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Clustering algorithms in general need the number of clusters as a priori, which is mostly hard for 
domain experts to estimate. In this paper, we use Niched Pareto k-means Genetic Algorithm (GA) for 
clustering. After running the multi-objective GA, we get the pareto-optimal front that gives the optimal 
number of clusters as a solution set.  We analyze the clustering results using several cluster validity 
techniques proposed in the literature, namely Silhoutte, C index, Dunn’s index, DB index, SD index and 
S-Dbw index. This gives an idea about ranking the optimal number of clusters for each validity index. 
We demonstrate the applicability and effectiveness of the proposed clustering approach by conducting 
experiments using two datasets: Iris and the well-known Ruspini dataset. 
Povzetek: "[Click here and Enter short Abstract in Slovene language]"  

1 Introduction 
Data mining methods and techniques have been 

successfully applied to different areas including 
bioinformatics. They are designed for extracting 
previously unknown significant relationships and 
regularities out of huge heaps of details in large data 
collections [11].  

Classification is one of the well-known mining 
techniques. It has two main aspects: discrimination and 
clustering. In discrimination analysis, also known as 
supervised clustering, observations are known to belong 
to pre-specified classes. The task is to allocate predictors 
for the new coming instances to be able to classify them 
correctly. In contrast to classification, in clustering, also 
known as unsupervised clustering, classes are unknown a 
prior; the task is to determine classes from the data 
instances. Clustering is used to describe methods to 
group unlabeled data. By clustering, we aim to discover 
gene/samples groups that enable us to discover, for 
example, the functional role or the existence of a 
regulatory novel gene among the members in a group. 
The literature shows that increasing attention is 
devoted to the development of new clustering 
techniques [12]. Existing clustering techniques mostly 
used for gene expression data clustering can be classified 
into traditional clustering algorithms including 
hierarchical clustering [20], partitioning [22], and 
recently emerging clustering techniques such as graph-
based [19] and model-based [21, 23] approaches. 

As described in the literature, some of the existing 
clustering techniques have been successfully employed 
in analyzing gene expression data. These include 

hierarchical clustering, partitional clustering, graph-
based clustering, and model-based clustering. In general, 
existing clustering techniques require pre-specification of 
the number of clusters, which is not an easy task to 
predict a prior even for experts. Thus, the problem 
handled in this paper may be identified as follows: Given 
a set of data instances, we mainly concentrate on 
microarray data, it is required to develop an approach 
that produces different alternative solutions, and then 
conduct validity analysis on the resulting solutions to 
rank them. 

Different assumptions and terminologies were 
considered for the components of the clustering process 
and the context in which clustering is used. There exist 
fuzzy clustering techniques as well as hard clustering 
techniques. Hard clustering assigns a label li to each 
object xi, identifying its class label. The set of all labels 
for the object set is { l1 , l2 ,…, ln }, where li∈  { l1 , l2 
,…, lk }, and k is the number of clusters. In fuzzy 
clustering, an object may belong to more than one 
cluster, but with different degree of membership; an 
object xi is assigned to cluster j based on the value of the 
corresponding function fij. The membership of an object 
may not be precisely defined; there is likelihood that 
each object may or may not be member of some clusters. 
The presence of noise in the data set may be quite high. 

Our approach presented in this paper has been 
designed to smoothly handle the clustering of different 
data sets.  In the existing approaches, the number of 
clusters is mostly given a-priori. This motivated us to 
consider the idea of proposing multi-objective k-means 
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genetic algorithm (MOKGA) approach in order to 
present to the user several alternatives without taking the 
weight values into account. Otherwise, the user will have 
several trials weighting with different values until a 
satisfactory result is obtained. We evaluate the obtained 
candidate optimal number of clusters by applying the 
cluster validity techniques, namely Silhoutte, C index, 
Dunn’s index, DB index, SD index and S-Dbw index. 
Finally, the proposed approach has been tested using the 
Iris and Ruspini datasets. 

As K-Means clustering is concerned, it is a commonly 
used algorithm for partition clustering [22]. It is a widely 
used technique and has been utilized to analyze gene 
expression data. The purpose of K-Means clustering is 
the optimization of an objective function that is described 
by the equation:          
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where mi is the center of cluster Ci, and d(x, mi) is the 
Euclidean distance between a point x and mi. It can be 
seen that the criterion function attempts to minimize the 
distance between each point and the center of its cluster. 
The algorithm begins by randomly initializing a set of C 
cluster centers, then assigns each object of the dataset to 
the cluster whose center is the nearest, and re-computes 
the centers. This process is repeated until the total error 
criterion converges.  

The rest of the paper is as follows. Section 2 is an 
overview of the multi-objective approach. Section 3 
describes the proposed system: namely, clustering and 
cluster validity analysis. Section 4 includes the 
experimental results. Section 5 is the conclusions. 

2 Multi-objective Genetic Algorithms 
A multi-objective optimization problem has n decision 

variables, k objective functions, and m constraints. 
Objective functions and constraints are functions of the 
decision variables. The optimization goal may be 
described as follows: 
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where x is the decision vector, y is the objective vector, 
X denotes the decision space, and Y is called the 
objective space. The constraints  determine the 
set of feasible solutions [14].  
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Solutions to a multi-objective optimization method are 
mathematically expressed in terms of non-dominated or 
superior points. In a minimization problem, a vector x(1) 
is partially less than another vector x(2), denoted 

, when no value of  x)2()1( xx p (2) is less than x(1) and at 
least one value of x(2) is strictly greater than x(1). If x(1) is 
partially less than  x(2), we say that x(1) dominates x(2) or 
the solution  x(2) is inferior to x(1). Any vector which is 
not dominated by any other vectors is said to be non-
dominated or non-inferior. The optimal solutions to a 

multi-objective optimization problem are non-dominated 
solutions [13].  

A common difficulty with the multi-objective 
optimization is the conflict between the objective 
functions. None of the feasible solutions allows optimal 
solutions for all the objectives. Pareto-optimal is the 
solution, which offers the least objective conflict. In 
traditional multi-objective optimization, multiple 
objectives are combined to form one objective function. 
One of the traditional methods being used is weighting 
each objective and scalarizing the result. At the end of 
each run, pareto-optimal front may be obtained, which 
actually represents one single point. 

3 The Proposed Approach 
In this paper, we propose a new clustering approach, 

namely Multi-Objective Genetic K-means algorithm 
(MOKGA), which is a general purpose approach for 
clustering other datasets after modifying the fitness 
functions and changing the proximity values as distance 
or non-decreasing similarity function according to the 
requirements of the dataset to be clustered.  

Concerning our approach, after running the multi-
objective k-means genetic algorithm, we get the pareto-
optimal front that gives the optimal number of clusters as 
a solution set.  Then, the system analyzes the clustering 
results found under six of the cluster validity techniques 
proposed in the literature, namely Silhoutte, C index, 
Dunn’s index, SD index, DB index and S_Dbw index. 

3.1 A. Multi-Objective Genetic K-Means 
Algorithm 

The Multi-Objective Genetic K-means Algorithm 
(MOKGA) is basically the combination of the Fast 
Genetic K-means Algorithm (FGKA) [1] and Niched 
Pareto Genetic Algorithm [2].  

As presented in the flowchart shown in Figure 1, 
MOKGA uses a list of parameters to drive the evaluation 
procedure as in the other genetic types of algorithms: 
including population size (number of chromosomes), 
t_dom (number of comparison set) representing the 
assumed non-dominated set, crossover, mutation 
probability and the number of iterations that the 
execution of the algorithm needs to obtain the result.  

Sub-goals can be defined as fitness functions; and 
instead of scalarizing them to find the goal as the overall 
fitness function with the user defined weight values, we 
expect the system to find the set of best solutions, i.e., the 
pareto-optimal front. By using the specified formulas, at 
each generation, each chromosome in the population is 
evaluated and assigned a value for each fitness function.  

The coding of our individual population is a 
chromosome of length n. Each allele in the chromosome 
takes a value from the set {1, 2, …, K},  and represents a 
pattern. The value indicates the cluster that the 
corresponding pattern belongs to.  Each chromosome 
exhibits a solution set in the population. If the 
chromosome has k clusters, then each gene an (n=1 to N) 
takes different values from [1..k].  
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Figure 1: Flow chart: the process of the Multi-Objective 
Genetic K-means Algorithm 
 

Initially, current generation is assigned to zero. Each 
chromosome takes number of clusters parameter within 
the range 1 to maximum number of clusters given by the 
user. A population with the specified number of 
chromosomes is created randomly by using the method 
described in [5]: Data points are randomly assigned to 
each cluster at the beginning; then the rest of the points 
are randomly assigned to clusters. By using this method, 
we can avoid generating illegal strings, which means 
some clusters do not have any pattern in the string.  

Using the current population, the next population is 
generated and generation number is incremented by 1. 
During the next generation, the current population 

performs the pareto domination tournament to get rid of 
the worst solutions from the population, crossover, 
mutation and k-means operator [1] to reorganize each 
object’s assigned cluster number. Finally, we will have 
twice the number of individuals after the pareto 
domination tournament. We apply the ranking 
mechanism used in [15] to satisfy the elitism and 
diversity preservation. By using this method the number 
of individuals is halved. 

The first step in the construction of the next generation 
is the selection using pareto domination tournaments: In 
this step, two candidate items picked among (population 
size- tdom) individuals participate in the pareto domination 
tournament against the tdom individuals for the survival of 
each  in the population. In the selection part, tdom 
individuals are randomly picked from the population. 
With two randomly selected chromosome candidates in 
(population size- tdom) individuals, each of the candidates 
is compared against each individual in the comparison 
set, tdom. If one candidate has a larger total within-cluster 
variation fitness value and a larger number of cluster 
values than of all of the chromosomes in the comparison 
set, this means it is dominated by the comparison set 
already and will be deleted from the population 
permanently. Otherwise, it resides in the population.  

After the pareto domination tournament, one-point 
crossover operator is applied on randomly chosen two 
chromosomes. The crossover operation is carried out on 
the population with the crossover pc. After the crossover, 
assigned cluster number for each gene is renumbered 
beginning from a1 to an. For example, if two 
chromosomes having 3 clusters and 5 clusters, 
respectively, need to have a crossover at the third 
location: 

Number of clusters=3:     1 2 3 3 3 
Number of clusters=5:     1 4 3 2 5 

We will get 1 2 3 2 5 and 1 4 3 3 3; and then they are 
renumbered to get the new number of clusters 
parameters: 

Number of clusters=4:    1 2 3 2 4  (for 1 2 3 2 5) 
Number of clusters=3:    1 2 3 3 3  (for 1 4 3 3 3) 

 The reason for choosing one-point crossover is 
because it produced better results compared to multi-
point after some initial experiments. 

The mutation operator on the current population is 
employed after the crossover. During the mutation, we 
replace each gene value an by an’ with respect to the 
probability distribution; for n=1, …, N simultaneously. 
an’ is a cluster number randomly selected from {1, …, 
K} with the probability distribution {p1, p2,…,pK} defined 
using the following formula: 
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where  and d(X[1.. ]i k∈ n,  Ck) denotes Euclidean 
distance between pattern Xn and the centroid Ck of the k-
th cluster. dmax(Xn) = maxk{d(Xn,  Ck)}, pi represents what 
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the probability interval of mutating gene is assigned to 
cluster i (e.g., Roulette Wheel). 

Finally, k-means operator is applied. It is used to 
reanalyze each chromosome gene’s assigned cluster 
value; it calculates the cluster centre for each cluster; and 
then it re-assigns each gene to the cluster that is the 
closest one to the instance in the gene. Hence, k-means 
operator is used to speed up the convergence process by 
replacing an by an’ for n=1, …, N simultaneously, where 
an’ is the closest to object Xn in Euclidean distance.  

After all the operators are applied, we have twice the 
number of individuals, after having the pareto dominated 
tournament. We can not give an exact number as equal to 
the number of initial population size because at each 
generation randomly picked candidates are picked for the 
survival test leading to deletion of one or both, in case 
dominated. To halve the number of individuals, having 
the number of individuals we had, the ranking 
mechanism proposed in [15] is employed. So, the 
individuals obtained after crossover, mutation and k-
means operator are ranked, and we pick the best 
individuals among them to place in the population for the 
next generation.  

Our approach picks the first l individuals considering 
the elitism and diversity among 2l individuals. Pareto 
fronts are ranked. Basically, we find the pareto-optimal 
front and remove the individuals of the pareto-optimal 
front from 2l set and place it in the population to be run 
in the next generation. In the remaining set, again we get 
the first pareto-optimal front and we put it in the 
population and so on. Since we try to get the first l 
individuals, the last pareto-optimal front may have more 
individuals required to complete the number of 
individuals to l, we handle the diversity automatically. 
We rank them and reduce the objective dimension into 
one. Then, we sum the normalized value of the objective 
functions of each individual. We sort them in increasing 
order and find each individual’s total difference from its 
individual pairs, the one with the closest smaller summed 
values and the one with the closest greater summed 
values. After sorting the individuals in terms of each 
one’s total difference in decreasing order, we keep 
placing from the top as many individuals as we need to 
complete the number of population to l. The reason for 
doing this is to take the crowding factor into account 
automatically, so that individuals occurring closer to 
others are unlikely to be picked. Solutions far apart from 
the others will be considered for the necessity of 
diversity. Further details are given in [15]. This method 
was also suggested as a solution for the elitism and 
diversity for improvement in NSGA-II. 

Finally, if the maximum number of generations is 
reached, or the prespecified threshold is satisfied then 
exit; otherwise the next generation is performed. 

During our clustering process, we defined two 
objective functions: minimizing the number of clusters 
and minimizing the partitioning error. To partition the N 
pattern points into K clusters one goal is to minimize the 
Total Within-Cluster Variation (TWCV), which is 
specified as:  
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where X1, X2,.. , XN are the N objects, Xnd denotes feature 
d of pattern Xn (n = 1 to N). SFkd is the sum of the d-th 
features of all the patterns in cluster k (Gk) and Zk denote 
the number of patterns in cluster k (Gk) and SFkd is:  
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And the other objective function is to minimize the 
number of clusters parameter. Under the lights of these 
two objective functions, after running the algorithm, we 
aim at obtaining the first pareto optimal front having the 
best partition with the least number of clusters as optimal 
solution set. 

3.2 Cluster Validity Techniques 
Clustering is an unsupervised task and after clustering 

the data, partitioning into subgroups, we need to check its 
validity. The criteria widely accepted by the clustering 
algorithms are the compactness of the cluster and their 
well-separateness. Those criteria should be validated and 
optimal clusters should be found, so the correct input 
parameters must be given to the satisfaction of optimal 
clusters. Basically, the number of clusters is given as a 
priori. However, pareto-optimal solution set for the 
clustering results is obtained in our approach, MOKGA. 
We believe that these are the good clustering outcomes, 
and we use the cluster validity index to decide and see 
the overall picture of those validity index value changes 
for each number of clusters parameter value in the 
solution set. In our system, we considered six cluster 
validity techniques widely used for the validation task. 
These are Dunn index [4], Davies-Bouldin index [3], 
Silhouette index [5], C index [6], SD index [8] and 
S_Dbw index [9]. Based on the validated results, the 
optimal number of clusters can be determined. 

The SD validity index definition is based on the 
concepts of average scattering for clusters and total 
separation between clusters. The average scattering for 
clusters is defined as: 
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where ( )ivσ  is the average standard deviation (average of 
the Euclidian distance between all the points) of cluster 
centers; and ( )xσ  is the  average standard deviation of 
all the data points. The total separation between clusters 
is defined as: 
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where, Dmax = max(||vi - vj||)  ∀i, j ∈{1, 2,3,…, nc} is the 
maximum distance between cluster centers and Dmin= 
min(||vi - vj ||) ∀i, j ∈{1, 2,…, nc } is the minimum 
distance between cluster centers. 

The SD index is calculated using the following 
equation: 

)()()( ccc nDisnScatnSD +×=α        (9) 
where α is a weighting factor.  
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In the above equation, Scat(nc) indicates the average 
compactness of clusters. A small value for this term 
indicates compact clusters. Dis(nc) indicates the total 
separation between the n clusters. Since the two terms of 
SD have different ranges, a weighting factor is needed to 
incorporate both terms in a balanced way.  The number 
of clusters that minimizes the index is an optimal value.   

S_Dbw is formalized based on the clusters’ 
compactness (intra-cluster variance) and the density 
(Inter-cluster Density) between clusters. Inter-cluster 
density is defined as follows: 
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where vi and vj are centers of clusters ci and cj; and uij is 
the middle point of the line segment defined by the 
clusters’ centers vi and vj. The term density(u) is given by 
following equation: 
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where nij is the number of tuples that belong to the 
cluster ci and cj, i.e., xl ∈ ci, and cj ∈ S. Function f(x,u) is 
defined as: 
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where stedev  is the average standard deviation of 
clusters. 

Inter-cluster Density (ID) evaluates the average 
density in the region among clusters in relation to the 
density of the clusters. Intra-cluster variance measures 
the average scattering of clusters (Scat(nc)) and has 
already been defined in the SD index part. 

The S_Dbw is calculated using the following 
equation: 

_ ( ) ( ) _ ( )c cS Dbw n Scat n Dens bw n= + c         (13) 
the definition of S_Dbw considers both compactness and 
separation. The number of clusters that minimizes the 
index is an optimal value.  
The Dunn index is calculated using the following 
equation :  
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where ci represents the i-cluster of a certain partition, 
d(x,y) is the distance between data points x and y, where 
x belongs to cluster i and y belongs to cluster j , d(x, ck) is 
the distance of data point x to the cluster centre that it 
belongs to, |Ck| is the number of data points in cluster K.  

The main goal of the measure is to maximize the 
intercluster distances and minimize the intracluster 
distances. Therefore, the number of clusters that 
maximizes D is taken as the optimal number of clusters.   

The DB index is calculated using the following 
equation: 
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where n is the number of clusters,  is the average 
distance of all objects from the cluster to their cluster 
center,  denotes the distance between centres of 
clusters.  

nS

( , )i jS Q Q

The Davies-Bouldin index is a function of the ratio 
of the sum of within-cluster scatter to between cluster 
separation. When it has a small value it exhibits a good 
clustering.  
The following formula is used to calculate the Silhouette 
index: 
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where a(i) is the average dissimilarity of i-object to all 
other objects in the same cluster, Euclidian distance is 
used to calculate the dissimilarity; and b(i) is the average 
dissimilarity of i-object to all objects in the closest 
cluster.    

The formula indicates that the silhouette value is in 
the interval [–1, 1]: 

 Silhouette value is close to 1:  means that the 
sample is assigned to a very appropriate cluster.  

 Silhouette value is about 0: means that that the 
sample lies equally far away from both clusters, it 
can be assigned to another closest cluster as well.  

 Silhouette value is close to –1: means that the 
sample is “misclassified”.  

The partition with the largest overall average silhouette 
means the best clustering. So, the number of clusters with 
the maximum overall average silhouette width is taken as 
the optimal number of clusters. This index is defined as 
follows:    

min

max min

S SC
S S
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=

−
          (17) 

where S is the sum of distances over all pairs of patterns 
from the same cluster,  L is the number of pairs for 
calculating Smin and Smax, Smin  is the sum of the l smallest 
distances if all pairs of patterns are considered, and Smax  
is the sum of the l largest distances out of all pairs. It can 
be seen that a small value of C indicates a good 
clustering. 

4 Experiments 
We conducted our experiments on Intel® 4, 2.00 GHz 

CPU, 512 MB RAM running Windows XP Dell PC. The 
proposed MOKGA approach and the utilized cluster 
validity algorithms have been implemented using 
Microsoft Visual Studio 6.0 C++. We used two data sets 
in the evaluation process. The first data set is the Iris 
dataset [17]. It contains 150 instances each having 4 
attributes; it has three clusters each has 50 instances. The 
Iris dataset is a famous dataset widely used in pattern 
recognition and clustering. One cluster is linearly 
separable from the other two and the latter two are not 
exactly linearly separable from each other. The second 
data set is the Ruspini dataset with 75 instances with 2 
attributes and integer coordinates: 0 < X < 120, 0 < Y < 
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160, which might be naturally grouped into 4 sets [16]. 
The Ruspini dataset is popular for illustrating clustering 
techniques.  
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Figure 2: Pareto-fronts for IRIS dataset 

 

Ruspini dataset
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Figure 3: Pareto-fronts for RUSPINI dataset. 

 

Table  1: IRIS DATASET TWCV FOR K=6 

Iteration TWCV 
1 72.60164 
50 40.4213 
100 39.9218 
150 39.6762 
250 39.5762 

 

Table 2: RUSPINI DATASET TWCV FOR K=12 

Iteration TWCV 
1 8331.376 
50 3555.116 
100 3524.366 
150 3513.254 

 
We have run the proposed genetic algorithm based 

approach ten times with the following parameters: 
population size=100, t_dom (number of comparison 
set=10) and crossover= 0.8 and mutation=0.01 and we 
used 250, and 150 as the maximum number of 
generations for the Iris and Ruspini datasets, 

respectively. Finally, we picked the range [2, 20] for 
finding the optimal number of clusters for both 
experiments. 

After running the algorithm for the Iris and Ruspini 
datasets, the changes in the pareto-optimal front are 
displayed in Figure 2, and Figure 3, respectively, for 
different generations; demonstrating how the system 
converges to an optimal pareto-optimal front. As the 
actual change in the value of TWVC is not reflected in 
the curves in Figure 2 and Figure 3, some key TWVC 
values are reported in Table 1 and Table 2, respectively.  

After we get the pareto optimal front, we tested and 
analyzed the obtained results for the two data sets using 
the six indexes: Dunn index, Davies-Bouldin index, 
Silhouette index, C index, SD index and S_Dbw index. 
The results are reported in Figures 4-7. Finally, we 
compared our results with the corresponding results 
reported in [16, 17].  

 
Iris dataset clustering validity results(1)
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Figure 4: Validity results of five indexes for the IRIS 
dataset 
 

Iris dataset clustering 
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Figure 5: C-index validity results for the IRIS dataset 
 

According to [17], the optimal number of clusters 
found for the Iris data is 3, which ranked the second for 
all the indexes except S-Dbw (see Figure 4 and Figure 5).  

During the process, pareto-optimal front changes were 
given in Figure 2 and Figure 3. The reason for getting a 
stabilized front for both datasets is the k-means operator 
and the mutation which was also used in [1]. In the work 
described in [1], they used 517 instances with 19 
attributes and their study found the stabilization in 20 
generations. However, objective functions do not 
converge in the first 20 generations; the partitioning error 
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keeps reducing slightly because of the k-means and 
mutation. We make sure it converged by having 
objective functions without a change between the current 
and the previous one. In our multi-objective genetic 
algorithm based approach, we got the same outcome as 
in [1]. In other words, our method stabilizes in the first 
50 generations but it does not converge until around 200 
generations for Iris; and close to 150 generations for 
Ruspini. Because of the lack of space, we show the 
change for one cluster k (finally converging ones). 
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Figure 6: Validity results of five indexes for the 
RUSPINI dataset 
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Figure 7: C-index validity results for the RUSPINI 
dataset 
 

For the Ruspini dataset, it is naturally grouped into 4 
clusters as reported in [16]. Not only we have 4 in our 
pareto optimal front as it can be easily seen from the 
curves plotted in Figure 6 and Figure 7, but also we got 
this value as the best in all the cluster validity analysis 
indexes except C-index. However, 4 can be considered as 
the best for the C-index as well if it is deemed slight 
changes after 4 has converged. This finding is consistent 
with the results found before. Actually, C index is likely 
to be data dependent and the behavior of the index may 
change when different data structures were used. 

5 Conclusions 
In this paper, we proposed a multi-objective genetic 

algorithm called MOKGA to handle the clustering 
problem. It is the combination of the niched pareto 
optimal and fast k-means genetic algorithm. In other 
words, in MOKGA both crossover and mutation 
operators are used for the evolutionary process, in 
addition to the K-means operator used to make the 
evolutionary process faster. For the selection, Niched 
Pareto tournament selection method is used. 
Additionally, a multiple Pareto-optimal front layer 
ranking method is proposed to maintain relative 
consistence population size in the genetic process. In the 
experiments, it is also verified that this method can help 
in leading to the global optimal solution set. In the 
MOKGA process, the distance (Euclidean distance) 
between the current generation’s Pareto optimal front and 
the previous generation is calculated and counted 
compared with the threshold, which can be used to 
decide when to terminate the genetic process.   This way, 
we overcome the difficulty of determining the weight of 
each objective function taking part in the fitness. 
Otherwise, the user would have been expected to do 
many trials with different weighting of objectives as in 
traditional genetic algorithms. By using MOKGA, we 
aim at finding the pareto-optimal front to help the user to 
see many alternative solutions at once. Then, cluster 
validity index values are evaluated for each pareto-
optimal front value, which is considered the optimal 
number of clusters value.  

 

References 

[1] Y. Lu, et al, “FGKA: A Fast Genetic K-means 
Clustering Algorithm,” Proceedings of ACM 
Symposium on Applied Computing, pp.162-163, 
Nicosia, Cyprus, 2004. 

[2] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A 
niched pareto genetic algorithm for multiobjective 
optimization,” Proceedings of IEEE Conference on 
Evolutionary Computation, IEEE World Congress 
on Computational Computation, Vol.1, pp.82-87, 
Piscataway, NJ., 1994. 

[3] D.L. Davies and D.W. Bouldin, “A cluster 
separation measure,” IEEE Transactions on Pattern 
Recognition and Machine Intelligence, No.1, 
pp.224-227, 1979. 

[4] J. Dunn, Well separated clusters and optimal fuzzy 
partitions. Journal of Cybernetics, Vol.4, pp.95-104, 
1974. 

[5] P.J. Rousseeuw, “Silhouettes: a graphical aid to the 
interpretation and validation of cluster analysis,” 



40 Informatica 29 (2005) 33–40  Y. Liu et al. 

Journal of Comp App. Math, Vol.20, pp.53-65, 
1987. 

[6] L. Hubert and J. Schultz, “Quadratic assignment as a 
general data-analysis strategy,” British Journal of 
Mathematical and Statistical Psychologie, Vol.29, 
pp.190-241, 1976. 

[7] S. Theodoridis and K. Koutroumbas, Pattern 
Recognition, Academic Press, 1998. 

[8] M. Halkidi, M. Vazirgiannis and I. Batistakis, 
“Quality scheme assessment in the clustering 
process,” Proceedings of PKDD, Lyon, France, 
2000. 

[9] M. Halkidi, M. Vazirgiannis, Clustering “Validity 
Assessment: Finding the optimal partitioning of a 
data set,” Proceedings of IEEE ICDM, California, 
Nov. 2001. 

[10]  Gene Expression Data of the Genomic Resources, 
University of Stanford  (Available at: http://genome-
www.stanford.edu/ serum/data.html), accessed June 
2004. 

[11]  J. Grabmeier, et al, “Techniques of Cluster 
Algorithms in Data Mining,” Data Mining and 
Knowledge Discovery, Vol.6, pp.303–360, 2003. 

[12]  A. K. Jain, et al, “Data Clustering: A Review,” 
ACM Surveys, Vol.31, No.3, 1999. 

[13]  K. Tamura, et al, “Necessary and Sufficient 
Conditions for Local and Global Non-Dominated 
Solutions in Decision Problems with Multi-
objectives,” Journal of Optimization Theory and 
Applications, Vol.27, 509-523, 1979. 

[14]  E. Zitzler, “Evolutionary algorithms for 
multiobjective optimization: Methods and 
applications,” Doctoral thesis ETH NO. 13398, 
Zurich: Swiss Federal Institute of Technology 
(ETH), Aachen, Germany: Shaker Verlag, 1999. 

[15]  K. Deb et al., “A Fast Elitist Non-Dominated 
Sorting Genetic Algorithm for Multi-Objective 
Optimization: NSGA-II,” Proceedings of the 
Parallel Problem Solving from Nature. Springer 
Lecture Notes in Computer Science No. 1917, Paris, 
France, 2000. 

[16]  L. Kaufman and P.L. Rouseeauw, Finding group in 
data: An introduction to cluster analysis, John Wiley 
& Sons. New York, p.100, 1990. 

[17]  H.P. Friedman and J. Rubin, “On some invariant 
criteria for grouping data,” Journal of the American 
Statistical Association, 62:1159-1178, 1967. 

[18] Microarray Data Analysis: Direct Gene Sample 
Correlations, Gene Network Science, Inc. (c). 2001. 

[19] M. Neef, D. Thierens, & H.  Arciszewski, A Case 
Study of a Multi-objective Elitist Recombinative 
Genetic Algorithm with Coevolutionary Sharing. In 
Angeline, P. (Ed.), Proc. of the International 
Congress on Evolutionary Computation, pp.796-
803. Priscatawy. 1999. 

[20] W. Shannon, R. Culverhouse J. Duncan. Analyzing 
microarray data using cluster analysis, 
Pharmacogenomics, Vol.4, No.1, pp.41-52, 2003. 

[21] T. Kohonen, Self-organizing Maps, Springer-Verlag, 
1997. 

[22] P.J. Waddell, H. Kishino, Cluster Inference Methods 
and Graphical Models Evaluated on NCI60 
Microarray Gene Expression Data,  Genome 
Informatics, Vol.11, pp.129-140, 2000. 

 


	Introduction
	Multi-objective Genetic Algorithms
	The Proposed Approach
	A. Multi-Objective Genetic K-Means Algorithm
	Cluster Validity Techniques

	Experiments
	Conclusions
	References
	Y. Lu, et al, “FGKA: A Fast Genetic K-means Clustering Algor
	J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto
	D.L. Davies and D.W. Bouldin, “A cluster separation measure,
	J. Dunn, Well separated clusters and optimal fuzzy partition
	P.J. Rousseeuw, “Silhouettes: a graphical aid to the interpr
	L. Hubert and J. Schultz, “Quadratic assignment as a general
	S. Theodoridis and K. Koutroumbas, Pattern Recognition, Acad
	M. Halkidi, M. Vazirgiannis and I. Batistakis, “Quality sche
	M. Halkidi, M. Vazirgiannis, Clustering “Validity Assessment
	Gene Expression Data of the Genomic Resources, University of
	J. Grabmeier, et al, “Techniques of Cluster Algorithms in Da
	A. K. Jain, et al, “Data Clustering: A Review,” ACM Surveys,
	K. Tamura, et al, “Necessary and Sufficient Conditions for L
	E. Zitzler, “Evolutionary algorithms for multiobjective opti
	K. Deb et al., “A Fast Elitist Non-Dominated Sorting Genetic
	L. Kaufman and P.L. Rouseeauw, Finding group in data: An int
	H.P. Friedman and J. Rubin, “On some invariant criteria for 
	Microarray Data Analysis: Direct Gene Sample Correlations, G
	M. Neef, D. Thierens, & H.  Arciszewski, A Case Study of a M
	W. Shannon, R. Culverhouse J. Duncan. Analyzing microarray d
	T. Kohonen, Self-organizing Maps, Springer-Verlag, 1997.
	P.J. Waddell, H. Kishino, Cluster Inference Methods and Grap

