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In the paper we study the possibility of constructing decision graphs with the help of several meta 
agents. Decision graphs are an extension of the well known decision trees and introduce the possibility 
of program nodes and cycles in a classification model. A two-leveled evolutionary algorithm for the 
induction of decision graphs is presented and the principle of classification based on the decision 
graphs is described. Several agents are used to construct the decision graphs; they are constructed and 
evolved with the help of automatic programming and evaluated with a universal complexity measure. 
The developed model is applied to a medical dataset for the classification of patients with mitral valve 
prolapse syndrome. 
Povzetek: Obravnavana je konstrukcija odločitvenih grafov s pomočjo metaagentov in njihova uporaba 
za klasifikacijo medicinskih podatkov. 

1 Introduction 
Making the right decision is becoming the key factor for 
the successful achievement of our goals in all areas of 
our work. The ways of finding the right decision are as 
many as the number of people who have to make them. 
Nevertheless, the basic idea is the same for many of 
them: a decision is usually made as a combination of 
experiences from solving similar cases, the results of 
recent researches and personal judgment. The number of 
solved cases and new researches is increasing rapidly. It 
could be expected that newly made decisions will 
become better and more reliable but for the individuals 
and groups who have to make decisions it is actually 
becoming more and more complicated, because they 
simply can not process the huge amounts of data 
anymore. And there the need for a good decision support 
technique arises. It should be able to process those huge 
amounts of data and to help experts to make their 
decisions easier and more reliably. For this purpose it is 
equally or even more important as suggesting the 
possible decision, to provide also an explanation of how 
and why the suggested decision was chosen. In this 
manner an expert can decide whether the suggested 
solution is appropriate or not. 

As in many other areas, decisions play an important 
role also in medicine, especially in medical diagnostic 
processes. Decision support systems helping physicians 
are becoming a very important part in medical decision 
making, particularly in those situations where decision 
must be made effectively and reliably. Since conceptual 
simple decision making models with the possibility of 
automatic learning should be considered for performing 

such tasks, decision trees are a very suitable candidate. 
They have been already successfully used for many 
decision making purposes [Pod02]. 

1.1 Scope and contributions of the paper 
The paper will introduce the concept of complexity-
driven evolution of meta agents in classification. First the 
related research will be presented and the most important 
basic concepts defined. Then the paper will focus on 
agents learning with genetic programming. The concept 
of decision graphs will be introduced, which are an 
extension of decision trees. The process of agent 
evolution is presented with the emphasis on the 
complexity-based fitness function that is used to evaluate 
individual solutions. In the final section the application 
of our approach to the problem of mitral valve prolapse 
is shown. In the concluding section the advantages and 
the drawbacks of the method are presented and some 
future plans outlined. 

The main contributions of the paper are: 
- agent-based construction of decision graphs, and 
- complexity-driven evolution of meta agents. 

2 Related research 
In today’s world there is a pressing need to automate 
common administrative tasks in order to lower costs, 
minimize time spent and increase productivity. To help 
accommodate far-reaching lifestyle changes, new tools 
are needed to support imperatives of this rapidly 
changing environment - intelligent agents. Intelligent 
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agents are software programs that have the ability to act 
autonomously on their user’s behalf, learn from 
experience and collaborate with other agents to achieve a 
common goal [Woo95]. They help their users with 
routine computer tasks, while still accommodating 
individual habits. 

2.1 Intelligent agents 
Intelligent agents are software programs that can 

identify repetitive patterns of behavior, similarities 
between events or things, and changes in patterns over 
time. 

A formal specification of agents must include the 
representation of the following aspects: 

- knowledge – the beliefs that an agent has (the 
information about the environment), 

- engine – the actions that an agent performs and the 
effects of these actions, 

- adapters – “ears, eyes and hands” of an agent that 
allow it to communicate with the environment and 
also with other agents over time and take the 
appropriate actions, and 

- the goals that an agent will try to achieve. 
 
The salient feature of agents is their adaptability and 

capacity for learning otherwise they are just ordinary 
programs. Therefore we can define an intelligent agent as 
an entity that owns the following properties [Woo95]: 

- autonomy: agents encapsulate some state, and make 
decisions on the basis of that state without the direct 
human intervention; 

- reactivity: agents are situated in certain 
environment, and are able to perceive changes in 
that environment (through the implemented 
sensors). They are also able to respond to changes 
in timely fashion; 

- pro-activity: agents do not simply act in response to 
their environment, they are able to exhibit goal-
directed behavior by taking the initiative; 

- social ability: agents interact with other agents (and 
possibly humans) via some kind of agent-
communication language, and typically have the 
ability to engage in social activities (such as 
cooperative problem solving or negotiation) in 
order to achieve their goals. 

 
Agents are usually developed to provide expertise in 

a specific area and can, through cooperative work, jointly 
accomplish larger and more complex tasks. Autonomous 
agents have the ability to handle user-defined tasks 
independent of the user and often without the user’s 
guidance or presence. Learning agents have the ability to 
learn user’s habits through observation, user feedback or 
training. Reasoning capability is very important for 
agents to operate in a decision-making capacity in 
complex, changing environment. 

2.2 Mobile agents 
Agents can be mobile by moving from machine to 

machine (form site to site). A mobile agent (MA) has a 

long-term memory (a suitcase) that includes all sites, 
which the MA visited, actions performed on each sites 
and the results of these actions. When it enters a new site 
a MA receives information about the site that might be 
useful for further decision-making (a briefing), such as 
local file system and databases. The suitcase and the 
briefing provide all the data needs of the agent [Bha96]. 
The agent server controls the migration of a MA to a new 
system by controlling a security and authentication of the 
MA, briefing the agent as it enters the system and 
executing the agent code [Bha96]. The MA uses hop 
instruction to move from one site to another. 

Agent based systems are becoming one of the most 
important computer technologies, holding out many 
promises for solving real-world problems. An agent-
based system may contain a single agent but the greatest 
potential lies in the application of multi-agent systems.  

2.3 Multi-agent systems 
While problems are often too complex to be solved 

by one intelligent agent the development is tending 
toward using multi-agent systems (MAS). MAS are 
agent groups where each component of intelligent 
behavior is delegated to a separate agent. Several agents 
that exist at the same time, share common resources and 
communicate with each other [Fer99]. MAS simplify 
problem solving by dividing the necessary knowledge 
into subunits to which an independent intelligent agent is 
associated and therefore every independent agent has the 
ability to solve a specific problem. The problem also has 
to bee discrete so that it can be divided into independent 
sub-problems. Individual agents are than assigned to 
solve a specific sub-problem. A partial global plan has to 
be created for tasks definitions. 

2.4 Meta agents 
Meta agents are a way to help agents observe the 

environment, evaluate alternatives and prescribe and 
schedule actions. In addition, strategies can be 
formulated and implemented not only within an agent but 
also among a group of agents. For any given problem, 
various strategies may be available. The main role of the 
meta agent is to sift through these strategies and make 
intelligent decisions. Eventually each agent will consult 
the meta agent prior to performing analyses; the agent 
will state the desired analyses and the utility of 
performing them. Subsequently, the meta agent will 
determine the feasibility of performing the actions by 
considering timing requirements and resource 
constraints. In addition, extra resources may be requested 
from the resource manager. 

There are numerous applications where an agent 
needs to reason about the beliefs of another agent, as well 
as about the actions that other agents may take. Eiter 
[Eit99a] presents the concept of an agent program, and a 
language within which the operating principles of an 
agent can be declaratively encoded on top of imperative 
data structures is defined. In [Dix00] a certain belief data 
structures that an agent needs to maintain are introduced. 



COMPLEXITY-DRIVEN EVOLUTION OF...  Informatica 29 (2005) 41–51 43 

That extends the framework [Eit99b] so as to allow 
agents to perform meta reasoning.  

In another work Stone discussed about the meta 
agent decisions on a strategy [Sto97]. It determines what 
behaviors of the agents would achieve this strategy and 
accordingly triggers those behaviors. By triggering only 
the behaviors appropriate to the current strategy, the meta 
agent also reduces behavior-behavior interactions. This is 
also in accordance with the layered architecture proposed 
in the paper. Higher level layers implement more abstract 
behaviors by selecting and activating the appropriate 
behaviors from the next level. The higher levels provide 
the strategic reasoning while the lower level provides 
reactivity to the system. This leads to the two most 
important questions the meta agent needs to answer: 

- How to choose an appropriate strategy? 
- How to characterize agent behaviors? 

 
To allow coexistence of multiple agents 

Lakshmikumar proposed framework of the development 
of a reusable meta agent that manages these agents 
[Lak01]. The goals of this meta agent are: 

- perform reasoning (to reason about agent 
autonomy): this is going to decide how much 
cooperation there needs to be between the agents; 

- planning: plan actions; 
- individual agent modeler: maintain individual agent 

state information; 
- other agent modeler: maintain information on other 

agents and attempt to predict future behavior; 
- conflict manager: classify conflicts and resolve 

them. 

2.5 Use of agent systems in medicine 
Agent systems and MAS are wide spread in all areas 

of user applications such as telecommunications, 
Internet, health care, tutoring systems, management 
systems, ecology, etc. They have also been useful in 
medicine [And00]. We will briefly highlight a few of 
these projects:  

G. Lanzura, L. et al. [Lan99] at the University of 
Pavia, illustrated a methodology facilitating the 
development of interoperable intelligent software agents 
for medical applications and proposed a generic 
computational model for implementing them. That model 
may be specialized in order to support all the different 
information and knowledge related requirements of a 
Hospital Information System. 

L.M. Camarinha-Matos and W. Vieira [Cam99] 
proposed an inexpensive support system for elderly 
people staying alone at home, allowing care and health 
centres to remotely observe and help them. It is based on 
the Internet and uses the multi-agent systems paradigm 
that includes both stationary and mobile agents. 

M. Gnoth and I. Münich [Gno99] described the 
ChariTime project for the distributed scheduling of 
diagnostic and therapeutic appointments, based on multi-
agent systems.  

A. Boucher et.al. [Bou98] presented a multi-agent 
model for the analysis of living cells. The system is used 

particularly to study cell migration, for example the 
migration of tumor cells in response to treatment with 
antineoplastic drugs. 

R. Freitas Jr. [Fre99] described medical nanorobots 
with tiny sensors and medical devices that will be 
capable of performing delicate, fine-grained operations 
within the human body. 

An agent-based tutoring system for students of 
medicine was evolved at University of Southern 
California by Ganeshan et.al.[Gan00] 

An agent-based approach to facilitate cooperative 
medical diagnosis was evolved at University College 
Galway in Ireland [Mul98]. It is achieved through 
monitoring patient record construction and by 
highlighting relevant diagnosis information. 

3 Learning and intelligent agents 
The machine learning community has paid increasing 
attention to problems of delayed reinforcement learning 
[Jaa94, Mca95]. These problems usually involve an agent 
that has to make a sequence of decisions, or actions, in an 
environment that provides feedback about those 
decisions. The basic loop followed in sequential decision 
making tasks such as these includes evaluating the 
current state, taking an action, and computing the new 
state. This loop is repeated until the system either reaches 
a goal state or recognizes that it will never terminate. 

Research in multiple agent planning and control has 
been limited largely to the area of distributed artificial 
intelligence [Sto96] and artificial life [Dor96]. In 
distributed AI (DAI), several agents cooperate to achieve 
some goal or accomplish some task. The task is usually 
one of sufficient complexity that no single agent can 
accomplish the task alone. Because the agents cooperate, 
research in distributed AI has focused primarily on 
developing efficient procedures for communicating 
between the agents to enable the agents to develop the 
cooperative plans. 

Although artificial life research does explore issues 
related to both cooperation and competition, its primary 
focus is on the emergence of intelligent behavior in a 
population of agents. For example, one area of 
application that has received considerable attention is the 
evolution of foraging behavior among artificial 
organisms (e.g., artificial ants) in the presence of 
predators. Also, migration patterns of artificial birds have 
been evolved. In none of these cases has behavior of 
individual agents been the focus of the research. 

Recently, work has begun to appear that focuses on 
learning in MAS. Stone and Veloso provide a taxonomy 
of MAS by focusing on attributes such as agent 
homogeneity, communication, deliberative versus 
reactive control, and number of agents [Sto96]. Problems 
in MAS are distinct from problems in DAI and 
distributed computing, from which the field was derived, 
in that DAI and distributed computing focus on 
information processing and MAS focus on behavior 
development and behavior management. In addition, 
problems in MAS are distinct from problems in artificial 
life in that MAS still focus on individual behaviors and 
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artificial life focuses on population dynamics. So far, 
most work in learning and MAS has focused on multiple 
agents' learning complementary behaviors in a 
coordinated environment to accomplish some task, such 
as team game playing [Tam96], combinatorial 
optimization [Dor96], and obstacle avoidance [Gre91]. 

3.1 Learning agents with GP 
Genetic programming (GP) and its variants have been 
applied to multi-agent learning. For instance, Koza used 
GP to evolve sets of seemingly simple rules that exhibit 
an emergent behavior. The goal was to genetically breed 
a common computer program, when simultaneously 
executed by all the individuals in a group of independent 
agent, i.e., the homogeneous breeding, that causes the 
emergence of beneficial and interesting higher-level 
collective behavior [Koz92]. 

Haynes proposed an approach to the construction of 
cooperation strategies based on GP for a group of agents 
[Hay95]. He experimented in the predator-prey domain, 
i.e., the pursuit game, and showed that the GP paradigm 
could be effectively used to generate apparently complex 
cooperation strategies without any deep domain 
knowledge. 

Iba has applied GP-based multi-agent learning to the 
Tile World and proposed a co-evolutionary breeding 
scheme [Iba96]. Experimental results have shown the 
superiority of the co-evolutionary breeding over the two 
strategies, i.e., the homogeneous strategy and the 
heterogeneous strategy. In the co-evolutionary strategy, 
some individuals were expected to perform specialized 
tasks for different agents with generations. 

4 Constructing decision graphs 
Decision graph is an extension of a very well known 
decision tree representation [Qui93, Bre84, Pod02]. 
Similar to decision trees a decision graph contains 
attribute and decision nodes, where attribute nodes 
contain some kind of test of attributes' values and 
decision nodes serves to predict the solution (Figure 1, 
Figure 2). However, the decision graph principle is more 
flexible and more general than a decision tree. Since it 
contains also cycles, additional internal variables 
(different from attributes) can be added that help to 
process a temporal information, i.e., input can be 
represented in a time-series manner, which makes the 
decision graphs especially appropriate to deal with 
signals and continuous data. Decision trees are of course 
not able to process those kind of data. 

A node in a decision graph contains a  kind of 
transition rule that tells what edge to follow in a decision 
making process, based on the test of attributes' values 
and/or the state of internal variables. Transition rules can 
be very simple (as in decision trees) or more complex 
(each node contains a program). Since we decided to 
construct a decision graph with the help of evolving 
agents, the rules can not be too complex in order to 
maintain a simplicity of each of the participating agents. 
Therefore the rules are simple if..then statements, 

where the condition is a single attribute test or a single 
internal variable test. When composing two nodes (as a 
consequence of the JOIN agent) those simple statements 
are combined in a composed if..then statement. An 
example of a composed transition rule is presented on 
Figure 2. 
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Figure 1. A simple decision graph. Every node contains 
a transition rule (Figure 2) that serves both as a test 

and/or as a decision class prediction. All edges from a 
single node are numbered, the numbers determine the 

next node based on the transition rule. 
 
 

if (A3 > split) then 
   if (INV2 < TRESHOLD2) then 
      moveTo(3) 
   else 
      decision(CLASS1) 
   endif 
else 
   moveTo(1) 
endif 
inc(INV2) 
moveTo(1) 

 
Figure 2. A composed transition rule. Ax is attribute x, 
split is a testing split, INVx is internal variable, 

THRESHOLDx is a testing value for an internal variable, 
moveTo(x) indicates the transition to node x, 

decision(CLASSx) indicates the prediction of the 
decision class x, and inc(INVx) indicates the increase 

of the internal variable x by 1. 
 

4.1 Two-leveled evolution process 
The outline of the decision graph construction algorithm 
can be best described as a two-leveled evolution process. 
At the lower level decision graphs are being evolved. 
The evolution at this level starts by constructing an initial 
population of random decision graphs. For this purpose a 
random amount of decision nodes is created (a transition 
rule is initialized) which are then randomly connected 
with edges. In the continuation of the evolution at this 
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lower level in each generation participating agents 
modify the decision graphs. The quality of a decision 
graph is evaluated based on the accuracy of classification 
of training objects. 

Naturally, because the construction of initial decision 
graphs is random, the classification accuracy in the early 
stages of evolution is low. Therefore, the quality of 
participating agents is essential in order to improve the 
predicting capabilities of the decision graphs. In this 
manner, the participating agents should improve to 
produce good results. To achieve the quality 
improvement in agents, they are also being evolved – and 
that is the second, the higher level of our global process. 
Each participating agent is evolved independently from 
the others by automatic programming approach with the 
proGenesys system. The quality of agents is not 
evaluated explicitly, but rather an universal complexity 
measure α is used that implicitly drives the agents to 
higher complexities.  

In the Figure 3 a pseudo-code procedure for the two-
leveled evolution process is presented. 

 
 

initialize_agents() 
repeat
   evolve_next_generations_of_agents() 
   initialize_decision_graph() 
   repeat
      apply_agents_to_modify_decision_graph() 
      evaluate_decision_graph() 
   until (num_generations > MAX_GENERATIONS) 
   remember_the_best_decision_graph() 
until (solution does not improve) 

 
Figure 3. A pseudo code of the two-leveled 

evolution process of decision graphs construction. The 
inner repeat..until loop represents the lower level 
of the evolution process that changes decision graphs and 
the outer repeat..until loop represents the higher 
level of the evolution process that changes the agents. 

 

4.2 Participating agents 
Seven different agents are used in the process of decision 
graph evolution. We named those agents as: ADD, 
DELETE, MUTATE, JOIN, DISJOIN, PROTECT, and 
UNPROTECT. Each agent has its own function and 
works on the evolving decision graph independently 
from the other agents, according to its own procedure, 
defined by the outcome of genetic programming process 
in the current generation. In this way the decision graph 
is modified by those agents in order to become as 
accurate in classifying the training objects as possible. 
The functions of the participating agents are the 
following: 
1. each ADD agent adds with certain probability: 1) a 

node (creates new transition rule for the new node), 
or 2) an edge (renumbering the existing 
connections); 

2. each DELETE agent deletes with certain 
probability: 1) an edge (renumbering the remaining 

connections), or 2) a node (renumbering the 
connections of the connected nodes); 

3. each MUTATE agent changes transition rule in a 
node with certain probability: 1) an attribute, 2) a 
split value, 3) an internal variable, 4) a threshold 
value for internal variables, 5) transition value, or 6) 
predicted decision; 

4. each JOIN agent merges two selected nodes with 
certain probability, adjusting the transition rule and 
renumbering the new connections; 

5. each DISJOIN agent separates a composed node 
into two connected nodes with certain probability, 
distributing the existing edges to either one new 
node or another; 

6. each PROTECT agent protects with certain 
probability: 1) a node, and/or 2) an edge either 
against deletion, mutation, joining and/or 
disjoining; 

7. each UNPROTECT agent unprotects with certain 
probability a protected: 1) node, and/or 2) edge; 

 

5 Evolution of agents 
All the agents are evolved with the use of automatic 

programming, a genetic programming technique for 
evolving programs in an arbitrary programming 
language, described with a context-free grammar. For 
this purpose we have used our evolutionary program 
generation tool called proGenesys [Pod99]. 

5.1 The kernel of proGenesys 
The aim of the proGenesys tool is automatic 

generation of program code. We used genetic 
programming as the underlying principle of program 
generation. Generation of initial programs and basic 
evolutionary processes are quite similar, the most 
important difference represents the evaluation function 
that we used to determine the fitness of each individual. 
Since our intentions are to generate optimal programs 
performing some very complex task, we don't exactly 
evaluate evolved programs but rather use an universal 
complexity measure, namely the software complexity 
metrics α that is described later in the paper. 

5.1.1 Generation of initial population 
The first phase of genetic process is the generation of an 
initial population. Enough individuals have to be 
constructed to fulfill the whole population. Since later 
evolution depends quite a lot on initial population 
(especially its diversity), a great care was taken to 
implement a method for the construction of an 
individual. 

For the construction of randomly generated 
programs, slightly modified Backus-Naur form (BNF) of 
programming language is used with some meta-symbols 
added, defining probabilities of transitions into specific 
branches of BNF structure, setting maximum recursion 
level of non-terminals extension, limiting the complexity 
of different program blocks, like expressions, etc. It is 
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important that the construction can start from within any 
BNF production, since it is also used later when mutation 
operator is applied. In this manner any BNF substructure 
can be generated when needed, like programming 
sentence, expression, etc. 

An individual is internally represented as a syntax or 
derivation tree of a generated program (Figure 4). The 
syntax tree contains not only a program code but also a 
complete information on how this code was constructed 
from the starting symbol of the programming language’s 
BNF. There are two types of nodes in a syntax tree. 
Internal nodes represent non-terminal symbols of BNF 
and show how each production was expanded to form the 
program. External or leaf nodes represent terminal 
symbols of BNF which actually construct the resulting 
program code. In this way program code can be extracted 
easily and syntax information is preserved throughout the 
evolution, which makes it easier to develop appropriate 
genetic operators. 

 

START PROGRAM

SENTENCE

SENT_REC

EXPRESSION

PROGRAM

TERM

EXPR_REC

SENTENCE

SENT_REC

FACTOR

TERM_REC
begin

end

#identifier (a)

:=

;

#number (3)

<>

<>

<>

skip

 
 

Figure 4. An example of a generated individual – a 
syntax tree. 

 

5.1.2 Selection and fitness function 
For the selection scheme we used a slightly modified 
exponential ranking selection method. After the 
evaluation of all individuals, they are sorted accordingly 
to their fitness score. Then we replace existing 
individuals from the worst to the best by creating new 
ones with crossover from two selected individuals, that 
still exist from the old population. When all the 
individuals are replaced, the new population is generated 
(there is still mutation to be applied). 

For effective selection we have to define an adequate 
evaluation function, that determines the fitness score of 
each individual. This is the point where our approach 
differs the most from the other genetic programming 
applications. We don't try to exactly evaluate evolved 
programs, but rather use an universal complexity 
measure - our software complexity metric α. In this way 
individuals are evolved to very complex programs which 
are eventually evaluated through their performance upon 
decision graphs by measuring the effectiveness of the 
decision graphs in classifying the training objects. 

5.1.3 Crossover 
As the two individuals are selected from within the 
current population, a new solution is constructed by 
applying the genetic operator of crossover (Figure 5) and 
the constructed individual is placed in a growing new 
population. In order to perform a crossover operation, an 

appropriate crossover point has to be determined. For this 
purpose, a set of non-terminal symbols, contained in both 
selected individuals (parents), is computed and one of 
those symbols is chosen randomly. Then it is looked for 
such a node in both parent trees and offspring is created 
by concatenating a branch (a subtree) from the chosen 
node in second parent to the chosen node in first parent 
(see Figure 5). In this way the syntax correctness is 
preserved, since there is only a possible extension of 
BNF production replaced with another and the whole is 
still a correct program (considering that both parents 
were correct, what is actually the case, since the program 
generation algorithm guarantees only correct programs to 
be generated). 
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end
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)
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(
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Figure 5. An example of a crossover. Circled parts of 
both syntax trees are combined into one offspring 

program. 
 

5.1.4 Mutation 
After a new individual is constructed by crossover, a 

genetic operator of mutation is applied (Figure 6) with 
certain probability. Mutation serves as a random change 
of an existing. 

First the mutation point is randomly chosen in a 
given syntax tree. According to the selected node there 
are two possible situations. First, if an internal node was 
selected, representing a non-terminal symbol of BNF. In 
this case the existing extension of BNF production is 
replaced with a newly generated derivation. That is why 
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we mentioned the importance of a program generation 
algorithm to start with any BNF production, since here 
we send the chosen non-terminal symbol (from mutation 
point) and expect the algorithm to generate an adequate 
portion of a program code that is concatenated to the 
selected tree node instead of the existing part. 

Second, if a special kind of external or leaf node was 
selected, representing a categorized terminal symbol of 
BNF. Such a categorized terminal is a number (category 
#Number) for example. In this case a new terminal is 
constructed so that it fits into specific category (for 
example, a new number is randomly chosen, replacing 
the existing one). 

 

START PROGRAM

SENTENCE

SENT_REC

EXPRESSION

TERM

EXPR_REC

FACTOR

TERM_REC
begin

end

#identifier (a)

:=

#number (3)

<>

<>

<>
before mutation

mutation point

START PROGRAM

SENTENCE

SENT_REC

begin

end
<>

after mutation

skip

 
 

Figure 6. An example of a mutation. Circled part of first 
tree is mutated into the circled part of second tree. 
 

5.2 Software complexity measure α 
Many quantities have been proposed as measures of 

complexity. Gell-Man [Gel95] suggests there have to be 
many different measures to capture all our intuitive ideas 
about what is meant by complexity. Some of the 
quantities are computational complexity, information 
content, algorithmic information content, the length of a 
concise description of a set of the entity's regularities, 
logical depth, etc. (in contemplating various phenomena 
we frequently have to distinguish between effective 
complexity and logical depth - for example some very 
complex behavior patterns can be generated from very 
simple formula like Mandelbrot's fractal set, energy 
levels of atomic nuclei, the unified quantum theory, etc. - 
that means that they have little effective complexity and 
great logical depth). A more concrete measure of 
complexity, based on the generalization of the entropy, is 
correlation [Sch93], which can be relatively easy to 
calculate for a special kind of systems, namely the 
systems which can be represented as strings of symbols. 

Computer programs are conventionally analyzed 
using the computational complexity or measured using 
complexity metrics. Another way to asses complexity is 
to use fractal metrics [Kok96, Kok99] or entropy based 
measure [Har89]. However, we can regard computer 
programs from the viewpoint of "complexity as a 
discipline" and according to that apply various possible 
complexity measures presented above. The fact that a 
computer program is a string of symbols, introduces an 

elegant method to asses the complexity – namely to 
calculate long range correlations between symbols, an 
approach which has been successfully used in the DNA 
decoding [Bul94] and on human writings [Sch93]. 

Our fractal measure α is based on char method, 
which is an extension of the method originally proposed 
by Schenkel [Sch93] for human writings. Like a human 
writing, a computer program can be seen as a string of 
symbols: letters, digits and some delimiting symbols – 
empty spaces are ignored. Using code table, where each 
of these symbols is represented by a binary sequence, the 
program is transformed into Brownian motion model (0’s 
→ step down, 1’s → step up, see Figure 7), a base for the 
calculation of regression function F(l): 
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where ∆y(l) is relative difference between two points 

in Brownian motion model (Figure 7). The coefficient α 
is then calculated with the least squares method as the 
linear representation of the points on a double 
logarithmic scale [ln (l), ln (F(l))] and represents the 
complexity of a computer program (Figure 8). 

According to above definition regression points [l0, 
F(l0)] are calculated from Brownian motion as follows: 
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where S is the number of points in Brownian motion plot. 

After the regression points are calculated, the 
coefficient α is then calculated with the least squares line 
as the linear representation of the points on a double 
logarithmic scale [ln (l), ln (F(l))]. As line crosses the 
axis at [0, 0] the line equation 
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becomes simpler 
 

bxy =  

where b actually represents α. 
From the method of least squares, b (or α in our 

case) is calculated as 
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Regarding the regression points [ln (l), ln (F(l))] the 
α is thus calculated as 
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To better understand the process of calculating α the 
Figure 7 shows how the relative difference ∆y(l) between 
two points in a Brownian motion model is calculated, 
and the Figure 8 shows the graphical representation of α 
on a double logarithmic scale of regression points [ln (l), 
ln (F(l))]. 

 
 

x1= l

y2 = y(l+l0)

l0

y = y2 - y1
y1 = y(l)

x2= l + l0

.  .  .

.  .  .

Brownian motion

 
 
 

Figure 7. Calculation of regression curve points [l, F(l)] 
from a Brownian model plot. 
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Figure 8. Representation of α on the regression curve 
points [ln(l), ln(F(l))] plot. 

 

5.3 Programs for agents 
In order to evolve the agents in accordance with our goal 
– to improve the classification capabilities of a decision 
graph – agents should be run by appropriate programs. 
The more obvious way to achieve this goal would be to 
define the programs for all the agents and let them work 
on the decision graphs. In this manner no second (higher) 
level of evolution would be necessary and the system 
would work faster. But of course, defining the agents is 
not a trivial task, and also we do not know what are the 

optimal programs for all the agents. Therefore, we 
decided to evolve the agents from the scratch with the 
use of the described proGenesys system. 

For this purpose a language has to be defined first (a 
set of terminals, non-terminals and BNF productions) for 
each agent. We decided to keep the languages as simple 
as possible and therefore each language contains only 
few function calls to pre-defined functions (like join() 
for JOIN agent, deleteNode() or deleteEdge() 
for DELETE agent, etc.), simple condition statements 
(if..then..else, etc.) and simple expressions. A 
program for each agent is then interpreted to modify the 
decision graph in the lower level of evolution. An 
example of such a program for DELETE agent is 
presented in Figure 9. 

 
 
if (random_condition == true) then 
   node = selectNode() 
   deleteNode(node) 
else 
   edge = selectEdge() 
   deleteEdge(edge) 
endif 

 
Figure 9. An example of a simple program for the 

DELETE agent. 
 

6 Application of the method and 
results 

First we tested the performance of proposed 
classification method for training data and test data by 
the well-known iris data set [Fis36], which is not very 
complex. The iris data consists of 150 objects described 
by 4 continuous attributes and has three possible 
outcomes: Iris-setosa, Iris-versicolor, Iris-virginica. We 
selected 117 objects for training and the remaining 33 
objects for testing. The average results over 5 runs are 
presented in Table 1.  

 
 

Table 1. The results (accuracy) of iris data classification 
by evolved decision graphs (average over 5 runs). 
 
 training data test data 
accuracy 96.58 93.94 

 
 
An evolved decision graph for the classification of 

iris data is presented in Figure 10. It consists of 4 nodes, 
of which two contains classification of decision class. 
There is one cycle and two internal variables are used: 
one is a dummy and the other (INV1) actually plays an 
important role in classification process. It is interesting 
that there is only one decision statement for each class, 
what means that a classification for each class is made 
exactly once. 



COMPLEXITY-DRIVEN EVOLUTION OF...  Informatica 29 (2005) 41–51 49 

NODE_4:

inc(INV2)
if (petal_width < 0.5584) then
  decision(Setosa)
else
  dec(INV2)
  decision(Versicolor)
endif

NODE_4:

N1

N2 N3

N4

NODE_3:

inc(INV1)
if (petal_length >= 5.612) then
  moveTo(1)
endif
moveTo(2)

NODE_3:

NODE_1:

if (petal_width >= 1.7968) then
  inc(INV1)
endif
moveTo(1)

NODE_1:

NODE_2:

if (INV1 == 0) then
  moveTo(1)
else
  decision(Virginica)
endif

NODE_2:

1

1

1

2

 
 

Figure 10. Evolved decision graph for the classification 
of iris dataset. 

 

6.1 Mitral valve prolapse dataset 
Because of the good results obtained for the iris data set, 
we decided to test a real-world medical problem of 
classifying mitral valve prolapse syndrome. Prolapse is 
defined as the displacement of a bodily part from its 
normal position. The term mitral valve prolapse (MVP) 
[And91, Dev89, Mar76], therefore, implies that the 
mitral leaflets are displaced relative to some structure, 
generally taken to be the mitral annulus. The silent 
prolapse is the prolapse which can not be heard with the 
auscultation diagnosis and is especially hard to diagnose. 
The implications of the MVP are the following: disturbed 
normal laminar blood flow, turbulence of the blood flow, 
injury of the chordae tendinae, the possibility of 
thrombus’ composition, bacterial endocarditis and finally 
hemodynamic changes defined as mitral insufficiency 
and mitral regurgitation. 

MVP is one of the most prevalent cardiac conditions, 
which may affect up to five to ten percent of normal 
population and one of the most controversial one. The 
commonest cause is probably myxomatous change in the 
connective tissue of the valvar liflets that makes them 
excessively pliable and allows them to prolapse into the 
left atrium during ventricular systole. The clinical 
manifestations of the Syndrome are multiple. The great 
majority of patients are asymptomatic. Other patients, 
however may present atypical chest-pain or 
supraventricular tachyarrhythmyas. Rarely, patients 
develop significant mitral regurgitation and, as with any 
valvar lesions, bacterial andocarditis is a risk. 

Uncertainty persists about how it should be 
diagnosed and about its clinical importance. Historically, 
MVP was first recognized by auscultation of mid systolic 
“click” and late systolic murmur, and its presence is still 
usually suggested by auscultatory findings. However, the 
recognition of the variability of the auscultatory findings 
and of the high level of skill needed to perform such an 
examination has prompted a search for reliable 

laboratory methods of diagnosis. M-mod 
echocardiography and 2D echocardiography have played 
an important part in the diagnosis of mitral valve 
prolapse because of the comprehensive information they 
provide about the structure and function of the mitral 
valve. 

Medical experts propose [And91, Mar76] that 
echocardiography enables properly trained experts armed 
with proper criteria to evaluate MVP almost 100%. 
Unfortunately however, there are some problems 
concerned with the use of echocardiography. The first 
problem is that current MVP evaluation criteria are not 
strict enough [Kok94]. The second problem is the 
incidence of the MVP in the general population and the 
unavailability of the expensive ECHO - machines to 
general practitioners. According to above problems we 
have decided to develop a decision support system 
enabling the general practitioner to evaluate the MVP 
using conventional methods and to identify potential 
patients from the general population. 

6.2 Classification results and discussion 
Using the Monte Carlo sampling method 900 children 
and adolescents representing the whole population under 
eighteen years of life have been selected. All of them 
were born in Maribor region and all were white. 
Routinely they were called for an echocardiography no 
matter of prior findings. From 900 selected 631 
volunteers were successfully examined. 

They all passed an examination of their health state 
in a form of a carefully prepared protocol specially made 
for the Syndrome of MVP. The protocol consisted of 
general data, mothers health, fathers health, pregnancy, 
delivery, post-natal period, injuries of chest or any other 
kind, chronic diseases, sports, physical examination, 
subjective difficulties like headaches, chest-pain, 
palpitation, perspiring, dizziness etc., auscultation, 
phonocardiography, ECG and finally ECHO. In that 
manner, 103 parameters were gathered that can possibly 
indicate the presence of MVP. 

All 631 patient records were randomly divided into a 
training and a testing set. The average results over 10 
runs, as obtained with the described evolutionary 
method, are presented in Table 2.  

For the sake of comparison, we induced a traditional 
decision tree with C4.5 algorithm [Qui93]. It scored the 
following results for the test data set: accuracy 90.00%, 
sensitivity 63.64%, and specificity 91.60% (see Table 2). 
 

 
Table 2. The results of MVP classification by evolved 

decision graphs (average over 10 runs) and C4.5. 
 

 training data test data 
 graph C4.5 graph C4.5 
accuracy 92.21 94.21 86.92 90.00 
sensitivity 94.83 54.24 72.73 63.64 
specificity 91.87 96.3 88.24 91.60 
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Regarding the accuracy of classification our results 
are a bit worse than those obtained by classical decision 
tree induction method, both on the training and the test 
data. Also the specificity (percentage of correctly 
classified negatives, i.e. patients with no prolapse in our 
case) is better with C4.5 decision tree. On the other hand, 
the sensitivity (percentage of correctly classified 
positives, i.e. patients with prolapse our case) is better 
with our method. Because the number of positives is 
much smaller than negatives, it could be concluded that 
the decision graph produced by our method is more 
appropriate for classifying unbalanced data sets, which is 
very common in medicine. 

Furthermore, decision trees induction methods like 
C4.5 are able to generate tree-like structures with their 
limited capabilities. Contrary our approach generates 
graphs, which have in medical environment a lot of 
advantages, like: 

- classifying the cycle: diagnosis → treatment → 
outcome, 

- revealing the relations between diagnosis, treatment 
and outcome, 

- classification of temporal data like EEG, ECG, 
EMG, etc. 

 
On the other hand, the use of our system (at least in 

current stage) is not as easy to use as C4.5 for example. 
There is some “overhead” needed to set up the method 
for a new classification task (like adaptation of programs 
induction, evolution of agents). Furthermore, the amount 
of computational resources is much higher than in a 
classical decision tree induction method, several runs are 
needed to evolve the proper agents and decision graphs. 
Finally, one further drawback of our method is the 
interpretability of the mined knowledge; because the 
nodes in our decision graphs are more complex, it is 
more difficult to interpret the decision graph model than 
the decision tree. However, the results are not a black 
box (as in the case of neural networks for example) and 
still allow an expert to validate them. 

Regarding both the advantages and the drawbacks of 
our method, it can be concluded, that it is appropriate for 
difficult, unbalanced datasets, where even the smallest 
improvement in results is worth the higher effort in 
achieving this improvement. This is certainly the case in 
medicine, where human health and welfare is in question. 

7 Conclusion 
In the paper a new approach to the classification of 

medical data based on the meta agents system for the 
construction of decision graphs is presented. We applied 
it to the prediction of MVP, but being a general-purpose 
classification model it can be used for different kinds of 
classification tasks. Some reasons in favor of using a 
complexity-driven evolution of agents have been stated. 
The whole two-leveled evolution process of decision 
graphs construction is described and also the kernel of 
the proGenesys tool for automatic evolution of agent 
programs is described. Results of MVP classification by 

constructed decision graphs are compared with those 
obtained by traditionally constructed decision trees. 

There are two essential contributions of the paper. 
The first one is the flexible decision graph approach to 
the classification, that is an extension of the well-known 
decision tree classifier. The second one is the 
complexity-driven evolution of agents, that can replace 
the explicit evaluation of individuals in the process of 
programs evolution. In this manner, the need for the 
definition of an appropriate fitness function is avoided. 

An obvious drawback of our approach, when applied 
to a real-world problem, is somewhat lower classification 
accuracy (when compared to the decision trees), and 
especially the lower interpretability of the mined 
knowledge. Additionally, the proposed classification 
approach is more difficult to use than the majority of the 
known ones. On the other hand, there are important 
advantages, like good classification of unbalanced data 
sets, flexibility of the knowledge model, novelty of the 
complexity-driven approach to the evolution of agents, as 
stated in the application section of this paper. 

In future we plan to reduce the effort needed to set 
up the described method for a new classification task. 
Another aspect that we want to explore is to transfer the 
implementation onto a grid system; greater 
computational power of a grid would increase the 
possibilities of evolution process – in this manner we 
hope to further improve the overall effectiveness and 
quality of the obtained results. If resources allow, we 
want to further develop the proposed concept. 
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