
 Informatica 31 (2007) 337–350 337

A Formal Framework Supporting the Specification of the
Interactions between Agents
Farid Mokhati
Département d’Informatique
Université d’Oum El Bouaghi - Algérie
E-mail: Mokhati@yahoo.fr

Mourad Badri and Linda Badri

Département de Mathématiques et d'Informatique
Université du Québec à Trois-Rivières - Canada
E-mail: Mourad.Badri@uqtr.ca, Linda.Badri@uqtr.ca

Keywords: multi-agent systems, RCA, Maude, translation, behavior, interactions, formal specification,
verification and validation.

Received: May 24, 2005

In this paper we present a formal framework supporting the translation of interactions between agents
(the interactions are described with the help of the RCA formalism) in a Maude specification. Based on
rewriting logic, the formal and object-oriented language Maude supports formal specification and
programming for a wide range of applications. The main motivations of our work are essentially: (1) to
formally specify the behavior of multi-agent systems and (2) to provide a solid basis for their
verification and validation. The translation process is illustrated by means of a real case study.
Povzetek:Opisan je formalni okvir za prevajanje interakcij med agenti.

1 Introduction
In Multi-Agent Systems (MAS), agents interact in order
to exchange information, to cooperate and to coordinate
their tasks [24]. The usual approach to the description of
interactions between agents consists in using protocols
[8, 26]. Several agents’ interaction protocols (AIP) have
been proposed in the literature [7]. They constitute an
important part of MAS's infrastructures. However, most
of the protocols published in the literature are semi-
formal, vague or contain errors as mentioned in [23].
Knowing that AIP play a crucial role in MAS
development [30], their formal specification as well as
their verification constitute essential tasks [11]. In the
field of agents’ behavior specification, three major
approaches emerge in the literature: state-charts based
approaches [27, 22], Petri Nets based approaches [5, 1],
and approaches representing an adaptation of object-
oriented specification methods [19, 20].

Among the agents’ interaction protocols proposed in
the literature, we can mention the RCA formalism
(Représentation des Comportements d’Agents) [27],
which is based on strongly typed states-transitions
graphs. The RCA formalism allows describing agents'
behaviors graphically. This formalism has been used in
the design of several Cooperative Information Systems
(CIS) based on informational agents. We can mention,
for example, the NetMan project based on the
coordination of several agents [4], a project related to the
reactive reorganization of production shops and treating
the cooperation between agents having to solve a
problem in a distributed and cooperative way [28], as

well as a project on the hydraulic management of the
Camargue ecosystem and based on a negotiation process
between agents (Project SIMFONHYC) [18].

One of the strong points of the RCA formalism [18,
28] resides in the modular design of agents' behaviors.
Indeed, the use of composite action states makes it
possible the overlapping of behavioral plans and
therefore a description by successive refinements of
agents' behavior. This characteristic comes directly from
the notion of composite state of RCA graphs.
Nevertheless, some critiques on RCA graphs can be
formulated, notably on their formalization and on the
sequential aspect of the execution cycle of behavioral
plans [28]. Furthermore, this formalism allows the
visualization of the synchronization points between dual
protocols thanks to the complementarity between
communication states and external transition. It is then
easy to recognize the coordination points between dual
protocols [28]. However, RCA graphs as well as the
existing formalisms in the literature describing agents'
interaction protocols are not endowed again with a
formal semantics [28]. They only offer a semi-formal
specification [23] of interactions between agents. These
weaknesses can generate several problems in MAS
development and verification.

Using formal notations for the description of MAS'
behavior offers several advantages. It essentially allows
producing rigorous and precise descriptions supporting
efficiently their verification and validation process. The
Maude language, based on the rewriting logic, seems to

338 Informatica 31 (2007) 337–350 F. Mokhati et al.

us to be an interesting candidate. It offers, through its
rich notation, an interesting way for concurrent systems
formal specification and programming. Furthermore, it
also supports the description of multi-agent interactions
[21, 16]. In this paper, we present a formal framework
supporting the translation of multi-agent interactions,
specified using the RCA formalism, in a Maude
specification. The main motivations of our approach are
essentially: (1) to specify formally the behavior of multi-
agent systems, in particular, the interactions between
agents, and (2) to provide a solid basis for their
verification and validation process. The Maude
specifications, generated in the context of the developed
framework, have been validated using the platform
supporting the Maude language. The remainder of the
paper is organized as follows: Section 2 gives a brief
survey on the main related works. We present summarily
the RCA formalism in section 3. In section 4, we give the
basic concepts related to the rewriting logic as well as the
Maude language. Section 5 presents the translation
process. The proposed approach is illustrated using a
concrete case study in section 6. Finally, section 7 gives
some conclusions and future work directions.

2 Related Work
We present briefly in this section three formalisms
(AUML, CATN and RCA) supporting the description of
agents' interaction protocols. AUML [19, 9] is an
extension of the UML language allowing describing
interactions between agents. To represent multi-agent
interaction protocols, AUML adopts in fact an approach
in three layers. It uses, in the first level, packages and
templates to represent the protocol in whole. Sequence
diagrams, collaboration diagrams, activity diagrams, and
states-transitions diagrams are used to represent
interactions between agents. Activity diagrams and
states-transitions diagrams are also used to capture
agents’ internal behavior (for more details see [19]).
However, AUML only offers a semi-formal specification
of the interactions between agents.

The CATN formalism (Coupled Augmented
Transition NetWork) [10] is a states-transitions machine,
to which a particular goal (or significance) is associated.
A CATN can be decomposed in sub-CATNs. Each of
these components is a CATN, having its own goal. The
components of a CATN are joined together by ad-hoc
transitions named "interactions transitions". Among
these, we distinguish the non-terminal interactions
transitions of those that are terminal. These last
correspond to language acts (between agents) or to
private actions of agents. This recursive aspect of the
CATN allows a top-down design approach, from the
most abstract behavior of a group of agents until their
most concrete actions (individual terminal actions and
communications through the interactions transitions).
Each agent can execute in a concurrent way several
CATNs depending on the tasks that it has to achieve [10,
25].

The RCA formalism [27, 28], supporting the
description of role protocols, is used to describe agents'

behavior. It is based on states-transitions diagrams
introducing seven types of states and two types of
transitions. The seven states are: the initial state, the final
state, the elementary action state, the composite action
state, the communication state and the waiting states
(limited and unlimited). The two types of transitions are
the internal transition and the external transition. Using
this formalism, it is easy to recognize the coordination
points between dual protocols. The RCA formalism is
not limited to the description of the exchanges of
messages between agents (as the case in the other
formalisms). It also allows clarifying the actions that they
undertake. In addition, the RCA graphs describe the
working of the agents and help thus the design of their
interactions. The links that exist between the macro level
(i.e. the system's behavior) and the micro level (i.e. the
agent's behavior) may be considered in an integrated way
[28, 29].

These different approaches certainly offer some
elements of answer to some problems related MAS
development. However, they only allow a partial
formalization of MAS. Furthermore, some authors [6, 5]
opposed to the use of formalisms based on state-
transition graphs two major arguments: 1) the
impossibility to be able to verify the consistency of the
protocols thus specified; and 2) the absence of taking into
account the concurrent aspects of protocols [28]. In spite
of the advantages that it offers relatively to the other
formalisms, the RCA formalism only offers a graphic
semi-formal description [18]. Furthermore, it is not
endowed again with a formal semantics. These
weaknesses combined to the complexity of MAS can
generate several problems in their development and
verification processes. The use of an appropriate formal
notation for the description of MAS' behavior offers
several advantages. It essentially allows the production
of rigorous and precise descriptions supporting
efficiently their verification and validation process. Our
approach is similar, in terms of objectives, to the
previously quoted approaches. It consists, essentially, to
support the important stage of the specification of agents'
behaviors. However, we preferred to adopt a more formal
approach in the specification of agents' behaviors in
terms of interactions allowing, among others, to support
the verification of consistency (internal and global) in the
behavior. Our approach allows translating the interaction
protocols described using the RCA formalism in the
Maude language. The Maude system consists in a high-
level language of programming, specification and
modeling based on rewriting logic [2, 15, 21]. It is also
endowed with a high performance interpreter. It allows
describing concurrent systems and supports the formal
specification of distributed systems [14, 29, 12].

3 RCA Formalism
RCA (Représentation des Comportements d'Agents) [27,
28] is a formalism allowing describing an agent's
behavior graphically. It is based on a strongly typed
graph: seven types of states and two types of transitions
(figure 1). The seven states are the initial state (to show

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 339

the beginning of the graph), the final state (to mark the
end of the graph), the elementary action state (that
corresponds to the agent's simple action), the composite
action state (it is in fact about the call to another
protocol), the communication state (sending of message),
and the limited and unlimited waiting states (waiting of
treatments done by other agents). The two types of
transitions are the internal transition (it corresponds to
the end of an activity and provokes the passage to
another state) and the external transition (it is in fact a
reception of a message that provokes, like an internal
transition, the change of the agent's activity). An external
transition is triggered by a communication state at
another agent.

Figure 1 : Convention of representation
of the RCA formalism.

The number of internal and external transitions

depends on the type of the starting state and its
transitions. It can be either null, limited or unlimited
(figure 2).

Authorized
internal

transitions
number

Authorized
external

transitions
number

Type of transition’s
departure state

[Min..Max] [Min..Max]
Initial state [0 .. 1] [0 .. 1]
Elementary action state [1 .. ∞] [0 .. 0]
Composite action state [1 .. ∞] [0 .. 0]
Communication state [1 .. 2] [0 .. 0]
Limited waiting state [1 .. 1] [1 .. ∞]
Unlimited waiting state [0 .. 0] [1 .. ∞]
Final state [0 .. 0] [0 .. 0]

Figure 2 : Authorized transitions number according

to the starting state.

Each states graph starts with a unique initial state and
finishes by a unique final state. The internal events are
the consequence of the agent's actions represented by
action states (elementary or composite). They trigger the

internal transitions. The external events result from
communication activities of the agents, i.e. a reception of
message constitutes an external event and provokes the
crossing of an external transition. Of this fact, the type of
allowed transition at a precise place of the graph depends
exclusively of the origin state type of this transition:

• Initial state : only one transition (internal or

external) may quit this state.
• Action state (simple or composite) : the internal

transitions are in any number not null after
action states.

• Communication state : one or two internal
transitions may quit the communication state.

• Limited waiting state : the waiting may stop
after the reception of a message (external
transition), or if no message has been received
beyond the waiting delay (internal transition).
Furthermore, only one internal transition may
quit a limited waiting.

• Unlimited waiting state : this waiting type
remains while that it doesn't occur an external
event (reception of message). It is therefore
about a blocking state.

4 Rewriting Logic and Maude
Language

4.1 Rewriting Logic
The rewriting logic, having a sound and complete
semantics, was introduced by Meseguer [14]. It allows
describing concurrent systems. This logic unifies all the
formal models that express concurrence [13, 15]. In
rewriting logic, the logic formulas are called rewriting
rules. They have the following form: R:[t] [t’] if C.
Rule R indicates that term t becomes (is transformed
into) t’ if a certain condition C if verified. Term t
represents a partial state of a global state S of the
described system. The modification of the global state S
of the system to another state S’ is realized by the
parallel rewriting of one or more terms that express the
partial states. The distributed state of a concurrent system
is represented as a term whose sub-terms represent the
different components of the concurrent state. The
concurrent state’s structure can have a variety of
equivalent representations because it satisfies certain
structural laws (equivalence class).

Figure 3 : Example of a portion of the Maude program.

1. sort Configuration .
2. sort Object .
3. sort Msg .
4. subsort Object < Configuration .
5. subsort Msg < Configuration .
6. op null : -> Configuration .
7. op_ _ : Configuration Configuration ->
 Configuration [assoc comm id : null] .

Initial Elementary Limited waiting
state action state state

Final Composite Unlimited waiting
 state action state state

Communication Internal External
 state transition transition

340 Informatica 31 (2007) 337–350 F. Mokhati et al.

For example, in an object-oriented system the
concurrent state that is usually called configuration has
the structure of a multi-set of objects and messages.
Therefore, we can have configurations constructed by a
binary operator applied to binary sets as illustrated in
figure 3.

The portion of program illustrated in figure 3 gives a
definition of three types: Configuration, Object and
Msg. In lines 4 and 5, Object and Msg are sub-types of
Configuration. Objects and messages are in fact multi-
set configuration singletons. More complex
configurations are generated from the application of the
union on these multi-set singletons (objects and
messages). Where there is neither floating messages nor
live objects, we have in this case an empty configuration
(line 6). The construction of a new configuration in terms
of other configurations is done with line 7’s operation.
We can note that this operation has no name and that the
two sub lines indicate the positions of two parameters of
configuration type. This operation, which is the multi-set
union, satisfies the structural laws of association and of
commutation. It also possesses a neutral element null.
For example, if we have a message M1 that represents a
configuration, and an object <O : C|atts > (please note
that O is an object’s identifier, C its class and atts the list
of its attributes) that represents in itself another
configuration, then we can construct another
configuration in terms of those two configurations: M1
< O : C | atts >. This one is equivalent to the
configuration < O : C | atts > M1 because the __
operation is commutative.

4.2 Maude
Maude is a specification and programming language
based on the rewriting logic [14, 3]. Three types of
modules are defined in Maude. Functional modules allow
defining data types and their functions through equations
theory. Figure 4.a represents the functional module Nat
specifying natural numbers. Such a module is imported
in the module FACT (figure 4.b) to calculate the factorial
of natural numbers. System modules define the dynamic
behavior of a system. This type of modules extends
functional modules by introducing rewriting rules. A
maximal degree of concurrence is offered by this type of
module. Finally, there are the object-oriented modules
that can be reduced to system modules. In relation to
system modules, object-oriented modules offer a more
appropriate syntax to describe the basic entities of the
object paradigm as, among others: objects, messages and
configuration. Only one rewriting rule allows expressing
the consumption of certain floating messages, the
sending of new messages, the destruction of objects, the
creation of new objects, state change of certain objects,
etc.

Figure 5.a illustrates the use of a system module
BANK-ACCOUNT to define an object counts banking A
and the two operations capable to affect its content credit
and debit while executing the rewriting rules defined in
this module. Figure 5.b represents the same BANK-

ACCOUNT module with a more appropriate object-
oriented syntax.

 (a) (b)

Figure 4 : Functional Modules Nat and FACT.

We note, that after the execution of the unconditional

rule [credit], the message credit(A, M) is consumed and
the content of the account is increased. In the same way,
the execution of the conditional rule [debit] requires that
the condition (N>=M) be verified. The execution of such
rule generates the consumption of the message
debit(A,M) and the reduction of the content of the
account.

 (a)

(b)

Figure 5 : The same BANK-ACCOUNT module in system
module and O.O module forms.

fmod NAT is
sorts Zero NzNat Nat .
subsort Zero NzNat < Nat .
***constructors
op 0 : -> Zero .
op s_ : Nat -> NzNat .
….
endfm

fmod FACT is
Including NAT .
op _! : Nat -> NzNat .

var N : Nat .
eq 0 ! = 1 .
eq (s N) ! = (s N) * N !.
endfm

mod BANK-ACCOUNT is
protecting INT .
 including CONFIGURATION .
op Account : -> Cid.
op bal :_ : Int -> Attribute .
ops credit debit : Oid Nat -> Msg .
var A : Oid . vars M N : Int .

rl [credit] : < A : Account | bal : N > credit(A, M)
 => < A : Account | bal : N + M > .

crl [debit] : < A : Account | bal : N > debit(A, M)

 => < A : Account | bal : N - M >
 If N >= M .

endm

(omod BANK-ACCOUNT is
protecting MACHINE-INT .
class Account | bal : MachineInt .
msgs credit debit : Oid MachineInt -> Msg .
var A : Oid .
vars M N : MachineInt .

rl [credit] : < A : Account | bal : N > credit(A, M)
 => < A : Account | bal : (N + M) > .

crl [debit] : < A : Account | bal : N > debit(A, M)

 => < A : Account | bal : (N – M) >
 If N >= M .

endom)

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 341

5 Translating RCA Descriptions in
Maude

We developed a formal framework allowing the formal
specification of role protocols described using RCA
formalism. The framework is composed, as illustrated by

figure 6, of several modules: an object-oriented module
(ROLE-PROTOCOLE) and several functional modules
(the remainder of modules).

Figure 6 : RCA-Maude frameworks’ architecture.

Figure 7 : The functional module AGENT-STATE.

The functional module AGENT-STATE (figure 7)

contains the different necessary type declarations for the
definition of a state (line [1]) and, on the other hand, the
definition of operations used for the construction and the
manipulation of a state (lines [2, 3, 4, 5, 6, 7, 8, 9, 10]),

as well as equations implementing these operations (lines
[11, 12, 13, 14, 15, 16, 17]).

In the ACTION module (figure 8), in addition to the
type Action, we define the two functions
IsSendingToOnlyOne and IsSendingToAll. The first

ACTION

AGENT-STATE

IDENTIFICATION

RCA

ACQUAINTANCE-LIST

ROLE-
PROTOCOLE

: Module
: Import

USER-RCA1

RCA -LINK

(fmod AGENT-STATE is
sorts AgentState KindAgentState NameAgentState . ***[1]

ops initial final communication elementary composite
 limitedWaiting UnlimitedWaiting : -> KindAgentState . ***[2]

op AgentState : NameAgentState KindAgentState -> AgentState . ***[3]
op IsInitial : AgentState -> Bool . ***[4]
op IsFinal : AgentState -> Bool . ***[5]
op IsOfCommunication : AgentState -> Bool . ***[6]
op IsElementary : AgentState -> Bool . ***[7]
op IsComposite : AgentState -> Bool . ***[8]
op IslimitedWaiting : AgentState -> Bool . ***[9]
op IsUnlimitedWaiting : AgentState -> Bool . ***[10]

var k : KindAgentState . var ns : NameAgentState .

eq IsInitial(AgentState(ns, k)) = if k == initial then true ***[11]
 else false fi .
eq IsFinal(AgentState(ns, k)) = if k == final then true ***[12]
 else false fi .
eq IsOfCommunication(AgentState(ns, k)) = if k == communication then true * **[13]
 else false fi .
eq IsElementary(AgentState(ns, k)) = if k == elementary then true ***[14]
 else false fi .
eq IsComposite(AgentState(ns, k)) = if k == composite then true ***[15]
 else false fi .
eq IslimitedWaiting(AgentState(ns, k)) = if k == limitedWaiting then true ***[16]
 else false fi .
eq IsUnlimitedWaiting(AgentState(ns, k)) = if k == UnlimitedWaiting then true ***[17]
 else false fi .
endfm)

342 Informatica 31 (2007) 337–350 F. Mokhati et al.

function determines if an action is destined to only one
agent's acquaintance, on the other hand the second
function indicates if it is necessary to send a message to
all agent's acquaintances. To describe the identification
mechanism of agents, we define the functional module
IDENTIFICATION (figure 9). Furthermore, an agent
must be endowed with a list of its acquaintances allowing
it to exchange messages with the other agents. We define
for it the functional module ACQUAINTANCE-LIST to
manage the lists of the agents’ acquaintances . Due to
imitation of space and a considerable size of this last
module, we don't present it in this paper.

Figure 8 : The functional module ACTION.

Figure 9 : The functional module

IDENTIFICATION.

To define an RCA diagram, we propose the RCA

module (figure 10). This module reuses the AGENT-
STATE and ACTION modules. It includes the definition
of two operations: TargetState that determines the target
state according to a state source and an action, and the
FeedBack operation used in the case where the treatment
accomplished by the agent takes place while toppling
between two states during a limited length. To each event
coming from a state source, such a function determines
the appropriate action that should be executed from the
target state as a feedback.

Figure 10 : The functional module RCA.

For the construction of an RCA diagram for an

application, we propose to extend the RCA module in
another USER-RCA module (figure 11). In this module,
the user must: mention all states constituting the RCA
diagram, define all possible actions, attach the actions in
the states using the TargetState function, determine the
actions constituting feedbacks using the Feedback

function, and finally specify for every communication
action whether it is sent to all (using the
IsSendingActionToAll function) or to only one (using
IsSendingActionToOnlyOne). An USER-RCA module
(figure 11) is associated with every category of agents
(playing the same role).

Figure 11 : The functional

Module USER-RCA.

To respect the interaction protocol used between
agents, we propose to realize a sort of link between the
RCA diagrams of the different agents. Basing on the
synchronization points, main characteristic of this
formalism, such a link consists in guaranteeing that at the
moment of the reception of a message, an agent can't
consume such a message except if it is in the
corresponding state of the state of the sender agent. An
agent that is in a communication state generates an
external event that causes an external transition at the
agent receiver. To receive such an event, this last must be
in a waiting state (limited or unlimited). Indeed, the
sending actions accomplished by a sender agent represent
events for receiver agent. Thus, there is a correspondence
between the sending actions of the sender and the events
received by the receiver. For it, the user must develop the
RCA-LINK module (figure 12) that contains the
correspondence on the one hand, between the different
states of agents and, on the other hand, between the
events generated by the sender and the events received
by the receiver.

 Figure 12 : The functional module RCA-LINK.

The object-oriented module ROLE-PROTOCOL
(figure 13) represents the main module. It imports the
RCA-LINK, IDENTIFICATION, and ACQUAINTANCE-
LIST modules. For the formal description of agents, we
propose the class Agent (line 2).

The definition of this class has as attributes PlayRole,
State, and AcqList, to contain in this order, the agent's
actual role, the current state of the agent, and the list of
its acquaintances. In addition to different types of states
defined in figure 7, we define in this module (figure 13)

(fmod ACTION is
protecting BOOL .
sort Action .
op IsSendingToAll : Action -> Bool .
op IsSendingToOnlyOne : Action -> Bool .
endfm)

(fmod IDENTIFICATION is
 sort AgentIdentifier .
 subsort AgentIdentifier < Oid .
 endfm)

(fmod RCA is
protecting ACTION .
protecting AGENT-STATE .
op TargetState : AgentState Action -> AgentState .
op FeedBack : Action -> Action .
endfm)

(fmod USER-RCA is
extending RCA .

User part
endfm)

(fmod RCA-LINK is
protecting USER-RCA .
…
op CorrespondingState : AgentState -> AgentState .
op CorrespondingAction : Action -> Action .

User part************
…
endfm)

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 343

the type EventType (line 1) relative to the two types of
events used in this formalism (Internal and External).
The appearance of an event is expressed by message
Event (line 3) having as parameters an agent, a role, the
type of the event, the agent's state, and an action.

In the RCA formalism, an agent changes state while
doing either an internal transition or an external one.
Figure 13 illustrates the necessary rewriting rules we
developed modeling the possible cases of transitions
(internal and external), while respecting the constraints
of this formalism described by the table given in figure 2.

Figure 13 : The object-oriented module ROLE-PROTOCOLE.

(omod ROLE-PROTOCOLE is
protecting RCA-LINK .
protecting IDENTIFICATION .
protecting ACQUAINTANCE-LIST .
sorts Agent Role EventType .

ops Internal External : -> EventType . ***[1]
class Agent | PlayRole : Role, State : AgentState, AcqList : acquaintanceList . ***[2]
Msg Event : Oid Role EventType AgentState Action -> Msg . ***[3]

**
vars A A1 : Oid . var S : AgentState . vars R R1 : Role .
var Act : Action . var ACL : acquaintanceList .

*******************************Possible cases of internal transition****************************
First case**********************************
crl[InternalTransitionCase1] : ***[4]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : ACL >
 if (IsInitial(S) or IsElementary(S) or IsComposite(S) or IslimitedWaiting(S)) .

Second case*********************************
crl[InternalTransitionCase2] : ***[5]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : TailA(ACL) >
 Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction (Act))
 if IsOfCommunication(S) and IsSendingToOnlyOne(Act) .

Third case***********************************
crl[InternalTransitionCase3] : ***[6]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : S, AcqList : TailA(ACL) >
 Event(A, R, Internal, S, Act)
 Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction(Act))
 if IsOfCommunication(S) and IsSendingToAll(Act) and ACL =/= EmptyacquaintanceList .

*********************Possible case of External transition***
crl[ExternalTransition] : ***[7]
 Event(A, R, External, S, Act)
 < A : Agent | PlayRole : Initiator, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : Initiator, State : TargetState(S, Act), AcqList : ACL >
 if IsInitial(S) or IslimitedWaiting(S) or IsUnlimitedWaiting(S) .

**
…
endom)

344 Informatica 31 (2007) 337–350 F. Mokhati et al.

An agent doesn't do an internal transition except if it
is in one of the following states: initial, elementary,
composite, limited waiting or communication (see figure
2). In the first four states, an internal transition is
described by the rewriting rule (line 4) of figure 13. Such
a rule expresses that at the moment of the appearance of
an internal event, the agent consumes the message and
changes its state using the TargetState function defined
in the RCA module (figure 10). We treated separately the
case of a communication state, knowing that from this
state the agent generates an external event (sending of
message) allowing its acquaintances that are in waiting to
change their states. A message can be sent by an agent to
only one agent belonging to its acquaintance list or to all
its acquaintances.

The first case is described by the rule of the line 5.
Such a rule expresses, on the one hand, the consumption
of an internal event, on the other hand, the generation of
an external event sent to only one agent (here we adopt
the strategy choosing the agent that is at the head of the
acquaintances list using the HeadA function), if the agent
sender is in a communication state. The second case is
described by the rule of the line 6. Such a rule presents
the sending of a message by the agent A to all its
acquaintances. It presents a conditional loop. Indeed, it
allows browsing the acquaintance list (ACL) of the agent,
while using the two operations HeadA (determines the
head of the list) and TailA (determines the rest of the
list). Such a loop stops when the list is browsed
completely. An agent doesn't do an external transition
except if it is in a waiting state (limited either unlimited)
or sometimes in its initial state (see figure 2). This is
expressed by the rewriting rule of the line 7. When it
occurs an external event to an agent, this last changes its
state while doing an external transition, but the agent
must be in an initial or waiting state (limited either
unlimited).

6 Case Study : Auction Application
This section illustrates the application of our approach on
a concrete example. It is about a simple example of an
auction.

We have two kinds of agents: Auctioneer and Bidder.
Each auction involves one Auctioneer and several
Bidders.

The Auctioneer has a catalog of products. Before
beginning the auction, the Auctioneer sends the catalog
to all participants. Then, it begins the auction for all
products. The products are proposed sequentially to the
participants. Figures 14.a and 14.b describe the
representation of the Auctioneer and Bidder roles
respectively using the RCA formalism.

6.1 Application of the Translation Process
The formal description of the behaviors of the agents
whose roles are described using the RCA formalism
implies all defined modules previously with the
definition of the USER-RCA and RCA-LINK modules.
Figures 15 and 16 illustrate the defined modules
corresponding to the Auctioneer and Bidder roles
respectively. The correspondence between these roles is
presented in figure 17. Indeed, the two modules USER-
RCA1 (figure 15) and USER-RCA2 (figure 16) describe
the Auctioneer and Bidder roles respectively in the same
way. We limit ourselves to detail the USER-RCA1
module only.

In figure 15, we define the different states of the
Auctioneer agent (lines 1 and 2). For example, the state
AgentState(CommitmentDecision, communication)
means that the state named CommitmentDecision is a
communication state (see figure 14.a). The actions given
in figure 14.a are described by line 3. To determine the
target state (line 4) according to a source state and a
given action, we used the operation TargetState defined
in figure 10. If the Auctionner agent is in its
CommitmentDecision state, and the action to execute is
AcceptProposalSent, the target state of this transition
must be the final state EndI. To select the conditional
rule to execute when the agent is in a communication
state (see figure 13, lines 5 and 6), it is necessary to
know the type of the action. For example, the line 5 of
figure 15 indicates that the CFP-Sent action must be sent
by the Auctioneer to all Bidders.

AcceptProposal,
RejectProposals

Sent

StartI
TrueCond

EndI

Commitment
Decision

No
Proposal

Has
Proposals

OfferEvalu-ationI

Proposal
saved

Received
Proposal

Saving
Proposal

Waiting
Proposals

ExpiredTime
Out CFP Sent

Sending
CFP

Reject sentWaiting
Result

Receiving
Acceptance

Receiving
Reject

EndP

Proposal sent

StartP OfferEvaluationP
 ReceivingCFP

Figure 14 : Representation of the roles, Auctioneer and Bidder using RCA formalism.

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 345

Figure 15 : The module USE-RCA1 corresponding to the Auctioneer agent.

Figure 16 : The module USER-RCA2 corresponding to the Bidder agent.

fmod USER-RCA 1 is
extending RCA .

****************States of an Auctioneer***
ops StartI SendingCFP WaitingProposals OfferEvaluationI SavingProposal
 CommitmentDecision EndI : -> NameAgentState . ***[1]

ops AgentState(StartI, initial) AgentState(SendingCFP, communication)
 AgentState(WaitingProposals, limitedWaiting) AgentState(OfferEvaluationI, elementary)
 AgentState(SavingProposal, elementary) AgentState(CommitmentDecision, communication)
 AgentState(EndI, final) : -> AgentState . ***[2]

***************Actions to accomplish by an Auctioneer************************************
ops TrueCondition CFP-Sent ExpiredTimeOut NoProposal HasProposal ReceivedProposal
 ProposalSaved AcceptProposalSent RejectProposalSent : -> Action . ***[3]

***************Determination of the target state according to a state source and an action *********
eq TargetState(AgentState(StartI, initial), TrueCondition) = AgentState(SendingCFP, communication) .
…
eq TargetState(AgentState(CommitmentDecision, communication), AcceptProposalSent) =
 AgentState(EndI, final) . ***[4]
eq TargetState(AgentState(CommitmentDecision, communication), RejectProposalSent) =
 AgentState(EndI, final) .

************* Determination of the type of an action ***************************************
eq IsSendingToAll(CFP-Sent) = true . ***[5]
eq IsSendingToOnlyOne(AcceptProposalSent) = true .

endfm

fmod USER-RCA2 is
extending RCA .

****************States of a Bidder**
ops StartP OfferEvaluationP WaitingResult EndP : -> NameAgentState .

ops AgentState(StartP, initial) AgentState(OfferEvaluationP, communication)
 AgentState(WaitingResult, UnlimitedWaiting) AgentState(EndP, final) : -> AgentState .

***************Action to accomplish by a Bidder***************************************
ops ReceivingCFP ProposalSent RejectSent ReceivingAcceptance ReceivingReject : -> Action .

****************Determination of the target state according to a state source and an action *****
eq TargetState(AgentState(StartP, initial), ReceivingCFP) = AgentState(OfferEvaluationP, communication) .
…
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingAcceptance) = AgentState(EndP, final) .
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingReject) = AgentState(EndP, final) .

*************** Determination of the type of an action************************************
eq IsSendingToOnlyOne(ProposalSent) = true .
eq IsSendingToOnlyOne(RejectSent) = true .

endfm

346 Informatica 31 (2007) 337–350 F. Mokhati et al.

The RCA-LINK module of figure 17, presents a
correspondence on the one hand, between the different
states of the agents Auctioneer and Bidder and, on the
other hand, between the events they exchange. For
example, if the Auctioneer agent is in its communication
state SendCFP, the Bidder must be in its initial state
StartP (line 1). In the same way, if the Bidder is in its
communication state OfferEvaluationP (line 3), the
Auctioneer must wait its decision. Indeed, an external

event for an agent receiver corresponds to a message sent
by a sender agent. For example, when the Auctioneer
throws a call-for-proposal (CFP-Sent), the Bidder agent
receives the call-for-proposal event (ReceivingCFP).
This is expressed by the rule of the line 2. Also, when the
Bidder accepts to propose, it sends its proposition
(ProposalSent), and of the other side, the Auctionner
receives its proposition (ReceivedProposal) (line 4).

Figure 17 : The module RCA-LINK.

Figure 17 : The module RCA-LINK.

6.2 Validation of the Generated
Description

The rewriting logic offers a great flexibility in terms of
simulation of a specification, in particular, concerning
the choice of the initial configuration. This choice plays a
primordial role in the validation of the description of a

system. Using all the system’s description, we can
validate a part of the system without involving the rest.
For a validation of the AIP given by figure 14, we
consider two essential cases: the case where there are
Bidders that accept to propose and others do not, and the
case where all Bidders refuse to propose. For the first
case, we propose the following initial configuration :

Figure 18 : Initial configuration.

fmod RCA-LINK is
protecting RCA1 .
protecting RCA2 .
sort EventType .

ops Internal External : -> EventType .
op CorrespondingState : AgentState -> AgentState .
op CorrespondingAction : Action -> Action .

************************************Auctioneer Part***********************************

eq CorrespondingState(AgentState(SendingCFP, communication)) = AgentState(StartP, initial) . ***[1]
eq CorrespondingState(AgentState(CommitmentDecision, communication)) =
 AgentState(WaitingResult, UnlimitedWaiting) .
…
eq CorrespondingAction(CFP-Sent) = ReceivingCFP . ***[2]
eq CorrespondingAction(AcceptProposalSent) = ReceivingAcceptance .

************************************Bidder Part***

eq CorrespondingState(AgentState(OfferEvaluationP, communication)) =
 AgentState(WaitingProposals, limitedWaiting) . ***[3]
…
eq CorrespondingAction(ProposalSent) = ReceivedProposal . ***[4]

endfm

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList : ("Bidder1" :
 ("Bidder2" : “Bidder3”)) >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition)
Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)
Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)
Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)
Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) .

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 347

We define an initial configuration including an agent
initiator '' Auctionneer '', and three agents participants
("Bidder1", "Bidder2", "Bidder 3"). In the beginning,
every agent is in its initial state. From its
OfferEvaluationP state a Bidder agent can send a
proposition as it can refuse to propose. In the

configuration of figure 18, Bidder1 and Bidder2 send
their propositions whereas Bidder3 refuses to propose
while sending a reject. The unlimited rewriting (without
indicating the number of the rewriting steps) of this
configuration gives the result illustrated by figure 19.

Figure 19: Auctioneer and Bidders in their final states.

After it sends a call for proposal to all Bidders, the

agent Auctioneer begins to receive the proposal from
Bidders agents. Once the considered deadline is expired
(internal event) the initiator throws its evaluation process
while choosing the most appropriate proposition (here we
adopt the strategy based on the first proposing).

So, the Auctioneer sends to the chosen Bidder (here
"Bidder1") an acceptance, and to the other (here
"Biddert2") a reject. Bidder3 is not concerned because it
refused to propose and therefore passes to its final state
(see figure 14.b). For the second case, we propose the
initial configuration of the following figure:

Figure 20 : Initial configuration.

The configuration of figure 20 looks like the one of
figure 18 except that the Bidders refuse to propose. The
unlimited rewriting (without indicating the number of the

rewriting steps) of this configuration gives the result
illustrated by figure 21.

Figure 21: Auctioneer and Bidders in their final states.

Every participant who refuses to propose passes to

the EndP state (see figure 14.b). In the same way, the
initiator waits for the expiration of the deadline and as it
doesn't receive any proposition during this interval of
time, it passes on its turn in the EndP state (see figure
14.a). Indeed, the configuration of figure 21 seems to be
the same that the one of figure 19. It is due to the fact
that in the RCA formalism an agent can have only one
final state. However, such configurations are different
(for example, the EndP state of agent Bidder1 in figure

19 is a success state, but in figure 21 such a state presents
a failure).

6.3 Implementation
Figure 22 illustrates a part of the code we developed. It
visualizes the rewriting rule that describes the reception
of an external event by the agent A1 who plays the
Participant role and exists in the state S. This rule also
expresses the transition from the state S of the agent A1
to another target state determined by the function

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList :
 ("Bidder1" : ("Bidder2" : "Bidder3") >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >

 < "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList :
 ("Bidder1" : ("Bidder2" : “Bidder3”)) >
 < "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 < "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 < "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition)
 Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)
 Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)
 Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)
 Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) .

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList :
 ("Bidder1" : ("Bidder2" : "Bidder3") >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >

348 Informatica 31 (2007) 337–350 F. Mokhati et al.

TargetState(S, Act). The triggering of such a transition
only takes place if the agent A1 is in one of waiting
(limited or unlimited) or initial states. This is expressed

in this conditional rule by the boolean functions
IsUnlimitedWaiting(S), IslimitedWaiting(S) and
IsInitial(S) respectively.

Figure 22 : Part of the developed code.

Furthermore, figure 22 shows the limited rewriting
(after 20 rewriting steps) of an initial configuration. In
this configuration, we have the agent '' Auctioneer ''
playing the Initiator role, and the three agents '' Bidder1
'', '' Bidder2 '' and '' Bidder3 '' each playing the
Participant role. All agents are in the departure in their
initial states (StartI for agent Auctioneer and StartP for
the Bidders). We suppose, in this initial configuration,
that after the sending of the call for proposal by the
Auctionner to all Bidders, these last send propositions in

the case where they are in state of evaluation of proposal
OfferEvaluationP. This state is a communication state
(see figure 14).

The result of rewriting of such an initial configuration
is illustrated by figure 23. The Auctioneer throws its
decision process, and all Bidders wait for an answer from
it. The agent Auctioneer is in its elementary state
OfferEvaluationI and all Bidders are in their unlimited
waiting states WaitingResult.

Figure 23 : Result of limited rewriting (after 20 steps) of the initial configuration.

7 Conclusions and Future Work
The RCA formalism allows specifying the roles
protocols and is used to describe agents’ behavior.
Compared to others formalisms, RCA allows recognizing
the synchronization points between dual protocols. As
for the other existing formalisms, RCA is not endowed

yet with a formal semantics [28]. Furthermore, it only
allows a partial formalization of MAS [17, 22].

In this article, we proposed a formal framework
supporting the translation of interactions between agents,
specified using the RCA formalism, in a Maude
specification. The translation process is based on the
RCA graphs. All the concepts used by the RCA

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 349

formalism are supported by Maude. Based on rewriting
logic, the formal and object-oriented language Maude
supports formal specification and programming for a
wide range of applications. The result of the translation
procures a formal description of the interactions between
agents preserving the consistency in their behavior. It
offers a solid basis for their verification and validation
process. The generated Maude specifications are flexible
and remain open to extension.

Maude is supported by a tool. This allowed us, as a
first experiment, in addition to the modeling, to perform
a validation (based on a simulation) of our approach.
Furthermore, we work on the extension of our approach
in order to integrate the possibilities offered by the
Maude language (model-checker) to verify some
properties of the interactions between agents described
using RCA graphs and translated in Maude.

References
[1] Bakam I., Kordon F., Le Page C., Bousquet F.

« Formalization of a Spatialized Multiagent Model
Using Coloured Petri Nets for the Study of a
Hunting Management System ». First International
Workshop, FAABS 2000, Greenbelt, MD, USA,
April 2000. FAABS 2000.

[2] Bruni R., and Meseguer J., « Generalized rewrite
theories ». In J. C. M. Baeten, J. K. Lenstra, J.
Parrow, and G. J. Woeginger, editors, Proc. 30th
International Colloquium on Automata, Languages
and Programming (ICALP 2003), volume 2719 of
Lecture Notes in Computer Science, pages 252-266.
Springer, 2003.

[3] Clavel M., and al. “Maude : Specification and
Programming in Rewriting Logic”. Internal report,
SRI International, 1999.

[4] Cloutier L. «Une approche multi-agents par
conventions et contrats pour la coordination de
l'entreprise manufacturière réseau », Université de
Droit d'Economie et des Sciences d'Aix-Marseille
III, DIAM-IUSPIM, Marseille, 1999.

[5] Cost R., and al. «Modeling Agent Conversations
with colored Petri Nets», dans Working Notes of
the Workshop on Specifying and Implementing
Conversation Policies, Autonomous Agents’99,
Seattle, Washington, mai 1999.

[6] El Fallah-Seghrouchni A., et Mazouzi H., «Une
démarche méthodologique pour l’ingénierie des
protocoles d’interaction», in. Actes Ingénierie des
systèmes multi-agents, JFIADSMA’99, 8-10
novembre 1999, Saint-Gilles, Ile de la Réunion.

[7] Guessoum Z. «Modèles et Architectures d’Agents
et de Systèmes Multi-Agents Adaptatifs ». Dossier
d’habilitation à diriger des recherches de
l’Université Pierre et Marie Curie. Décembre 2003.

[8] Huget M.P., «Model Checking Agent UML
Protocol Diagrams ». Technical report ULCS-02-
012 from the department of computer science,
University of Liverpool. Version 2002/04/16.

[9] Huget M.P., and Odell J. «Representing Agent
Interaction Protocols with Agent UML »

AAMAS'04, July 19-23, 2004, New York, New
York, USA.

[10] Lemaître C., Prat, X., Magnin, L. et Dury A.
«Description, programmation et validation
d'interactions par Coupled Augmented Transition
Network(CATNs) ». In Actes des Secondes
Journées Francophones sur les Modèles Formels
d'Interactions (MFI’03). Lille, France, 20-23 mai
2003.

[11] Mazouzi H., El fallah Seghrouchni A.,, and Haddad
S., «Open protocol design for complex interaction
in multi-agent systems ». In Proceedings of the first
international joint conference on Autonomous agent
and multi-agent systems, pages 517-526. ACM
Press, 2002.

[12] McCombs T., «Maude 2.0 Primer, Version 1.0».
Internal report, SRI International, 2003.

[13] Meseguer J., «Rewriting as a unified model of
concurrency» In Proceedings of the Concur’90
Conference, Amsterdam, Pg 384-400, Springer
LNCS Vol. 458, 1990.

[14] Meseguer J., «Logical Theory of Concurrent
Objects and its Realization in the Maude Language»
In G. Agha, P. Wegner, and A. Yonezawa, Editors,
Research Directions in Object-Based Concurrency.
MIT Press, 1992.

[15] Meseguer J., «Rewriting Logic and Maude : a
Wide-Spectrum Semantic Framework for Object-
Based Distributed Systems» In S. Smith and C. L.
Talcott, editors, Formal Methods for Open Object-
Based Distributed Systems, FMOODS2000, 2000.

[16] Mokhati F., Boudiaf N., Badri L., & Badri M.,
«Generating Maude Specification from AUML
Diagrams: Toward A Systematic Approach». In
Proc of CSITeA-04 conference. Cairo, Egypt.
December 27-29, 2004.

[17] Mokhati F., Boudiaf N., Badri M., & Badri L.,
«DIMA-Maude: Toward a Formal Framework for
Specifying and Validating DIMA Agents». In Proc
of the MOCA’04 conference. Arrhus, Denmark,
October 11-13, 2004. pp. 169-187.

[18] Nathalie F., «Modélisation et simulation multi-
agents d'écosystèmes antropisés : une application à
la gestion hydraulique en grande Camargue»,
Université de Droit d'Economie et des Sciences
d'Aix-Marseille III, IUSPIM-DIAM, Marseille,
2001.

[19] Odell J., Parunak H.V.D., Bauer B., «Representing
agent Interaction protocol In UML» conférence
AAAI Agents 2000, Barcelone, 3-7 juin 2000.

[20] Odell J., Parunak H. V. D., Bauer B., «Representing
agent Interaction protocol In UML», Agent
Oriented Software Enginering, Paolo Ciancarini and
Michael Wooldridge (eds.), Springer-Verlag,
Berlin, 2001, pp. 121-140.

[21] Olveczky P.C., «Modeling and Analyzing Protocols
in Maude» 8th Brazilian Symposium on
Programming Languages (SBLP'04). May 26-28,
2004.

[22] Paurobally S, Cunningham J., «Achieving Common
Interaction Protocols in Open Agent

350 Informatica 31 (2007) 337–350 F. Mokhati et al.

Environments», 2nd international workshop on
Challenges in Open Agent Environments, AAMAS
2003, Melbourne, Australia 14-18th July 2003.

[23] Paurobally S, Cunningham J, and Jennings N R.,
«Developing Agent Interaction Protocols Using
Graphical and Logical Methodologies» in Proc.
AAMAS03 PROMAS Workshop on Programming
Multi-Agent Systems , 2003.

[24] [24]Paurobally S., Cunningham J., and Jennings, N.
R., «Verifying the contract net protocol: a case
study in interaction protocol and agent
communication semantics». In Proceedings of 2nd
International Workshop on Logic and
Communication in Multi-Agent Systems, Nancy,
France 2004, pp. 98-117.

[25] Pham V. T., Laurent M., Houari S., «Adaptation
dynamique des systèmes multi-agents basée sur le
concept de méta-CATN». In Actes de la Deuxième
Conférence Internationale Associant Chercheurs
Vietnamiens et Francophones en Informatique,
Hanoï Vietnam, 2-5 Février 2004.

[26] Toivonen S. and al. «Using Interaction Protocols in
Distributed Construction Processes». In Seruca, I.,
Filipe, J., Hammoudi, S., and Cordeiro, J. (Eds.):
Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS'04), Porto,
Portugal, April 2004, pp. 344—349

[27] Tranvouez E., Espinasse B., «Protocoles de
coopération pour le réordonnancement d’atelier». In
Actes des journées francophones d’Intelligence
Artificielle Distribuée et Systèmes Multi-Agents
(JFIADSMA’99) à Saint-Gilles, île de la Réunion,
novembre 1999, Gleizes J.-P., Marcenac P., Ed.
Hermès, 1999.

[28] Tranvouez E., «IAD et ordonnancement : une
approche coopérative du réordonnancement par
systèmes mulit-agents». Thèse de doctorat.
Université de Droit, d'Economie et des Sciences
d'Aix-Marseille III. 2001

[29] Wooldridge M., and al., «A Methodology for
Agent-Oriented Analysis and Design». Proc. 3rd
Int. Conf. On Autonomous Agents (Agents99),
Seatle, WA, 1999.

[30] Wooldridge M., and al., «The gaia methodology for
agent-oriented analysis and design». Autonomous
Agent and Multi-agent Systems, 3(3):285-312,
2000.

