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In this paper we present a formal framework supporting the translation of interactions between agents 
(the interactions are described with the help of the RCA formalism) in a Maude specification. Based on 
rewriting logic, the formal and object-oriented language Maude supports formal specification and 
programming for a wide range of applications. The main motivations of our work are essentially: (1) to 
formally specify the behavior of multi-agent systems and (2) to provide a solid basis for their 
verification and validation. The translation process is illustrated by means of a real case study.  
Povzetek:Opisan je formalni okvir za prevajanje interakcij med agenti. 

1 Introduction 
In Multi-Agent Systems (MAS), agents interact in order 
to exchange information, to cooperate and to coordinate 
their tasks [24]. The usual approach to the description of 
interactions between agents consists in using protocols 
[8, 26]. Several agents’ interaction protocols (AIP) have 
been proposed in the literature [7]. They constitute an 
important part of MAS's infrastructures. However, most 
of the protocols published in the literature are semi-
formal, vague or contain errors as mentioned in [23]. 
Knowing that AIP play a crucial role in MAS 
development [30], their formal specification as well as 
their verification constitute essential tasks [11]. In the 
field of agents’ behavior specification, three major 
approaches emerge in the literature: state-charts based 
approaches [27, 22], Petri Nets based approaches [5, 1], 
and approaches representing an adaptation of object-
oriented specification methods [19, 20]. 

Among the agents’ interaction protocols proposed in 
the literature, we can mention the RCA formalism 
(Représentation des Comportements d’Agents) [27], 
which is based on strongly typed states-transitions 
graphs. The RCA formalism allows describing agents' 
behaviors graphically. This formalism has been used in 
the design of several Cooperative Information Systems 
(CIS) based on informational agents. We can mention, 
for example, the NetMan project based on the 
coordination of several agents [4], a project related to the 
reactive reorganization of production shops and treating 
the cooperation between agents having to solve a 
problem in a distributed and cooperative way [28], as 

well as a project on the hydraulic management of the 
Camargue ecosystem and based on a negotiation process 
between agents (Project SIMFONHYC) [18]. 

One of the strong points of the RCA formalism [18, 
28] resides in the modular design of agents' behaviors. 
Indeed, the use of composite action states makes it 
possible the overlapping of behavioral plans and 
therefore a description by successive refinements of 
agents' behavior. This characteristic comes directly from 
the notion of composite state of RCA graphs. 
Nevertheless, some critiques on RCA graphs can be 
formulated, notably on their formalization and on the 
sequential aspect of the execution cycle of behavioral 
plans [28]. Furthermore, this formalism allows the 
visualization of the synchronization points between dual 
protocols thanks to the complementarity between 
communication states and external transition. It is then 
easy to recognize the coordination points between dual 
protocols [28]. However, RCA graphs as well as the 
existing formalisms in the literature describing agents' 
interaction protocols are not endowed again with a 
formal semantics [28]. They only offer a semi-formal 
specification [23] of interactions between agents. These 
weaknesses can generate several problems in MAS   
development and verification. 

Using formal notations for the description of MAS' 
behavior offers several advantages. It essentially allows 
producing rigorous and precise descriptions supporting 
efficiently their verification and validation process. The 
Maude language, based on the rewriting logic, seems to 
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us to be an interesting candidate. It offers, through its 
rich notation, an interesting way for concurrent systems 
formal specification and programming. Furthermore, it 
also supports the description of multi-agent interactions 
[21, 16]. In this paper, we present a formal framework 
supporting the translation of multi-agent interactions, 
specified using the RCA formalism, in a Maude 
specification. The main motivations of our approach are 
essentially: (1) to specify formally the behavior of multi-
agent systems, in particular, the interactions between 
agents, and (2) to provide a solid basis for their 
verification and validation process. The Maude 
specifications, generated in the context of the developed 
framework, have been validated using the platform 
supporting the Maude language. The remainder of the 
paper is organized as follows: Section 2 gives a brief 
survey on the main related works. We present summarily 
the RCA formalism in section 3. In section 4, we give the 
basic concepts related to the rewriting logic as well as the 
Maude language. Section 5 presents the translation 
process. The proposed approach is illustrated using a 
concrete case study in section 6. Finally, section 7 gives 
some conclusions and future work directions.  

2 Related Work 
We present briefly in this section three formalisms 
(AUML, CATN and RCA) supporting the description of 
agents' interaction protocols. AUML [19, 9] is an 
extension of the UML language allowing describing 
interactions between agents. To represent multi-agent 
interaction protocols, AUML adopts in fact an approach 
in three layers. It uses, in the first level, packages and 
templates to represent the protocol in whole. Sequence 
diagrams, collaboration diagrams, activity diagrams, and 
states-transitions diagrams are used to represent 
interactions between agents. Activity diagrams and 
states-transitions diagrams are also used to capture 
agents’ internal behavior (for more details see [19]). 
However, AUML only offers a semi-formal specification 
of the interactions between agents.   

The CATN formalism (Coupled Augmented 
Transition NetWork) [10] is a states-transitions machine, 
to which a particular goal (or significance) is associated. 
A CATN can be decomposed in sub-CATNs. Each of 
these components is a CATN, having its own goal. The 
components of a CATN are joined together by ad-hoc 
transitions named "interactions transitions". Among 
these, we distinguish the non-terminal interactions 
transitions of those that are terminal. These last 
correspond to language acts (between agents) or to 
private actions of agents. This recursive aspect of the 
CATN allows a top-down design approach, from the 
most abstract behavior of a group of agents until their 
most concrete actions (individual terminal actions and 
communications through the interactions transitions). 
Each agent can execute in a concurrent way several 
CATNs depending on the tasks that it has to achieve [10, 
25].  

The RCA formalism [27, 28], supporting the 
description of role protocols, is used to describe agents' 

behavior. It is based on states-transitions diagrams 
introducing seven types of states and two types of 
transitions. The seven states are: the initial state, the final 
state, the elementary action state, the composite action 
state, the communication state and the waiting states 
(limited and unlimited). The two types of transitions are 
the internal transition and the external transition. Using 
this formalism, it is easy to recognize the coordination 
points between dual protocols. The RCA formalism is 
not limited to the description of the exchanges of 
messages between agents (as the case in the other 
formalisms). It also allows clarifying the actions that they 
undertake. In addition, the RCA graphs describe the 
working of the agents and help thus the design of their 
interactions. The links that exist between the macro level 
(i.e. the system's behavior) and the micro level (i.e. the 
agent's behavior) may be considered in an integrated way 
[28, 29]. 

These different approaches certainly offer some 
elements of answer to some problems related MAS 
development. However, they only allow a partial 
formalization of MAS. Furthermore, some authors [6, 5] 
opposed to the use of formalisms based on state-
transition graphs two major arguments: 1) the 
impossibility to be able to verify the consistency of the 
protocols thus specified; and 2) the absence of taking into 
account the concurrent aspects of protocols [28]. In spite 
of the advantages that it offers relatively to the other 
formalisms, the RCA formalism only offers a graphic 
semi-formal description [18]. Furthermore, it is not 
endowed again with a formal semantics. These 
weaknesses combined to the complexity of MAS can 
generate several problems in their development and 
verification processes. The use of an appropriate formal 
notation for the description of MAS' behavior offers 
several advantages. It essentially allows the production 
of rigorous and precise descriptions supporting 
efficiently their verification and validation process. Our 
approach is similar, in terms of objectives, to the 
previously quoted approaches. It consists, essentially, to 
support the important stage of the specification of agents' 
behaviors. However, we preferred to adopt a more formal 
approach in the specification of agents' behaviors in 
terms of interactions allowing, among others, to support 
the verification of consistency (internal and global) in the 
behavior. Our approach allows translating the interaction 
protocols described using the RCA formalism in the 
Maude language. The Maude system consists in a high-
level language of programming, specification and 
modeling based on rewriting logic [2, 15, 21]. It is also 
endowed with a high performance interpreter. It allows 
describing concurrent systems and supports the formal 
specification of distributed systems [14, 29, 12]. 

3 RCA Formalism 
RCA (Représentation des Comportements d'Agents) [27, 
28] is a formalism allowing describing an agent's 
behavior graphically. It is based on a strongly typed 
graph: seven types of states and two types of transitions 
(figure 1). The seven states are the initial state (to show 
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the beginning of the graph), the final state (to mark the 
end of the graph), the elementary action state (that 
corresponds to the agent's simple action), the composite 
action state (it is in fact about the call to another 
protocol), the communication state (sending of message), 
and the limited and unlimited waiting states (waiting of 
treatments done by other agents). The two types of 
transitions are the internal transition (it corresponds to 
the end of an activity and provokes the passage to 
another state) and the external transition (it is in fact a 
reception of a message that provokes, like an internal 
transition, the change of the agent's activity). An external 
transition is triggered by a communication state at 
another agent. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Convention of representation  
of the RCA formalism. 

 
The number of internal and external transitions 

depends on the type of the starting state and its 
transitions. It can be either null, limited or unlimited 
(figure 2). 
 

Authorized 
internal 

transitions 
number 

Authorized 
external 

transitions 
number 

Type of transition’s 
departure state     

[Min..Max] [Min..Max] 
Initial state [0 .. 1] [0 .. 1] 
Elementary action state [1 .. ∞] [0 .. 0 ] 
Composite action state [1 .. ∞] [0 .. 0 ] 
Communication state [1 .. 2] [0 .. 0 ] 
Limited waiting state [1 .. 1] [1 .. ∞] 
Unlimited waiting state [0 .. 0] [1 .. ∞] 
Final state [0 .. 0] [0 .. 0] 

 
Figure 2 : Authorized transitions number according  

to the starting state. 
 

Each states graph starts with a unique initial state and 
finishes by a unique final state. The internal events are 
the consequence of the agent's actions represented by 
action states (elementary or composite). They trigger the 

internal transitions. The external events result from 
communication activities of the agents, i.e. a reception of 
message constitutes an external event and provokes the 
crossing of an external transition. Of this fact, the type of 
allowed transition at a precise place of the graph depends 
exclusively of the origin state type of this transition: 

 
• Initial state : only one transition (internal or 

external) may quit this state. 
• Action state (simple or composite) : the internal 

transitions are in any number not null after 
action states. 

• Communication state : one or two internal 
transitions may quit the communication state.  

• Limited waiting state : the waiting may stop 
after the reception of a message (external 
transition), or if no message has been received 
beyond the waiting delay (internal transition). 
Furthermore, only one internal transition may 
quit a limited waiting. 

• Unlimited waiting state : this waiting type 
remains while that it doesn't occur an external 
event (reception of message). It is therefore 
about a blocking state.  

4 Rewriting Logic and Maude 
Language 

4.1 Rewriting Logic 
The rewriting logic, having a sound and complete 
semantics, was introduced by Meseguer [14]. It allows 
describing concurrent systems. This logic unifies all the 
formal models that express concurrence [13, 15]. In 
rewriting logic, the logic formulas are called rewriting 
rules. They have the following form:  R:[t]  [t’] if C.  
Rule R indicates that term t becomes (is transformed 
into) t’ if a certain condition C if verified. Term t 
represents a partial state of a global state S of the 
described system. The modification of the global state S 
of the system to another state S’ is realized by the 
parallel rewriting of one or more terms that express the 
partial states. The distributed state of a concurrent system 
is represented as a term whose sub-terms represent the 
different components of the concurrent state. The 
concurrent state’s structure can have a variety of 
equivalent representations because it satisfies certain 
structural laws (equivalence class).  

 
 
 

 
 
 
 

 
 

 
Figure 3 : Example of a portion of the Maude program. 

 

1.  sort Configuration . 
2.  sort Object . 
3.  sort Msg . 
4.  subsort Object < Configuration . 
5.  subsort Msg < Configuration . 
6.  op null : -> Configuration . 
7.  op_ _ : Configuration Configuration ->  
                Configuration [assoc comm id : null] .

Initial                  Elementary  Limited waiting 
state                     action state                          state

  

Final                      Composite             Unlimited waiting    
 state                      action state                       state                

Communication            Internal                       External 
        state                      transition                     transition 
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For example, in an object-oriented system the 
concurrent state that is usually called configuration has 
the structure of a multi-set of objects and messages. 
Therefore, we can have configurations constructed by a 
binary operator applied to binary sets as illustrated in 
figure 3. 

The portion of program illustrated in figure 3 gives a 
definition of three types:  Configuration, Object and 
Msg.  In lines 4 and 5, Object and Msg are sub-types of 
Configuration.  Objects and messages are in fact multi-
set configuration singletons. More complex 
configurations are generated from the application of the 
union on these multi-set singletons (objects and 
messages).  Where there is neither floating messages nor 
live objects, we have in this case an empty configuration 
(line 6). The construction of a new configuration in terms 
of other configurations is done with line 7’s operation. 
We can note that this operation has no name and that the 
two sub lines indicate the positions of two parameters of 
configuration type. This operation, which is the multi-set 
union, satisfies the structural laws of association and of 
commutation. It also possesses a neutral element null. 
For example, if we have a message M1 that represents a 
configuration, and an object <O : C|atts > (please note 
that O is an object’s identifier, C its class and atts the list 
of its attributes) that represents in itself another 
configuration, then we can construct another 
configuration in terms of those two configurations:  M1 
< O : C | atts >.  This one is equivalent to the 
configuration < O : C | atts > M1 because the __ 
operation is commutative. 

4.2 Maude 
Maude is a specification and programming language 
based on the rewriting logic [14, 3]. Three types of 
modules are defined in Maude. Functional modules allow 
defining data types and their functions through equations 
theory. Figure 4.a represents the functional module Nat 
specifying natural numbers. Such a module is imported 
in the module FACT (figure 4.b) to calculate the factorial 
of natural numbers. System modules define the dynamic 
behavior of a system. This type of modules extends 
functional modules by introducing rewriting rules. A 
maximal degree of concurrence is offered by this type of 
module. Finally, there are the object-oriented modules 
that can be reduced to system modules. In relation to 
system modules, object-oriented modules offer a more 
appropriate syntax to describe the basic entities of the 
object paradigm as, among others: objects, messages and 
configuration. Only one rewriting rule allows expressing 
the consumption of certain floating messages, the 
sending of new messages, the destruction of objects, the 
creation of new objects, state change of certain objects, 
etc. 

Figure 5.a illustrates the use of a system module 
BANK-ACCOUNT to define an object counts banking A 
and the two operations capable to affect its content credit 
and debit while executing the rewriting rules defined  in 
this module. Figure 5.b represents the same BANK-

ACCOUNT module with a more appropriate object-
oriented syntax. 
 
 
 
 
 
 
 
 
 
             
                    (a)                                          (b) 
 

Figure 4 : Functional Modules Nat and FACT. 
 
We note, that after the execution of the unconditional 

rule [credit], the message credit(A, M) is consumed and 
the content of the account is increased. In the same way, 
the execution of the conditional rule [debit] requires that 
the condition (N>=M) be verified. The execution of such 
rule generates the consumption of the message 
debit(A,M) and the reduction of the content of the 
account. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                  
                                    (a)                                           
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure 5 : The same BANK-ACCOUNT module in system 
module and O.O module forms. 

fmod NAT is 
sorts Zero NzNat Nat . 
subsort Zero NzNat < Nat . 
***constructors 
op 0 : -> Zero . 
op s_ : Nat -> NzNat . 
…. 
endfm 

fmod FACT is 
Including NAT . 
op _! : Nat -> NzNat . 
 
var N : Nat . 
eq 0 ! = 1 . 
eq (s N) ! = (s N) * N !. 
endfm 

mod BANK-ACCOUNT is 
protecting INT . 
 including CONFIGURATION . 
op Account : -> Cid. 
op bal :_ : Int -> Attribute . 
ops credit debit :    Oid Nat -> Msg . 
var A  : Oid . vars M N : Int . 
 
rl [credit] :    < A : Account | bal : N >   credit(A, M) 
             =>   < A : Account | bal : N + M  > . 
 
crl [debit] :   < A : Account | bal : N >   debit(A, M) 

         =>  < A : Account | bal : N - M  >  
               If N >= M . 

endm

(omod BANK-ACCOUNT is 
protecting MACHINE-INT . 
class Account | bal : MachineInt . 
msgs credit debit :   Oid MachineInt -> Msg . 
var A : Oid .  
vars M N : MachineInt . 
 
rl [credit] :  < A : Account | bal : N >  credit(A, M) 
            => < A : Account | bal : (N + M)  > . 
 
crl [debit] :   < A : Account | bal : N >   debit(A, M) 

         =>  < A : Account | bal : (N – M)  >  
               If N >= M . 

endom) 
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5 Translating RCA Descriptions in 
Maude 

We developed a formal framework allowing the formal 
specification of role protocols described using RCA 
formalism. The framework is composed, as illustrated by 

figure 6, of several modules: an object-oriented module 
(ROLE-PROTOCOLE) and several functional modules 
(the remainder of modules). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 : RCA-Maude frameworks’ architecture. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 

 
 

Figure 7 : The functional module AGENT-STATE. 
 
           
The functional module AGENT-STATE (figure 7) 

contains the different necessary type declarations for the 
definition of a state (line [1]) and, on the other hand, the 
definition of operations used for the construction and the 
manipulation of a state (lines [2, 3, 4, 5, 6, 7, 8, 9, 10]), 

as well as equations implementing these operations (lines 
[11, 12, 13, 14, 15, 16, 17]).  

In the ACTION module (figure 8), in addition to the 
type Action, we define the two functions 
IsSendingToOnlyOne and IsSendingToAll. The first 

ACTION 

AGENT-STATE 

IDENTIFICATION 

RCA

ACQUAINTANCE-LIST 

ROLE-
PROTOCOLE 

: Module 
: Import 

USER-RCA1

RCA -LINK

(fmod AGENT-STATE is 
sorts AgentState KindAgentState NameAgentState .                                               ***[1] 
 
ops initial final communication elementary composite 
                                limitedWaiting UnlimitedWaiting : -> KindAgentState .         ***[2] 
 
op AgentState : NameAgentState KindAgentState -> AgentState .                         ***[3] 
op IsInitial : AgentState -> Bool .                                                                    ***[4] 
op IsFinal : AgentState -> Bool .                          ***[5] 
op IsOfCommunication : AgentState -> Bool .                                      ***[6] 
op IsElementary : AgentState -> Bool .                                           ***[7] 
op IsComposite : AgentState -> Bool .                                         ***[8] 
op IslimitedWaiting : AgentState -> Bool .                                       ***[9] 
op IsUnlimitedWaiting : AgentState -> Bool .                                                     ***[10] 
 
var k : KindAgentState . var ns : NameAgentState . 
 
eq  IsInitial(AgentState(ns, k)) = if  k == initial then true                                                    ***[11] 
                     else false fi . 
eq  IsFinal(AgentState(ns, k)) = if  k == final then true                                                       ***[12] 
                     else false fi . 
eq  IsOfCommunication(AgentState(ns, k)) = if  k == communication then true               * **[13] 
                     else false fi . 
eq  IsElementary(AgentState(ns, k)) = if  k == elementary then true                                  ***[14] 
                     else false fi . 
eq  IsComposite(AgentState(ns, k)) = if  k == composite then true                                     ***[15] 
                     else false fi . 
eq  IslimitedWaiting(AgentState(ns, k)) = if  k == limitedWaiting then true                      ***[16] 
                     else false fi . 
eq  IsUnlimitedWaiting(AgentState(ns, k)) = if  k == UnlimitedWaiting then true            ***[17] 
                     else false fi . 
endfm) 
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function determines if an action is destined to only one 
agent's acquaintance, on the other hand the second 
function indicates if it is necessary to send a message to 
all agent's acquaintances. To describe the identification 
mechanism of agents, we define the functional module 
IDENTIFICATION (figure 9). Furthermore, an agent 
must be endowed with a list of its acquaintances allowing 
it to exchange messages with the other agents. We define 
for it the functional module  ACQUAINTANCE-LIST to 
manage the lists of the agents’ acquaintances . Due to 
imitation of space and a considerable size of this last 
module, we don't present it in this paper. 

 
 

 
 
 
 
 
 
 

Figure 8 : The functional module ACTION. 
 
 
 
 
 
 

 
Figure 9 : The functional module 

IDENTIFICATION. 
 
To define an RCA diagram, we propose the RCA 

module (figure 10). This module reuses the AGENT-
STATE and ACTION modules. It includes the definition 
of two operations: TargetState that determines the target 
state according to a state source and an action, and the 
FeedBack operation used in the case where the treatment 
accomplished by the agent takes place while toppling 
between two states during a limited length. To each event 
coming from a state source, such a function determines 
the appropriate action that should be executed from the 
target state as a feedback.  

 
 
 
 
 
 

 
 

 
Figure 10 : The functional module RCA. 

 
For the construction of an RCA diagram for an 

application, we propose to extend the RCA module in 
another USER-RCA module (figure 11). In this module, 
the user must: mention all states constituting the RCA 
diagram, define all possible actions, attach the actions in 
the states using the TargetState function, determine the 
actions constituting feedbacks using the Feedback 

function, and finally specify for every communication 
action whether it is sent to all (using the 
IsSendingActionToAll function) or to only one (using 
IsSendingActionToOnlyOne). An USER-RCA module 
(figure 11) is associated with every category of agents 
(playing the same role). 

 
 
 
 
 

 
 

 
Figure 11 :  The functional  

Module  USER-RCA. 
 

To respect the interaction protocol used between 
agents, we propose to realize a sort of link between the 
RCA diagrams of the different agents. Basing on the 
synchronization points, main characteristic of this 
formalism, such a link consists in guaranteeing that at the 
moment of the reception of a message, an agent can't 
consume such a message except if it is in the 
corresponding state of the state of the sender agent. An 
agent that is in a communication state generates an 
external event that causes an external transition at the 
agent receiver. To receive such an event, this last must be 
in a waiting state (limited or unlimited). Indeed, the 
sending actions accomplished by a sender agent represent 
events for receiver agent. Thus, there is a correspondence 
between the sending actions of the sender and the events 
received by the receiver. For it, the user must develop the 
RCA-LINK module (figure 12) that contains the 
correspondence on the one hand, between the different 
states of agents and, on the other hand, between the 
events generated by the sender and the events received 
by the receiver. 

 
 
 
 
 
 
 
 
 

 
 

    Figure 12 : The functional module RCA-LINK. 
 

The object-oriented module ROLE-PROTOCOL 
(figure 13) represents the main module. It imports the 
RCA-LINK, IDENTIFICATION, and ACQUAINTANCE-
LIST modules. For the formal description of agents, we 
propose the class Agent (line 2).  

The definition of this class has as attributes PlayRole, 
State, and AcqList, to contain in this order, the agent's 
actual role, the current state of the agent, and the list of 
its acquaintances. In addition to different types of states 
defined in figure 7, we define in this module (figure 13) 

(fmod ACTION is 
protecting BOOL . 
sort Action . 
op IsSendingToAll : Action -> Bool . 
op IsSendingToOnlyOne : Action -> Bool . 
endfm) 

(fmod IDENTIFICATION is 
 sort AgentIdentifier  . 
 subsort  AgentIdentifier < Oid . 
 endfm) 

(fmod RCA is 
protecting ACTION . 
protecting AGENT-STATE . 
op TargetState : AgentState Action -> AgentState . 
op FeedBack : Action -> Action . 
endfm) 

(fmod USER-RCA is 
extending RCA . 

 
***User part*** 
endfm) 

(fmod RCA-LINK is 
protecting USER-RCA  . 
… 
op CorrespondingState : AgentState -> AgentState . 
op CorrespondingAction : Action -> Action . 
 
***User part*************** 
… 
endfm) 
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the type EventType (line 1) relative to the two types of 
events used in this formalism (Internal and External). 
The appearance of an event is expressed by message 
Event (line 3) having as parameters an agent, a role, the 
type of the event, the agent's state, and an action. 

In the RCA formalism, an agent changes state while 
doing either an internal transition or an external one. 
Figure 13 illustrates the necessary rewriting rules we 
developed modeling the possible cases of transitions 
(internal and external), while respecting the constraints 
of this formalism described by the table given in figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 : The object-oriented module ROLE-PROTOCOLE. 
 
 

 

(omod ROLE-PROTOCOLE is 
protecting RCA-LINK . 
protecting IDENTIFICATION . 
protecting ACQUAINTANCE-LIST . 
sorts Agent Role EventType . 
 
ops Internal External : -> EventType .           ***[1] 
class  Agent | PlayRole : Role, State : AgentState, AcqList : acquaintanceList  .       ***[2] 
Msg Event : Oid Role EventType AgentState Action -> Msg .       ***[3] 
 
************************************************************************************** 
vars A A1 : Oid . var S : AgentState . vars R R1 : Role . 
var Act : Action . var ACL : acquaintanceList . 
 
*******************************Possible cases of internal transition**************************** 
*******************************************First case************************************* 
crl[InternalTransitionCase1] :      ***[4] 
           Event(A, R, Internal, S, Act) 
           < A : Agent | PlayRole : R, State : S, AcqList : ACL > 
          => 
           < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : ACL > 
           if (IsInitial(S) or IsElementary(S) or IsComposite(S) or IslimitedWaiting(S)) . 
 
*******************************************Second case************************************ 
crl[InternalTransitionCase2] :      ***[5] 
          Event(A, R, Internal, S, Act) 
          < A : Agent | PlayRole : R, State : S, AcqList : ACL > 
        => 
          < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : TailA(ACL) > 
          Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction (Act)) 
          if IsOfCommunication(S) and IsSendingToOnlyOne(Act) . 
 
*******************************************Third case************************************** 
crl[InternalTransitionCase3] :      ***[6] 
           Event(A, R, Internal, S, Act) 
           < A : Agent | PlayRole : R, State : S, AcqList : ACL > 
        => 
           < A : Agent | PlayRole : R, State : S, AcqList : TailA(ACL) > 
       Event(A, R, Internal, S, Act) 
          Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction(Act)) 
          if IsOfCommunication(S) and IsSendingToAll(Act) and ACL =/= EmptyacquaintanceList . 
 
*********************Possible case of External transition***************************************** 
crl[ExternalTransition] :       ***[7] 
           Event(A, R, External, S, Act) 
           < A : Agent | PlayRole : Initiator, State : S, AcqList : ACL > 
         => 
           < A : Agent | PlayRole : Initiator, State : TargetState(S, Act), AcqList : ACL > 
           if  IsInitial(S) or IslimitedWaiting(S)  or  IsUnlimitedWaiting(S) . 
 
****************************************************************************************** 
… 
endom) 
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An agent doesn't do an internal transition except if it 
is in one of the following states: initial, elementary, 
composite, limited waiting or communication (see figure 
2). In the first four states, an internal transition is 
described by the rewriting rule (line 4) of figure 13. Such 
a rule expresses that at the moment of the appearance of 
an internal event, the agent consumes the message and 
changes its state using the TargetState function defined 
in the RCA module (figure 10). We treated separately the 
case of a communication state, knowing that from this 
state the agent generates an external event (sending of 
message) allowing its acquaintances that are in waiting to 
change their states. A message can be sent by an agent to 
only one agent belonging to its acquaintance list or to all 
its acquaintances. 

The first case is described by the rule of the line 5. 
Such a rule expresses, on the one hand, the consumption 
of an internal event, on the other hand, the generation of 
an external event sent to only one agent (here we adopt 
the strategy choosing the agent that is at the head of the 
acquaintances list using the HeadA function), if the agent 
sender is in a communication state. The second case is 
described by the rule of the line 6. Such a rule presents 
the sending of a message by the agent A to all its 
acquaintances. It presents a conditional loop. Indeed, it 
allows browsing the acquaintance list (ACL) of the agent, 
while using the two operations HeadA (determines the 
head of the list) and TailA (determines the rest of the 
list). Such a loop stops when the list is browsed 
completely. An agent doesn't do an external transition 
except if it is in a waiting state (limited either unlimited) 
or sometimes in its initial state (see figure 2). This is 
expressed by the rewriting rule of the line 7. When it 
occurs an external event to an agent, this last changes its 
state while doing an external transition, but the agent 
must be in an initial or waiting state (limited either 
unlimited).   

6 Case Study : Auction Application 
This section illustrates the application of our approach on 
a concrete example. It is about a simple example of an 
auction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
  

 

We have two kinds of agents: Auctioneer and Bidder. 
Each auction involves one Auctioneer and several 
Bidders.  

The Auctioneer has a catalog of products. Before 
beginning the auction, the Auctioneer sends the catalog 
to all participants. Then, it begins the auction for all 
products. The products are proposed sequentially to the 
participants. Figures 14.a and 14.b describe the 
representation of the Auctioneer and Bidder roles 
respectively using the RCA formalism. 

6.1 Application of the Translation Process 
The formal description of the behaviors of the agents 
whose roles are described using the RCA formalism 
implies all defined modules previously with the 
definition of the USER-RCA and RCA-LINK modules. 
Figures 15 and 16 illustrate the defined modules 
corresponding to the Auctioneer and Bidder roles 
respectively. The correspondence between these roles is 
presented in figure 17. Indeed, the two modules USER-
RCA1 (figure 15) and USER-RCA2 (figure 16) describe 
the Auctioneer and Bidder roles respectively in the same 
way. We limit ourselves to detail the USER-RCA1 
module only.  

In figure 15, we define the different states of the 
Auctioneer agent (lines 1 and 2). For example, the state 
AgentState(CommitmentDecision, communication) 
means that the state named CommitmentDecision is a 
communication state (see figure 14.a). The actions given 
in figure 14.a are described by line 3. To determine the 
target state  (line 4) according to a source state and a 
given action, we used the operation TargetState defined 
in figure 10. If the Auctionner agent is in its 
CommitmentDecision state, and the action to execute is 
AcceptProposalSent, the target state of this transition 
must be the final state EndI. To select the conditional 
rule to execute when the agent is in a communication 
state (see figure 13, lines 5 and 6), it is necessary to 
know the type of the action. For example, the line 5 of 
figure 15 indicates that the CFP-Sent action must be sent 
by the Auctioneer to all Bidders. 
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Figure 14 : Representation of the roles, Auctioneer  and Bidder using RCA formalism. 
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Figure 15 : The module USE-RCA1 corresponding to the  Auctioneer agent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 : The module USER-RCA2 corresponding to the Bidder agent. 
 
             

fmod USER-RCA 1 is 
extending RCA . 
 
****************States of an Auctioneer*********************************************** 
ops StartI SendingCFP WaitingProposals OfferEvaluationI SavingProposal   
                                                                           CommitmentDecision EndI : ->  NameAgentState .         ***[1] 
 
ops AgentState(StartI, initial) AgentState(SendingCFP, communication) 
      AgentState(WaitingProposals, limitedWaiting) AgentState(OfferEvaluationI, elementary) 
      AgentState(SavingProposal, elementary) AgentState(CommitmentDecision, communication) 
                                                                                              AgentState(EndI, final) : -> AgentState .        ***[2] 
 
***************Actions to accomplish by an Auctioneer************************************ 
ops TrueCondition CFP-Sent ExpiredTimeOut NoProposal HasProposal  ReceivedProposal 
                                                  ProposalSaved AcceptProposalSent RejectProposalSent : -> Action .       ***[3] 
 
***************Determination of the target state according to a state source and an action ********* 
eq TargetState(AgentState(StartI, initial), TrueCondition) = AgentState(SendingCFP, communication) .                
… 
eq TargetState(AgentState(CommitmentDecision, communication), AcceptProposalSent) =  
                                                                                                                         AgentState(EndI, final) .       ***[4] 
eq TargetState(AgentState(CommitmentDecision, communication), RejectProposalSent) =  
                                                                                                                         AgentState(EndI, final) . 
 
************* Determination of the type of an action *************************************** 
eq IsSendingToAll(CFP-Sent) = true .                              ***[5] 
eq IsSendingToOnlyOne(AcceptProposalSent) = true . 
        
endfm 

fmod USER-RCA2 is 
extending RCA . 
 
****************States of a Bidder************************************************** 
ops StartP OfferEvaluationP WaitingResult EndP : -> NameAgentState . 
 
ops AgentState(StartP, initial) AgentState(OfferEvaluationP, communication) 
               AgentState(WaitingResult, UnlimitedWaiting) AgentState(EndP, final) : -> AgentState . 
 
***************Action to accomplish by a Bidder*************************************** 
ops ReceivingCFP ProposalSent RejectSent ReceivingAcceptance  ReceivingReject : -> Action . 
 
****************Determination of the target state according to a state source and an action ***** 
eq TargetState(AgentState(StartP, initial), ReceivingCFP) = AgentState(OfferEvaluationP, communication) . 
… 
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingAcceptance ) = AgentState(EndP, final) . 
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingReject ) = AgentState(EndP, final) . 
 
*************** Determination of the type of an action************************************ 
eq IsSendingToOnlyOne(ProposalSent) = true .      
eq IsSendingToOnlyOne(RejectSent) = true .  
  
endfm 
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The RCA-LINK module of figure 17, presents a 
correspondence on the one hand, between the different 
states of the agents Auctioneer and Bidder and, on the 
other hand, between the events they exchange. For 
example, if the Auctioneer agent is in its communication 
state SendCFP, the Bidder must be in its initial state 
StartP (line 1). In the same way, if the Bidder is in its 
communication state OfferEvaluationP (line 3), the 
Auctioneer must wait its decision. Indeed, an external 

event for an agent receiver corresponds to a message sent 
by a sender agent. For example, when the Auctioneer 
throws a call-for-proposal (CFP-Sent), the Bidder agent 
receives the call-for-proposal event (ReceivingCFP). 
This is expressed by the rule of the line 2. Also, when the 
Bidder accepts to propose, it sends its proposition 
(ProposalSent), and of the other side, the Auctionner 
receives its proposition (ReceivedProposal) (line 4).  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 :  The module RCA-LINK. 
 
        
 
 
 
 
 
 
 
 
 
 

Figure 17 :  The module RCA-LINK. 
 

6.2 Validation of the Generated 
Description 

The rewriting logic offers a great flexibility in terms of 
simulation of a specification, in particular, concerning 
the choice of the initial configuration. This choice plays a 
primordial role in the validation of the description of a  
 

 
 
system. Using all the system’s description, we can 
validate a part of the system without involving the rest. 
For a validation of the AIP given by figure 14, we 
consider two essential cases: the case where there are 
Bidders that accept to propose and others do not, and the 
case where all Bidders refuse to propose. For the first 
case, we propose the following initial configuration : 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 18 :  Initial configuration. 
 

fmod RCA-LINK is 
protecting RCA1 . 
protecting RCA2 . 
sort EventType . 
 
ops Internal External : -> EventType . 
op CorrespondingState : AgentState -> AgentState . 
op CorrespondingAction : Action -> Action . 
 
************************************Auctioneer Part*********************************** 
 
eq CorrespondingState(AgentState(SendingCFP, communication)) = AgentState(StartP, initial) .                         ***[1] 
eq CorrespondingState(AgentState(CommitmentDecision, communication)) =  
                                                                               AgentState(WaitingResult, UnlimitedWaiting) . 
… 
eq CorrespondingAction(CFP-Sent) =  ReceivingCFP  .                                                      ***[2]  
eq CorrespondingAction(AcceptProposalSent) = ReceivingAcceptance . 
 
************************************Bidder Part***************************************** 
 
eq CorrespondingState(AgentState(OfferEvaluationP, communication)) = 
                                                                                                  AgentState(WaitingProposals, limitedWaiting) .     ***[3] 
… 
eq CorrespondingAction(ProposalSent) = ReceivedProposal .                               ***[4] 
 
endfm 

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList : ("Bidder1" :  
                                                                                                                            ("Bidder2" : “Bidder3”)) > 
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" > 
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" > 
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" > 
Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition) 
Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)  
Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent) 
Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)   
Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)  . 
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We define an initial configuration including an agent 
initiator '' Auctionneer '', and three  agents participants 
("Bidder1", "Bidder2", "Bidder 3"). In the beginning, 
every agent is in its initial state. From its 
OfferEvaluationP state a Bidder agent can send a 
proposition as it can refuse to propose. In the 

configuration of figure 18, Bidder1 and Bidder2 send 
their propositions whereas Bidder3 refuses to propose 
while sending a reject. The unlimited rewriting (without 
indicating the number of the rewriting steps) of this 
configuration gives the result illustrated by figure 19. 

 
 
 
 
 
 
 

 
Figure 19: Auctioneer and Bidders in their  final states.  

     
After it sends a call for proposal to all Bidders, the 

agent Auctioneer begins to receive the proposal from 
Bidders agents. Once the considered deadline is expired 
(internal event) the initiator throws its evaluation process 
while choosing the most appropriate proposition (here we 
adopt the strategy based on the first proposing).  

So, the Auctioneer sends to the chosen Bidder (here 
"Bidder1") an acceptance, and to the other (here 
"Biddert2") a reject. Bidder3 is not concerned because it 
refused to propose and therefore passes to its final state 
(see figure 14.b). For the second case, we propose the 
initial configuration of the following figure: 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 :  Initial configuration. 
 

The configuration of figure 20 looks like the one of 
figure 18 except that the Bidders refuse to propose. The 
unlimited rewriting (without indicating the number of the 

rewriting steps) of this configuration gives the result 
illustrated by figure 21.  

 
 
 
 
 
 
 

 
Figure 21: Auctioneer and Bidders in their  final states. 

         
Every participant who refuses to propose passes to 

the EndP state (see figure 14.b). In the same way, the 
initiator waits for the expiration of the deadline and as it 
doesn't receive any proposition during this interval of 
time, it passes on its turn in the EndP state (see figure 
14.a). Indeed, the configuration of figure 21 seems to be 
the same that the one of figure 19. It is due to the fact 
that in the RCA formalism an agent can have only one 
final state. However, such configurations are different 
(for example, the EndP state of agent Bidder1 in figure 

19 is a success state, but in figure 21 such a state presents 
a failure).    

6.3 Implementation 
Figure 22 illustrates a part of the code we developed. It 
visualizes the rewriting rule that describes the reception 
of an external event by the agent A1 who plays the 
Participant role and exists in the state S. This rule also 
expresses the transition from the state S of the agent A1 
to another target state determined by the function 

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList : 
                                                                                                    ("Bidder1" :  ("Bidder2" :  "Bidder3") > 
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" > 
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" > 
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" > 

    < "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList :  
                                                                                                           ("Bidder1" : ("Bidder2" : “Bidder3”)) > 
    < "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" > 
    < "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" > 
    < "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" > 
     Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition) 
     Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)  
     Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) 
     Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)   
     Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)  . 

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList : 
                                                                                                     ("Bidder1" : ("Bidder2" :  "Bidder3") > 
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" > 
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" > 
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" > 
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TargetState(S, Act). The triggering of such a transition 
only takes place if the agent A1 is in one of waiting 
(limited or unlimited) or initial states. This is expressed 

in this conditional rule by the boolean functions 
IsUnlimitedWaiting(S), IslimitedWaiting(S) and 
IsInitial(S) respectively.  

 

 
 

Figure 22 : Part of the developed code. 
 

Furthermore, figure 22 shows the limited rewriting 
(after 20 rewriting steps) of an initial configuration. In 
this configuration, we have the agent '' Auctioneer '' 
playing the Initiator role, and the three agents '' Bidder1 
'', '' Bidder2 '' and '' Bidder3 '' each playing the 
Participant role. All agents are in the departure in their 
initial states (StartI for agent Auctioneer and StartP for 
the Bidders). We suppose, in this initial configuration, 
that after the sending of the call for proposal  by the 
Auctionner to all Bidders, these last send propositions in 

the case where they are in state of evaluation of proposal 
OfferEvaluationP. This state is a communication state 
(see figure 14). 

The result of rewriting of such an initial configuration 
is illustrated by figure 23. The Auctioneer throws its 
decision process, and all Bidders wait for an answer from 
it. The agent Auctioneer is in its elementary state 
OfferEvaluationI and all Bidders are in their unlimited 
waiting states WaitingResult. 

 

        
Figure 23 : Result of limited rewriting (after 20 steps) of the  initial configuration. 

 

7 Conclusions and Future Work 
The RCA formalism allows specifying the roles 
protocols and is used to describe agents’ behavior. 
Compared to others formalisms, RCA allows recognizing 
the synchronization points between dual protocols. As 
for the other existing formalisms, RCA is not endowed  
 

 
 
yet with a formal semantics [28]. Furthermore, it only 
allows a partial formalization of MAS [17, 22]. 

In this article, we proposed a formal framework 
supporting the translation of interactions between agents, 
specified using the RCA formalism, in a Maude 
specification. The translation process is based on the 
RCA graphs. All the concepts used by the RCA 
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formalism are supported by Maude. Based on rewriting 
logic, the formal and object-oriented language Maude 
supports formal specification and programming for a 
wide range of applications.  The result of the translation 
procures a formal description of the interactions between 
agents preserving the consistency in their behavior. It 
offers a solid basis for their verification and validation 
process. The generated Maude specifications are flexible 
and remain open to extension.  

Maude is supported by a tool. This allowed us, as a 
first experiment, in addition to the modeling, to perform 
a validation (based on a simulation) of our approach. 
Furthermore, we work on the extension of our approach 
in order to integrate the possibilities offered by the 
Maude language (model-checker) to verify some 
properties of the interactions between agents described 
using RCA graphs and translated in Maude.   
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