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Model driven approaches have recently been exploited to implement simulation systems.  Most of the 

reported contributions have adopted the Model Driven Architecture (MDA), a model driven approach 

widely used in software engineering.  Simulation Platform Description Models (SPDM),  which are first 

citizens MDA models intended for the description of simulation platforms supporting the execution of 

simulation experiments, are not  explicitly considered in the previous works. The purpose of this work is 

to define a UML profile intended for the modelling of both simulation core concepts and simulation 

platforms. The contribution of this work is threefold: First we review and synthesize recent contributions 

in modelling and simulation approaches, practices and platforms; second we propose a resource-

oriented approach for the modelling of simulation platform elements; third we consider both 

component- and workflow-based simulation platforms. 

Povzetek: Predlagana je nova plaltforma za simulacije na osnovi virov. 

1 Introduction 
Recent research works recommended the practice of the 

Model Driven Engineering (MDE) in the field of the 

simulation [2, 3, 4]. The works in [5, 6, 7, 11] adopted 

approaches based on three steps: A conceptual modelling 

step where scientists or engineers build models, called 

Computational Independent Models (CIM) capturing 

the phenomena under study, a design step where 

simulation engineers build models called Platform 

Independent Simulation Model (PISM), and an 

implementation step where software engineers develop 

models called Platform Specific Simulation Model 

(PSSM). A series of model transformations allow to 

derive PISM models from CIM models, and PSSM 

models from PISM models. Furthermore the Model 

Driven Architecture (MDA), a variant of the MDE 

approach standardized by the Object Management Group 

(OMG) and targeting the software engineering 

community, emphasizes also another kind of model 

called Platform Description Model (PDM) [1].  This kind 

of model is used for the description of platforms that host 

the developed software applications.  

The MDA approach has been adopted, for instance, 

in the field of the real-time and embedded systems. UML 

profiles, like UML-MARTE [8], or Domain Specific 

Languages like AADL [27] have been defined to support 

the MDA practice in this field. Both provide mechanisms 

to describe PDM models, and, seem to be good 

candidates for the modelling of (software) simulation 

platforms.  In a previous work [22], we proposed a 

software engineering methodology for the development 

of multiscale modelling and simulation framework based 

on the UML-MARTE profile where an attempt to model 

the multiscale platform MUSCLE using the ingredients 

of the SRM (Software Resource Model) sub-profile of 

UML-MARTE have been conducted. The SRM sub-

profile is dedicated for the modelling of real time 

operating systems and middleware. Although it offers a 

wide range of (software) modelling elements and 

capabilities, most of them target the specific needs of the 

real time and embedded systems platforms, and with 

regard to our previous attempt [22], do not meet specific 

simulation engineering needs. According to our opinion, 

it is more natural and comfortable for the simulation 

engineering community to treat and manipulate their 

specific native entities and concepts as first class 

modelling elements.  

To the best of our knowledge, none of the current 

works on the MDE practices in the simulation field, 

addresses the issue of the Simulation Platform 

Description Model (SPDM), i.e., the description of 

simulation platforms that support the execution of 

simulation experiments.  The sole work targeting the 

modelling of simulation platforms is reported in [9].  

Discovering the commonalities and variations among a 

sample of open source multi-physics simulation 

platforms has been the main motivation of its authors. 

Although the work in [9] may serve as a reference 

architecture for simulation platforms developers, it does 

not offer, in our opinion, explicit mechanisms to develop 

models describing simulation platforms in the spirit of 

the MDA approach. 

The objective of this work is to define a UML profile 

for the simulation field intended to support the MDA 

practices in this field. The proposed profile particularly 

provides a set of appropriate modelling mechanisms for 

the description of simulation platforms. 

The contribution of this work is threefold: First we 

review and synthesize recent contributions in modelling 
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and simulation approaches, practices and platforms; 

second we adopt a resource-oriented approach for the 

modelling of simulation platform elements; third we 

consider both component- and workflow-based 

simulation platforms. These contributions are illustrated 

by a set of UML stereotype classes capturing core 

simulation concepts and platforms elements. 

The rest of this paper is organized as follows. 

Section 2 is devoted to the recent developments in 

modelling and simulation field. Section 3 presents the 

simulation field from the workflow perspective. Related 

works are discussed in Section 4. Our contribution is 

detailed in Section 5. Section 6 outlines a simple 

example. Finally conclusions and future works are given 

in Section 7. 

2 Recent developments in simulation 

engineering 
Simulation engineering, an emerging discipline that 

applies the principles of both simulation science and 

engineering fields, has been widely used to address 

various complex real-world problems. It mainly involves 

two complementary activities: 1) a modelling activity 

where simulation models of physics phenomena or 

engineering artefacts- are built, 2) a simulation activity 

where experiments are performed on these simulation 

models to achieve specific objectives such as 

understanding of phenomena, predictions, and 

performance study. The simulation engineering 

community developed a lot of specific software tools 

allowing not only to build such models but also to 

conduct experiments on them.  The literature reports 

various terminology to designate such tools, like 

simulation frameworks or simulation platforms; 

simulation platform is the designation that will be used 

along this paper to designate such simulation tools. A 

multitude of academic and commercial simulation 

platforms are available [10]: Some of them are domain 

dependent while others are generic. MUSCLE [6] and 

Mapper [12] simulation frameworks proposed generic 

simulation platforms. Domains where simulation is 

widely used are numerous: Physics, biology, medicine, 

and others. Integrated Plasma Simulator (IPS) platform 

[13], and Virtual Imaging Platform (VPM) [25] are 

respectively simulation platforms dedicated to the plasma 

physics and medical imaging domains. 

Due to the profusion of concepts, methods, 

frameworks and tools related to the modelling and 

simulation field, we present in the following a synthesis 

addressing advanced issues relevant to this field. 

2.1  Modelling and simulation core 

concepts 

A model is an abstract representation of reality. One of 

the practical uses of models is generating the dynamic of 

systems from their models. Simulation consists in 

moving a model over time, given some inputs. Models 

can be either in a mathematical form, i.e., a system of 

equations for example, or in an algorithmic form: In the 

first case the simulation takes the form of a kind of 

software, named simulator, that implements a solver for 

this system of equations; in this case models, often 

specified thanks to domain specific modelling languages, 

and simulators are separated.  Solvers may be 

categorized according to different criteria such as their 

application domain and their solving methods. They may 

be either legacy code or newly developed codes. In the 

second case, models are specified in terms of algorithmic 

components; models are embedded in the simulation 

code. In our work we deal with both cases. 

Simulation codes accept well defined scripts as 

inputs. These scripts specify the set-up and the protocol 

of the targeted experiments. Simulation engines interpret 

the input scripts and run the simulation of individual 

models. Simulation scripts are usually written thanks to 

specific scripting languages like Python, and Ruby, or in 

the form of standardized data representation languages 

like XML.  

2.2 Modelling and simulation approaches 

Modern modelling and simulation approaches distinguish 

between the monolithic approach and the partitioned one. 

In the first approach a single large scale model capturing 

the whole phenomena under study is built and then its 

associated simulation code is executed, while in the 

second one, a complex model is partitioned into a set of 

single models and then their associated individual 

simulation codes are coupled and then executed together. 

2.2.1  Partitioned methods 

A categorization of partitioned methods is given in[26]: 

(i) Multiphysics Partitioning  

This method is used when the model of the 

phenomena under study captures multiple physical 

processes, each of these physical processes belongs 

to a specific physics such as temperature and 

viscosity. In this case the model is decomposed into 

a set of sub-models; each of these sub-models 

concerns a specific physical process, and all sub-

models of the model operate on the same time and 

space scales. 

(ii) Multiscale Partitioning  

This method is used when the model of the 

phenomena under study captures only one   physical 

process; this model, because of its complexity, is 

decomposed into a set of   sub-models that operate 

on different time and space scales. 

(iii) Multiphysics Multiscale Partitioning 

Here multi-scale and multi-physics methods are 

both used. This method is used when the model of 

the phenomena captures multiple physical processes 

that don’t operate on the same scales. 

Partitioned simulations encompass not only the 

performance of a set of single simulation experiments but 

also the interactions between these single simulation 

experiments. It presupposes the availability of specific 

mechanisms, called coupling mechanisms, having the 
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mission to drive these interactions. Two issues need to be 

addressed when coupling single experiments:  

(i) The format of the data exchanged between coupled 

simulation experiments, 

(ii) The interaction pattern governing the interaction 

between coupled simulation patterns.  

The same approach, based on a usual programming 

technique called wrapping, is generally used on almost 

all simulation platforms that deal with the experiments 

coupling issues. The wrappers are pieces of code that 

embodies the simulation code of single experiments.   

For instance the layered architecture of the Integrated 

Plasma simulation platform described in [13] 

distinguishes between data wrappers and coupling 

wrappers:  

The data wrapper takes in charge the data conversion 

from the internal data format used by single experiments 

into a common exchange data format. The European 

Fusion research community suggested a generic data 

structure, named Consistent Physical Objects (CPO), as a 

common format for the data to be exchanged between 

single experiments. Data wrappers are not simulation 

platforms dependent. 

The coupling wrapper takes in charge the data 

motion as well as the pattern of the interaction between 

coupled single experiments during their data exchanges. 

Coupling wrappers, contrarily to data wrappers, are 

simulation platform dependents. 

2.2.2 Coupling issue 

In [14] the authors laid the foundations of multi-scale 

computing.  Their formalization of the multi-scale 

coupling reveals two complementary features related to 

this concept:  

(i) Coupling template: Specifying the information flow 

that may occur between any pair of coupled (single) 

experiments. Unidirectional as well as a 

bidirectional data flows are admitted. 

(ii) Coupling topology: A graph representing the 

couplings (edges) between pair of single sub-

models (nodes) belonging to a partitioned model. 

The graph edges are labelled by coupling templates. 

Two kinds of coupling topology are identified:   

a. Acyclic topology: It is characterized by  an 

absence of cycles in the coupling topology.  In 

this case coupled simulation codes can be 

ordered and executed sequentially; this kind of 

coupling is also named loose coupling. 

b. Cyclic topology:  It is characterized by the 

presence of cycles in the coupling   topology. In 

this case the order of the execution of individual 

simulation codes is not predefined; this kind of 

coupling is also called tight coupling. 

Figure 1.a and Figure 1.b [14] depict respectively the 

loose and the tight coupling of three sub-models 

belonging to a partitioned model. The arrows show the 

direction of their interactions. 

 
 

Figure 1.a: Loose Coupling of Sub-Models. 

 

 
 

Figure 1.b: Tight Coupling of Sub-Models. 

2.3 Orchestration of coupled simulations 

Three ways to coordinate and orchestrate a set of coupled 

single experiments are commonly used: 

(i) Centralized mode: A dedicated engine orchestrates 

and coordinates the enacting of single experiments 

according to predetermined patterns. 

(ii) Master/Slave mode: One of the single experiments 

plays the role of a master.  First, the master 

experiment is enacted and then the master 

experiment orchestrates the enactment of the other 

single experiments, called slave experiments, in a 

sequential way. 

(iii) Component based mode: The coordination is 

distributed over all the participating single 

experiments.  

3 Simulation from the scientific 

workflow perspective 
The workflow technology, mainly used by the business 

community, seems to be one of the promising approaches 

adopted by the scientific community; the concept of 

scientific workflows emerged as an alternative to the 

conventional concept of business workflow. There are 

similarities as well as differences between the two kinds 

of workflows. For example, business workflows are 

control-flow oriented, while scientific workflow are 

mainly data-flow oriented.  The readers interested in 

more details may refer to [15].   
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3.1 Scientific workflows 

A workflow is a pre-defined set of work steps with a 

partial order on these steps [17]. Work steps represent 

tasks to be carried out when they are enacted by 

workflow engines. 

Scientific workflows Management Systems have 

been developed during the last two decades. They are 

intended to manage, enact and monitor scientific 

workflows which are a composition of a series of 

computation and/or data manipulation [13]. Scientific 

workflows are enacted and orchestrated by specific 

engines, called workflow engines, forming the core 

components of scientific workflows Management 

Systems. Some examples of known scientific workflows 

management systems are Taverna, Kepler, and Vistrails 

[16].  

Generally, workflows describe control flows and/or 

data flows. Scientific workflows are usually classified 

into two categories: Abstract and concrete workflows 

[19]. Quoting the authors of [18]: “An abstract scientific 

workflow is a definition of a scientific process with 

emphasis on the analytical operations or function to be 

performed rather than the mechanisms for performing 

these operations”. In opposite, concrete scientific 

workflows bind the work steps to resources that execute 

the corresponding tasks. 

3.2 Simulation workflows 

Simulations of scientific or engineering models are seen 

as kinds of scientific workflows. Simulations of models 

are often described by scientific workflows. These 

workflows follow specific patterns/motifs and include 

various kinds of steps: Data processing steps, 

solving/simulation step, visualization step, and data 

exchanges step. In [24] the authors elaborated catalogues 

of common motifs for both scientific workflows and data 

operations that may be performed when conducting 

scientific experiments.   

The iterative pattern is one of the most used control 

patterns to describe the workflow of individual 

experiments. For instance structured loops are a kind of 

iterative pattern.   

In the case of a multi-experiment the workflows of 

the participating individual experiments are coupled.  

Their coupling is performed thanks to a set of data 

exchanges constrained by specific interaction patterns. 

The authors of [20] suggest the concept of 

“choreography”, borrowed to the business management 

community, to couple the workflows of single 

experiments. Every single experiment is realized as an 

orchestration of scientific services and the whole multi-

experiment is described by choreographies without a 

centralized control.   

4  Related works 
The literature reports two different directions regarding 

the development of simulation frameworks: 

(i) Component based approaches inspired from the 

software component-based design and 

programming methods,  

(ii) Workflow based approaches inspired from the 

workflow based business systems. Recent works 

with respect to each of these two research directions 

emphasize the MDA practices.  

In [7] the authors proposed a simulation framework 

based on the hierarchical component-based approach. 

Their framework is supported by well-defined meta-

models capturing Conceptual Simulation Models (CSM) 

as well as Platform Independent Simulation Models 

(PISM). However they did not define meta-models that 

capture Platform Specific Simulation Models (PSSM); in 

fact these are considered as implementations of PISM 

models. PISM and PSSM terminology used in the 

simulation field corresponds respectively to the PIM and 

PSM terminology used in the software engineering field. 

It is worthwhile to note that the work in [7] does not 

consider the simulation platform description models as 

primary models. 

The authors in [21] adopted a workflow based 

approach for the simulation framework they developed. 

Their approach, based on an MDA approach too, relies 

on three distinct  levels: A conceptual level at which the 

modellers describe the models that capture the 

phenomena under study; an abstract level at which PSSM 

models, independent form  the computing infrastructures 

are conceived; a concrete level at which models are 

strongly dependent from the computing infrastructure 

intended to host the simulation experiments; these last 

models, called Platform Description Models (PDM) refer 

to the hardware infrastructure rather than to the 

simulation workflow framework. Conceptual models are 

first transformed into specific intermediate 

representations which are themselves converted to 

abstract workflows to be enacted by a targeted scientific 

workflow framework.  

Both research works does not consider the modelling 

of simulation platforms.  To the best of our knowledge, 

the sole research work that investigated the issue of 

simulation platform modelling is described in [9]. Its 

authors aimed at discovering commonalities and 

variations among a sample of open source multi-physics 

simulation platforms, and proposing a feature model 

capturing the discovered commonalities and variations 

using the feature-oriented modelling approach. 

According to the authors, one of the possible uses of their 

produced feature model is to serve as a reference for 

simulation platforms developers.   

Our research work, contrarily to [9], targets the 

modelling of simulation platforms in the context of the 

MDA approach for the simulation domain, i.e., providing 

a UML profile intended to build Simulation Platform 

Description Models (SPDM) for simulation experiments; 

in opposite to [21], PDM models here refer to simulation 

platform models rather than to computing infrastructure 

models.  

The present work considers scientific workflows for 

the description of scientific experiment behaviors, and 
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relies on the concept of generic resources as defined in 

[8] to model elements of simulation platforms.    

5 The proposed UML profile 
In this section we develop our UML profile intended for 

the simulation field. A set of UML stereotypes   intended 

to capture core concepts of the simulation domain are 

exposed.  

5.1 Linking PISM and SPDM models 

The proposed profile focuses on the SPDM modelling. 

Figure 2 depicts the well-known relationship between the 

PISM, and PSSM models. Elements of PISM models are 

mapped to elements of SPDM leading to PSSM models.  

  

Figure  2:   Linking PISM and PSSM. 

Our approach relies on two first class UML model 

elements to describe simulations: 

-Experiment: intended to describe the simulation of either 

a monolithic model or   the simulation of a single model 

(member of a partitioned model). 

-Simulation: intended to describe the architecture of the 

simulation of a whole model (either monolithic or 

partitioned model) according to a desired simulation 

approach (monolithic/partitioned) and design 

(component-based/ workflow-based).   

5.2 PISM model elements 

In this section we identify and define a set of UML 

stereotypes that constitutes the main PISM model 

elements of our profile. 

5.2.1 Simulation stereotype 

The simulation and experiment concepts, as defined 

above, are modelled as stereotypes. Both extend the 

UML BehavioredClassifier metaclass which is a UML 

classifier that owns behaviors.  

A. The class diagram depicted in Figure 3.a describes the 

Simulation stereotype and the hierarchy of its refined 

stereotypes covering various kinds of simulation 

approaches. 

Comments: 

(i). Simulation Stereotype includes at least two 

properties. 

IdentifierElts reports a set of required elements that may 

identify and characterize conducted simulations such 

their identification number, their date, the target domain, 

the version number. 

SimulParam is used to report some parameters related to 

the simulation itself; for instance the duration of the 

simulation, the space dimension of the simulated model 

and others. 

(ii). PartitionedSimulation and MonolithicSimulation are 

refinements of the Simulation Stereotype. Expnumber 

property defined in PartitionedSimulation records the 

number of single experiments participating to a 

partitioned simulation instance. 

(iii).MultiscaleSimulation is a refinement of the 

PartitionedSimulation stereotype. Its scales property 

records the kinds of scale dimension (time, space, time 

and space) characterizes a simulation instance.  

Dimension is an enumeration type intended to carry 

various kinds of scales. 

       Dimension == time | space | time&space |….. 

A.The class diagram shown in Figure 3.b   presents a 

hierarchy of various multiscale simulation design 

approaches according to the way coordination and 

orchestration of coupled single experiments are done. 

 Comments: 

(i). CompBasedMsc stereotype represents multiscale 

simulations designed according to the component based 

approach.  Conf property records the configuration of 

multiscale simulations i.e., its topology (refer to section 

2.2.2). We introduce the stereotype Coupling as an 

extension of the UML Association metaclass to model 

the simulation configuration. The details of this 

stereotype are shown in Figure 3.d. 

 

(ii). WrkFlowBasedMsc stereotype represents multiscale 

simulations designed according to the workflow based 

approach. It is mainly characterized by two properties. 

Wbeh property specifies the abstract workflow associated 

with the workflow based multiscale simulation.  The 

WorkFlowBeh stereotype is defined in the part A of 

section 5.2.3 

 

Figure 3.a: Simulation Stereotype and its Refined 
Stereotypes. Remark: UML TypedElement refers to a 
pair (named element, its associated type). TypedElement 
[0..*] means zero or more.  
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Map property specifies the mapping between workflow 

nodes and their corresponding workflow call actions. 

The Mapping class is a datatype that records (workflow 

node, action to be called) pairs. The concept of UML call 

action is detailed in the part B of section 5.2.3. 

 

(iii). CentralizedMsc stereotype represents multiscale 

simulations designed according to the centralized version 

of the workflow based approach. It refines WrkFlowMsc 

stereotype. Its coord property (instance of the 

Coordinator class) is intended to represent the central 

coordinator that orchestrates the whole simulation 

workflow.  The Coordinator class is not detailed in this 

paper.  

 

(iv). MasterSlaveMsc stereotype represents multiscale 

simulations designed according to the master/slave 

version of the workflow based approach. It refines the 

WrfFlowMsc stereotype. Its Master property records the 

single experiment that plays the role of master in the 

whole multiscale simulation. 

 

 
Figure 3.b: Hierarchy of MultiScale Design Approaches. 

Figure 3.c shows the relationship between the stereotypes 

Monolithic/Partitioned and Experiment stereotypes 

(more details on the Experiment stereotype are given in 

the section 5.2.3)   

  Monolithic simulations include only one single 

experiment whilst partitioned simulations include more 

than one single experiment. 

 

 

Figure 3.c Linking Simulation with Experiments.  

5.2.2 Coupling stereotype: 

Various kinds of couplings are identified:  

- Direct coupling between pairs of experiments 

participating to component based multiscale 

simulations. This kind of coupling may various 

forms. For instance the designers of the MUSCLE 

multiscale platform use the term “coupling template” 

to refer to these coupling forms. 

- Indirect coupling between slave experiments through 

a master experiment in case of master-slave 

multiscale simulations. 

- Indirect coupling between experiments through a 

coordinator in case of centralized multiscale 

simulations. 

 

Figure 3.d shows the specification of the proposed 

Coupling stereotype. This stereotype extends the UML 

association metaclass and it is characterized by the 

following properties: 

 

 
Figure 3.d: Coupling Stereotype. 

+ CplIdElts: Specifies suitable information susceptible to 

identify its instances. 

+ CplIType: Set of suitable typed elements allowing to 

specify the kind of the coupling. 

+ SourceNode, TargetNode: These attributes play the 

role of the UML association end. They specify the model 

elements that are coupled. 

5.2.3 Simulation behavior stereotype  

Instances of both Experiment and Simulation stereotypes 

own their specific behaviours. The stereotype 
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SimBehavior is intended to capture various simulation 

and experiment behaviors. 

 

A. Figure 4.a shows a class diagram depicting the usual 

behaviors met in the simulation   world. The SimBeh 

stereotype is intended to model the behavior of 

experiments and simulations. Two categories of behavior 

are identified. The opaques ones characterized by their 

unknown structure, and the regular ones characterized by 

well-defined, regular and known structures. For instance, 

workflows and automata-like structures are kinds of 

regular behavior.  

Comments: 

(i) Opaque behaviors, as defined in the UML 

infrastructure, are usually characterized by their body 

(body source plus the language used to express the 

source); in the context of our work, Opaque Experiment 

stereotype represents experiments driven by simulation 

engines. Here we adopt the UML Opaque Behavior 

metaclass as a base class. 

(ii) Automata-based behavior which are explicitly 

described by automata-like formalisms such as Cellular 

Automata or others. Such kind of behaviors may, for 

instance, characterizes the behavior of single experiments 

that participate to multiscale simulations. Here we adopt 

the UML State Machine metaclass as a base class. 

(iii) Workflow-based behaviors which are explicitly 

described by abstract workflows. Such kind of behavior 

may for instance characterizes the behaviour of 

monolithic simulation as well as multiscale simulations. 

These are often expressed in terms of Petri nets or UML 

activity diagrams. The authors of [23] defined a profile 

for scientific workflows by proposing a refinement of the 

UML Activity metaclass tailored to their own abstract 

workflow language. In our work we define the 

WorkFlowBeh stereotype to represent abstract simulation 

workflows by extending the UML Activity metaclass.  

SimMotif is one of the properties associated with the 

WorkFlowBeh stereotype. It is intended to specify the 

abstract motif/pattern of simulation workflows. Abstract 

simulation workflows are composed by sets of workflow 

nodes assembled according to a particular structure.  We 

assume the availability of a library of UML model 

elements regrouping a catalogue of usual simulation 

workflow motifs.  

B. More on Workflow based Experiments 

Workflow-based experiments are usually composed of 

work steps structured and organized according to a 

specific workflow motif/pattern. In order to be 

independent from specific abstract workflow language, 

we adopt a solution, used by some workflow engines, 

that uncouples the workflow motif nodes from the task to 

be performed at the node level.  To achieve this 

objective, we rely on the UML Behavior metaclass 

infrastructure to define the SimulationWorkflowStep 

stereotype.  

This stereotype extends the UML Call Operation and 

Call Behavior metaclasses which are themselves two 

refinements of the UML Execution Action metaclass: 

 

 

Figure 4.a    Typology of Simulation Behaviors 

- Call Operation is used to trigger atomic operations 

that correspond to simulation processing steps, like 

solving, data processing or data interaction steps. 

- Call Behavior is used to trigger behaviors that 

correspond to potential sub-workflows contained in 

simulation workflows (hierarchical workflow motifs). 

It is useful to handle the master/slave approach (a 

master experiment enacting a slave experiment) and 

the centralized approach (a coordinator enacting the 

workflow of single experiments). 

Figure4.b shows two refinements of the 

SimulationWorkflowStep stereotype: 

  SimAction stereotype representing various kinds of 

atomic simulation actions call (solving, data processing, 

data interaction operations) that may be associated with 

nodes of abstract workflow motifs. It extends the UML 

Call Operation metaclass. 

  WrkFAction stereotype representing sub-workflows 

with call action that may be associated with nodes of 

workflow motifs. It extends the UML Call behaviour 

metaclass. 

5.2.4 Experiment and simulation model 

stereotypes 

The Experiment stereotype represents PSIM elements. 

Figure 5 shows the features of this stereotype. 

(i) IdentifierElts property records any useful 

information susceptible to identify the experiment 

(identifier number, experiment date, version, and 

eventually others). 

(ii) ExpParam property records experiment parameters 

(experiment duration, and eventually other 

parameters). 
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Figure 4.b: Simulation WorkFlow Step Stereotypes 
Hierarchy. 

(iii) ArchElts property is intended to record any useful 

information related to the various simulation design 

approaches. The type of ArchElts property type is 

kept flexible in order to describe various simulation 

design approaches (monolithic, component based, 

centralized workflow based, master/slave workflow 

design approaches). ModelElement is a UML-

MARTE defined metaclass that refers to any UML 

classifier. 

(iv) Smod property specifies the simulation model 

targeted by the experiment.   It may be either a 

whole simulation model (monolithic simulation) or 

a single simulation model (partitioned simulation). 

 
Figure 5.  Experiment Stereotype. 

Figure 6 shows the features of the SimulModel class: 

(i) Field property specifies the application domain 

concerned by the simulation (engineering, physics, 

biology, and others). Domain class represents the 

various domains where simulations may be 

conducted. 

 

 
Figure 6. SimulModel Class. 

(ii) Ph property specifies the domain specific 

phenomena targeted by the simulation. 

(iii) SlvMth property specifies the set of mathematical 

methods that may be used to solve the simulation 

model. We define SolvingMethod a stereotype as an 

extension of the UML OpaqueExpression 

metaclass. 

5.3 SPDM model elements 

Simulation and experiments, as previously mentioned, 

are hosted and executed by simulation platforms.   
UML-MARTE profile provides the concept of 

Resource to model in a uniform way hardware as well as 

software elements. Resources are abstract entities that 

provide services and they are themselves composed of 

other resources. We refine the concept of abstract 

resource to concrete (software) elements of simulation 

platforms. 

In the present work we focus on only two core 

stereotypes   that may be used to model PDSMs: Engines 

and Data Processor resources.  

5.3.1 Engine resources 

The concept of “engine’ is often used in the simulation 

field as well as in the workflow technology. Here engines 

represent virtual computing resources that interpret and 

run scripts or workflows written in specific formalisms.  

Engine refines the abstract Resource stereotype class 

defined in UML-MARTE profile.  

This abstract resource provides a set of services 

common to all kinds of resources.  

Figure 7 shows two kinds of engines: Simulation and 

Workflow engines. 

A. SimulationEngine: An engine that interprets opaque 

simulation code written in specific formalism/language. 

It may also be a simulation tool, called simulator, that 

performs solving methods; simulators accept models and 

simulation scripts as inputs. 
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Figure 7. Simulation and Workflow Engines Stereotypes. 

(i) Interpreter: Specifies the formalism that is 

interpreted by the simulation engine, 

(ii) Kind: Specifies the type of simulation engine. 

SimulEngineEnumeration==  

                        simulator| embedded simulation code |…. 

(iii) Slv-method: Specifies the set of  numerical method 

that are supported by the simulation engine. 

(iv) Computation: Specifies if the engine performs 

sequential or parallel computations. 

 

Figure8 represents the main features of the Simulation 

Engine stereotype. 

 
Figure 8: Simulation Engine Stereotype. 

B. WorkflowEngine: An engine that is responsible for the 

interpretation of executable workflow and the 

orchestration of workflows. It is a kind of scheduling 

resource. Workflow steps may be either basic/atomic 

tasks or sub-workflows. Modellers specify their 

workflows using either a human readable textual script or 

a diagram-based workflow language (Front- 

 

End workflow language), while workflow engines 

interpret platform readable and executable workflow 

languages (Back-End language). 

Figure 9 depicts the main features of the Workflow 

Engine stereotype. 

 
Figure 9. WorkflowEngine Stereotype. 

(i) WorkFlowPattern is a sub-class of the Control 

Node meta-class. It includes the usual set of control 

nodes found in simulation workflows like sequence, 

loop, and parallel. 

(ii) ExternResourceWrapper, and EngineWrapper are 

derived from the UML Adapter pattern. External 

ResourceWrapper refers to wrappers that 

encapsulate data processing operators, and 

EngineWrapper refers to wrappers that encapsulate 

simulation engines in case of cooperation between 

workflow engines. 

5.3.2 Data processor elements 

In the following, we present a set of stereotypes aiming 

to model a set of specific computing resources that are 

able to support the execution of specific operations: data 

operation, and data interaction. We model these 

resources as kinds of virtual processor.  

Our approach to categorize the data operations is 

slightly different from the one reported in [20]. We 

differentiate the data processing operations that may 

operate inside individual experiments, the intra-

experiment case, from the operations on data that are 

performed along the data motion from one single 

experiment to another experiment, the inter-experiment 

case.  A categorization of these Data processors is shown 

in Figures 10a, 10b, and 10c. The following kinds of data 

processor are identified: 

A. Inter-Experiment Data Processor 

Data are potentially subject to manipulation during 

their motion between single experiments. Each kind of 

manipulation is described by a specific (mathematical) 

function or algorithm. Two kinds of manipulations are 

identified: 

 (i)   Data transformation: filtering, 

(ii)  Data combination: usually carried out by operators 

called Mappers.  

  (a)  Data aggregation: aggregating multiple data  

         sources to one data source, 

  (b)  Data dis-aggregation: separating one data  

         source into multiple data sources. 

B. Intra-Experiment Data Processor 

Usually the input data need to be set into a specific 

format before to be submitted to simulation engines. The 

output data (produced by simulation engines) need also 

to be set in specific formats before to be visualized to the 

modellers. Commercial and academic libraries provide 

such data processors. 

 

 

Figure 10 a.  Data Processors Classification. 
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Figure 10 b. Data Combinator Processors Classification. 

 
Figure 10.c   Data Transformer Processor. 

  
Figure 11: Data Processor Stereotype. 

C. The stereotype Data Processor inherits from the 

Resource class. Its main features are: 

(i) InputElts:  Specifies the number and types of inputs 

which depend from the kind of data processor, 

(ii) OutputElts: Specifies the number and types of 

outputs depend from the kind of data processor, 

(iii) ProcessingElts:  Specifies an algorithm (body) that 

implements the analytic (mathematical) operation to 

be performed as well as a set of appropriate 

parameters qualifying its performance.  

5.3.3 Data interaction operator 

Single experiments participating to multiscale 

simulations are coupled according to specific coupling 

mechanisms.  They exchange data either in a direct way, 

in case of a component based multiscale simulation 

approach or in an indirect way in case of master/slave 

and centralized multiscale simulation approaches.  

Our profile provides a stereotype class named 

DataInteractionOperator intended to run various kinds 

of coupling (data motion according to specific 

templates).  It represents an abstraction of the so-called 

coupling wrappers mentioned in the section 2.2.1. We 

adopt and refine the UML Adapter pattern to define this 

stereotype. 

6 Example 
In this section we introduce a simple example to illustrate 

the (partial) use of our proposed profile.  The example 

exposes only the PISM model elements. 

The example presents a component based multiscale 

simulation which consists of two single scale 

experiments namely C1 and C2 interacting through two 

couplings namely Cp12 from C1 to C2 and Cp21 from 

C2 to C1.  

C1 is the experiment on the simulation model Mod1 

and C2 is the experiment of the simulation Mod2.  Both 

Mod1 and Mod2 are single scale models of the 

partitioned simulation model Mod. 

 

a. Instantiation of the stereotype Simulation with the 

following tags: 

+ IdentifierElts =  
     SimlId: String 

       SimDt: Date 

       SimVersion: String 
       SimDm: Domain                         /Domain: a data type/ 

 

+ SimulParam = 
    SimDuration: Time 
      SimSpace: Space                       /Space:  a data type/ 

      SimMd:  SimulMod                  / Simulation Model/  

     

b. Instantiation of the stereotype MultiscaleSimulation 

with the following tags: 

+ scales = time&space    /value of Dimension Enumeration type/ 

+ExpNumber = 2     /property of PartitionedSimulation 

 

c.Instantiation of the stereotype CompBasedMsC  

+Conf =  
     Cp12: Coupling 
     Cp21: Coupling 

Two couplings in our example Cp1 and cp2  

 

d. Instantiation of the stereotype Coupling 

+ CplType= 
    CcplK: CouplingKind           /CouplingKind:  enemuration data type/ 

    CpT: CouplingTemplate    /CouplingTemplate is a data type/ 

+ CpMeth: OpaqueExpression  /coupling code algorithm  

 

+ SourceNode =  
           Src: InPort              /InPort: a UML model element/ 

+ TargNode =   
           Targ: OutPort      /OutPort: a UML model element  

 

     For Cp12 Instance  
      CplK =  directcoupling   /direct coupling between two experiments/ 

      CpT =    tempX    / templateX is one instance of CouplingTemplate/ 

      CpMeth = MethX      /MethX: a coupling algorithm for tempX/ 
      Src =out1 

      Targ= in2 
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     For Cp21 Instance  
     CplK =  directcoupling   /direct coupling between two experiments/ 

      CpT  =    tempY    / templateY is one instance of CouplingTemplate   

     CpMeth = methY      /MethY a coupling algorithm for  tempY / 
     Src =out2 

     Targ= in1 

 

e. Instantiation of the stereotype Experiment   

From the architectural point of view Experiment 

instances are seen as components owning an internal 

behavior and characterized by a set of input and output 

ports for their interaction (coupling) with other 

experiments. In this example we use the SEL (SubModel 

Execution Loop) behavior borrowed from the MUSCLE 

multiscale framework. 

 

+ IdentifierElts =  
         ExpId: String 
         ExpDt: Date 

         ExpVersion: Integer 

 

+ArchElts = 
 ExpBeh: SEL      / SEL:  Behaviour of specific cellular automata/ 

 ExpIn: InPort [1..*]                         / InPort: model element/ 
 ExpOut:OutPort [1..*]                   /  OutPort: model element/   

 

For C1 Experiment instance: 
         ExBeh =sel1   \ an instance of the SEL data type\ 

         ExpIn = {in1} 

         ExpOut = {out1} 
For C2 Experiment instance: 

ExBeh =sel2   \ an instance of the SEL data type\ 

        ExpIn = {in2} 
ExpOut = {out2} 

 

+ExpParam = 
 ExpTimeScale: Time                  /Time scale of the Experiment/ 

 ExpSpaceScale: Space               /space scale for the experiment 

 
For C1 Experiment instance: 

 ExpTimeScale = t1 

 ExpSpaceScale = sp1  
 For C1 Experiment instance: 

 ExpTimeScale = t2 

 ExpSpaceScale = sp2 
     

+SMod =_Mod1     (Mod2 for the C2 Experiment instance). 

 
Realistic and complete case studies are currently under construction. 

7 Conclusion and future works 
In this work we present a synthesis of recent 

contributions in the modelling and simulation field 

encompassing up-to-date simulation topics. Model driven 

approaches for the simulation field are discussed.  Multi-

scale and multi-physics simulation methods and their 

related issues are outlined. Modern simulation platforms 

adopting a component- as well as a workflow-based 

approach are exposed. 

We also propose modelling mechanisms intended for 

the description of simulation platforms, thus making 

possible the development of a kind of MDA primary 

model called SPDM. For this purpose we define a UML 

profile including a set of useful UML stereotypes that 

capture core simulation concepts as well as core 

simulation platforms elements such as simulation 

engines, workflow engines, and simulation data 

processors. In this work, a resource-based approach, 

similar to the one used for the UML-MARTE profile, is 

adopted for the modelling of simulation platforms 

elements. 

As a first future work we plan also to develop UML 

meta-models for a set of widely used simulation model 

specification formalisms, thus enabling PISM-to-PISM 

transformations. 
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