 Informatica 43 (2019) 53–64 M. Mourad et al.

Map property specifies the mapping between workflow

nodes and their corresponding workflow call actions.

The Mapping class is a datatype that records (workflow

node, action to be called) pairs. The concept of UML call

action is detailed in the part B of section 5.2.3.

(iii). CentralizedMsc stereotype represents multiscale

simulations designed according to the centralized version

of the workflow based approach. It refines WrkFlowMsc

stereotype. Its coord property (instance of the

Coordinator class) is intended to represent the central

coordinator that orchestrates the whole simulation

workflow. The Coordinator class is not detailed in this

paper.

(iv). MasterSlaveMsc stereotype represents multiscale

simulations designed according to the master/slave

version of the workflow based approach. It refines the

WrfFlowMsc stereotype. Its Master property records the

single experiment that plays the role of master in the

whole multiscale simulation.

Figure 3.b: Hierarchy of MultiScale Design Approaches.

Figure 3.c shows the relationship between the stereotypes

Monolithic/Partitioned and Experiment stereotypes

(more details on the Experiment stereotype are given in

the section 5.2.3)

 Monolithic simulations include only one single

experiment whilst partitioned simulations include more

than one single experiment.

Figure 3.c Linking Simulation with Experiments.

5.2.2 Coupling stereotype:

Various kinds of couplings are identified:

- Direct coupling between pairs of experiments

participating to component based multiscale

simulations. This kind of coupling may various

forms. For instance the designers of the MUSCLE

multiscale platform use the term “coupling template”

to refer to these coupling forms.

- Indirect coupling between slave experiments through

a master experiment in case of master-slave

multiscale simulations.

- Indirect coupling between experiments through a

coordinator in case of centralized multiscale

simulations.

Figure 3.d shows the specification of the proposed

Coupling stereotype. This stereotype extends the UML

association metaclass and it is characterized by the

following properties:

Figure 3.d: Coupling Stereotype.

+ CplIdElts: Specifies suitable information susceptible to

identify its instances.

+ CplIType: Set of suitable typed elements allowing to

specify the kind of the coupling.

+ SourceNode, TargetNode: These attributes play the

role of the UML association end. They specify the model

elements that are coupled.

5.2.3 Simulation behavior stereotype

Instances of both Experiment and Simulation stereotypes

own their specific behaviours. The stereotype

Towards a UML Profile for the Simulation Domain Informatica 43 (2019) 53–64 59

SimBehavior is intended to capture various simulation

and experiment behaviors.

A. Figure 4.a shows a class diagram depicting the usual

behaviors met in the simulation world. The SimBeh

stereotype is intended to model the behavior of

experiments and simulations. Two categories of behavior

are identified. The opaques ones characterized by their

unknown structure, and the regular ones characterized by

well-defined, regular and known structures. For instance,

workflows and automata-like structures are kinds of

regular behavior.

Comments:

(i) Opaque behaviors, as defined in the UML

infrastructure, are usually characterized by their body

(body source plus the language used to express the

source); in the context of our work, Opaque Experiment

stereotype represents experiments driven by simulation

engines. Here we adopt the UML Opaque Behavior

metaclass as a base class.

(ii) Automata-based behavior which are explicitly

described by automata-like formalisms such as Cellular

Automata or others. Such kind of behaviors may, for

instance, characterizes the behavior of single experiments

that participate to multiscale simulations. Here we adopt

the UML State Machine metaclass as a base class.

(iii) Workflow-based behaviors which are explicitly

described by abstract workflows. Such kind of behavior

may for instance characterizes the behaviour of

monolithic simulation as well as multiscale simulations.

These are often expressed in terms of Petri nets or UML

activity diagrams. The authors of [23] defined a profile

for scientific workflows by proposing a refinement of the

UML Activity metaclass tailored to their own abstract

workflow language. In our work we define the

WorkFlowBeh stereotype to represent abstract simulation

workflows by extending the UML Activity metaclass.

SimMotif is one of the properties associated with the

WorkFlowBeh stereotype. It is intended to specify the

abstract motif/pattern of simulation workflows. Abstract

simulation workflows are composed by sets of workflow

nodes assembled according to a particular structure. We

assume the availability of a library of UML model

elements regrouping a catalogue of usual simulation

workflow motifs.

B. More on Workflow based Experiments

Workflow-based experiments are usually composed of

work steps structured and organized according to a

specific workflow motif/pattern. In order to be

independent from specific abstract workflow language,

we adopt a solution, used by some workflow engines,

that uncouples the workflow motif nodes from the task to

be performed at the node level. To achieve this

objective, we rely on the UML Behavior metaclass

infrastructure to define the SimulationWorkflowStep

stereotype.

This stereotype extends the UML Call Operation and

Call Behavior metaclasses which are themselves two

refinements of the UML Execution Action metaclass:

Figure 4.a Typology of Simulation Behaviors

- Call Operation is used to trigger atomic operations

that correspond to simulation processing steps, like

solving, data processing or data interaction steps.

- Call Behavior is used to trigger behaviors that

correspond to potential sub-workflows contained in

simulation workflows (hierarchical workflow motifs).

It is useful to handle the master/slave approach (a

master experiment enacting a slave experiment) and

the centralized approach (a coordinator enacting the

workflow of single experiments).

Figure4.b shows two refinements of the

SimulationWorkflowStep stereotype:

 SimAction stereotype representing various kinds of

atomic simulation actions call (solving, data processing,

data interaction operations) that may be associated with

nodes of abstract workflow motifs. It extends the UML

Call Operation metaclass.

 WrkFAction stereotype representing sub-workflows

with call action that may be associated with nodes of

workflow motifs. It extends the UML Call behaviour

metaclass.

5.2.4 Experiment and simulation model

stereotypes

The Experiment stereotype represents PSIM elements.

Figure 5 shows the features of this stereotype.

(i) IdentifierElts property records any useful

information susceptible to identify the experiment

(identifier number, experiment date, version, and

eventually others).

(ii) ExpParam property records experiment parameters

(experiment duration, and eventually other

parameters).

60 Informatica 43 (2019) 53–64 M. Mourad et al.

Figure 4.b: Simulation WorkFlow Step Stereotypes
Hierarchy.

(iii) ArchElts property is intended to record any useful

information related to the various simulation design

approaches. The type of ArchElts property type is

kept flexible in order to describe various simulation

design approaches (monolithic, component based,

centralized workflow based, master/slave workflow

design approaches). ModelElement is a UML-

MARTE defined metaclass that refers to any UML

classifier.

(iv) Smod property specifies the simulation model

targeted by the experiment. It may be either a

whole simulation model (monolithic simulation) or

a single simulation model (partitioned simulation).

Figure 5. Experiment Stereotype.

Figure 6 shows the features of the SimulModel class:

(i) Field property specifies the application domain

concerned by the simulation (engineering, physics,

biology, and others). Domain class represents the

various domains where simulations may be

conducted.

Figure 6. SimulModel Class.

(ii) Ph property specifies the domain specific

phenomena targeted by the simulation.

(iii) SlvMth property specifies the set of mathematical

methods that may be used to solve the simulation

model. We define SolvingMethod a stereotype as an

extension of the UML OpaqueExpression

metaclass.

5.3 SPDM model elements

Simulation and experiments, as previously mentioned,

are hosted and executed by simulation platforms.
UML-MARTE profile provides the concept of

Resource to model in a uniform way hardware as well as

software elements. Resources are abstract entities that

provide services and they are themselves composed of

other resources. We refine the concept of abstract

resource to concrete (software) elements of simulation

platforms.

In the present work we focus on only two core

stereotypes that may be used to model PDSMs: Engines

and Data Processor resources.

5.3.1 Engine resources

The concept of “engine’ is often used in the simulation

field as well as in the workflow technology. Here engines

represent virtual computing resources that interpret and

run scripts or workflows written in specific formalisms.

Engine refines the abstract Resource stereotype class

defined in UML-MARTE profile.

This abstract resource provides a set of services

common to all kinds of resources.

Figure 7 shows two kinds of engines: Simulation and

Workflow engines.

A. SimulationEngine: An engine that interprets opaque

simulation code written in specific formalism/language.

It may also be a simulation tool, called simulator, that

performs solving methods; simulators accept models and

simulation scripts as inputs.

Towards a UML Profile for the Simulation Domain Informatica 43 (2019) 53–64 61

Figure 7. Simulation and Workflow Engines Stereotypes.

(i) Interpreter: Specifies the formalism that is

interpreted by the simulation engine,

(ii) Kind: Specifies the type of simulation engine.

SimulEngineEnumeration==

 simulator| embedded simulation code |….

(iii) Slv-method: Specifies the set of numerical method

that are supported by the simulation engine.

(iv) Computation: Specifies if the engine performs

sequential or parallel computations.

Figure8 represents the main features of the Simulation

Engine stereotype.

Figure 8: Simulation Engine Stereotype.

B. WorkflowEngine: An engine that is responsible for the

interpretation of executable workflow and the

orchestration of workflows. It is a kind of scheduling

resource. Workflow steps may be either basic/atomic

tasks or sub-workflows. Modellers specify their

workflows using either a human readable textual script or

a diagram-based workflow language (Front-

End workflow language), while workflow engines

interpret platform readable and executable workflow

languages (Back-End language).

Figure 9 depicts the main features of the Workflow

Engine stereotype.

Figure 9. WorkflowEngine Stereotype.

(i) WorkFlowPattern is a sub-class of the Control

Node meta-class. It includes the usual set of control

nodes found in simulation workflows like sequence,

loop, and parallel.

(ii) ExternResourceWrapper, and EngineWrapper are

derived from the UML Adapter pattern. External

ResourceWrapper refers to wrappers that

encapsulate data processing operators, and

EngineWrapper refers to wrappers that encapsulate

simulation engines in case of cooperation between

workflow engines.

5.3.2 Data processor elements

In the following, we present a set of stereotypes aiming

to model a set of specific computing resources that are

able to support the execution of specific operations: data

operation, and data interaction. We model these

resources as kinds of virtual processor.

Our approach to categorize the data operations is

slightly different from the one reported in [20]. We

differentiate the data processing operations that may

operate inside individual experiments, the intra-

experiment case, from the operations on data that are

performed along the data motion from one single

experiment to another experiment, the inter-experiment

case. A categorization of these Data processors is shown

in Figures 10a, 10b, and 10c. The following kinds of data

processor are identified:

A. Inter-Experiment Data Processor

Data are potentially subject to manipulation during

their motion between single experiments. Each kind of

manipulation is described by a specific (mathematical)

function or algorithm. Two kinds of manipulations are

identified:

 (i) Data transformation: filtering,

(ii) Data combination: usually carried out by operators

called Mappers.

 (a) Data aggregation: aggregating multiple data

 sources to one data source,

 (b) Data dis-aggregation: separating one data

 source into multiple data sources.

B. Intra-Experiment Data Processor

Usually the input data need to be set into a specific

format before to be submitted to simulation engines. The

output data (produced by simulation engines) need also

to be set in specific formats before to be visualized to the

modellers. Commercial and academic libraries provide

such data processors.

Figure 10 a. Data Processors Classification.

62 Informatica 43 (2019) 53–64 M. Mourad et al.

Figure 10 b. Data Combinator Processors Classification.

Figure 10.c Data Transformer Processor.

Figure 11: Data Processor Stereotype.

C. The stereotype Data Processor inherits from the

Resource class. Its main features are:

(i) InputElts: Specifies the number and types of inputs

which depend from the kind of data processor,

(ii) OutputElts: Specifies the number and types of

outputs depend from the kind of data processor,

(iii) ProcessingElts: Specifies an algorithm (body) that

implements the analytic (mathematical) operation to

be performed as well as a set of appropriate

parameters qualifying its performance.

5.3.3 Data interaction operator

Single experiments participating to multiscale

simulations are coupled according to specific coupling

mechanisms. They exchange data either in a direct way,

in case of a component based multiscale simulation

approach or in an indirect way in case of master/slave

and centralized multiscale simulation approaches.

Our profile provides a stereotype class named

DataInteractionOperator intended to run various kinds

of coupling (data motion according to specific

templates). It represents an abstraction of the so-called

coupling wrappers mentioned in the section 2.2.1. We

adopt and refine the UML Adapter pattern to define this

stereotype.

6 Example
In this section we introduce a simple example to illustrate

the (partial) use of our proposed profile. The example

exposes only the PISM model elements.

The example presents a component based multiscale

simulation which consists of two single scale

experiments namely C1 and C2 interacting through two

couplings namely Cp12 from C1 to C2 and Cp21 from

C2 to C1.

C1 is the experiment on the simulation model Mod1

and C2 is the experiment of the simulation Mod2. Both

Mod1 and Mod2 are single scale models of the

partitioned simulation model Mod.

a. Instantiation of the stereotype Simulation with the

following tags:

+ IdentifierElts =
 SimlId: String

 SimDt: Date

 SimVersion: String
 SimDm: Domain /Domain: a data type/

+ SimulParam =
 SimDuration: Time
 SimSpace: Space /Space: a data type/

 SimMd: SimulMod / Simulation Model/

b. Instantiation of the stereotype MultiscaleSimulation

with the following tags:

+ scales = time&space /value of Dimension Enumeration type/

+ExpNumber = 2 /property of PartitionedSimulation

c.Instantiation of the stereotype CompBasedMsC

+Conf =
 Cp12: Coupling
 Cp21: Coupling

Two couplings in our example Cp1 and cp2

d. Instantiation of the stereotype Coupling

+ CplType=
 CcplK: CouplingKind /CouplingKind: enemuration data type/

 CpT: CouplingTemplate /CouplingTemplate is a data type/

+ CpMeth: OpaqueExpression /coupling code algorithm

+ SourceNode =
 Src: InPort /InPort: a UML model element/

+ TargNode =
 Targ: OutPort /OutPort: a UML model element

 For Cp12 Instance
 CplK = directcoupling /direct coupling between two experiments/

 CpT = tempX / templateX is one instance of CouplingTemplate/

 CpMeth = MethX /MethX: a coupling algorithm for tempX/
 Src =out1

 Targ= in2

Towards a UML Profile for the Simulation Domain Informatica 43 (2019) 53–64 63

 For Cp21 Instance
 CplK = directcoupling /direct coupling between two experiments/

 CpT = tempY / templateY is one instance of CouplingTemplate

 CpMeth = methY /MethY a coupling algorithm for tempY /
 Src =out2

 Targ= in1

e. Instantiation of the stereotype Experiment

From the architectural point of view Experiment

instances are seen as components owning an internal

behavior and characterized by a set of input and output

ports for their interaction (coupling) with other

experiments. In this example we use the SEL (SubModel

Execution Loop) behavior borrowed from the MUSCLE

multiscale framework.

+ IdentifierElts =
 ExpId: String
 ExpDt: Date

 ExpVersion: Integer

+ArchElts =
 ExpBeh: SEL / SEL: Behaviour of specific cellular automata/

 ExpIn: InPort [1..*] / InPort: model element/
 ExpOut:OutPort [1..*] / OutPort: model element/

For C1 Experiment instance:
 ExBeh =sel1 \ an instance of the SEL data type\

 ExpIn = {in1}

 ExpOut = {out1}
For C2 Experiment instance:

ExBeh =sel2 \ an instance of the SEL data type\

 ExpIn = {in2}
ExpOut = {out2}

+ExpParam =
 ExpTimeScale: Time /Time scale of the Experiment/

 ExpSpaceScale: Space /space scale for the experiment

For C1 Experiment instance:

 ExpTimeScale = t1

 ExpSpaceScale = sp1
 For C1 Experiment instance:

 ExpTimeScale = t2

 ExpSpaceScale = sp2

+SMod =_Mod1 (Mod2 for the C2 Experiment instance).

Realistic and complete case studies are currently under construction.

7 Conclusion and future works
In this work we present a synthesis of recent

contributions in the modelling and simulation field

encompassing up-to-date simulation topics. Model driven

approaches for the simulation field are discussed. Multi-

scale and multi-physics simulation methods and their

related issues are outlined. Modern simulation platforms

adopting a component- as well as a workflow-based

approach are exposed.

We also propose modelling mechanisms intended for

the description of simulation platforms, thus making

possible the development of a kind of MDA primary

model called SPDM. For this purpose we define a UML

profile including a set of useful UML stereotypes that

capture core simulation concepts as well as core

simulation platforms elements such as simulation

engines, workflow engines, and simulation data

processors. In this work, a resource-based approach,

similar to the one used for the UML-MARTE profile, is

adopted for the modelling of simulation platforms

elements.

As a first future work we plan also to develop UML

meta-models for a set of widely used simulation model

specification formalisms, thus enabling PISM-to-PISM

transformations.

Acknowledgement

This research work is fully supported by the Deanship of

the Scientific Research - Philadelphia University

(Jordan).

 References
[1] A.-R. Da Silva, Model Driven Engineering: A Survey

supportedby the Unified Conceptual Model, Computer

languages, Systems and Structures, Vol. 43, pp. 139-155,

Elsevier, 2015.

[2] S. Wagner, D. Pfluger, and M. Mehl, Simulation

Software Engineering: Experiences and Challenges,

inProc.of the International Workshop on Software

Engineering for High Performance Computing in

Computational Science and Engineering, pp. 1-4, 2015.

[3] O. Topcu, U. Durak, H. Oguztuzun, and L. Yilmaz,

Distributed Simulation: A Model Driven Engineering

Approach, Simulation Foundations, Methods and

Applications, Springer, 2016.

https://doi.org/10.1007/978-3-319-03050-0

[4] G. Wagner, Model-Driven Engineering of Second-Life-

Style Simulations, in the Proc. of the Winter simulation

conference, 2010.

[5] A. Yang, and W. Marquard, An Ontological

Conceptualization of Multiscale Models, Computer

ChemicalEngineering, Vol. 33, pp. 822-837, (2009).

https://doi.org/10.1016/j.compchemeng.2008.11.015

[6] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M.

Ben Belgacem, B, Chopard, D. Groen, P.-V. Covery, and

A.-G. Hoekstra, Distributed Multiscale Computing with

MUSCLE2, the Multiscale Coupling Library and

Environment, Journal of Computational Science, Vol. 5,

Issue. 5, pp. 719-731, Elsevier, 2014.

[7] D. Cetinkaya, A. Verbraeck, A., and D.-M Seck,

Applying a Model Driven Approach to Component Based

Modeling and Simulation, in Proc. of the Winter

Simulation conference, 2010.

[8] OMG, A UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded Systems, Beta 2, OMG

Document Number: ptc/2008-06-09, 2008.

[9] O. Babur, V. Smilauer, T. Verhoeff, and M.V-D. Brand,

A survey of Open Source Multiphysics Frameworks in

Engineering”, Procedisa Computer Science, Vol. 151, pp.

1088-1097, Elsevier, 2015.

[10] O. Babur, T. Verhoeff, and M.G.-J. Van Den Brand,

Multiphisics and Multiscale Sofware Frameworks: An

Annotated Bibliography, Computer Science Reports,

Technische University Eindhoven, Vol. 1501, 2015.

[11] Y. Zaho, C. Jiang, and A. Yang, Towards Computer-

Aided Multiscale Modeling: An Overarching Methodolgy

and Support of Conceptual Modeling, Computer and

Chemical Engineering, No.36, pp. 10-21, Elsevier, 2012.

64 Informatica 43 (2019) 53–64 M. Mourad et al.

[12] M. Ben Belgacem, and al, Distributed Multiscale

Computations Using the MAPPER Framework”,

Procedia Computer Science, Vol. 13, pp. 1106-1115,

Elsevier, 2013.

[13] O. Hoenen, D. Coster, S. Petruczynik, and M.

Plociennick,Coupled Simulations in Plasma Physics with

the Integrated Plasma Simulator Platform, Procedia

Computer Science, Vol. 5, pp. 1138-1147, Elsevier, 2015.

[14] J. Borgdorff, J.-L. Falcone, E. Lorenz, C. Bona-Casas, B.

Chopard, and A.-G. Hoekstr, Foundations of Distributed

Multiscale Computing: Formalization, Specification and

Analysis, Journal of Distributed Computing, Elsevier,

Vol.73, pp. 465-483. 2013.

https://doi.org/10.1016/j.jpdc.2012.12.011

[15] U. Yildez, A. Guabtni, and A.H-H. Ngu, Business versus

Scientific workflow: A Comparative Study, Research

Report No. 2009-3, Project DAKS, Department of

Computer Science, UC Davis University of California,

2009.

[16] T. Buchert, L. Nusbaum, and J. Gustedt, A Workflow-

Inspired, Modular and Robust Approach to Experiments

in Distributed Systems, Project-Team Algorille, Research

Report n0 8404, Research Center Nancy-Grand Est, 2013.

[17] C.-A. Ellis, Workflow Technology, Chapter No. 2 in

Computer Supported Cooperative Work, Edited by

Beaudouin-Lafon, John Wiley and Sons Ltd, 1999.

[18] B. Dashtban, Scientific Workflow Patterns, Msc

Dissertation, School of Advanced Computer Science,

Manchester University, 2012.

[19] X.-R. Xiang, andG. Madey, Improving the reuse of

scientific workflows and their by-products, in Proc.IEEE

International Conference on Web Services, pp. 792-799,

2007.

[20] A. WeiB, andD. Karastoyanova, A Life Cycle for

Coupled Multi-Scale, Multi-field Experiments Realized

through Choreographies, in Proc. Enterprise Distributed

Object Computing Conference (EDOC), 2014.

[21] N. Cerezo, J. Montagnat, and M. Baly-Fornarino,

Computer-Assisted Scientific Workflow Design, Journal

of Grid Computing, Vol. 11, No. 3, pp. 585-610, Springer

Verlag, 2013.

[22] M. Maouche, M. Bettaz, Towards a Software Engineering

Approach to Multi-Scale Modelling and Simulation,

IJSEIA Journal, Vol. 10, 2016.

[23] J. Qin, T. Fahringer, andS. Pllana, UML Based Grid

Workflow Modeling Under ASKALON, Chapter in

Distributed and Parallel Systems Book, pp. 191-200,

Springer, 2007.

[24] Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gi, Y.,

Common Motifs in Scientific Workflows: An Empirical

Analysis, Future Generation Computer Systems, Elsevier,

(2013).

[25] R. Ferreira Da Silva, R., S. Camarasu-Pop, B. Grenier, V.

Hamar, D. Manset, J. Montagnat, J. Revillard, J,-R.

Balderrama, A. Tsaregorodtsev, and T. Glatad, Multi-

Infrastructure Workflow Execution for Medical

Simulation in the Virtual Imaging Platform, in Proc.

HealthGrid Conference, pp.1-10, 2011.
[26] D. Groen, S.-J. Zasade, and P.-V. Coveney, Survey of

Multiscale and Multiphysics Applications and

Communities, Computing in Science & Engineering, Vol.

16, Issue. 22, pp. 34-43, 2014.

https://doi.org/10.1109/MCSE.2013.47

[27] S. Turki, E. Senn, and D. Blouin, Mapping the MARTE

UML profile to AADL, in MoDELS 2010 ACES-MB

Workshop Proceedings, pp. 11-20, 2010.

