
 Informatica 29 (2005) 41–51 41

Complexity-driven Evolution of Decision Graphs
for Classification of Medical Data
Vili Podgorelec
Institute of Informatics, University of Maribor, FERI,
Smetanova 17, SI-2000 Maribor,
Slovenia
vili.podgorelec@uni-mb.si

Keywords: data mining, classification, meta agents, automatic programming, complexity, medical data

Received: October 27, 2004

In the paper we study the possibility of constructing decision graphs with the help of several meta
agents. Decision graphs are an extension of the well known decision trees and introduce the possibility
of program nodes and cycles in a classification model. A two-leveled evolutionary algorithm for the
induction of decision graphs is presented and the principle of classification based on the decision
graphs is described. Several agents are used to construct the decision graphs; they are constructed and
evolved with the help of automatic programming and evaluated with a universal complexity measure.
The developed model is applied to a medical dataset for the classification of patients with mitral valve
prolapse syndrome.
Povzetek: Obravnavana je konstrukcija odločitvenih grafov s pomočjo metaagentov in njihova uporaba
za klasifikacijo medicinskih podatkov.

1 Introduction
Making the right decision is becoming the key factor for
the successful achievement of our goals in all areas of
our work. The ways of finding the right decision are as
many as the number of people who have to make them.
Nevertheless, the basic idea is the same for many of
them: a decision is usually made as a combination of
experiences from solving similar cases, the results of
recent researches and personal judgment. The number of
solved cases and new researches is increasing rapidly. It
could be expected that newly made decisions will
become better and more reliable but for the individuals
and groups who have to make decisions it is actually
becoming more and more complicated, because they
simply can not process the huge amounts of data
anymore. And there the need for a good decision support
technique arises. It should be able to process those huge
amounts of data and to help experts to make their
decisions easier and more reliably. For this purpose it is
equally or even more important as suggesting the
possible decision, to provide also an explanation of how
and why the suggested decision was chosen. In this
manner an expert can decide whether the suggested
solution is appropriate or not.

As in many other areas, decisions play an important
role also in medicine, especially in medical diagnostic
processes. Decision support systems helping physicians
are becoming a very important part in medical decision
making, particularly in those situations where decision
must be made effectively and reliably. Since conceptual
simple decision making models with the possibility of
automatic learning should be considered for performing

such tasks, decision trees are a very suitable candidate.
They have been already successfully used for many
decision making purposes [Pod02].

1.1 Scope and contributions of the paper
The paper will introduce the concept of complexity-
driven evolution of meta agents in classification. First the
related research will be presented and the most important
basic concepts defined. Then the paper will focus on
agents learning with genetic programming. The concept
of decision graphs will be introduced, which are an
extension of decision trees. The process of agent
evolution is presented with the emphasis on the
complexity-based fitness function that is used to evaluate
individual solutions. In the final section the application
of our approach to the problem of mitral valve prolapse
is shown. In the concluding section the advantages and
the drawbacks of the method are presented and some
future plans outlined.

The main contributions of the paper are:
- agent-based construction of decision graphs, and
- complexity-driven evolution of meta agents.

2 Related research
In today’s world there is a pressing need to automate
common administrative tasks in order to lower costs,
minimize time spent and increase productivity. To help
accommodate far-reaching lifestyle changes, new tools
are needed to support imperatives of this rapidly
changing environment - intelligent agents. Intelligent

42 Informatica 29 (2005) 41–51 V. Podgorelec

agents are software programs that have the ability to act
autonomously on their user’s behalf, learn from
experience and collaborate with other agents to achieve a
common goal [Woo95]. They help their users with
routine computer tasks, while still accommodating
individual habits.

2.1 Intelligent agents
Intelligent agents are software programs that can

identify repetitive patterns of behavior, similarities
between events or things, and changes in patterns over
time.

A formal specification of agents must include the
representation of the following aspects:

- knowledge – the beliefs that an agent has (the
information about the environment),

- engine – the actions that an agent performs and the
effects of these actions,

- adapters – “ears, eyes and hands” of an agent that
allow it to communicate with the environment and
also with other agents over time and take the
appropriate actions, and

- the goals that an agent will try to achieve.

The salient feature of agents is their adaptability and

capacity for learning otherwise they are just ordinary
programs. Therefore we can define an intelligent agent as
an entity that owns the following properties [Woo95]:

- autonomy: agents encapsulate some state, and make
decisions on the basis of that state without the direct
human intervention;

- reactivity: agents are situated in certain
environment, and are able to perceive changes in
that environment (through the implemented
sensors). They are also able to respond to changes
in timely fashion;

- pro-activity: agents do not simply act in response to
their environment, they are able to exhibit goal-
directed behavior by taking the initiative;

- social ability: agents interact with other agents (and
possibly humans) via some kind of agent-
communication language, and typically have the
ability to engage in social activities (such as
cooperative problem solving or negotiation) in
order to achieve their goals.

Agents are usually developed to provide expertise in

a specific area and can, through cooperative work, jointly
accomplish larger and more complex tasks. Autonomous
agents have the ability to handle user-defined tasks
independent of the user and often without the user’s
guidance or presence. Learning agents have the ability to
learn user’s habits through observation, user feedback or
training. Reasoning capability is very important for
agents to operate in a decision-making capacity in
complex, changing environment.

2.2 Mobile agents
Agents can be mobile by moving from machine to

machine (form site to site). A mobile agent (MA) has a

long-term memory (a suitcase) that includes all sites,
which the MA visited, actions performed on each sites
and the results of these actions. When it enters a new site
a MA receives information about the site that might be
useful for further decision-making (a briefing), such as
local file system and databases. The suitcase and the
briefing provide all the data needs of the agent [Bha96].
The agent server controls the migration of a MA to a new
system by controlling a security and authentication of the
MA, briefing the agent as it enters the system and
executing the agent code [Bha96]. The MA uses hop
instruction to move from one site to another.

Agent based systems are becoming one of the most
important computer technologies, holding out many
promises for solving real-world problems. An agent-
based system may contain a single agent but the greatest
potential lies in the application of multi-agent systems.

2.3 Multi-agent systems
While problems are often too complex to be solved

by one intelligent agent the development is tending
toward using multi-agent systems (MAS). MAS are
agent groups where each component of intelligent
behavior is delegated to a separate agent. Several agents
that exist at the same time, share common resources and
communicate with each other [Fer99]. MAS simplify
problem solving by dividing the necessary knowledge
into subunits to which an independent intelligent agent is
associated and therefore every independent agent has the
ability to solve a specific problem. The problem also has
to bee discrete so that it can be divided into independent
sub-problems. Individual agents are than assigned to
solve a specific sub-problem. A partial global plan has to
be created for tasks definitions.

2.4 Meta agents
Meta agents are a way to help agents observe the

environment, evaluate alternatives and prescribe and
schedule actions. In addition, strategies can be
formulated and implemented not only within an agent but
also among a group of agents. For any given problem,
various strategies may be available. The main role of the
meta agent is to sift through these strategies and make
intelligent decisions. Eventually each agent will consult
the meta agent prior to performing analyses; the agent
will state the desired analyses and the utility of
performing them. Subsequently, the meta agent will
determine the feasibility of performing the actions by
considering timing requirements and resource
constraints. In addition, extra resources may be requested
from the resource manager.

There are numerous applications where an agent
needs to reason about the beliefs of another agent, as well
as about the actions that other agents may take. Eiter
[Eit99a] presents the concept of an agent program, and a
language within which the operating principles of an
agent can be declaratively encoded on top of imperative
data structures is defined. In [Dix00] a certain belief data
structures that an agent needs to maintain are introduced.

COMPLEXITY-DRIVEN EVOLUTION OF... Informatica 29 (2005) 41–51 43

That extends the framework [Eit99b] so as to allow
agents to perform meta reasoning.

In another work Stone discussed about the meta
agent decisions on a strategy [Sto97]. It determines what
behaviors of the agents would achieve this strategy and
accordingly triggers those behaviors. By triggering only
the behaviors appropriate to the current strategy, the meta
agent also reduces behavior-behavior interactions. This is
also in accordance with the layered architecture proposed
in the paper. Higher level layers implement more abstract
behaviors by selecting and activating the appropriate
behaviors from the next level. The higher levels provide
the strategic reasoning while the lower level provides
reactivity to the system. This leads to the two most
important questions the meta agent needs to answer:

- How to choose an appropriate strategy?
- How to characterize agent behaviors?

To allow coexistence of multiple agents

Lakshmikumar proposed framework of the development
of a reusable meta agent that manages these agents
[Lak01]. The goals of this meta agent are:

- perform reasoning (to reason about agent
autonomy): this is going to decide how much
cooperation there needs to be between the agents;

- planning: plan actions;
- individual agent modeler: maintain individual agent

state information;
- other agent modeler: maintain information on other

agents and attempt to predict future behavior;
- conflict manager: classify conflicts and resolve

them.

2.5 Use of agent systems in medicine
Agent systems and MAS are wide spread in all areas

of user applications such as telecommunications,
Internet, health care, tutoring systems, management
systems, ecology, etc. They have also been useful in
medicine [And00]. We will briefly highlight a few of
these projects:

G. Lanzura, L. et al. [Lan99] at the University of
Pavia, illustrated a methodology facilitating the
development of interoperable intelligent software agents
for medical applications and proposed a generic
computational model for implementing them. That model
may be specialized in order to support all the different
information and knowledge related requirements of a
Hospital Information System.

L.M. Camarinha-Matos and W. Vieira [Cam99]
proposed an inexpensive support system for elderly
people staying alone at home, allowing care and health
centres to remotely observe and help them. It is based on
the Internet and uses the multi-agent systems paradigm
that includes both stationary and mobile agents.

M. Gnoth and I. Münich [Gno99] described the
ChariTime project for the distributed scheduling of
diagnostic and therapeutic appointments, based on multi-
agent systems.

A. Boucher et.al. [Bou98] presented a multi-agent
model for the analysis of living cells. The system is used

particularly to study cell migration, for example the
migration of tumor cells in response to treatment with
antineoplastic drugs.

R. Freitas Jr. [Fre99] described medical nanorobots
with tiny sensors and medical devices that will be
capable of performing delicate, fine-grained operations
within the human body.

An agent-based tutoring system for students of
medicine was evolved at University of Southern
California by Ganeshan et.al.[Gan00]

An agent-based approach to facilitate cooperative
medical diagnosis was evolved at University College
Galway in Ireland [Mul98]. It is achieved through
monitoring patient record construction and by
highlighting relevant diagnosis information.

3 Learning and intelligent agents
The machine learning community has paid increasing
attention to problems of delayed reinforcement learning
[Jaa94, Mca95]. These problems usually involve an agent
that has to make a sequence of decisions, or actions, in an
environment that provides feedback about those
decisions. The basic loop followed in sequential decision
making tasks such as these includes evaluating the
current state, taking an action, and computing the new
state. This loop is repeated until the system either reaches
a goal state or recognizes that it will never terminate.

Research in multiple agent planning and control has
been limited largely to the area of distributed artificial
intelligence [Sto96] and artificial life [Dor96]. In
distributed AI (DAI), several agents cooperate to achieve
some goal or accomplish some task. The task is usually
one of sufficient complexity that no single agent can
accomplish the task alone. Because the agents cooperate,
research in distributed AI has focused primarily on
developing efficient procedures for communicating
between the agents to enable the agents to develop the
cooperative plans.

Although artificial life research does explore issues
related to both cooperation and competition, its primary
focus is on the emergence of intelligent behavior in a
population of agents. For example, one area of
application that has received considerable attention is the
evolution of foraging behavior among artificial
organisms (e.g., artificial ants) in the presence of
predators. Also, migration patterns of artificial birds have
been evolved. In none of these cases has behavior of
individual agents been the focus of the research.

Recently, work has begun to appear that focuses on
learning in MAS. Stone and Veloso provide a taxonomy
of MAS by focusing on attributes such as agent
homogeneity, communication, deliberative versus
reactive control, and number of agents [Sto96]. Problems
in MAS are distinct from problems in DAI and
distributed computing, from which the field was derived,
in that DAI and distributed computing focus on
information processing and MAS focus on behavior
development and behavior management. In addition,
problems in MAS are distinct from problems in artificial
life in that MAS still focus on individual behaviors and

44 Informatica 29 (2005) 41–51 V. Podgorelec

artificial life focuses on population dynamics. So far,
most work in learning and MAS has focused on multiple
agents' learning complementary behaviors in a
coordinated environment to accomplish some task, such
as team game playing [Tam96], combinatorial
optimization [Dor96], and obstacle avoidance [Gre91].

3.1 Learning agents with GP
Genetic programming (GP) and its variants have been
applied to multi-agent learning. For instance, Koza used
GP to evolve sets of seemingly simple rules that exhibit
an emergent behavior. The goal was to genetically breed
a common computer program, when simultaneously
executed by all the individuals in a group of independent
agent, i.e., the homogeneous breeding, that causes the
emergence of beneficial and interesting higher-level
collective behavior [Koz92].

Haynes proposed an approach to the construction of
cooperation strategies based on GP for a group of agents
[Hay95]. He experimented in the predator-prey domain,
i.e., the pursuit game, and showed that the GP paradigm
could be effectively used to generate apparently complex
cooperation strategies without any deep domain
knowledge.

Iba has applied GP-based multi-agent learning to the
Tile World and proposed a co-evolutionary breeding
scheme [Iba96]. Experimental results have shown the
superiority of the co-evolutionary breeding over the two
strategies, i.e., the homogeneous strategy and the
heterogeneous strategy. In the co-evolutionary strategy,
some individuals were expected to perform specialized
tasks for different agents with generations.

4 Constructing decision graphs
Decision graph is an extension of a very well known
decision tree representation [Qui93, Bre84, Pod02].
Similar to decision trees a decision graph contains
attribute and decision nodes, where attribute nodes
contain some kind of test of attributes' values and
decision nodes serves to predict the solution (Figure 1,
Figure 2). However, the decision graph principle is more
flexible and more general than a decision tree. Since it
contains also cycles, additional internal variables
(different from attributes) can be added that help to
process a temporal information, i.e., input can be
represented in a time-series manner, which makes the
decision graphs especially appropriate to deal with
signals and continuous data. Decision trees are of course
not able to process those kind of data.

A node in a decision graph contains a kind of
transition rule that tells what edge to follow in a decision
making process, based on the test of attributes' values
and/or the state of internal variables. Transition rules can
be very simple (as in decision trees) or more complex
(each node contains a program). Since we decided to
construct a decision graph with the help of evolving
agents, the rules can not be too complex in order to
maintain a simplicity of each of the participating agents.
Therefore the rules are simple if..then statements,

where the condition is a single attribute test or a single
internal variable test. When composing two nodes (as a
consequence of the JOIN agent) those simple statements
are combined in a composed if..then statement. An
example of a composed transition rule is presented on
Figure 2.

N2
N3

N1

N5

N4

N6

1

2

1

1

1

1

2

1

2

Figure 1. A simple decision graph. Every node contains
a transition rule (Figure 2) that serves both as a test

and/or as a decision class prediction. All edges from a
single node are numbered, the numbers determine the

next node based on the transition rule.

if (A3 > split) then
 if (INV2 < TRESHOLD2) then
 moveTo(3)
 else
 decision(CLASS1)
 endif
else
 moveTo(1)
endif
inc(INV2)
moveTo(1)

Figure 2. A composed transition rule. Ax is attribute x,
split is a testing split, INVx is internal variable,

THRESHOLDx is a testing value for an internal variable,
moveTo(x) indicates the transition to node x,

decision(CLASSx) indicates the prediction of the
decision class x, and inc(INVx) indicates the increase

of the internal variable x by 1.

4.1 Two-leveled evolution process
The outline of the decision graph construction algorithm
can be best described as a two-leveled evolution process.
At the lower level decision graphs are being evolved.
The evolution at this level starts by constructing an initial
population of random decision graphs. For this purpose a
random amount of decision nodes is created (a transition
rule is initialized) which are then randomly connected
with edges. In the continuation of the evolution at this

COMPLEXITY-DRIVEN EVOLUTION OF... Informatica 29 (2005) 41–51 45

lower level in each generation participating agents
modify the decision graphs. The quality of a decision
graph is evaluated based on the accuracy of classification
of training objects.

Naturally, because the construction of initial decision
graphs is random, the classification accuracy in the early
stages of evolution is low. Therefore, the quality of
participating agents is essential in order to improve the
predicting capabilities of the decision graphs. In this
manner, the participating agents should improve to
produce good results. To achieve the quality
improvement in agents, they are also being evolved – and
that is the second, the higher level of our global process.
Each participating agent is evolved independently from
the others by automatic programming approach with the
proGenesys system. The quality of agents is not
evaluated explicitly, but rather an universal complexity
measure α is used that implicitly drives the agents to
higher complexities.

In the Figure 3 a pseudo-code procedure for the two-
leveled evolution process is presented.

initialize_agents()
repeat
 evolve_next_generations_of_agents()
 initialize_decision_graph()
 repeat
 apply_agents_to_modify_decision_graph()
 evaluate_decision_graph()
 until (num_generations > MAX_GENERATIONS)
 remember_the_best_decision_graph()
until (solution does not improve)

Figure 3. A pseudo code of the two-leveled

evolution process of decision graphs construction. The
inner repeat..until loop represents the lower level
of the evolution process that changes decision graphs and
the outer repeat..until loop represents the higher
level of the evolution process that changes the agents.

4.2 Participating agents
Seven different agents are used in the process of decision
graph evolution. We named those agents as: ADD,
DELETE, MUTATE, JOIN, DISJOIN, PROTECT, and
UNPROTECT. Each agent has its own function and
works on the evolving decision graph independently
from the other agents, according to its own procedure,
defined by the outcome of genetic programming process
in the current generation. In this way the decision graph
is modified by those agents in order to become as
accurate in classifying the training objects as possible.
The functions of the participating agents are the
following:
1. each ADD agent adds with certain probability: 1) a

node (creates new transition rule for the new node),
or 2) an edge (renumbering the existing
connections);

2. each DELETE agent deletes with certain
probability: 1) an edge (renumbering the remaining

connections), or 2) a node (renumbering the
connections of the connected nodes);

3. each MUTATE agent changes transition rule in a
node with certain probability: 1) an attribute, 2) a
split value, 3) an internal variable, 4) a threshold
value for internal variables, 5) transition value, or 6)
predicted decision;

4. each JOIN agent merges two selected nodes with
certain probability, adjusting the transition rule and
renumbering the new connections;

5. each DISJOIN agent separates a composed node
into two connected nodes with certain probability,
distributing the existing edges to either one new
node or another;

6. each PROTECT agent protects with certain
probability: 1) a node, and/or 2) an edge either
against deletion, mutation, joining and/or
disjoining;

7. each UNPROTECT agent unprotects with certain
probability a protected: 1) node, and/or 2) edge;

5 Evolution of agents
All the agents are evolved with the use of automatic

programming, a genetic programming technique for
evolving programs in an arbitrary programming
language, described with a context-free grammar. For
this purpose we have used our evolutionary program
generation tool called proGenesys [Pod99].

5.1 The kernel of proGenesys
The aim of the proGenesys tool is automatic

generation of program code. We used genetic
programming as the underlying principle of program
generation. Generation of initial programs and basic
evolutionary processes are quite similar, the most
important difference represents the evaluation function
that we used to determine the fitness of each individual.
Since our intentions are to generate optimal programs
performing some very complex task, we don't exactly
evaluate evolved programs but rather use an universal
complexity measure, namely the software complexity
metrics α that is described later in the paper.

5.1.1 Generation of initial population
The first phase of genetic process is the generation of an
initial population. Enough individuals have to be
constructed to fulfill the whole population. Since later
evolution depends quite a lot on initial population
(especially its diversity), a great care was taken to
implement a method for the construction of an
individual.

For the construction of randomly generated
programs, slightly modified Backus-Naur form (BNF) of
programming language is used with some meta-symbols
added, defining probabilities of transitions into specific
branches of BNF structure, setting maximum recursion
level of non-terminals extension, limiting the complexity
of different program blocks, like expressions, etc. It is

46 Informatica 29 (2005) 41–51 V. Podgorelec

important that the construction can start from within any
BNF production, since it is also used later when mutation
operator is applied. In this manner any BNF substructure
can be generated when needed, like programming
sentence, expression, etc.

An individual is internally represented as a syntax or
derivation tree of a generated program (Figure 4). The
syntax tree contains not only a program code but also a
complete information on how this code was constructed
from the starting symbol of the programming language’s
BNF. There are two types of nodes in a syntax tree.
Internal nodes represent non-terminal symbols of BNF
and show how each production was expanded to form the
program. External or leaf nodes represent terminal
symbols of BNF which actually construct the resulting
program code. In this way program code can be extracted
easily and syntax information is preserved throughout the
evolution, which makes it easier to develop appropriate
genetic operators.

START PROGRAM

SENTENCE

SENT_REC

EXPRESSION

PROGRAM

TERM

EXPR_REC

SENTENCE

SENT_REC

FACTOR

TERM_REC
begin

end

#identifier (a)

:=

;

#number (3)

<>

<>

<>

skip

Figure 4. An example of a generated individual – a
syntax tree.

5.1.2 Selection and fitness function
For the selection scheme we used a slightly modified
exponential ranking selection method. After the
evaluation of all individuals, they are sorted accordingly
to their fitness score. Then we replace existing
individuals from the worst to the best by creating new
ones with crossover from two selected individuals, that
still exist from the old population. When all the
individuals are replaced, the new population is generated
(there is still mutation to be applied).

For effective selection we have to define an adequate
evaluation function, that determines the fitness score of
each individual. This is the point where our approach
differs the most from the other genetic programming
applications. We don't try to exactly evaluate evolved
programs, but rather use an universal complexity
measure - our software complexity metric α. In this way
individuals are evolved to very complex programs which
are eventually evaluated through their performance upon
decision graphs by measuring the effectiveness of the
decision graphs in classifying the training objects.

5.1.3 Crossover
As the two individuals are selected from within the
current population, a new solution is constructed by
applying the genetic operator of crossover (Figure 5) and
the constructed individual is placed in a growing new
population. In order to perform a crossover operation, an

appropriate crossover point has to be determined. For this
purpose, a set of non-terminal symbols, contained in both
selected individuals (parents), is computed and one of
those symbols is chosen randomly. Then it is looked for
such a node in both parent trees and offspring is created
by concatenating a branch (a subtree) from the chosen
node in second parent to the chosen node in first parent
(see Figure 5). In this way the syntax correctness is
preserved, since there is only a possible extension of
BNF production replaced with another and the whole is
still a correct program (considering that both parents
were correct, what is actually the case, since the program
generation algorithm guarantees only correct programs to
be generated).

START PROGRAM

SENTENCE

SENT_REC

EXPRESSION

TERM

EXPR_REC

FACTOR

TERM_REC
begin

end

#identifier (a)

:=

#number (3)

<>

<>

<>

START PROGRAM

SENTENCE

SENT_REC

EXPRESSION

PROGRAM

TERM

EXPR_REC

SENTENCE

SENT_REC

FACTOR

TERM_REC
begin

end

#identifier (a)

:=

;

#number (3)

<>

<>

<>

skip

START PROGRAM

SENTENCE

SENT_REC

L_EXPR

PROGRAM

L_NEG

L_EXPR_REC

SENTENCE

SENT_REC

L_BASE

begin

end
;

true

<>

<>

skip

if

(

PROGRAM
SENTENCE

SENT_REC <>

skip

)

then

(

)

1st parent tree

2nd parent tree

resulting offspring

crossover point

Figure 5. An example of a crossover. Circled parts of
both syntax trees are combined into one offspring

program.

5.1.4 Mutation
After a new individual is constructed by crossover, a

genetic operator of mutation is applied (Figure 6) with
certain probability. Mutation serves as a random change
of an existing.

First the mutation point is randomly chosen in a
given syntax tree. According to the selected node there
are two possible situations. First, if an internal node was
selected, representing a non-terminal symbol of BNF. In
this case the existing extension of BNF production is
replaced with a newly generated derivation. That is why

COMPLEXITY-DRIVEN EVOLUTION OF... Informatica 29 (2005) 41–51 47

we mentioned the importance of a program generation
algorithm to start with any BNF production, since here
we send the chosen non-terminal symbol (from mutation
point) and expect the algorithm to generate an adequate
portion of a program code that is concatenated to the
selected tree node instead of the existing part.

Second, if a special kind of external or leaf node was
selected, representing a categorized terminal symbol of
BNF. Such a categorized terminal is a number (category
#Number) for example. In this case a new terminal is
constructed so that it fits into specific category (for
example, a new number is randomly chosen, replacing
the existing one).

START PROGRAM

SENTENCE

SENT_REC

EXPRESSION

TERM

EXPR_REC

FACTOR

TERM_REC
begin

end

#identifier (a)

:=

#number (3)

<>

<>

<>
before mutation

mutation point

START PROGRAM

SENTENCE

SENT_REC

begin

end
<>

after mutation

skip

Figure 6. An example of a mutation. Circled part of first
tree is mutated into the circled part of second tree.

5.2 Software complexity measure α
Many quantities have been proposed as measures of

complexity. Gell-Man [Gel95] suggests there have to be
many different measures to capture all our intuitive ideas
about what is meant by complexity. Some of the
quantities are computational complexity, information
content, algorithmic information content, the length of a
concise description of a set of the entity's regularities,
logical depth, etc. (in contemplating various phenomena
we frequently have to distinguish between effective
complexity and logical depth - for example some very
complex behavior patterns can be generated from very
simple formula like Mandelbrot's fractal set, energy
levels of atomic nuclei, the unified quantum theory, etc. -
that means that they have little effective complexity and
great logical depth). A more concrete measure of
complexity, based on the generalization of the entropy, is
correlation [Sch93], which can be relatively easy to
calculate for a special kind of systems, namely the
systems which can be represented as strings of symbols.

Computer programs are conventionally analyzed
using the computational complexity or measured using
complexity metrics. Another way to asses complexity is
to use fractal metrics [Kok96, Kok99] or entropy based
measure [Har89]. However, we can regard computer
programs from the viewpoint of "complexity as a
discipline" and according to that apply various possible
complexity measures presented above. The fact that a
computer program is a string of symbols, introduces an

elegant method to asses the complexity – namely to
calculate long range correlations between symbols, an
approach which has been successfully used in the DNA
decoding [Bul94] and on human writings [Sch93].

Our fractal measure α is based on char method,
which is an extension of the method originally proposed
by Schenkel [Sch93] for human writings. Like a human
writing, a computer program can be seen as a string of
symbols: letters, digits and some delimiting symbols –
empty spaces are ignored. Using code table, where each
of these symbols is represented by a binary sequence, the
program is transformed into Brownian motion model (0’s
→ step down, 1’s → step up, see Figure 7), a base for the
calculation of regression function F(l):

[] 222)()()(lylylF ∆−∆≡

)()()(0 lyllyly −+=∆

where ∆y(l) is relative difference between two points

in Brownian motion model (Figure 7). The coefficient α
is then calculated with the least squares method as the
linear representation of the points on a double
logarithmic scale [ln (l), ln (F(l))] and represents the
complexity of a computer program (Figure 8).

According to above definition regression points [l0,
F(l0)] are calculated from Brownian motion as follows:

()
]

2
..1[,

)()()()(
)(0

2

1
0

1

2
0

0

00

Sl
lS

lylly

lS

lylly
lF

lS

l

lS

l ∈∀
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−+
−

−

−+
=

∑∑
−

=

−

=

where S is the number of points in Brownian motion plot.

After the regression points are calculated, the
coefficient α is then calculated with the least squares line
as the linear representation of the points on a double
logarithmic scale [ln (l), ln (F(l))]. As line crosses the
axis at [0, 0] the line equation

bxay +=

becomes simpler

bxy =

where b actually represents α.
From the method of least squares, b (or α in our

case) is calculated as

∑ ∑

∑ ∑∑

= =

= ==

⎟
⎠

⎞
⎜
⎝

⎛
−

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−

=
n

i

n

i
ii

n

i

n

i

n

i
iii

xxn

yxyxn
b

1

2

1

2

1 11

48 Informatica 29 (2005) 41–51 V. Podgorelec

Regarding the regression points [ln (l), ln (F(l))] the
α is thus calculated as

∑ ∑

∑ ∑

= =

= =

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⋅

=
2

1

2

2

1

2

2

1

2

1

2

1

)ln())(ln(
2

)()ln())(ln()ln(
2

S

i

S

i

S

i

S

i

S

i

iiS

iFiiFiS

α

∑
=

To better understand the process of calculating α the
Figure 7 shows how the relative difference ∆y(l) between
two points in a Brownian motion model is calculated,
and the Figure 8 shows the graphical representation of α
on a double logarithmic scale of regression points [ln (l),
ln (F(l))].

x1= l

y2 = y(l+l0)

l0

y = y2 - y1
y1 = y(l)

x2= l + l0

. . .

. . .

Brownian motion

Figure 7. Calculation of regression curve points [l, F(l)]
from a Brownian model plot.

ln (l)

ln (F(l))

Figure 8. Representation of α on the regression curve
points [ln(l), ln(F(l))] plot.

5.3 Programs for agents
In order to evolve the agents in accordance with our goal
– to improve the classification capabilities of a decision
graph – agents should be run by appropriate programs.
The more obvious way to achieve this goal would be to
define the programs for all the agents and let them work
on the decision graphs. In this manner no second (higher)
level of evolution would be necessary and the system
would work faster. But of course, defining the agents is
not a trivial task, and also we do not know what are the

optimal programs for all the agents. Therefore, we
decided to evolve the agents from the scratch with the
use of the described proGenesys system.

For this purpose a language has to be defined first (a
set of terminals, non-terminals and BNF productions) for
each agent. We decided to keep the languages as simple
as possible and therefore each language contains only
few function calls to pre-defined functions (like join()
for JOIN agent, deleteNode() or deleteEdge()
for DELETE agent, etc.), simple condition statements
(if..then..else, etc.) and simple expressions. A
program for each agent is then interpreted to modify the
decision graph in the lower level of evolution. An
example of such a program for DELETE agent is
presented in Figure 9.

if (random_condition == true) then
 node = selectNode()
 deleteNode(node)
else
 edge = selectEdge()
 deleteEdge(edge)
endif

Figure 9. An example of a simple program for the

DELETE agent.

6 Application of the method and
results

First we tested the performance of proposed
classification method for training data and test data by
the well-known iris data set [Fis36], which is not very
complex. The iris data consists of 150 objects described
by 4 continuous attributes and has three possible
outcomes: Iris-setosa, Iris-versicolor, Iris-virginica. We
selected 117 objects for training and the remaining 33
objects for testing. The average results over 5 runs are
presented in Table 1.

Table 1. The results (accuracy) of iris data classification
by evolved decision graphs (average over 5 runs).

 training data test data
accuracy 96.58 93.94

An evolved decision graph for the classification of

iris data is presented in Figure 10. It consists of 4 nodes,
of which two contains classification of decision class.
There is one cycle and two internal variables are used:
one is a dummy and the other (INV1) actually plays an
important role in classification process. It is interesting
that there is only one decision statement for each class,
what means that a classification for each class is made
exactly once.

COMPLEXITY-DRIVEN EVOLUTION OF... Informatica 29 (2005) 41–51 49

NODE_4:

inc(INV2)
if (petal_width < 0.5584) then
 decision(Setosa)
else
 dec(INV2)
 decision(Versicolor)
endif

NODE_4:

N1

N2 N3

N4

NODE_3:

inc(INV1)
if (petal_length >= 5.612) then
 moveTo(1)
endif
moveTo(2)

NODE_3:

NODE_1:

if (petal_width >= 1.7968) then
 inc(INV1)
endif
moveTo(1)

NODE_1:

NODE_2:

if (INV1 == 0) then
 moveTo(1)
else
 decision(Virginica)
endif

NODE_2:

1

1

1

2

Figure 10. Evolved decision graph for the classification
of iris dataset.

6.1 Mitral valve prolapse dataset
Because of the good results obtained for the iris data set,
we decided to test a real-world medical problem of
classifying mitral valve prolapse syndrome. Prolapse is
defined as the displacement of a bodily part from its
normal position. The term mitral valve prolapse (MVP)
[And91, Dev89, Mar76], therefore, implies that the
mitral leaflets are displaced relative to some structure,
generally taken to be the mitral annulus. The silent
prolapse is the prolapse which can not be heard with the
auscultation diagnosis and is especially hard to diagnose.
The implications of the MVP are the following: disturbed
normal laminar blood flow, turbulence of the blood flow,
injury of the chordae tendinae, the possibility of
thrombus’ composition, bacterial endocarditis and finally
hemodynamic changes defined as mitral insufficiency
and mitral regurgitation.

MVP is one of the most prevalent cardiac conditions,
which may affect up to five to ten percent of normal
population and one of the most controversial one. The
commonest cause is probably myxomatous change in the
connective tissue of the valvar liflets that makes them
excessively pliable and allows them to prolapse into the
left atrium during ventricular systole. The clinical
manifestations of the Syndrome are multiple. The great
majority of patients are asymptomatic. Other patients,
however may present atypical chest-pain or
supraventricular tachyarrhythmyas. Rarely, patients
develop significant mitral regurgitation and, as with any
valvar lesions, bacterial andocarditis is a risk.

Uncertainty persists about how it should be
diagnosed and about its clinical importance. Historically,
MVP was first recognized by auscultation of mid systolic
“click” and late systolic murmur, and its presence is still
usually suggested by auscultatory findings. However, the
recognition of the variability of the auscultatory findings
and of the high level of skill needed to perform such an
examination has prompted a search for reliable

laboratory methods of diagnosis. M-mod
echocardiography and 2D echocardiography have played
an important part in the diagnosis of mitral valve
prolapse because of the comprehensive information they
provide about the structure and function of the mitral
valve.

Medical experts propose [And91, Mar76] that
echocardiography enables properly trained experts armed
with proper criteria to evaluate MVP almost 100%.
Unfortunately however, there are some problems
concerned with the use of echocardiography. The first
problem is that current MVP evaluation criteria are not
strict enough [Kok94]. The second problem is the
incidence of the MVP in the general population and the
unavailability of the expensive ECHO - machines to
general practitioners. According to above problems we
have decided to develop a decision support system
enabling the general practitioner to evaluate the MVP
using conventional methods and to identify potential
patients from the general population.

6.2 Classification results and discussion
Using the Monte Carlo sampling method 900 children
and adolescents representing the whole population under
eighteen years of life have been selected. All of them
were born in Maribor region and all were white.
Routinely they were called for an echocardiography no
matter of prior findings. From 900 selected 631
volunteers were successfully examined.

They all passed an examination of their health state
in a form of a carefully prepared protocol specially made
for the Syndrome of MVP. The protocol consisted of
general data, mothers health, fathers health, pregnancy,
delivery, post-natal period, injuries of chest or any other
kind, chronic diseases, sports, physical examination,
subjective difficulties like headaches, chest-pain,
palpitation, perspiring, dizziness etc., auscultation,
phonocardiography, ECG and finally ECHO. In that
manner, 103 parameters were gathered that can possibly
indicate the presence of MVP.

All 631 patient records were randomly divided into a
training and a testing set. The average results over 10
runs, as obtained with the described evolutionary
method, are presented in Table 2.

For the sake of comparison, we induced a traditional
decision tree with C4.5 algorithm [Qui93]. It scored the
following results for the test data set: accuracy 90.00%,
sensitivity 63.64%, and specificity 91.60% (see Table 2).

Table 2. The results of MVP classification by evolved

decision graphs (average over 10 runs) and C4.5.

 training data test data
 graph C4.5 graph C4.5
accuracy 92.21 94.21 86.92 90.00
sensitivity 94.83 54.24 72.73 63.64
specificity 91.87 96.3 88.24 91.60

50 Informatica 29 (2005) 41–51 V. Podgorelec

Regarding the accuracy of classification our results
are a bit worse than those obtained by classical decision
tree induction method, both on the training and the test
data. Also the specificity (percentage of correctly
classified negatives, i.e. patients with no prolapse in our
case) is better with C4.5 decision tree. On the other hand,
the sensitivity (percentage of correctly classified
positives, i.e. patients with prolapse our case) is better
with our method. Because the number of positives is
much smaller than negatives, it could be concluded that
the decision graph produced by our method is more
appropriate for classifying unbalanced data sets, which is
very common in medicine.

Furthermore, decision trees induction methods like
C4.5 are able to generate tree-like structures with their
limited capabilities. Contrary our approach generates
graphs, which have in medical environment a lot of
advantages, like:

- classifying the cycle: diagnosis → treatment →
outcome,

- revealing the relations between diagnosis, treatment
and outcome,

- classification of temporal data like EEG, ECG,
EMG, etc.

On the other hand, the use of our system (at least in

current stage) is not as easy to use as C4.5 for example.
There is some “overhead” needed to set up the method
for a new classification task (like adaptation of programs
induction, evolution of agents). Furthermore, the amount
of computational resources is much higher than in a
classical decision tree induction method, several runs are
needed to evolve the proper agents and decision graphs.
Finally, one further drawback of our method is the
interpretability of the mined knowledge; because the
nodes in our decision graphs are more complex, it is
more difficult to interpret the decision graph model than
the decision tree. However, the results are not a black
box (as in the case of neural networks for example) and
still allow an expert to validate them.

Regarding both the advantages and the drawbacks of
our method, it can be concluded, that it is appropriate for
difficult, unbalanced datasets, where even the smallest
improvement in results is worth the higher effort in
achieving this improvement. This is certainly the case in
medicine, where human health and welfare is in question.

7 Conclusion
In the paper a new approach to the classification of

medical data based on the meta agents system for the
construction of decision graphs is presented. We applied
it to the prediction of MVP, but being a general-purpose
classification model it can be used for different kinds of
classification tasks. Some reasons in favor of using a
complexity-driven evolution of agents have been stated.
The whole two-leveled evolution process of decision
graphs construction is described and also the kernel of
the proGenesys tool for automatic evolution of agent
programs is described. Results of MVP classification by

constructed decision graphs are compared with those
obtained by traditionally constructed decision trees.

There are two essential contributions of the paper.
The first one is the flexible decision graph approach to
the classification, that is an extension of the well-known
decision tree classifier. The second one is the
complexity-driven evolution of agents, that can replace
the explicit evaluation of individuals in the process of
programs evolution. In this manner, the need for the
definition of an appropriate fitness function is avoided.

An obvious drawback of our approach, when applied
to a real-world problem, is somewhat lower classification
accuracy (when compared to the decision trees), and
especially the lower interpretability of the mined
knowledge. Additionally, the proposed classification
approach is more difficult to use than the majority of the
known ones. On the other hand, there are important
advantages, like good classification of unbalanced data
sets, flexibility of the knowledge model, novelty of the
complexity-driven approach to the evolution of agents, as
stated in the application section of this paper.

In future we plan to reduce the effort needed to set
up the described method for a new classification task.
Another aspect that we want to explore is to transfer the
implementation onto a grid system; greater
computational power of a grid would increase the
possibilities of evolution process – in this manner we
hope to further improve the overall effectiveness and
quality of the obtained results. If resources allow, we
want to further develop the proposed concept.

References
[And91] Anderson HR et al, Clinicians Illustrated

Dictionary of Cardiology, Science Press, London,
1991.

[And00] Andonyadis CG, A Hybrid Architecture for
Web-Based Personal Healthcare Support Agents,
PHD thesis, George Washington University, 2000.

[Bha96] Bharat K, Cardelli L, Migratory Applications,
Mobile Object Systems Toward the Programmable
Internet: Second International Workshop, pp. 131-
148, Springer, 1997.

[Bou98] Boucher A, Doisy A, Ronot X, Garbay C, A
society of goal-oriented agents for the analysis of
living cells, Artificial Intelligence in Medicine, 4(1-
2), pp. 183-199, 1998.

[Bre84] Breiman L, Friedman JH, Olsen RA, Stone CJ,
Classification and regression trees, Wadsworth,
USA, 1984.

[Bul94] Buldyrev SV et al., Fractals in Biology and
Medicine: From DNA to the Heartbeat, Fractals in
Science (Bundle A, Havlin S, eds.), Springer Verlag,
1994.

[Cam99] Camarinha-Matos LM, Vieira W, Intelligent
mobile agents in elderly care, Robotics and
Autonomous Systems, 27(1-2), pp. 59-75, 1999.

[Chu95] Chu-Caroll J, Carberry S, Communicating for
Conflict Resolution in Multi-agent Collaborative
Planning, in Proc. of the International Conference
on Multi-Agent Systems ICMAS’95, 1995.

COMPLEXITY-DRIVEN EVOLUTION OF... Informatica 29 (2005) 41–51 51

[Dec87] Decker KS, Distributed Problem Solving: A
Survey, IEEE Transactions on Systems, Man, and
Cybernetics, 17, pp. 729-740, 1987.

[Dev89] Devereoux R, Diagnosis and Prognosis of
Mitral Valve Prolaps, The New England Journal of
Medicine, 320(16), pp. 1077-1079, 1989.

[Dix00] Dix J, Subrahmanian VS, Pick G, Meta-agent
programs, The Journal of Logic Programming,
46(1-2), pp. 1-60 , 2000.

[Dor96] Dorigo M, Maniezzo V, Colorni A, The Ant
System: Optimization by a Colony of Cooperating
Agents, IEEE Transactions on Systems, Man and
Cybernetics, 26(1), pp. 1-13, 1996.

[Eit99a] Eiter T, Subrahmanian VS, Rogers TJ,
Heterogeneous active agents, III: polynomially
Implementable Agents, Artificial Intelligence,
117(1), pp. 107-167, 2000.

[Eit99b] Eiter T, Subrahmanian VS, Pick G,
Heterogeneous active agents, I: semantics, Artificial
Intelligence, 108(1-2), pp. 179¯255, 1999.

[Fer99] Ferber J, Multi-Agent System: An Introduction
to Distributed Artificial Intelligence, Addison
Wesley Longman, 1999.

[Fis36] Fisher RA, The use of Multiple Measurements
in Taxonomic Problems, Annals Eugenics, 7, pp.
179-188, 1936.

[Fre99] Freitas Jr. R, Nanomedicine V1: Basic
Capabilities, Landes Bioscience Publishers, 1999.

[Gan00] Ganeshan R, Johnson WL, Shaw E, Wood BP,
Intelligent tutoring systems, Lecture notes in
computer science, Springer–Verlag, 2000.

[Gel95] Gell-Man M, What is complexity?, Complexity,
1(1), pp. 16-19, 1995.

[Gno99] Gnoth M, Münich I, ChariTime Systementwurf,
Humboldt University Berlin, Dep. of Computer
Science Working Paper, 1999.

[Gre91] Grefenstette J, Lamarkian Learning in Multi-
agent Environments, Proceedings of the Fourth
International Conference of Genetic Algorithms, pp.
303-310, Morgan Kaufmann, 1991.

[Har89] Harrison W, An Entropy-Based Measure of
Software Complexity, IEEE Transactions on
Software, 18(11), pp. 1025-1029, 1989.

[Hay95] Haynes T, Waiwright R, Sen S, Evolving a
Team, Working Notes of the AAAI-95 Symposium on
Genetic Programming, AAAI Press, 1995.

[Iba96] Iba H, Emergent Cooperation for Multiple
Agents using Genetic Programming, Parallel
Problem Solving from Nature IV PPSN96, 1996.

[Iba97] Iba H, Nozoe T, Ueda K, Evolving
Communicating Agents based on Genetic
Programming, Proc. of the IEEE International
Conference on Evolutionary Computation ICEC97,
1997.

[Jaa94] Jaakkola T, Jordan M, Singh S, On the
Convergence of Stochastic Iterative Dynamic
Programming Algorithms, Neural Computation,
1994.

[Kok94] Kokol P, et al., Decision Trees and Automatic
Learning and Their Use in Cardiology, Journal of
Medical Systems, 19(4), 1994.

[Kok96] Kokol P, Brest J, Zumer V, Software
Complexity - An Alternative View, SIGPLAN,
31(2), pp. 35-41, 1996.

[Kok99] Kokol P, Podgorelec V, Zorman M, Pighin M,
Alpha - a generic software complexity metric, Proc.
of the ESCOM - SCOPE ‘99, pp. 397-405, 1999.

[Koz92] Koza J, Genetic Programming - On the
Programming of Computers by means of Natural
Selection, MIT Press, 1992.

[Koz94] Koza J, Genetic Programming II - Automatic
Discovery of Reusable Programs, MIT Press,
Cambridge MA, 1994.

[Lak01] Lakshmikumar A, Meta-agents,
http://zen.ece.ohiou.edu/~robocup/papers/HTML/SS
ST/node8.html, 2001.

[Lan99] Lanzola G, Gatti L, Falasconi S, Stefanelli M, A
framework for building cooperative software agents
in medical applications, Artificial Intelligence in
Medicine, 16(3), pp. 223-249, 1999.

[Les95] Lesser VR, Multiagent Systems: An Emerging
Subdiscipline of AI, ACM Computing Surveys, 27,
pp. 340-342, 1995.

[Mar76] Markiewicz W, et al, Mitral valve Prolaps in
One Hundred Presumably Young Females,
Circulation, 53(3), pp. 464-473, 1976.

[Mca95] McCallum R, Instance-based Utile Distinction
for Reinforcement Learning with Hidden State,
Proc. of the Twelfth International Conference on
Machine Learning, 1995.

[Mul98] Mulvihill C, Patel A, O’Meara T, Intelligent
agents for collaborative diagnosis, Proceedings of
Medinfo98, 9(1), pp. 232-236, 1998.

[Pod99] Podgorelec V, proGenesys - Program
Generation Tool Based on Genetic Systems, Proc.
of the International Conference on Artificial
Intelligence IC-AI'99, pp. 299-302, CSREA Press,
1999.

[Pod02] Podgorelec V, Kokol P, Stiglic B, Rozman I,
Decision trees: an overview and their use in
medicine, Journal of Medical Systems, 26(5), pp.
445-463, 2002.

[Qui93] Quinlan JR, C4.5: Programs for Machine
Learning, Morgan Kaufmann, San Mateo CA, 1993.

[Sch93] Schenkel A, Zhang J, Zhang Y, Long range
correlations in human writings, Fractals, 1(1), pp.
47-55, 1993.

[Sto96] Stone P, Veloso M, Multiagent Systems: A
Survey from a Machine Learning Perspective, IEEE
Transactions on Knowledge and Data Engineering,
1996.

[Sto97] Stone P, Veloso M, Using decision tree
confidence factors for multiagent control, RoboCup-
97: The First Robot World Cup, 1997.

[Tam96] Tambe M, Teamwork in Real-world, Dynamic
Environments, 1996 International Conference on
Multiagent Systems, AAAI Press, 1996.

[Woo95] Wooldridge M, Jennings NR,
Intelligent Agents: Theory and Practice, Knowledge
Engineering Review, Cambridge University Press,
10(2), 1995.

52 Informatica 29 (2005) 41–51 V. Podgorelec

	Introduction
	Scope and contributions of the paper

	Related research
	Intelligent agents
	Mobile agents
	Multi-agent systems
	Meta agents
	Use of agent systems in medicine

	Learning and intelligent agents
	Learning agents with GP

	Constructing decision graphs
	Two-leveled evolution process
	Participating agents

	Evolution of agents
	The kernel of proGenesys
	Generation of initial population
	Selection and fitness function
	Crossover
	Mutation

	Software complexity measure (
	Programs for agents

	Application of the method and results
	Mitral valve prolapse dataset
	Classification results and discussion

	Conclusion
	References

