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Millions of electrocardiograms (ECG) are interpreted every year, requiring specialized training for 

accurate interpretation. Because automated and accurate classification ECG signals will improve early 

diagnosis of heart condition, several neural network (NN) approaches have been proposed for 

classifying ECG signals. Current strategies for a critical step, the preprocessing for noise removal, are 

still unsatisfactory. We propose a modular NN approach based on artificial noise injection, to improve 

the generalization capability of the resulting model. The NN classifier initially performed a fairly 

accurate recognition of four types of cardiac anomalies in simulated ECG signals with minor, moderate, 

severe, and extreme noise, with an average accuracy of 99.2%, 95.1%, 91.4%, and 85.2% respectively.  

Ultimately we discriminated normal and abnormal heartbeat patterns for single lead of raw ECG 

signals, obtained 95.7% of overall accuracy and 99.5% of Precision. Therefore, the propose approach 

is a useful tool for the detection and diagnosis of cardiac abnormalities. 

Povzetek: V članku je opisana metoda modularnih nevronskim mrež za prepoznavanje šumnih ECG 

signalov.

1 Introduction 
The electrocardiogram (ECG) is a non-invasive clinical 

test that measures and records electrical changes that take 

place in the heart when it beats [1]. ECG is vastly used 

for screening, diagnosis, and monitoring of several heart 

conditions. Most ECGs are recorded and interpreted by 

health professionals, few of which have received formal 

training and proper assessment of competency in 

recording and interpreting ECGs [2,3], and many self-

reported their ECG reading skills as inadequate [4]. 

Therefore, several automated approaches have been 

developed to increase efficiency and enhance accuracy in 

interpreting ECG waveforms [5]. This is the case of 

classification systems based on artificial neural networks 

(NN), which have become very popular and most widely 

employed for successful classification of ECG signals [5] 

because of their natural ability to deal with incomplete or 

ambiguous input in pattern recognition tasks [6]. 

An ECG signal consists mainly of five continuous 

electromagnetic waves namely, P, Q, R, S, and T (Fig. 

1). The amplitude, direction, and duration of the waves, 

and their morphological aspects are analyzed for specific 

abnormalities. Other important information includes the 

peak area, called the QRS complex, the duration of the 

PR and QT intervals, and the deviation of the PR and ST 

segments. These characteristics can be contaminated by 

the physical parameters of electronic and mechanical 

devices, electrical activity of muscles, degradation of the 

electrode-skin contact, and other causes [7-9]. Noise 

corruption can generate similar morphologies to the ECG 

waveform, reducing the discriminating power of 

heartbeat patterns, and increasing the rate of false alarms 

for cardiac monitors [9]. Therefore, a large number of 

NN approaches for ECG classification have included 

signal preprocessing for noise reduction, using a wavelet 

transformer (WT) [6,11-13], nonlinear cubic spline 

interpolation (CSI) [14], fast Fourier transformation 

(FFT) [15] or band-pass filters [16-19]. 
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Nevertheless, current strategies for this critical step, 

the preprocessing for noise removal, are still 

unsatisfactory because clinical interpretation often 

requires even higher signal quality to detect cardiac 

disorders [20, 21]. For that reason, NN systems for ECG 

classification that are robust and efficient, and have 

greater noise tolerance, are needed. In this paper, we 

develop and test a noise-tolerant ECG signal classifier 

based on an NN approach. The method uses a modular 

NN architecture to perform initial training and testing on 

a simulated dataset. Ultimately we discriminated normal 

and abnormal heartbeat patterns for single lead of real 

ECG signals. 

 
  
Figure 1:  Typical one-cycle ECG signal. 

2 Literature review 
Most NN systems were tested using ECG data from the 

MIT-BIH arrhythmia database [5], which contains 48 

ECG recordings with signals that were band-pass filtered 

in the frequency range of 0.1 to 100 Hz and sampled at 

360 Hz [22].  In this sense, Rohan and Patil also used a 

low pass filter with a cut-off frequency of 30-100 Hz to 

pre-process 16 records from the MIT-BIH database [16]. 

They then employed an NN approach composed by two 

hidden layers with eight neurons and classified four types 

of cardiac arrhythmias with an overall accuracy of 

99.9%. Asl et al. used a 5-15 Hz band-pass filter to 

remove contamination from 2009 ECG segments, each 

with 32 RR intervals [17]. The authors developed a 

three-layered NN with one hidden layer of 20 neurons 

that classified RR interval signals into four arrhythmia 

categories with an average accuracy of 99.3%.  Das and 

Ari employed an NN approach with a pre-processing 

band-pass filter (3-20Hz) to reduce noise in 44 records of 

the database [18]. They classified five types of ECG 

beats with an S-transform NN approach and achieved 

97.9% of average classification accuracy. In contrast, 

Tang and Shu eliminated noise from an ECG waveform 

using high-pass filter with 0.7Hz and low-pass filter with 

100Hz [19]. Their quantum NN model recognized ECG 

signals with an overall accuracy of 91.7%. 

In two studies the authors used WT technique to 

remove noise from MIT-BIH records. Javadi et al. 

proposed a modular NN based on a mixture of experts 

and negatively correlated learning using stationary WT 

as a tool for noise reduction [6]. The NN ensemble 

produced a recognition rate of 96% for classifying 

normal heartbeats, premature ventricular contraction 

arrhythmias and other cardiac abnormalities. 

Vijayavanan et al. preprocessed ECG signal to remove 

different kinds of artifacts using discrete WT [12]. They 

proposed a probabilistic NN approach to discriminate the 

difference between a normal ECG signal and an 

arrhythmia affected signal with an accuracy of 96.5% 

classification rate. Similarly, Naima and Timemy used 

discrete WT denoising procedure on ECG data collected 

from two hospitals in Bagdad [13]. Their discrete WT-

NN classifier with six neurons in the hidden layer 

detected acute MI with 95% accuracy. On the other hand, 

Güler and Übeyli decomposed ECG signals from the 

Physiobank database [23] into time-frequency 

representations also using discrete WT. They classified 

four types of ECG beats with a total accuracy of 96.9% 

through a combined NN model composed by 30 hidden 

neurons [11] 

In its place, Setizwan et al. employed the nonlinear 

CSI method to estimate and eliminate noise from the 

baseline ECG of MIT-BIH registers. The implemented 

fuzzy-neuro learning vector quantization algorithm 

produced 95.5% of the overall accuracy rate to classify 

normal beat and 11 types of arrhythmias [14]. 

Meanwhile, Vishwa et al. applied direct FFT to remove 

low frequencies and restore an ECG signal from the 

MIT-BIH arrhythmia database with the help of inverse 

FFT [15]. The NN model composed by three and five 

neurons in first and second hidden layer respectively 

obtained a detection accuracy of 96.7%. 

In contrast, Garg and Sharma used an NN model 

with two hidden layers to analyze ECG records from the 

MIT-BIH database with no additional filter and correctly 

detected normal vs. arrhythmic ECGs with a general 

accuracy of 96.6% [24]. Finally, Jadhav et al. used 

records from the Cardiac Arrhythmia Database of the 

UCI Machine Learning Repository [25] with no prior 

filtering for classification of normal and abnormal ECG 

signals. Their NN approach with two hidden layers 

resulted in 82.4% correct classifications [26]. 

3 Materials and methods 
The NN classification comprises five stages: (i) 

simulation of ECG signal, (ii) extraction of features that 

indicate cardiac abnormalities, (iii) computer generation 

of normal and abnormal heartbeat patterns, (iv) artificial 

noise injection, and (v) cardiac rhythm classification on 

simulated and real ECG signals. 
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3.1 ECG signal simulation 

We used a standard electrocardiographic 12 lead 

representation of the heart electrical activity [27] divided 

in the P, PQ, QRS, ST, T and TP sections (Fig. 1), to 

simulate an ECG signal with specific parameters (Table 

1). The resulting signal was composed of different 

waveforms and frequencies. 

Section 
Minimum 

Voltage 

Maximum 

voltage 
Time 

P 0 0.125 mV 95 ms 

PQ 0 0 40 ms 

QRS -0.1 mV 0.97 mV 65 ms 

ST 0 0 120 ms 

T 0 0.16 mV 180 ms 

TP 0 0 130 ms 

Table 1: Parameters of typical ECG lead. 

The P and T sections of the simulated ECG signal 

were similar to waveforms generated by the movement 

of a piston, which allowed generation of a mathematical 

model of their behavior [28]. The piston describes an 

oscillatory motion that can be approximated by a simple 

harmonic. The position equation of the piston is a 

function of the angular velocity: x(t)=r·cos(ωt), where 

x(t) is the piston position versus time, r is the radius of 

the crank and ωt is the angular velocity of rotation in 

radians. 

The P wave modeled by the piston motion equation 

had maximum amplitude of 0.125 mV. The T wave was 

split into two sections: the first section had maximum 

amplitude of 0.16 mV, a positive slope, and a period of 

T1; the second section had the same maximum amplitude, 

a negative slope, and a period, T2, which was less than 

T1. The QRS segment used corresponding voltages at the 

Q, R, and S points and intermediate voltages for the PQ-

Q, Q-R, R-S, and S-ST sections. A positive off-set 

voltage was then added to each value. Each section was 

further characterized by amplitude and corresponding 

slope (Table 1). The final output ECG signal, simulated 

using MATLAB software [29, 30], had a duration of 700 

ms for each cycle and was mounted on a signal base of 

512 mV amplitude (Fig. 2). 

 

Figure 2: Typical ECG signal simulated in MATLAB. 

3.2 Cardiac abnormalities  

Feature extraction is a key issue in recognition and 

classification tasks. We used a combination of 

morphological and timing features to distinguish between 

a normal heartbeat (NH) and disorders of heart rate and 

cardiac rhythm. The shape, position, and time duration of 

P, Q, T waves and the ST segment, were used to identify 

specific abnormalities (Fig. 3).  

 

Figure 3: Morphological and timing features of (a) the P wave; 

(b) the Q wave; (c) the ST segment; and (d) the T wave, used to 

detect specific cardiac abnormalities 

The P wave is the first positive deflection on ECG 

signal, with a normal duration <120 ms and amplitude 

rarely exceeding 0.25 mV. Greater amplitude suggests 

right atrial enlargement (RAE) [31], and an inverted P 

wave can indicate junctional rhythm (JR) [32]. The Q 

wave is the first downward deflection on ECG signal. 

Pathological Q waves, with a duration >40 ms or depth 

>0.1 mV, can be a sign of current or previous myocardial 

infarction (MI) [33]. Greater than 0.2 mV depression of 

the ST segment, which connects the QRS complex and 

the T wave, is attributable to cardiac ischemia (CI) [34]. 

Widespread inversion of the T wave, the first deflection 

following the QRS complex, is also associated with CI 

[35].  

3.3  Dataset  

After extracting the morphological and timing 

characteristics of the simulated ECG signal, we 

generated 10000 heartbeat feature vectors (normal and 

abnormal) for each ECG segment. The dimensions of the 

feature vectors for the P, Q, ST and T waves were 102, 

115, 120, and 200-dimensional respectively. We then 

built matrices , ,  and ) from randomly 

selected pattern vectors, using 900 for each matrix. These 

were organized as interspersed normal ( ) and 

abnormal patterns ( ). In the case of a P wave with two 

associated pathologies ( ), both abnormal patterns 

were inserted after each NH pattern: 

        (1) 

Later, we randomly combined the pattern vectors to 

generate a total training dataset, composed of 5400 
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samples from five classes. The first class was a NH; the 

other four classes were specific cardiac pathologies for 

each ECG wave. This takes into account that CI could be 

attributable to depression of the ST segment or 

widespread inversion of the T wave [34]. The total 

training data was partitioned into two datasets: training 

and testing set. The testing set was not seen by NN 

classifier during the training phase. It is only used for 

testing the generalization of NN approach after it was 

trained. We randomly selected the 80% examples for 

training, and the rest 20% examples as testing data.  

To assess the robustness of the learned patterns 

within noisy conditions, and to improve the 

generalization capability of the resulting NN system, we 

created artificial corruption in all ECG segments of 

testing set (Fig. 4) using a Gaussian white-noise model 

[40]. We injected 1 to 12% of randomly generated 

Gaussian white noise [41,42]. We defined quality 

categories to describe the noise level: minor (1-2%), 

moderate (4-6%), severe (8-10%), and extreme (12%). 

The corrupted testing set was used during the training 

phase to improve the behavior of NN ensembles while 

they were trained within noise conditions. 

Later we build a corrupted dataset for testing of 

trained NN with a total of 21600 contaminated ECG 

segments (17100 NH, 1800 CI, 900 RAE, 900 JR, and 

900 MI segments). In addition, the NN approach was 

tested on real ECG records of the Physikalisch-

Technische Bundesanstalt (PTB) Diagnostic ECG 

Database [36]. The PTB database contains digitized ECG 

signals provided by the National Metrology Institute of 

Germany. This ECG collection included 15 

simultaneously measured signals: the conventional 12 

leads together with the 3 Frank lead ECGs. Each signal is 

digitized at 1000 samples per second, with 16 bit 

resolution over a range of ± 16 mV and sampling 

frequency equal to 1 KHz [36]. 

 

 

Figure 4: P wave corrupted with 6% Gaussian white noise. 

We selected data from 221 subjects with a clinical 

summary available, which included ECG records 

classified as NH (n=52) or cardiac abnormalities (148 

MI, 14 dysrhythmia and 7 myocardial hypertrophy). For 

the testing purpose, we considered an unbalanced dataset 

in favor of arrhythmia data (76.5%) to improve the 

testing generalization capabilities of the NN classifier to 

recognizing cardiac abnormalities. Lead V1 was chosen 

for the whole analysis; because it has the largest ratio of 

atrial to ventricular signal amplitude and therefore can 

offer more representative characteristics for identifying 

the common heart diseases [37,38]. The final test set 

consisted of 884 ECG traces built from 4 heartbeats per 

individual. 

3.3 Neural network classifier 

The modular NN classifier consisted of four, three-

layered, feedforward micro NNs built through Matlab 

NN toolbox, one for each ECG interval analyzed. A 

back-propagation algorithm in batch gradient descent 

with momentum mode [39] and random weights/bias 

initialization were used for training. Transfer function 

group was of the hyperbolic tangent-logarithmic 

sigmoid-linear type for input-hidden-output layers. The 

learning rate and momentum coefficient were selected as 

0.05 and 0.9 respectively. Performance was tested using 

the mean squared error parameter, computed for 

differences between the actual outputs and the outputs 

obtained in each trained micro NN. The training ended, if 

the total sum of the squared errors was <0.001, or when 

3000 epochs were reached. The target outputs for NH, 

RAE, JR, MI, and CI were given by (0,0,0,0), (0,0,0,1), 

(0,0,1,0), (0,1,0,0), and (1,0,0,0), respectively.  

4 Results 

4.1 Simulated ECG dataset 

When the NN system was trained using pattern vectors of 

clean and noised simulated ECG signals, the MSE 

convergence goal (0.00096) was reached in 109 epochs. 

The best performance was obtained using 10 (P and T) or 

5 (Q and ST) neurons in the hidden layer of the micro 

NNs. In the first scenario of testing with an artificial 

corrupted dataset, correct classifications over 10 runs 

averaged 99.2%, 95.1%, 91.4%, and 85.2% for minor, 

moderate, severe, and extreme noise (Table 2) 

respectively. Total confusion matrix of each micro NN 

model for all the levels of noise is shown in Table 3. 

Noise 

Level 

Micro NN Accuracy (%) 

P Q ST T 
NH RAE JR NH MI NH CI NH CI 

Minor 100 99 100 100 100 100 100 97 97 

Moderate 97 88 96 100 100 100 100 85 90 

Severe 96 85 86 100 100 99 100 78 79 

Extreme 94 70 74 95 100 96 100 67 71 

Average 96.8 85.5 89 98.8 100 98.8 100 81.8 84.3 

Table 2: Classification performance for contaminated ECG 

segments. 

Estimated 

Output 

True output 

P Q ST T 
NH RAE JR NH MI NH CI NH CI 

NH 66184 522 396 67588 0 67598 0 55972 564 

Cardiac 

anomaly 
2216 3078 3204 812 3600 802 3600 12428 3036 

Table 3: Confusion matrix for classification of artificially 

corrupted ECG segments. 
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Overall classification accuracy was 93.9%. The best 

performance was achieved for the micro NNs, Q and ST, 

correctly classifying 98.8% of NH and 100% of 

abnormal segments.  

4.2 Real ECG dataset 

For the last stage of the study the trained NN approach 

was tested directly on raw ECG traces from PTB 

database, exclusively for discriminating between NH and 

cardiac abnormality. Overall classification accuracy was 

95.7%. The results are shown by a confusion matrix, 

where each cell contains the number of ECG traces 

classified for the corresponding combination of estimated 

and true outputs (Table 4). 

Estimated 

output 

True output 

NH Cardiac abnormality 

NH 205 35 

Cardiac 

abnormality 
3 641 

Table 4: Confusion matrix for classification of real ECG 

signals. 

The total test performance of the NN classifier is 

displayed in Table 5. This was determined by the 

computation of evaluation metrics such as Specificity 

(number of correctly classified NH over total number of 

NH), Sensitivity (number of correctly classified cardiac 

abnormalities over total number of cardiac 

abnormalities), and Precision (number of correctly 

classified cardiac abnormalities over total number of 

estimated cardiac abnormalities). 

Evaluation metrics Values (%) 

Specificity 98.6 

Sensitivity 94.8 

Precision 99.5 

Overall classification accuracy 95.7 

Table 5: Total test performance of the NN classifier. 

In Table 6 the overall performance of our proposed 

NN classifier is compared with the recognition rate of 

previous NN approaches for EGC classification found in 

the literature. 

5 Discussion 
Overall, results of the previous studies make it clear that 

suppression of noise corruption embedded in analysed 

signals improves the accuracy of NN classifiers. 

However, filtering parameters, particularly cut-off 

frequencies and phase response characteristics, should be 

chosen such that clinical information in ECG signals 

remains undistorted, while as much noise as possible is 

removed [43]. This is difficult because the signal and 

noise often share the same frequencies. Furthermore, 

adaptive filters do not normally have a sharp delineation 

between the pass-bands and cut-bands, but rather a slow 

transition in the filter response. If the clinical signals and 

noise are close, it may not be possible to remove the 

noise without removing some of the clinical signal [44]. 

Due to filtration problems, several previous studies found 

that adaptive filtering affected the estimation of 

morphological parameters in ECG signals [45-47], 

resulting in changes that simulated CI [48-53]. A 

reduction in the number of peaks and valleys was 

particularly misleading [54].  

Converse to previous NN approaches for 

classification of ECG signals, the system proposed trains 

with clean and noisy data [55]. By using inputs corrupted 

with randomly sampled noises and various signal-to-

noise ratios, we were able to build a robust classifier 

without an adaptive filter, because the injected noise 

improves the generalization capability of the NN model 

[56]. The rationale of this approach is that the 

perturbation introduced in training by the injected noise 

can be learned by the NN structure and recognized in the 

test phase. More exactly, noise injection during the 

training favors an optimal solution at which the objective 

function is less sensitive to the change of the input [57]. 

On the other hand, this approach is based on the premise 

that an NN method, which can provide accurate 

classification with noise, is preferable to methods that 

modify the original signal. Furthermore the modular 

design based in micro NNs provides a more specific 

classification for each considered kind of cardiac 

abnormality. In this sense, the analysis and experiments 

suggest that by injecting a minor to extreme level of 

noise in training of NN, the noise patterns can be 

effectively learned, and the generalization capability of 

the micro NNs can be improved. Both of these 

advantages result in substantial performance 

improvement of NN for ECG classification in noise 

conditions, without the inclusion of adaptive filters. 

However, although the average classification 

accuracy and precision of our NN system is competitive, 

NN approach  
Filtering 

technique 

Accuracy 

(%) 

*Rohan et al. [16]    30-100 Hz 99.9 

*Asl et al. [17] 5-15 Hz 99.3 

*Das et al. [18] 3-20 Hz 97.9 

Güler et al. [11] WT 96.9 

*Vishwa [15] FFT 96.7 

*Garg et al. [23] Non 96.6 

*Vijayavanan [12] WT 96.5 

*Javadi et al. [6] WT 96.0 

*Setiawan et al. [14] CSI 95.5 

Naima et al. [13] WT 95.0 

*Tang et al. [19] 0.7-100 Hz 91.7 

Jadhav et al. [26] Non 82.3 

Method proposed Non 95.7 

* ECG signals that were previously band-pass 

filtered in the frequency range of 0.1 to 100 Hz and 

sampled at 360 Hz. 

Table 6: Comparison of the overall classification accuracy 

of the proposed method and previous NN approaches in 

literature. 
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the system was tested for the detection of only four types 

of cardiac pathologies.  On the other hand, the first 

results of the trained NN approach were achieved with 

artificially generated random Gaussian white noise, 

without any specific assumption on the origin of the 

noise. Moreover, the additive noise model can differ to 

some extent from real ECG records that are corrupted by 

physiological noise and exhibiting spatial correlation 

across the individual ECG signals [16]. These limitations 

require additional research for situations where the nature 

of the contaminating noises are better known, and the 

additive artificial noise may be selected according to the 

particular situation. Therefore, our system requires 

further verification including information about the noise 

sources using actual ECG data and classifying other 

specific types of cardiac disorders. 

6 Conclusion 
We developed a robust and fairly accurate, noise-tolerant 

NN approach for detecting and diagnosing specific 

cardiac abnormalities. The modular NN system 

discriminates between simulated normal and abnormal 

cardiac rhythms with high accuracy for ECG signals with 

minor to moderate noise and good accuracy for signals 

with severe to extreme noise. The previous artificial 

noise injection stage enables the trained NN classifier to 

handle noise and recognize cardiac abnormalities on raw 

ECG signals with high Precision. With further 

verification, this system could facilitate the use of NN 

approaches to support clinical decisions. 
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